Schedule

Please note that this schedule is subject to change.

Calendar

Date Topic Readings Assignments
1/17 Introduction
1/22 Python McKinney, Chs. 1 & 2
1/24 Python McKinney, Chs. 3
1/29 Relational Databases
1/31 Relational Databases
2/05 Structured Data McKinney, Chs. 4
2/07 Data and Pandas McKinney, Chs. 5 & 6
2/12 Pandas and DuckDB
2/14 Data Wrangling Kandel et al.
2/19 Data Wrangling Jin et al.
2/21 Data Transformation Yan & He
2/26 Data Cleaning Rekatsinas et al.
2/28 Test 1
3/04 Data Integration Stonebraker & Ilyas
3/06 Data Fusion Dong et al.
3/11 No Class
3/13 No Class
3/18 Scalable Databases Gessert et al.
3/20 Scalable Databases Pavlo & Aslett
3/25 Scalable Dataframes Petersohn et al.
3/27 Scalable Dataframes Jindal et al.
4/01 Time Series Data Pelkonen et al.
4/03 Graph Data Sahu et al.
4/08 Test 2
4/10 Databases and Visualization Heer & Moritz
4/15 Spatial Data Eldawy et al.
4/17 Data Curation Wilkinson et al.
4/22 Provenance Chapman et al.
4/24 Reproducibility Collberg & Proebsting
4/29 Databases and Machine Learning Kraska et al.
5/01 Review
5/08 Final Exam (8-9:50am)

Lectures

(01/17) Introduction
(01/22) Python
(01/24) Python
(01/29) Relational Databases
(01/31) Relational Databases
(02/05) Structured Data
(02/07) Pandas
(02/12) Data
(02/14) Data Wrangling
(02/19) Data Wrangling
(02/21) Data Cleaning
(02/26) Data Wrangling & Data Cleaning
(03/04) Data Transfomation & Integration
(03/06) Data Fusion
(03/18) Scalable Databases
(03/20) Scalable Databases
(03/25) Scalable Dataframes
(03/27) Scalable Dataframes
(04/01) Time Series Data
(04/03) Graph Data
(04/10) Databases and Visualization
(04/15) Spatial Data
(04/17) Data Curation
(04/22) Provenance
(04/24) Reproducibility
(04/29) Databases and Machine Learning
(05/01) Review