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Data Formats
• CSV 
- Text 
- No type information 

• JSON 
- Text, Hierarchical 
- Limited type information 

• Parquet 
- Binary, Column-oriented 
- Type information 
- Other features: compression
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Parquet
• "Open source, column-oriented data file format designed for efficient data 

storage and retrieval" [parquet.apache.org] 
• Available in multiple languages including python 
• Binary format 
• Column-oriented: can read a column at a time (e.g. from the cloud) 
• Self-describing (schema can be embedded) 
• Supports compression
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Figure 2: TDE transformation for date-time. (Left): user provides two desired output examples in column-D,
for the input data in column-C. (Right): After clicking on the “Get Transformation” button, TDE synthesizes
programs consistent with the given examples, and return them as a ranked list within a few seconds. Hovering
over the first program (using System.DateTime.Parse) gives a preview of all results (shaded in green).

Figure 3: (Left): transformation for names. The first three values in column-D are provided as output
examples. The desired first-names and last-names are marked in bold for ease of reading. A composed
program using library CSharpNameParser from GitHub is returned. (Right): transformations for addresses.
The first two values are provided as output examples to produce city, state, and zip-code. Note that some of
these info are missing from the input. A program invoking Bing Maps API is returned as the top result.

entered. For instance, in the first column dates are rep-
resented in many di↵erent formats. In the second column,
some customer names have first-name followed by last-name,
while others are last-name followed by comma, then first-
name, with various salutations (Mr., Dr., etc.) and su�xes
(II, Jr., etc.). Phone numbers are also inconsistent, with
various international calling codes (+1) and extensions (ext
2001), etc. Addresses in the last column are also not clean,
often with missing state and zip-code information.

This data in Figure 1 is clearly not ready for analysis
yet – an analyst wanting to figure out which day-of-the-
week has the most sales, for instance, cannot find it out
by executing a SQL query: the date column needs to be
transformed to day-of-the-week first, which however is non-
trivial even for programmers. Similarly the analyst may
want to analyze sales by area-code (which can be extracted
from phone-numbers), or by zip-code (from addresses), both
of which again require non-trivial data transformations.

In a separate scenario, suppose one would like identified
possible duplicate customer records in Figure 1, by first stan-
dardizing customer names into a format with only last and
first names (e.g., both the first two records will convert into
“Doe, John”). This again requires complex transformations.

Data transformation is clearly di�cult. However, our ob-
servation is that these domain-specific transformation prob-
lems like name parsing and address standardization are re-
ally not new – for decades developers have built custom
code libraries to solve them in a variety of domains, and
shared their code in places like GitHub. In a recent crawl,
we obtained over 1.8M functions extracted from code li-
braries crawled from GitHub, and over 2M code snippets
from StackOverflow, some of which specifically written to
handle data transformations in a variety of domains.

Transform-Data-by-Example. The overarching goal of
the project is to build a search engine for end-users to eas-
ily reuse code for transformations from existing sources.
Specifically, we adopt the by-example paradigm and build a
production-quality system called Transform-Data-by-Example
(TDE). The front-end of TDE is an Excel add-in, currently
in beta and available from O�ce Store [7]. From the Excel
add-in, users can find transformations by providing a few in-
put/output examples. In Figure 2(left), a user provides two
output examples to specify the desired output. Once she
clicks on the “Get Suggestions” button, the front-end talks
to the TDE back-end service running on Microsoft Azure
cloud, which searches over thousands of indexed functions,
to on-the-fly synthesize new programs consistent with all
examples. In the right part of Figure 2, a ranked list of pro-
grams are returned based on program complexity. The top-
ranked program uses the System.DateTime.Parse() func-
tion from the .Net system library to generate correct output
for all input. Figure 3 shows additional examples for trans-
forming names and addresses using the data in Figure 1.
TDE has a number of unique features, which we believe

are important first steps towards realizing self-service data
transformation.
• Search-by-Example. TDE works like a search engine, which
allows end-users to search transformations by just a few ex-
amples, a paradigm known as program-by-example (PBE) [23]
that was also used by FlashFill [16] for data transformation
with much success. Compared to existing PBE systems such
as FlashFill that compose a small number of string primi-
tives predefined in a Domain Specific Language (DSL), TDE
synthesizes programs from a much larger search space (tens
of thousands of functions). We develop novel algorithms to
make it possible at an interactive speed.
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TDE: Transform Data by Example
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TBP Use Cases
• Auto-Unify 

• Auto-Repair
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(a) EN-Wiki: Dates (b) EN-Wiki: Currency values (c) EN-

wiki:time

(d) EN-Wiki: Date

(e) ZH-Wiki: Units (f) ZH-Wiki: Ordinals (g) ZH-Wiki: Date (h) JA-Wiki: Year

(i) JA-Wiki: Date (j) ES-Wiki: Numbers (k) ES-Wiki: Numbers (l) ES-Wiki: Date

Figure 3: Auto-Repair: Real quality issues (in red boxes) from Wikipedia tables that are fixable by TBP programs. Note
that the examples span di�erent languages (English, Chinese, Japanese, Spanish, etc.)

2. SYSTEM ARCHITECTURE
Figure 6 gives a high-level overview of the architecture

of our system. There are three main components, which
are all o�ine processing steps. The first component takes a
large corpus of tables (e.g., web tables or enterprise spread-
sheets), find related tables, link/join records across tables
(like shown in Figure 4 and Figure 5), to produce paired
columns (C, CÕ) like in Table 2 (Section 3).

The second component uses paired columns (C, CÕ) as if
they are input/output columns in a transformation task, and
invokes TBE to find possible transformation T consistent
with all examples in (C, CÕ). If TBE synthesizes such a T ,
the (C, CÕ, T ) triple is populated in Table 2 (Section 4).

In the last stage, we analyze (C, CÕ, T ) triples in Table 2
in a global manner, in order to identify TBP programs that
are both commonly-used and highly-accurate. We formulate
an automated approach to harvest such programs, as well
as a human-curated variant that can leverage human labels
e�ectively (Section 5).

We now discuss each component in turn.

3. PAIR COLUMNS WITH LINKED ROWS
In this section, we discuss the first part of our system,

which takes a large collection of tables T as input, and pro-

duces pairs of columns that are linked row-by-row. In this
section, we discuss 3 di�erent ways to achieve this in turn,
using a corpus of over 100M web tables [18]6

3.1 Pair Columns by Search Engine
Our first approach leverages search engines, utilizing the

observation that pages returned for the same keyword query
often contain related tables. We perform 3 steps here: pair-
ing tables, linking rows, and pairing columns.

Pairing tables. We take the query-logs of a commercial
search engine, and first use a production classifier [18] to
select queries known as “table-intent queries” [18], which are
data-seeking queries such as “list of us presidents”, “list
of national parks”, “list of chemical elements”, etc. We
obtain a total of 16M table-intent queries, denoted by Q.

For each query q œ Q, we retrieve all web tables in the
top-20 pages returned by the search engine, denoted by Tq,
which contains tables related to query q. For example, ta-
bles in Figure 4 are all retrieved for the query “list of us
presidents”. We can then pair such tables in Tq to produce
table-pairs PQ = {(T, T Õ)|T œ Tq, T Õ œ Tq, T ”= T Õ, q œ Q}.

Linking rows. Recall that in order to utilize TBE to
generate programs, we need paired input/output examples.
6Similar web-table data sets are publicly available in [2, 8].
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Figure 2: Two tables R and S with schema (time-stamps,
phone-number, geo-coordinates). Integrating the two would
require values to be reformatted using transformations.

invokes the TBE feature, and enters two output examples
(1997-01-12 and 1997-02-02) in the “Custom” column on the
right, to demonstrates a desired transformation. In response
to user input, the system synthesizes a transformation pro-
gram consistent with the two given input/output examples,
which is shown at the top of the figure (this program invokes
a total of 7 functions, including Text.Combine, Date.ToText,
etc.). Furthermore, a preview of remaining output values
is shown in gray (beneath user-provided examples), which
helps users to verify the correctness of the suggested trans-
formation.

Transform-by-Pattern (TBP). The by-example TBE
paradigm is clearly an excellent fit for Excel-like spread-
sheet environments. As we will see below, however, in other
settings it may not be as easy to invoke TBE, for it can
be hard for users to identify columns requiring transforma-
tions, and then provide paired input/output examples. We
in this work propose an alternative Transform-by-Pattern
(TBP) paradigm to complement the TBE approach, which
can proactively suggest relevant transformations based only
on input/output data patterns (with no paired examples).

More concretely, each TBP program is a triple (Ps, Pt,
T ), where Ps and Pt are data “patterns” (e.g., in regex)
describing the source and target column, for which the cor-
responding program T is applicable.

Table 1 shows a list of example TBP programs (we will
discuss how to harvest them in detail). Each row here is a
TBP program that consists of a triple (Ps, Pt, T ). For the
TBP program labeled as TBP-1 in the first row, its source
pattern Ps is: “<letter>{3}. <digit>{2}, <digit>{4}” and
target pattern Pt is: “<digit>{4}-<digit>{2}-<digit>{2}”.
Note that these two patterns can be used to describe the
example TBE case shown in Figure 1; the corresponding
transformation program (shown at the top of Figure 1) can
be “memorized” in the last column T of Table 1 (omitted in
the table in the interest of space).

In the following, we use two concrete applications, Auto-
Unify and Auto-Repair, to demonstrate that such TBP pro-
grams can enable scenarios complementary to TBE. We em-
phasize that TBP is not meant to replace the general-purpose
TBE, especially in spreadsheet settings where users can eas-
ily identify target output and enter examples.

TBP for “Auto-Unify”. Data transformation is of-
ten required in applications like ETL and data integration,
where data of di�erent formats from multiple sources need
to be unified and standardized.

Figure 2 shows two example tables denoted by R and S,

both containing telemetry data of the form: (time-stamp,
cellular-device-numbers, geo-coordinates). As is often the
case in the real world, R and S are formatted di�erently
(e.g., the telemetry may be generated by di�erent types of
devices, or di�erent versions of programs), and need to be
integrated, which is a common task in ETL [26, 44].

Today, data engineers need to first identify such issues like
in Figure 2 (a time-consuming task when there are many
such feeds and columns). They would then write ad-hoc
transformation scripts, in order to unify each pair of incom-
patible data columns.

We argue that armed with a repository of TBP programs
like in Table 1, the task of identifying and addressing afore-
mentioned issues can be partially automated. Specifically,
given that R-timestamp and S-timestamp need to be merged,
based on the patterns of values in these two columns, we can
suggest TBP-1 in Table 1 to be used, because its source pat-
tern Ps = “<letter>{3}. <digit>{2}, <digit>{4}” and tar-
get pattern Pt = “<digit>{4}-<digit>{2}-<digit>{2}” match
with R-timestamp and S-timestamp, respectively. This allows
us to proactively suggest the corresponding T to perform
this transformation.

Similarly, the patterns Ps and Pt in TBP-2 and TBP-3 from
Table 1 would match with column-pairs (S-phone, R-phone)
and (S-coordinates, R-coordinates) in Figure 2, respectively,
suggesting two additional transformations that can be per-
formed. It should be noted that TBE typically requires
paired examples and would not apply here.

TBP for “Auto-Repair”. As an additional example
application, we show that TBP can also help to identify and
fix inconsistent data values in tables. Figure 3 shows real
data quality issues in Wikipedia tables that are identified
and fixed by TBP programs produced in this work.

For instance, in Figure 3(a), using TBP we can detect
that values in the Date column have two distinct patterns:
“<digit>{4}-<digit>{2}-<digit>{2}” (e.g., “1997-06-04”) as
well as “<letter>+ <digit>{2}, <digit>{4}” (“January 12,
1997”). Since these two patterns match with Ps and Pt of
a TBP program in Table 1, it likely indicates data inconsis-
tency. With TBP, we could bring these two groups of values
to users attention, and propose fixes by applying the cor-
responding T (e.g., transforming “1997-06-04” to “June 4,
1997”).

We note that the TBP framework is general and applies
to diverse types of transformations, including data in dif-
ferent languages (e.g., Spanish, Chinese, etc.), and data in
di�erent domains (e.g., chemical, financial, etc.). For exam-
ple, some of the cases in Figure 3 require transformations in
languages other than English, such as Figure 3(e) (fixable
by TBP-15), and Figure 3(l) (fixable by TBP-16), etc. These
are all real TBP programs harvested from di�erent table
corpora (e.g., Wikipedia tables in di�erent languages). Our
evaluation suggests that these TBP programs can detect and
fix thousands of real issues across di�erent languages.

For non-technical users working on spreadsheet data (e.g.,
in Microsoft Excel or Tableau), TBP makes it possible to au-
tomatically flag and repair a subclass of data format issues.
We note that TBP once again complements traditional TBE
approaches, which would require explicit paired-examples in
order to suggest transformations.

In short, TBP can program a rich class of transformations,
creating opportunities to simplify data transformation in ap-
plications such as Auto-Repair and Auto-Unify.
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TBP Programs and Triples
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Table 1: An example repository of TBP programs (Ps, Pt, T ), where each line is a TBP program. The first three programs
can be used to auto-unify the two tables shown in Figure 2.

TBP-id Source-pattern (Ps) Target-pattern (Pt) (T )

TBP-1 <letter>{3}. <digit>{2}, <digit>{4} <digit>{4}-<digit>{2}-<digit>{2} ...

TBP-2 (<digit>{3}) <digit>{3}-<digit>{4} <letter>{3}-<digit>{3}-<digit>{4} ...

TBP-3 (<digit>+¶<num>’<letter>{1}, <digit>+¶<num>’<letter>{1}) <letter>{1}<digit>+¶<num>’ <letter>{1}<digit>+¶<num>’ ...

... ... ... ...

TBP-7 <digit>{4}/<digit>{2}/<digit>{2} <letter>{3} <digit>{2} ...

TBP-8 <num> kg <num> lb ...

TBP-9 <num> lb <num> lb <num> oz ...

... ... ... ...

TBP-15 <num> kg <num>l§ ...

TBP-16 <letter>+ de <digit>{4} <digit>{4} ...

... ... ... ...

Table 2: Example table with (C, CÕ, T ) triples, where (C, CÕ) are paired columns, and T is a synthesized program that can
transform C to CÕ. The first triple CCT-1 corresponds to the column-pair (“Born”, “Date of birth”) in Figure 4, with an
inferred program in Listing 1. CCT-4 shows another pair of columns with similar data format and an identical program. Not
all column-pairs have programmatic relationships, such as CCT-9, leading to an empty program.

CCT-id Input-column (C) Output-column (CÕ
) Program (T )

CCT-1 (C1) “Born” = {“02/22/1732”, “10/30/1735”, ... } (CÕ
1) “Date of birth” = {“February 22, 1732”, ... } Listing 1

CCT-2 (C2) “Date of birth” = {“February 22, 1732”, ... } (CÕ
2) “Born” = {“02/22/1732”, “10/30/1735”, ... } ...

CCT-3 (C3) “Died” = {“02/14/1799”, “07/04/1826”, ... } (CÕ
3) “Date of birth” = {“February 22, 1732”, ... } ...

CCT-4 (C4) “Date” = {“11/01/2019”, “12/01/2019”, ... } (CÕ
4) “Date-2” = {“November 01, 2019”, ... } Listing 1

... ... ... ...

CCT-9 (C9) “Name” = {“Washington, George”, “Adam, John”, ... } (CÕ
9) “Date of birth” = {“February 22, 1732”, ... } ÿ

... ... ... ...

“Learned” TBP programs from TBE query logs.
Given the benefit of TBP, we set out to harvest such pro-
grams at scale (as manually curating them would not scale).

One possible approach is to leverage the “query-logs” of
a TBE system. This is analogous to search engines like
Google and Bing, which have long used their query logs con-
taining (keyword-query, user-clicked-document) to improve
search relevance. We argue that the same is true for TBE
systems – specifically, since we have developed TDE [33]
and deployed a version of the system as an Excel add-in,
we are able to collect telemetry of TBE tasks submitted
by Excel users. We should emphasize that we could not
log user data in any form due to legal and compliance rea-
sons – we only collect high-level statistics such as whether a
top-ranked transformation program suggested by TDE is ac-
cepted. Hypothetically, imagine that we could fully log users
input/output data sets, then like search engines we could
leverage the logs to identify common (input-data-pattern,
output-data-pattern, program) triples that are likely good
TBP programs.

Because we are not able to obtain detailed logs in spread-
sheet programs, in this work we develop alternative ap-
proaches to harvest TBP programs.

“Learned” TBP programs from tables. In this work
we propose to harvest TBP transformations from a large
collection of tables. Specifically, we develop techniques to
automatically “link” together table columns with related
content, from which we can exploit content redundancy to
“learn” common transformations.

Figure 4 shows 6 example web tables about US presidents.
We develop techniques to link them together at a row-level
– e.g., the first row of each table corresponds to “George
Washington” and will link/join. After rows are linked, we
can pair columns together “as if” they are input/output
columns, to see if any transformation can be learned us-
ing TBE – for example, the “Born” column {“02/22/1732”,
“10/30/1735”, . . . } in T1 can be paired with the “Date of

birth” column {“February 22, 1732”, “October 30, 1735”,
. . . } from T2, etc. Table 2 shows this column-pair, in row
CCT-1, as well as many other column pairs so produced.These
column pairs are then fed into a TBE system (in our case,
TDE [33]) to learn possible transformation programs, which
are stored in the last column of the table. Notice that given
6 di�erent date-formats used by 6 tables for date-of-birth
in Figure 4, we can already construct a total of 2
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= 30
distinct pairs of formats and their corresponding transfor-
mations, which are all validate TBP programs.

Figure 5 shows another group of 5 tables from Wikipedia,
each of which has a table for US presidents but in di�erent
languages. We develop methods to again automatically link
rows between these tables, and then construct column-pairs
for TBE systems to learn possible transformation programs
across di�erent languages (e.g., from “April 30, 1789” to
“30 de abril de 1789”).

By analyzing many such (Input-column, Output-column,
Transformation-program) triples in Table 2, we can identify
programs that are used repeatedly across the corpus – for
example, the same program (labeled as Listing 1 in Figure 2)
is being used by column-pair CCT-1, CCT-4 and many others,
suggesting that this is likely a good TBP program. In this
work, we develop methods to construct a large “transforma-
tion graph”, to reason about the goodness of TBP programs
in a global manner. TBP programs so produced can then
be used to enable applications like Auto-Repair.

Inter-operability of structured data. TBP is one
step toward achieving inter-operability of tabular data. We
note that by “lifting” data values from a “string” space into
a “program/code” space using TBP, values become inter-
operable (via programs). This is analogous to knowledge-
bases used in search engines, which also “lift” strings into
“entities” for richer experiences (e.g., knowledge cards and
related entities as opposed to 10 blue links). TBP can sim-
ilarly light up new experiences for tabular data like Auto-
Repair, and is a useful step toward inter-operability.

2370

Table 1: An example repository of TBP programs (Ps, Pt, T ), where each line is a TBP program. The first three programs
can be used to auto-unify the two tables shown in Figure 2.
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a TBE system. This is analogous to search engines like
Google and Bing, which have long used their query logs con-
taining (keyword-query, user-clicked-document) to improve
search relevance. We argue that the same is true for TBE
systems – specifically, since we have developed TDE [33]
and deployed a version of the system as an Excel add-in,
we are able to collect telemetry of TBE tasks submitted
by Excel users. We should emphasize that we could not
log user data in any form due to legal and compliance rea-
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top-ranked transformation program suggested by TDE is ac-
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we propose to harvest TBP transformations from a large
collection of tables. Specifically, we develop techniques to
automatically “link” together table columns with related
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We develop techniques to link them together at a row-level
– e.g., the first row of each table corresponds to “George
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can pair columns together “as if” they are input/output
columns, to see if any transformation can be learned us-
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“10/30/1735”, . . . } in T1 can be paired with the “Date of
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. . . } from T2, etc. Table 2 shows this column-pair, in row
CCT-1, as well as many other column pairs so produced.These
column pairs are then fed into a TBE system (in our case,
TDE [33]) to learn possible transformation programs, which
are stored in the last column of the table. Notice that given
6 di�erent date-formats used by 6 tables for date-of-birth
in Figure 4, we can already construct a total of 2
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mations, which are all validate TBP programs.

Figure 5 shows another group of 5 tables from Wikipedia,
each of which has a table for US presidents but in di�erent
languages. We develop methods to again automatically link
rows between these tables, and then construct column-pairs
for TBE systems to learn possible transformation programs
across di�erent languages (e.g., from “April 30, 1789” to
“30 de abril de 1789”).

By analyzing many such (Input-column, Output-column,
Transformation-program) triples in Table 2, we can identify
programs that are used repeatedly across the corpus – for
example, the same program (labeled as Listing 1 in Figure 2)
is being used by column-pair CCT-1, CCT-4 and many others,
suggesting that this is likely a good TBP program. In this
work, we develop methods to construct a large “transforma-
tion graph”, to reason about the goodness of TBP programs
in a global manner. TBP programs so produced can then
be used to enable applications like Auto-Repair.

Inter-operability of structured data. TBP is one
step toward achieving inter-operability of tabular data. We
note that by “lifting” data values from a “string” space into
a “program/code” space using TBP, values become inter-
operable (via programs). This is analogous to knowledge-
bases used in search engines, which also “lift” strings into
“entities” for richer experiences (e.g., knowledge cards and
related entities as opposed to 10 blue links). TBP can sim-
ilarly light up new experiences for tabular data like Auto-
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Learning TBP Programs
• User Logs 
- Similar to Search Engines 
- (Privacy Issues) 

• Tables 
- Find common tables whose rows can be linked 
- Link Wikipedia tables across languages 
- Obtain different data formats and abbreviations that can be used as 

patterns
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Figure 4: An example group of 6 web tables on US presidents, extracted from top-ranked documents for query “list of us
presidents”. Note that the same date-of-birth information is being represented in 6 di�erent formats, which can be used as
input/output examples for TBE to learn common TBP transformations.

Figure 5: An example group of 4 Wikipedia tables in di�erent languages (clockwise: English, Chinese, German, Spanish)
that we can link at a row-level (using Wiki inter-language links for pages with the same content). Note that the “date-in-o�ce”
is being represented in di�erent languages across 4 tables, providing examples to learn such transformations.

Figure 6: System Architecture: Learn TBP Programs.

So for a given pair (T, T Õ) œ PQ, we additionally need to
find row-level “links” between T and T Õ (e.g., the first row
of T1 in Figure 4 corresponds to the first row of T2, etc.).

In an ideal setting, such row-level links can be obtained by
equi-joins on key-columns. However, in practice equi-joins
typically fail, because values are often coded/formatted dif-
ferently between tables in the wild – e.g., names of presidents
are formatted di�erently as shown in Figure 4.

To account for syntactic variations in the key-columns, we
leverage an existing “auto-join” system [68]7 to automati-
cally identify join relationships. Specifically, given (T, T Õ) œ
PQ, we take two left-most non-numeric columns from T and

7
A variant of this system is publicly available in Azure ML Data

Prep: https://docs.microsoft.com/en-us/python/api/azureml-dataprep/azureml.dataprep.

api.builders.joinbuilder

T Õ (which likely include key columns), and invoke the “auto-
join” system to find possible joins.

Example 1. For T1, T2 in Figure 4, we use [68] to au-
tomatically infer a join-program J , which performs the fol-
lowing operations on the “Name” column of T1: (1) splitting
names like “Washington, George” by comma (producing an
array with two elements like [“Washington”, “George”]); (2)
concatenating the second element with the first element us-
ing a space (producing values like “George Washington”).

Note that applying J on the “Name” column in T1 produces
values like {“George Washington”, “John Adams”, . . . }, which
precisely match the key values in T2, such that an “equi-
join” can now be performed to link the two tables together.
We consider this J to be reliable, as most rows can be joined
1:1 using J .

The auto-join approach allows us to link rows together
between other table-pairs in Figure 4 similarly. We find this
approach produces substantially more links than equi-join,
which are also more accurate than fuzzy-join (because it
uses precise transformations). More details of this step can
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Figure 4: An example group of 6 web tables on US presidents, extracted from top-ranked documents for query “list of us
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input/output examples for TBE to learn common TBP transformations.
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is being represented in di�erent languages across 4 tables, providing examples to learn such transformations.
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of T1 in Figure 4 corresponds to the first row of T2, etc.).

In an ideal setting, such row-level links can be obtained by
equi-joins on key-columns. However, in practice equi-joins
typically fail, because values are often coded/formatted dif-
ferently between tables in the wild – e.g., names of presidents
are formatted di�erently as shown in Figure 4.

To account for syntactic variations in the key-columns, we
leverage an existing “auto-join” system [68]7 to automati-
cally identify join relationships. Specifically, given (T, T Õ) œ
PQ, we take two left-most non-numeric columns from T and
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T Õ (which likely include key columns), and invoke the “auto-
join” system to find possible joins.

Example 1. For T1, T2 in Figure 4, we use [68] to au-
tomatically infer a join-program J , which performs the fol-
lowing operations on the “Name” column of T1: (1) splitting
names like “Washington, George” by comma (producing an
array with two elements like [“Washington”, “George”]); (2)
concatenating the second element with the first element us-
ing a space (producing values like “George Washington”).

Note that applying J on the “Name” column in T1 produces
values like {“George Washington”, “John Adams”, . . . }, which
precisely match the key values in T2, such that an “equi-
join” can now be performed to link the two tables together.
We consider this J to be reliable, as most rows can be joined
1:1 using J .

The auto-join approach allows us to link rows together
between other table-pairs in Figure 4 similarly. We find this
approach produces substantially more links than equi-join,
which are also more accurate than fuzzy-join (because it
uses precise transformations). More details of this step can
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Data Cleaning Types
• How can statistical techniques improve efficiency or reliability of data 

cleaning? (Data Cleaning with Statistics)  
- Example: Trifacta 
- Two tasks: Error Detection & Data Repairing 

• How how can we improve the reliability of statistical analytics with data 
cleaning? (Data Cleaning for Statistics)  

- Example: SampleClean 
- Task: Do statistics and clean along the way 

• Similar questions if we substitute machine learning for statistics
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Misconceptions about Data Cleaning
• The end goal of data cleaning is clean data 
• Data cleaning is a sequential operation  
• Data cleaning is performed by one person 
• Data quality is easy to evaluate
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3

Single-Source Problems

Schema Level
(Lack of integrity
constraints, poor
schema design)

Instance Level
(Data entry errors)

Multi-Source Problems

Schema Level Instance Level

Data Quality Problems

- Naming conflicts
- Structural conflicts
…

- Inconsistent aggregating
- Inconsistent timing 
…

(Heterogeneous
data models and
schema designs)

(Overlapping,
contradicting and
inconsistent data)

- Uniqueness
- Referential integrity
…

- Misspellings
- Redundancy/duplicates
- Contradictory values
…

Figure 2. Classification of data quality problems in data sources

2.1 Single-source problems
The data quality of a source largely depends on the degree to which it is governed by schema and integrity
constraints controlling permissable data values.  For sources without schema, such as files, there are few
restrictions on what data can be entered and stored, giving rise to a high probability of errors and
inconsistencies. Database systems, on the other hand, enforce restrictions of a specific data model (e.g., the
relational approach requires simple attribute values, referential integrity, etc.) as well as application-specific
integrity constraints. Schema-related data quality problems thus occur because of the lack of appropriate
model-specific or application-specific integrity constraints, e.g., due to data model limitations or poor
schema design, or because only a few integrity constraints were defined to limit the overhead for integrity
control. Instance-specific problems relate to errors and inconsistencies that cannot be prevented at the
schema level (e.g., misspellings).

Scope/Problem Dirty Data Reasons/Remarks
Attribute Illegal values bdate=30.13.70 values outside of domain range
Record Violated attribute

dependencies
age=22, bdate=12.02.70 age = (current date – birth date)

should hold
Record
type

Uniqueness
violation

emp1=(name=”John Smith”, SSN=”123456”)
emp2=(name=”Peter Miller”, SSN=”123456”)

uniqueness  for SSN (social security
number) violated

Source Referential
integrity violation

emp=(name=”John Smith”, deptno=127) referenced department (127) not defined

Table 1. Examples for single-source problems at schema level (violated integrity constraints)
For both schema- and instance-level problems we can differentiate different problem scopes: attribute (field),
record, record type and source; examples for the various cases are shown in Tables 1 and 2. Note that
uniqueness constraints specified at the schema level do not prevent duplicated instances, e.g., if information
on the same real world entity is entered twice with different attribute values (see example in Table 2).

Scope/Problem Dirty Data Reasons/Remarks
Missing values phone=9999-999999 unavailable values during data entry

(dummy values or null)
Misspellings city=”Liipzig” usually typos, phonetic errors
Cryptic values,
Abbreviations

experience=”B”;
occupation=”DB Prog.”

Embedded values name=”J. Smith 12.02.70 New York” multiple values entered in one attribute
(e.g. in a free-form field)

Attribute

Misfielded values city=”Germany”
Record Violated attribute

dependencies
city=”Redmond”, zip=77777 city and zip code should correspond

Word
transpositions

name1= “J. Smith”, name2=”Miller P.” usually in a free-form field

Duplicated records emp1=(name=”John Smith”,...);
emp2=(name=”J. Smith”,...)

same employee represented twice due to
some data entry errors

Record
type

Contradicting
records

emp1=(name=”John Smith”, bdate=12.02.70);
emp2=(name=”John Smith”, bdate=12.12.70)

the same real world entity is described by
different values

Source Wrong references emp=(name=”John Smith”, deptno=17) referenced department (17) is defined but
wrong

Table 2. Examples for single-source problems at instance level

Classifying Data Quality Problems
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2. QUERY PROCESSING ON DIRTY DATA

Like other SAQP systems, our main focus is on aggregate
numerical queries (avg, sum, count, var, geomean, product)
of the form:

SELECT f(attrs) FROM table
WHERE predicate
GROUP BY attrs

When running the aggregate queries on large and dirty
datasets, there may be two separate sources of errors that
a↵ect result quality. (1) Sampling error: since data is large,
we may execute queries on a sample of the data to reduce
query times. (2) Data error: since real-world data is dirty,
queries on the dirty data also lead to inaccurate query re-
sults.

In this section, we first precisely characterize sampling and
data errors, and then present our SampleClean framework to
deal with these two types of errors. Throughout the section,
we will refer to the following example query on a dataset of
academic publications:

SELECT AVG(citation_count) FROM papers
GROUP BY pub_year

which finds the average number of citations of the publica-
tions published every year.

2.1 Sampling Error

There are many di↵erent ways to sample data; a data
sample could be either created online during the query
time [14,32,47,57] or built o✏ine from past query work-
loads [2,3,5,11]. Consider our example citation query. A
uniform random-sampling scheme randomly selects a set of
papers from papers such that every paper has an equal
probability of selection. To answer queries with a highly
selective predicate or a group-by clause, prior works em-
ploy stratified-sampling [1,3,32], which performs a uniform
random sampling scheme in each group, to guarantee that
every group has a large enough sample size to estimate a
good result. The approaches presented in this paper can
support both uniformly random samples and stratified sam-
ples. However, for simplicity, we present our analysis with
uniform samples.

Answering queries on a sample has an inherent uncer-
tainty since a di↵erent sample may yield a di↵erent result.
Quantifying this uncertainty has been extensively studied
in statistics [43]. Due to this uncertainty, we return confi-
dence intervals in addition to results. For example, given
a confidence probability (e.g., 95%), we can apply results
from sampling statistics to estimate the average number of
citations along with a confidence interval (e.g. ±10), which
means that the estimated average number is within ±10 of
the actual value with 95% probability. The confidence in-
terval quantifies the uncertainty introduced by sampling the
data.

2.2 Data Error

In this work, we focus on three types of data errors: value
error, condition error, and duplication error. We use our ex-
ample query to illustrate how these errors can a↵ect results.

Value error: When an error occurs in the aggregation at-
tributes of the query (i.e. citation_count), it will lead to an
incorrect aggregate result. For example, consider the dirty
data in Figure 1(a). The first paper t1 involves value error
since its citation count should be 144 instead of 18.

Condition error: When an error occurs in the predicate or
group-by attribute of the query (i.e. pub_year), there may

(a) Dirty Data

YFilter()(ICDE 2982002t10000
... .........

6871997Online(Aggr.t7

1569

1

106

cita%on
_count
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CrowdERt6 2012

DataSpace 2008t5
t4 Aqua

YFilter Feb,(2002t3
t2 TinyDB 2005

11t1 CrowdDB

pub_year%tleid

1

2

2

#dup

1

1
1

3

(b) Cleaned Sample

6871997Online(Aggr.t7

1569

34
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_count
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107

298

CrowdERt6 2012

DataSpace 2008t5
1999t4 Aqua

YFilter 2002t3
t2 TinyDB 2005

2011t1 CrowdDB

pub_year%tleid

Figure 1: An example of dirty data and cleaned
sample (Shaded cells denote dirty values, and their
cleaned values are in bold font).

be some tuples that are falsely added into or excluded from
a group, leading to an incorrect result. In Figure 1(a), the
first paper t1 also has condition error since it was published
in the year 2011 rather than 11.

Duplication error: If data contains duplicate tuples (e.g.,
di↵erent representations of the same paper), the aggregate
result will also be a↵ected. This type of error commonly
happens when the data is integrated from multiple sources.
For instance, in Figure 1(a), the third paper t3 has duplica-
tion error as it refers to the same paper as t10000.

While data cleaning can fix the data errors, cleaning the
entire data is usually time consuming, often requiring user
confirmation or crowdsourcing. For this reason, we have
developed the SampleClean framework.

2.3 SampleClean Framework

Figure 2 illustrates all of the components of our frame-
work. SampleClean first creates a random sample of dirty
data, and then applies a data-cleaning technique to clean
the sample. After cleaning the sample, SampleClean uses
the cleaned sample to answer aggregate queries. Sample-
Clean gives results that are unbiased which means in expec-
tation the estimates are equal to the query results if the
entire dataset was cleaned by the data-cleaning technique.
The SampleClean framework is independent of how sam-

ples are cleaned, and in this paper, we consider data cleaning
as a user-provided module. Specifically, for each tuple in the
sample, the cleaning module corrects the attribute values of
the tuple, and estimates the number of duplicates for the
tuple from the dirty data. For example, consider a sample,
S = {t1, t2, · · · , t7} of the dirty data in Figure 1(a). Fig-
ure 1(b) shows the corresponding cleaned sample. For the
first paper t1, we correct pub_year from 11 to 2011, correct
citation_count from 18 to 144, and identify two duplicate
papers (including t1 itself) in the dirty data.

2.3.1 Cleaning Value and Condition Errors
To reduce value errors and condition errors, the data-

cleaning technique only needs to clean attribute values in
the sample, and we can apply a variety of recently proposed
data cleaning techniques to achieve this. For example, out-
lier detection [31,35] and rule-based approaches [17,23] have
been proposed to solve this problem. In addition, Fan et
al. [24] proposed editing rules, master data and user con-
firmation to correct attribute values, and they proved that
their approaches can always obtain perfect cleaning results.
There are also some data-cleaning tools [19,46] that can fa-
cilitate users to clean data based on their domain knowledge.
For example, OpenRefine [46] allows users to define facets
on a per attribute basis, and helps them to quickly identify
incorrect attribute values via faceted search.

2.3.2 Identifying Duplicates
The SampleClean framework defines the duplicate factor

for a tuple as the number of times the tuple appears in the

Dirty and Cleaned Data
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Figure 2: The SampleClean framework.

entire table. To determine it, one way would be to estimate
its value from the sample. However, both analytical proofs
and empirical tests have shown that this method can lead to
highly inaccurate query results [10]. Therefore, in our pa-
per, we determine the duplication factor from the complete
relation.

It is important to note, however, that compared to full
cleaning, we only need to determine the duplication factor
for those tuples in the sample. As with other uses of sam-
pling, this can result in significant cost savings in duplicate
detection. In the following, we will describe how to apply ex-
isting deduplication techniques to compute the duplication
factor, and explain why it is cheaper to determine the du-
plication factor for a sample of the data, even though doing
so requires access to the complete relation.

Duplicate detection (also known as entity resolution) aims
to identify di↵erent tuples that refer to the same real-world
entity. This problem has been extensively studied for several
decades [22]. Most deduplication approaches consist of two
phases:

1. Blocking. Due to the large (quadratic) cost of all-

pair comparisons, data is partitioned into a number

of blocks, and duplicates are considered only within a

block. For instance, if we partition papers based on

conference_name, then only the papers that are pub-

lished in the same conference will be checked for dupli-

cates;

2. Matching. To decide whether two tuples are duplicates

or not, existing techniques typically model this problem

as a classification problem, and train a classifier to la-

bel each tuple pair as duplicate or non-duplicate [9].

In some recent research (and also at many compa-

nies) crowdsourcing is used to get humans to match

tuples [20,54].

A recent survey on duplicate detection has argued that the
matching phase is typically much more expensive than the
blocking phase [13]. For instance, an evaluation of the popu-
lar duplicate detection technique [9] shows that the matching
phase takes on the order of minutes for a dataset of thou-
sands of tuples [39]. This is especially true in the context of
crowdsourced matching where each comparison is performed
by a crowd worker costing both time and money. Sample-
Clean reduces the number of comparisons in the matching
phase, as we only have to match each tuple in the sample
with the others in its block. For example, if we sample 1% of
the table, then we can reduce the matching cost by a factor
of 100.

2.3.3 Result Estimation
After cleaning a sample, SampleClean uses the cleaned

sample to estimate the result of aggregate queries. Simi-
lar to existing SAQP systems, we can estimate query results
directly from the cleaned sample. However, due to data er-
ror, result estimation can be very challenging. For example,

consider the avg(citation_count) query in previous section.
Assume that the data has duplication errors and that papers
with a higher citation count tend to have more duplicates.
The greater the number of duplicates, the higher probability
a paper is sampled, and thus the cleaned sample may con-
tain more highly cited papers, leading to an over-estimated
citation count. We formalize these issues and propose the
RawSC approach to address them in Section 3.
Another quantity of interest is how much the dirty data

di↵ers from the cleaned data. We can estimate the mean
di↵erence based on comparing the dirty and cleaned sam-
ple, and then correct a query result on the dirty data with
this estimate. We describe this alternative approach, called
NormalizedSC, and compare its performance with RawSC
in Section 4.

SampleClean v.s. SAQP: SAQP assumes perfectly clean
data while SampleClean relaxes this assumption and makes
cleaning feasible. In RawSC, we take a sample of data, ap-
ply a data cleaning technique, and then estimate the result.
The result estimation is similar to SAQP, however, we re-
quire a few additional scaling factors related to the clean-
ing. On the other hand, NormalizedSC is quite di↵erent
from typical SAQP frameworks. NormalizedSC estimates
the average di↵erence between the dirty and cleaned data,
and this is only possible in systems that couple data clean-
ing and sampling. What is surprising about SampleClean
is that sampling a relatively small population of the overall
data makes it feasible to manually or algorithmically clean
the sample, and experiments confirm that this cleaning of-
ten more than compensates for the error introduced by the
sampling.

2.3.4 Example: SampleClean with OpenRefine
In this section, we will walk through an example imple-

mentation of SampleClean using OpenRefine [46] to clean
the data. Consider our example dirty dataset of publica-
tions in Figure 1(a). First, the user creates a sample of data
(e.g., 100 records) and loads this sample into the OpenRefine
spreadsheet interface. The user can use the tool to detect
data errors such as missing attributes, and fill in the cor-
rect values (e.g., from another data source or based on prior
domain expertise). Next, for deduplication, the system will
propose potential matches for each publication in the sam-
ple based on a blocking technique and the user can accept
or reject these matches. Finally, the clean sample with the
deduplication information is loaded back into the dataset.
In this example, sampling reduces the data cleaning e↵ort
for the user. The user needs to inspect only 100 records in-
stead of the entire dataset, and has no more than 100 sets
of potential duplicates to manually check.
To query this clean sample, we need to apply Sample-

Clean’s result estimation to ensure that the estimate remains
unbiased after cleaning since some records may have been
corrected, or marked as duplicates. In the rest of the paper,
we discuss the details of how to ensure unbiased estimates,
and how large the sample needs to be to get a result of
acceptable quality.

3. RawSC ESTIMATION

In this section, we present the RawSC estimation ap-
proach. RawSC takes a sample of data as input, applies
a data cleaning technique to the sample, runs an aggregate
query directly on the clean sample, and returns a result with
a confidence interval.

3.1 Sample Estimates

We will first introduce the estimation setting without data
errors and explain some results about estimates from sam-

SampleClean Framework
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Figure 1: Comparison of the convergence
of the methods on two TPC-H datasets of
6M tuples with simulated errors 50% error
and 5% error. On the dataset with larger
errors, the direct estimate gives a narrower
confidence interval, and on the other the
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Q(Rclean) = Q(R). The interesting problem is when there are systematic errors[43] i.e., | ϵc |> 0. In other
words, the corruption that is correlated with the data, e.g., where every record is corrupted with a +1.

2.2.2 Key Idea I: Direct Estimate vs. Correction

The key quantity of interest is ϵc, and to be able to bound a query result on dirty data, requires that ϵc is 0 or
bound ϵc.

Direct Estimate: This technique is a direct extension of AQP to handle data cleaning. A set of k rows is
sampled uniformly at random from the dirty relation R resulting in a sample S. Data cleaning is applied to the
sample S resulting in Sclean. Data cleaning and sampling may change the statistical and scaling properties of
the query Q, so Q may have to be re-written to a query Q̂. Q̂ is applied to the sample Sclean and the result
is returned. There are a couple of important points to note about this techniques. First, as in AQP, the direct
estimate only processes a sample of data. Next, since it processes a cleaned sample of data, at no point is there
a dependence on the dirty data. As we will show later in the article, the direct estimate returns a result whose
accuracy is independent of the magnitude or rate of data error. One way to think about this technique is that it
ensures ϵc = 0 within the sample.

Correction: The direct estimate suffers a subtle drawback. Suppose, there are relatively few errors in the data.
The errors introduced by sampling may dominate any error reductions due to data cleaning. As an alternative,
we can try to estimate ϵc. A set of k rows is sampled uniformly at random from the dirty relation R resulting in
a sample S. Data cleaning is applied to the sample S resulting in Sclean. The difference in applying Q̂ to S and
Q̂ to Sclean gives an estimate of ϵc. The interpretation of this estimate is a correction to the query result on the
full dirty data. In contrast to the direct estimate, this technique requires processing the entire dirty data (but only
cleaning a sample). However, as we will later show, if errors are rare this technique gives significantly improved
accuracy over the direct estimates.

2.2.3 Key Idea II: Sampling to Improve Accuracy

Figure 1 plots error as a function of the cleaned sample size on a corrupted TPCH dataset for a direct estimate,
correction, and AllDirty (query on the full dirty data). In both cases, there is a break-even point (in terms of
number of cleaned samples) when the data cleaning has mitigated more data error than the approximation error
introduced by sampling. After this point, SampleClean improves query accuracy in comparison to AllDirty.
When errors are relatively rare (5% corruption rate), the correction is more accurate. When errors are more
significant (50% corruption rate), the direct estimate is more accurate. Note that the direct estimate returns
results of the same accuracy regardless of the corruption rate.
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Comparing the Two Approaches

14

[S. Krishnan et al., 2015]
D. Koop, CSCI 640/490, Spring 2024



Notes
• Duplicate Problem 
• Focuses on aggregate measures 
• How do we actually clean the data?
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Figure 4: (a) Systematic corruption in one variable can lead to a shifted model. (b) Mixed dirty and clean data
results in a less accurate model than no cleaning. (c) Small samples of only clean data can result in similarly
inaccurate models.

5.2 Problem Setup

This work focuses on a class of well analyzed predictive analytics problems; ones that can be expressed as the
minimization of convex loss functions. Examples includes all generalized linear models (including linear and
logistic regression), all variants of support vector machines, and in fact, avg and median are also special cases.

Formally, for labeled training examples {(xi, yi)}Ni=1, the problem is to find a vector of model parameters θ
by minimizing a loss function φ over all training examples:

θ∗ = argmin
θ

N∑

i=1

φ(xi, yi, θ)

Where φ is a convex function in θ. Without loss of generality, we will include regularization as part of the loss
function i.e., φ(xi, yi, θ) includes r(θ).

Definition 4 (Convex Data Analytics): A convex data analytics problem is specified by a set of features X ,
corresponding set of labels Y , and a parametrized loss function φ that is convex in its parameter θ. The result is
a model θ that minimizes the sum of losses over all features and labels.

ActiveClean Problem: Let R be a dirty relation, F (r) !→ (x, y) be a featurization that maps a record r ∈ R to
a feature vector x and label y, φ be a convex regularized loss, and C(r) !→ rclean be a cleaning technique that
maps a record to its cleaned value. Given these inputs, the ActiveClean problem is to return a reliable estimate
θ̂ of the clean model for any limit k on the number of times the data cleaning C(·) can be applied.

Reliable precisely means that the expected error in this estimate (i.e., L2 difference w.r.t a model trained
on a fully cleaned dataset) is bounded above by a monotonically decreasing function in k and a monotonically
decreasing function of the error of the dirty model. In other words, more cleaning implies more accuracy, and
less initial error implies faster convergence.

5.3 Model Updates

The main insight of this work is that, in Convex Data Analytics, sampling is naturally part of the query pro-
cessing. Mini-batch stochastic gradient descent (SGD) is an algorithm for finding the optimal value given the
convex loss and data. In mini-batch SGD, random subsets of data are selected at each iteration and the average
gradient is computed for every batch. Instead of calculating the average gradient for the batch w.r.t to the dirty
data, we apply data cleaning at that point–inheriting the convergence bounds from batch SGD. It is well known
that even for an arbitrary initialization SGD makes significant progress in less than one epoch (a pass through
the entire dataset) [10]. Furthermore in this setting, the dirty model can be much more accurate than an arbitrary
initialization; leading to highly accurate models without processing the entire data.

70

Data Cleaning for Machine Learning
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Problem: Simpson's Paradox



ActiveClean
• Given dirty data and a mapping from the data to a feature vector and label, 

we want a reliable estimate of the clean model 
- reliable = bounded estimate 

• Solution: Use stochastic gradient descent (uses sampling!)
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Machine Learning and Data Cleaning
• Data cleaning important for machine learning 
- Filter dirty Data 
- Make learning robust to noise (early stopping?) 

• …but machine learning can also help data cleaning 
- No need for rules, just learn 
- Can include lots of features like statistical properties, integrity constraints 
- What about explainability?
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HoloClean
• A holistic data cleaning framework that combines qualitative methods with 

quantitative methods: 
- Qualitative: use integrity constraints or external data sources 
- Quantitative: use statistics of the data 

• Driven by probabilistic inference. Users only need to provide a dataset to be 
cleaned and describe high-level domain specific signals. 

• Can scale to large real-world dirty datasets and perform automatic repairs 
with high accuracy
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Figure 1: A variety of signals can be used for data cleaning: integrity constraints, external dictionaries, and quantitative statistics of
the input dataset. Using each signal in isolation can lead to repairs that do not fix all errors or even introduce new errors.

limited coverage of external resources or these methods may not be
applicable as for many domains a knowledge base may not exist.

Finally, data repairing methods that are based on statistical anal-
ysis [39, 49], leverage quantitative statistics of the input dataset,
e.g., co-occurrences of attribute values, and use those for cleaning.
These techniques overlook integrity constraints. Figure 1(G) shows
such a repair. As shown the “DBAName” and “City” fields of tuple
t4 are updated as their original values correspond to outliers with
respect to other tuples in the dataset. However, this repair does not
have sufficient information to fix the zip code of tuples t2 and t3.

In our example, if we combine repairs that are based on different
signals, we can repair all errors in the input dataset correctly. If
we combine the zip code and city repairs from Figure 1(F) with the
DBAName repair from Figure 1(G) we can repair all inaccuracies
in the input dataset. Nonetheless, combining heterogeneous signals
can be challenging. This is not only because each type of signal is
associated with different operations over the input data (e.g., in-
tegrity constraints require reasoning about the satisfiability of con-
straints while external information requires efficient matching pro-
cedures) but different signals may suggest conflicting repairs. For
instance, if we naively combine the repairs in Figure 1 we end up
with conflicts on the zip code of tuples t2 and t3. The repairs in
Figure 1(E) and (G) assign value “60609” while the repair in Fig-
ure 1(F) assigns value “60608”. This raises the main question we
answer in this paper: How can we combine all aforementioned sig-
nals in a single unified data cleaning framework, and which signals
are useful for repairing different records in an input dataset?

Our Approach. We introduce HoloClean, the first data cleaning
system that unifies integrity constraints, external data, and quanti-
tative statistics, to repair errors in structured data sets. Instead of
considering each signal in isolation, we use all available signals
to suggest data repairs. We consider the input dataset as a noisy
version of a hidden clean dataset and treat each signal as evidence
on the correctness of different records in that dataset. To combine
different signals, we rely on probability theory as it allows us to
reason about inconsistencies across those.

HoloClean automatically generates a probabilistic model [35]
whose random variables capture the uncertainty over records in the
input dataset. Signals are converted to features of the graphical
model and are used to describe the distribution characterizing the
input dataset. To repair errors, HoloClean uses statistical learning
and probabilistic inference over the generated model.

HoloClean exhibits significant improvements over state-of-the-
art data cleaning methods: we show that across multiple datasets

HoloClean finds repairs with an average precision of ⇠ 90% and
an average recall of ⇠ 76%, obtaining an average F1-score im-
provement of more than 2⇥ against state-of-the-art data repairing
methods. Specifically, we find that combining all signals yields an
F1-score improvement of 2.7⇥ against methods that only use in-
tegrity constraints, an improvement of 2.81⇥ against methods that
only leverage external information, and an improvement of 2.29⇥
against methods that only use quantitative statistics.

Technical Challenges. Probabilistic models provide a means for
unifying all signals. However, it is unclear that inference scales
to large data repairing instances. Probabilistic inference involves
two tasks: (i) grounding, which enumerates all possible interac-
tions between correlated random variables to materialize a factor
graph that represents the joint distribution over all variables, and
(ii) inference where the goal is to compute the marginal probability
for every random variable. These tasks are standard but non-trivial:

(1) Integrity constraints that span multiple attributes can cause com-
binatorial explosion problems. Grounding the interactions due to
integrity constraints requires considering all value combinations
that attributes of erroneous tuples can take. If attributes are al-
lowed to obtain values from large domains, inference can become
intractable. For example, we consider repairing the smallest dataset
in our experiments, which contains 1,000 tuples, and allow attributes
in erroneous tuples to obtain any value from the set of consistent as-
signments present in the dataset. Inference over the resulting proba-
bilistic model does not terminate after an entire day. Thus, we need
mechanisms that limit the possible value assignments for records
that need to be repaired by HoloClean’s probabilistic model.

(2) Integrity constraints introduce correlations between pairs of ran-
dom variables associated with tuples in the input dataset. Enumer-
ating these interactions during grounding results in factor graphs
of quadratic size in the number of tuples. For example, in our ex-
periments we consider a dataset with more than two million tuples.
Enforcing the integrity constraints over all pairs of tuples, yields a
factor graph with more than four trillion interactions across random
variables. Thus, we need to avoid evaluating integrity constraints
for pairs of tuples that cannot result in violations.

(3) Finally, probabilistic inference is #P-complete in the presence
of complex correlations, such as hard constraints. Thus, approxi-
mate inference techniques such as Gibbs sampling are required. In
the presence of complex correlations, Gibbs sampling is known to
require an exponential number of samples in the number of random
variables to mix [45], i.e., reach a stationary distribution. Neverthe-
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Figure 1: A variety of signals can be used for data cleaning: integrity constraints, external dictionaries, and quantitative statistics of
the input dataset. Using each signal in isolation can lead to repairs that do not fix all errors or even introduce new errors.

limited coverage of external resources or these methods may not be
applicable as for many domains a knowledge base may not exist.

Finally, data repairing methods that are based on statistical anal-
ysis [39, 49], leverage quantitative statistics of the input dataset,
e.g., co-occurrences of attribute values, and use those for cleaning.
These techniques overlook integrity constraints. Figure 1(G) shows
such a repair. As shown the “DBAName” and “City” fields of tuple
t4 are updated as their original values correspond to outliers with
respect to other tuples in the dataset. However, this repair does not
have sufficient information to fix the zip code of tuples t2 and t3.

In our example, if we combine repairs that are based on different
signals, we can repair all errors in the input dataset correctly. If
we combine the zip code and city repairs from Figure 1(F) with the
DBAName repair from Figure 1(G) we can repair all inaccuracies
in the input dataset. Nonetheless, combining heterogeneous signals
can be challenging. This is not only because each type of signal is
associated with different operations over the input data (e.g., in-
tegrity constraints require reasoning about the satisfiability of con-
straints while external information requires efficient matching pro-
cedures) but different signals may suggest conflicting repairs. For
instance, if we naively combine the repairs in Figure 1 we end up
with conflicts on the zip code of tuples t2 and t3. The repairs in
Figure 1(E) and (G) assign value “60609” while the repair in Fig-
ure 1(F) assigns value “60608”. This raises the main question we
answer in this paper: How can we combine all aforementioned sig-
nals in a single unified data cleaning framework, and which signals
are useful for repairing different records in an input dataset?

Our Approach. We introduce HoloClean, the first data cleaning
system that unifies integrity constraints, external data, and quanti-
tative statistics, to repair errors in structured data sets. Instead of
considering each signal in isolation, we use all available signals
to suggest data repairs. We consider the input dataset as a noisy
version of a hidden clean dataset and treat each signal as evidence
on the correctness of different records in that dataset. To combine
different signals, we rely on probability theory as it allows us to
reason about inconsistencies across those.

HoloClean automatically generates a probabilistic model [35]
whose random variables capture the uncertainty over records in the
input dataset. Signals are converted to features of the graphical
model and are used to describe the distribution characterizing the
input dataset. To repair errors, HoloClean uses statistical learning
and probabilistic inference over the generated model.

HoloClean exhibits significant improvements over state-of-the-
art data cleaning methods: we show that across multiple datasets

HoloClean finds repairs with an average precision of ⇠ 90% and
an average recall of ⇠ 76%, obtaining an average F1-score im-
provement of more than 2⇥ against state-of-the-art data repairing
methods. Specifically, we find that combining all signals yields an
F1-score improvement of 2.7⇥ against methods that only use in-
tegrity constraints, an improvement of 2.81⇥ against methods that
only leverage external information, and an improvement of 2.29⇥
against methods that only use quantitative statistics.

Technical Challenges. Probabilistic models provide a means for
unifying all signals. However, it is unclear that inference scales
to large data repairing instances. Probabilistic inference involves
two tasks: (i) grounding, which enumerates all possible interac-
tions between correlated random variables to materialize a factor
graph that represents the joint distribution over all variables, and
(ii) inference where the goal is to compute the marginal probability
for every random variable. These tasks are standard but non-trivial:

(1) Integrity constraints that span multiple attributes can cause com-
binatorial explosion problems. Grounding the interactions due to
integrity constraints requires considering all value combinations
that attributes of erroneous tuples can take. If attributes are al-
lowed to obtain values from large domains, inference can become
intractable. For example, we consider repairing the smallest dataset
in our experiments, which contains 1,000 tuples, and allow attributes
in erroneous tuples to obtain any value from the set of consistent as-
signments present in the dataset. Inference over the resulting proba-
bilistic model does not terminate after an entire day. Thus, we need
mechanisms that limit the possible value assignments for records
that need to be repaired by HoloClean’s probabilistic model.

(2) Integrity constraints introduce correlations between pairs of ran-
dom variables associated with tuples in the input dataset. Enumer-
ating these interactions during grounding results in factor graphs
of quadratic size in the number of tuples. For example, in our ex-
periments we consider a dataset with more than two million tuples.
Enforcing the integrity constraints over all pairs of tuples, yields a
factor graph with more than four trillion interactions across random
variables. Thus, we need to avoid evaluating integrity constraints
for pairs of tuples that cannot result in violations.

(3) Finally, probabilistic inference is #P-complete in the presence
of complex correlations, such as hard constraints. Thus, approxi-
mate inference techniques such as Gibbs sampling are required. In
the presence of complex correlations, Gibbs sampling is known to
require an exponential number of samples in the number of random
variables to mix [45], i.e., reach a stationary distribution. Neverthe-
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(F) Repair using Matching Dependencies
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Figure 1: A variety of signals can be used for data cleaning: integrity constraints, external dictionaries, and quantitative statistics of
the input dataset. Using each signal in isolation can lead to repairs that do not fix all errors or even introduce new errors.

limited coverage of external resources or these methods may not be
applicable as for many domains a knowledge base may not exist.

Finally, data repairing methods that are based on statistical anal-
ysis [39, 49], leverage quantitative statistics of the input dataset,
e.g., co-occurrences of attribute values, and use those for cleaning.
These techniques overlook integrity constraints. Figure 1(G) shows
such a repair. As shown the “DBAName” and “City” fields of tuple
t4 are updated as their original values correspond to outliers with
respect to other tuples in the dataset. However, this repair does not
have sufficient information to fix the zip code of tuples t2 and t3.

In our example, if we combine repairs that are based on different
signals, we can repair all errors in the input dataset correctly. If
we combine the zip code and city repairs from Figure 1(F) with the
DBAName repair from Figure 1(G) we can repair all inaccuracies
in the input dataset. Nonetheless, combining heterogeneous signals
can be challenging. This is not only because each type of signal is
associated with different operations over the input data (e.g., in-
tegrity constraints require reasoning about the satisfiability of con-
straints while external information requires efficient matching pro-
cedures) but different signals may suggest conflicting repairs. For
instance, if we naively combine the repairs in Figure 1 we end up
with conflicts on the zip code of tuples t2 and t3. The repairs in
Figure 1(E) and (G) assign value “60609” while the repair in Fig-
ure 1(F) assigns value “60608”. This raises the main question we
answer in this paper: How can we combine all aforementioned sig-
nals in a single unified data cleaning framework, and which signals
are useful for repairing different records in an input dataset?

Our Approach. We introduce HoloClean, the first data cleaning
system that unifies integrity constraints, external data, and quanti-
tative statistics, to repair errors in structured data sets. Instead of
considering each signal in isolation, we use all available signals
to suggest data repairs. We consider the input dataset as a noisy
version of a hidden clean dataset and treat each signal as evidence
on the correctness of different records in that dataset. To combine
different signals, we rely on probability theory as it allows us to
reason about inconsistencies across those.

HoloClean automatically generates a probabilistic model [35]
whose random variables capture the uncertainty over records in the
input dataset. Signals are converted to features of the graphical
model and are used to describe the distribution characterizing the
input dataset. To repair errors, HoloClean uses statistical learning
and probabilistic inference over the generated model.

HoloClean exhibits significant improvements over state-of-the-
art data cleaning methods: we show that across multiple datasets

HoloClean finds repairs with an average precision of ⇠ 90% and
an average recall of ⇠ 76%, obtaining an average F1-score im-
provement of more than 2⇥ against state-of-the-art data repairing
methods. Specifically, we find that combining all signals yields an
F1-score improvement of 2.7⇥ against methods that only use in-
tegrity constraints, an improvement of 2.81⇥ against methods that
only leverage external information, and an improvement of 2.29⇥
against methods that only use quantitative statistics.

Technical Challenges. Probabilistic models provide a means for
unifying all signals. However, it is unclear that inference scales
to large data repairing instances. Probabilistic inference involves
two tasks: (i) grounding, which enumerates all possible interac-
tions between correlated random variables to materialize a factor
graph that represents the joint distribution over all variables, and
(ii) inference where the goal is to compute the marginal probability
for every random variable. These tasks are standard but non-trivial:

(1) Integrity constraints that span multiple attributes can cause com-
binatorial explosion problems. Grounding the interactions due to
integrity constraints requires considering all value combinations
that attributes of erroneous tuples can take. If attributes are al-
lowed to obtain values from large domains, inference can become
intractable. For example, we consider repairing the smallest dataset
in our experiments, which contains 1,000 tuples, and allow attributes
in erroneous tuples to obtain any value from the set of consistent as-
signments present in the dataset. Inference over the resulting proba-
bilistic model does not terminate after an entire day. Thus, we need
mechanisms that limit the possible value assignments for records
that need to be repaired by HoloClean’s probabilistic model.

(2) Integrity constraints introduce correlations between pairs of ran-
dom variables associated with tuples in the input dataset. Enumer-
ating these interactions during grounding results in factor graphs
of quadratic size in the number of tuples. For example, in our ex-
periments we consider a dataset with more than two million tuples.
Enforcing the integrity constraints over all pairs of tuples, yields a
factor graph with more than four trillion interactions across random
variables. Thus, we need to avoid evaluating integrity constraints
for pairs of tuples that cannot result in violations.

(3) Finally, probabilistic inference is #P-complete in the presence
of complex correlations, such as hard constraints. Thus, approxi-
mate inference techniques such as Gibbs sampling are required. In
the presence of complex correlations, Gibbs sampling is known to
require an exponential number of samples in the number of random
variables to mix [45], i.e., reach a stationary distribution. Neverthe-
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Figure 1: A variety of signals can be used for data cleaning: integrity constraints, external dictionaries, and quantitative statistics of
the input dataset. Using each signal in isolation can lead to repairs that do not fix all errors or even introduce new errors.

limited coverage of external resources or these methods may not be
applicable as for many domains a knowledge base may not exist.

Finally, data repairing methods that are based on statistical anal-
ysis [39, 49], leverage quantitative statistics of the input dataset,
e.g., co-occurrences of attribute values, and use those for cleaning.
These techniques overlook integrity constraints. Figure 1(G) shows
such a repair. As shown the “DBAName” and “City” fields of tuple
t4 are updated as their original values correspond to outliers with
respect to other tuples in the dataset. However, this repair does not
have sufficient information to fix the zip code of tuples t2 and t3.

In our example, if we combine repairs that are based on different
signals, we can repair all errors in the input dataset correctly. If
we combine the zip code and city repairs from Figure 1(F) with the
DBAName repair from Figure 1(G) we can repair all inaccuracies
in the input dataset. Nonetheless, combining heterogeneous signals
can be challenging. This is not only because each type of signal is
associated with different operations over the input data (e.g., in-
tegrity constraints require reasoning about the satisfiability of con-
straints while external information requires efficient matching pro-
cedures) but different signals may suggest conflicting repairs. For
instance, if we naively combine the repairs in Figure 1 we end up
with conflicts on the zip code of tuples t2 and t3. The repairs in
Figure 1(E) and (G) assign value “60609” while the repair in Fig-
ure 1(F) assigns value “60608”. This raises the main question we
answer in this paper: How can we combine all aforementioned sig-
nals in a single unified data cleaning framework, and which signals
are useful for repairing different records in an input dataset?

Our Approach. We introduce HoloClean, the first data cleaning
system that unifies integrity constraints, external data, and quanti-
tative statistics, to repair errors in structured data sets. Instead of
considering each signal in isolation, we use all available signals
to suggest data repairs. We consider the input dataset as a noisy
version of a hidden clean dataset and treat each signal as evidence
on the correctness of different records in that dataset. To combine
different signals, we rely on probability theory as it allows us to
reason about inconsistencies across those.

HoloClean automatically generates a probabilistic model [35]
whose random variables capture the uncertainty over records in the
input dataset. Signals are converted to features of the graphical
model and are used to describe the distribution characterizing the
input dataset. To repair errors, HoloClean uses statistical learning
and probabilistic inference over the generated model.

HoloClean exhibits significant improvements over state-of-the-
art data cleaning methods: we show that across multiple datasets

HoloClean finds repairs with an average precision of ⇠ 90% and
an average recall of ⇠ 76%, obtaining an average F1-score im-
provement of more than 2⇥ against state-of-the-art data repairing
methods. Specifically, we find that combining all signals yields an
F1-score improvement of 2.7⇥ against methods that only use in-
tegrity constraints, an improvement of 2.81⇥ against methods that
only leverage external information, and an improvement of 2.29⇥
against methods that only use quantitative statistics.

Technical Challenges. Probabilistic models provide a means for
unifying all signals. However, it is unclear that inference scales
to large data repairing instances. Probabilistic inference involves
two tasks: (i) grounding, which enumerates all possible interac-
tions between correlated random variables to materialize a factor
graph that represents the joint distribution over all variables, and
(ii) inference where the goal is to compute the marginal probability
for every random variable. These tasks are standard but non-trivial:

(1) Integrity constraints that span multiple attributes can cause com-
binatorial explosion problems. Grounding the interactions due to
integrity constraints requires considering all value combinations
that attributes of erroneous tuples can take. If attributes are al-
lowed to obtain values from large domains, inference can become
intractable. For example, we consider repairing the smallest dataset
in our experiments, which contains 1,000 tuples, and allow attributes
in erroneous tuples to obtain any value from the set of consistent as-
signments present in the dataset. Inference over the resulting proba-
bilistic model does not terminate after an entire day. Thus, we need
mechanisms that limit the possible value assignments for records
that need to be repaired by HoloClean’s probabilistic model.

(2) Integrity constraints introduce correlations between pairs of ran-
dom variables associated with tuples in the input dataset. Enumer-
ating these interactions during grounding results in factor graphs
of quadratic size in the number of tuples. For example, in our ex-
periments we consider a dataset with more than two million tuples.
Enforcing the integrity constraints over all pairs of tuples, yields a
factor graph with more than four trillion interactions across random
variables. Thus, we need to avoid evaluating integrity constraints
for pairs of tuples that cannot result in violations.

(3) Finally, probabilistic inference is #P-complete in the presence
of complex correlations, such as hard constraints. Thus, approxi-
mate inference techniques such as Gibbs sampling are required. In
the presence of complex correlations, Gibbs sampling is known to
require an exponential number of samples in the number of random
variables to mix [45], i.e., reach a stationary distribution. Neverthe-
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Figure 1: A variety of signals can be used for data cleaning: integrity constraints, external dictionaries, and quantitative statistics of
the input dataset. Using each signal in isolation can lead to repairs that do not fix all errors or even introduce new errors.

limited coverage of external resources or these methods may not be
applicable as for many domains a knowledge base may not exist.

Finally, data repairing methods that are based on statistical anal-
ysis [39, 49], leverage quantitative statistics of the input dataset,
e.g., co-occurrences of attribute values, and use those for cleaning.
These techniques overlook integrity constraints. Figure 1(G) shows
such a repair. As shown the “DBAName” and “City” fields of tuple
t4 are updated as their original values correspond to outliers with
respect to other tuples in the dataset. However, this repair does not
have sufficient information to fix the zip code of tuples t2 and t3.

In our example, if we combine repairs that are based on different
signals, we can repair all errors in the input dataset correctly. If
we combine the zip code and city repairs from Figure 1(F) with the
DBAName repair from Figure 1(G) we can repair all inaccuracies
in the input dataset. Nonetheless, combining heterogeneous signals
can be challenging. This is not only because each type of signal is
associated with different operations over the input data (e.g., in-
tegrity constraints require reasoning about the satisfiability of con-
straints while external information requires efficient matching pro-
cedures) but different signals may suggest conflicting repairs. For
instance, if we naively combine the repairs in Figure 1 we end up
with conflicts on the zip code of tuples t2 and t3. The repairs in
Figure 1(E) and (G) assign value “60609” while the repair in Fig-
ure 1(F) assigns value “60608”. This raises the main question we
answer in this paper: How can we combine all aforementioned sig-
nals in a single unified data cleaning framework, and which signals
are useful for repairing different records in an input dataset?

Our Approach. We introduce HoloClean, the first data cleaning
system that unifies integrity constraints, external data, and quanti-
tative statistics, to repair errors in structured data sets. Instead of
considering each signal in isolation, we use all available signals
to suggest data repairs. We consider the input dataset as a noisy
version of a hidden clean dataset and treat each signal as evidence
on the correctness of different records in that dataset. To combine
different signals, we rely on probability theory as it allows us to
reason about inconsistencies across those.

HoloClean automatically generates a probabilistic model [35]
whose random variables capture the uncertainty over records in the
input dataset. Signals are converted to features of the graphical
model and are used to describe the distribution characterizing the
input dataset. To repair errors, HoloClean uses statistical learning
and probabilistic inference over the generated model.

HoloClean exhibits significant improvements over state-of-the-
art data cleaning methods: we show that across multiple datasets

HoloClean finds repairs with an average precision of ⇠ 90% and
an average recall of ⇠ 76%, obtaining an average F1-score im-
provement of more than 2⇥ against state-of-the-art data repairing
methods. Specifically, we find that combining all signals yields an
F1-score improvement of 2.7⇥ against methods that only use in-
tegrity constraints, an improvement of 2.81⇥ against methods that
only leverage external information, and an improvement of 2.29⇥
against methods that only use quantitative statistics.

Technical Challenges. Probabilistic models provide a means for
unifying all signals. However, it is unclear that inference scales
to large data repairing instances. Probabilistic inference involves
two tasks: (i) grounding, which enumerates all possible interac-
tions between correlated random variables to materialize a factor
graph that represents the joint distribution over all variables, and
(ii) inference where the goal is to compute the marginal probability
for every random variable. These tasks are standard but non-trivial:

(1) Integrity constraints that span multiple attributes can cause com-
binatorial explosion problems. Grounding the interactions due to
integrity constraints requires considering all value combinations
that attributes of erroneous tuples can take. If attributes are al-
lowed to obtain values from large domains, inference can become
intractable. For example, we consider repairing the smallest dataset
in our experiments, which contains 1,000 tuples, and allow attributes
in erroneous tuples to obtain any value from the set of consistent as-
signments present in the dataset. Inference over the resulting proba-
bilistic model does not terminate after an entire day. Thus, we need
mechanisms that limit the possible value assignments for records
that need to be repaired by HoloClean’s probabilistic model.

(2) Integrity constraints introduce correlations between pairs of ran-
dom variables associated with tuples in the input dataset. Enumer-
ating these interactions during grounding results in factor graphs
of quadratic size in the number of tuples. For example, in our ex-
periments we consider a dataset with more than two million tuples.
Enforcing the integrity constraints over all pairs of tuples, yields a
factor graph with more than four trillion interactions across random
variables. Thus, we need to avoid evaluating integrity constraints
for pairs of tuples that cannot result in violations.

(3) Finally, probabilistic inference is #P-complete in the presence
of complex correlations, such as hard constraints. Thus, approxi-
mate inference techniques such as Gibbs sampling are required. In
the presence of complex correlations, Gibbs sampling is known to
require an exponential number of samples in the number of random
variables to mix [45], i.e., reach a stationary distribution. Neverthe-
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Figure 1: A variety of signals can be used for data cleaning: integrity constraints, external dictionaries, and quantitative statistics of
the input dataset. Using each signal in isolation can lead to repairs that do not fix all errors or even introduce new errors.

limited coverage of external resources or these methods may not be
applicable as for many domains a knowledge base may not exist.

Finally, data repairing methods that are based on statistical anal-
ysis [39, 49], leverage quantitative statistics of the input dataset,
e.g., co-occurrences of attribute values, and use those for cleaning.
These techniques overlook integrity constraints. Figure 1(G) shows
such a repair. As shown the “DBAName” and “City” fields of tuple
t4 are updated as their original values correspond to outliers with
respect to other tuples in the dataset. However, this repair does not
have sufficient information to fix the zip code of tuples t2 and t3.

In our example, if we combine repairs that are based on different
signals, we can repair all errors in the input dataset correctly. If
we combine the zip code and city repairs from Figure 1(F) with the
DBAName repair from Figure 1(G) we can repair all inaccuracies
in the input dataset. Nonetheless, combining heterogeneous signals
can be challenging. This is not only because each type of signal is
associated with different operations over the input data (e.g., in-
tegrity constraints require reasoning about the satisfiability of con-
straints while external information requires efficient matching pro-
cedures) but different signals may suggest conflicting repairs. For
instance, if we naively combine the repairs in Figure 1 we end up
with conflicts on the zip code of tuples t2 and t3. The repairs in
Figure 1(E) and (G) assign value “60609” while the repair in Fig-
ure 1(F) assigns value “60608”. This raises the main question we
answer in this paper: How can we combine all aforementioned sig-
nals in a single unified data cleaning framework, and which signals
are useful for repairing different records in an input dataset?

Our Approach. We introduce HoloClean, the first data cleaning
system that unifies integrity constraints, external data, and quanti-
tative statistics, to repair errors in structured data sets. Instead of
considering each signal in isolation, we use all available signals
to suggest data repairs. We consider the input dataset as a noisy
version of a hidden clean dataset and treat each signal as evidence
on the correctness of different records in that dataset. To combine
different signals, we rely on probability theory as it allows us to
reason about inconsistencies across those.

HoloClean automatically generates a probabilistic model [35]
whose random variables capture the uncertainty over records in the
input dataset. Signals are converted to features of the graphical
model and are used to describe the distribution characterizing the
input dataset. To repair errors, HoloClean uses statistical learning
and probabilistic inference over the generated model.

HoloClean exhibits significant improvements over state-of-the-
art data cleaning methods: we show that across multiple datasets

HoloClean finds repairs with an average precision of ⇠ 90% and
an average recall of ⇠ 76%, obtaining an average F1-score im-
provement of more than 2⇥ against state-of-the-art data repairing
methods. Specifically, we find that combining all signals yields an
F1-score improvement of 2.7⇥ against methods that only use in-
tegrity constraints, an improvement of 2.81⇥ against methods that
only leverage external information, and an improvement of 2.29⇥
against methods that only use quantitative statistics.

Technical Challenges. Probabilistic models provide a means for
unifying all signals. However, it is unclear that inference scales
to large data repairing instances. Probabilistic inference involves
two tasks: (i) grounding, which enumerates all possible interac-
tions between correlated random variables to materialize a factor
graph that represents the joint distribution over all variables, and
(ii) inference where the goal is to compute the marginal probability
for every random variable. These tasks are standard but non-trivial:

(1) Integrity constraints that span multiple attributes can cause com-
binatorial explosion problems. Grounding the interactions due to
integrity constraints requires considering all value combinations
that attributes of erroneous tuples can take. If attributes are al-
lowed to obtain values from large domains, inference can become
intractable. For example, we consider repairing the smallest dataset
in our experiments, which contains 1,000 tuples, and allow attributes
in erroneous tuples to obtain any value from the set of consistent as-
signments present in the dataset. Inference over the resulting proba-
bilistic model does not terminate after an entire day. Thus, we need
mechanisms that limit the possible value assignments for records
that need to be repaired by HoloClean’s probabilistic model.

(2) Integrity constraints introduce correlations between pairs of ran-
dom variables associated with tuples in the input dataset. Enumer-
ating these interactions during grounding results in factor graphs
of quadratic size in the number of tuples. For example, in our ex-
periments we consider a dataset with more than two million tuples.
Enforcing the integrity constraints over all pairs of tuples, yields a
factor graph with more than four trillion interactions across random
variables. Thus, we need to avoid evaluating integrity constraints
for pairs of tuples that cannot result in violations.

(3) Finally, probabilistic inference is #P-complete in the presence
of complex correlations, such as hard constraints. Thus, approxi-
mate inference techniques such as Gibbs sampling are required. In
the presence of complex correlations, Gibbs sampling is known to
require an exponential number of samples in the number of random
variables to mix [45], i.e., reach a stationary distribution. Neverthe-
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Figure 1: A variety of signals can be used for data cleaning: integrity constraints, external dictionaries, and quantitative statistics of
the input dataset. Using each signal in isolation can lead to repairs that do not fix all errors or even introduce new errors.

limited coverage of external resources or these methods may not be
applicable as for many domains a knowledge base may not exist.

Finally, data repairing methods that are based on statistical anal-
ysis [39, 49], leverage quantitative statistics of the input dataset,
e.g., co-occurrences of attribute values, and use those for cleaning.
These techniques overlook integrity constraints. Figure 1(G) shows
such a repair. As shown the “DBAName” and “City” fields of tuple
t4 are updated as their original values correspond to outliers with
respect to other tuples in the dataset. However, this repair does not
have sufficient information to fix the zip code of tuples t2 and t3.

In our example, if we combine repairs that are based on different
signals, we can repair all errors in the input dataset correctly. If
we combine the zip code and city repairs from Figure 1(F) with the
DBAName repair from Figure 1(G) we can repair all inaccuracies
in the input dataset. Nonetheless, combining heterogeneous signals
can be challenging. This is not only because each type of signal is
associated with different operations over the input data (e.g., in-
tegrity constraints require reasoning about the satisfiability of con-
straints while external information requires efficient matching pro-
cedures) but different signals may suggest conflicting repairs. For
instance, if we naively combine the repairs in Figure 1 we end up
with conflicts on the zip code of tuples t2 and t3. The repairs in
Figure 1(E) and (G) assign value “60609” while the repair in Fig-
ure 1(F) assigns value “60608”. This raises the main question we
answer in this paper: How can we combine all aforementioned sig-
nals in a single unified data cleaning framework, and which signals
are useful for repairing different records in an input dataset?

Our Approach. We introduce HoloClean, the first data cleaning
system that unifies integrity constraints, external data, and quanti-
tative statistics, to repair errors in structured data sets. Instead of
considering each signal in isolation, we use all available signals
to suggest data repairs. We consider the input dataset as a noisy
version of a hidden clean dataset and treat each signal as evidence
on the correctness of different records in that dataset. To combine
different signals, we rely on probability theory as it allows us to
reason about inconsistencies across those.

HoloClean automatically generates a probabilistic model [35]
whose random variables capture the uncertainty over records in the
input dataset. Signals are converted to features of the graphical
model and are used to describe the distribution characterizing the
input dataset. To repair errors, HoloClean uses statistical learning
and probabilistic inference over the generated model.

HoloClean exhibits significant improvements over state-of-the-
art data cleaning methods: we show that across multiple datasets

HoloClean finds repairs with an average precision of ⇠ 90% and
an average recall of ⇠ 76%, obtaining an average F1-score im-
provement of more than 2⇥ against state-of-the-art data repairing
methods. Specifically, we find that combining all signals yields an
F1-score improvement of 2.7⇥ against methods that only use in-
tegrity constraints, an improvement of 2.81⇥ against methods that
only leverage external information, and an improvement of 2.29⇥
against methods that only use quantitative statistics.

Technical Challenges. Probabilistic models provide a means for
unifying all signals. However, it is unclear that inference scales
to large data repairing instances. Probabilistic inference involves
two tasks: (i) grounding, which enumerates all possible interac-
tions between correlated random variables to materialize a factor
graph that represents the joint distribution over all variables, and
(ii) inference where the goal is to compute the marginal probability
for every random variable. These tasks are standard but non-trivial:

(1) Integrity constraints that span multiple attributes can cause com-
binatorial explosion problems. Grounding the interactions due to
integrity constraints requires considering all value combinations
that attributes of erroneous tuples can take. If attributes are al-
lowed to obtain values from large domains, inference can become
intractable. For example, we consider repairing the smallest dataset
in our experiments, which contains 1,000 tuples, and allow attributes
in erroneous tuples to obtain any value from the set of consistent as-
signments present in the dataset. Inference over the resulting proba-
bilistic model does not terminate after an entire day. Thus, we need
mechanisms that limit the possible value assignments for records
that need to be repaired by HoloClean’s probabilistic model.

(2) Integrity constraints introduce correlations between pairs of ran-
dom variables associated with tuples in the input dataset. Enumer-
ating these interactions during grounding results in factor graphs
of quadratic size in the number of tuples. For example, in our ex-
periments we consider a dataset with more than two million tuples.
Enforcing the integrity constraints over all pairs of tuples, yields a
factor graph with more than four trillion interactions across random
variables. Thus, we need to avoid evaluating integrity constraints
for pairs of tuples that cannot result in violations.

(3) Finally, probabilistic inference is #P-complete in the presence
of complex correlations, such as hard constraints. Thus, approxi-
mate inference techniques such as Gibbs sampling are required. In
the presence of complex correlations, Gibbs sampling is known to
require an exponential number of samples in the number of random
variables to mix [45], i.e., reach a stationary distribution. Neverthe-
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Figure 1: A variety of signals can be used for data cleaning: integrity constraints, external dictionaries, and quantitative statistics of
the input dataset. Using each signal in isolation can lead to repairs that do not fix all errors or even introduce new errors.

limited coverage of external resources or these methods may not be
applicable as for many domains a knowledge base may not exist.

Finally, data repairing methods that are based on statistical anal-
ysis [39, 49], leverage quantitative statistics of the input dataset,
e.g., co-occurrences of attribute values, and use those for cleaning.
These techniques overlook integrity constraints. Figure 1(G) shows
such a repair. As shown the “DBAName” and “City” fields of tuple
t4 are updated as their original values correspond to outliers with
respect to other tuples in the dataset. However, this repair does not
have sufficient information to fix the zip code of tuples t2 and t3.

In our example, if we combine repairs that are based on different
signals, we can repair all errors in the input dataset correctly. If
we combine the zip code and city repairs from Figure 1(F) with the
DBAName repair from Figure 1(G) we can repair all inaccuracies
in the input dataset. Nonetheless, combining heterogeneous signals
can be challenging. This is not only because each type of signal is
associated with different operations over the input data (e.g., in-
tegrity constraints require reasoning about the satisfiability of con-
straints while external information requires efficient matching pro-
cedures) but different signals may suggest conflicting repairs. For
instance, if we naively combine the repairs in Figure 1 we end up
with conflicts on the zip code of tuples t2 and t3. The repairs in
Figure 1(E) and (G) assign value “60609” while the repair in Fig-
ure 1(F) assigns value “60608”. This raises the main question we
answer in this paper: How can we combine all aforementioned sig-
nals in a single unified data cleaning framework, and which signals
are useful for repairing different records in an input dataset?

Our Approach. We introduce HoloClean, the first data cleaning
system that unifies integrity constraints, external data, and quanti-
tative statistics, to repair errors in structured data sets. Instead of
considering each signal in isolation, we use all available signals
to suggest data repairs. We consider the input dataset as a noisy
version of a hidden clean dataset and treat each signal as evidence
on the correctness of different records in that dataset. To combine
different signals, we rely on probability theory as it allows us to
reason about inconsistencies across those.

HoloClean automatically generates a probabilistic model [35]
whose random variables capture the uncertainty over records in the
input dataset. Signals are converted to features of the graphical
model and are used to describe the distribution characterizing the
input dataset. To repair errors, HoloClean uses statistical learning
and probabilistic inference over the generated model.

HoloClean exhibits significant improvements over state-of-the-
art data cleaning methods: we show that across multiple datasets

HoloClean finds repairs with an average precision of ⇠ 90% and
an average recall of ⇠ 76%, obtaining an average F1-score im-
provement of more than 2⇥ against state-of-the-art data repairing
methods. Specifically, we find that combining all signals yields an
F1-score improvement of 2.7⇥ against methods that only use in-
tegrity constraints, an improvement of 2.81⇥ against methods that
only leverage external information, and an improvement of 2.29⇥
against methods that only use quantitative statistics.

Technical Challenges. Probabilistic models provide a means for
unifying all signals. However, it is unclear that inference scales
to large data repairing instances. Probabilistic inference involves
two tasks: (i) grounding, which enumerates all possible interac-
tions between correlated random variables to materialize a factor
graph that represents the joint distribution over all variables, and
(ii) inference where the goal is to compute the marginal probability
for every random variable. These tasks are standard but non-trivial:

(1) Integrity constraints that span multiple attributes can cause com-
binatorial explosion problems. Grounding the interactions due to
integrity constraints requires considering all value combinations
that attributes of erroneous tuples can take. If attributes are al-
lowed to obtain values from large domains, inference can become
intractable. For example, we consider repairing the smallest dataset
in our experiments, which contains 1,000 tuples, and allow attributes
in erroneous tuples to obtain any value from the set of consistent as-
signments present in the dataset. Inference over the resulting proba-
bilistic model does not terminate after an entire day. Thus, we need
mechanisms that limit the possible value assignments for records
that need to be repaired by HoloClean’s probabilistic model.

(2) Integrity constraints introduce correlations between pairs of ran-
dom variables associated with tuples in the input dataset. Enumer-
ating these interactions during grounding results in factor graphs
of quadratic size in the number of tuples. For example, in our ex-
periments we consider a dataset with more than two million tuples.
Enforcing the integrity constraints over all pairs of tuples, yields a
factor graph with more than four trillion interactions across random
variables. Thus, we need to avoid evaluating integrity constraints
for pairs of tuples that cannot result in violations.

(3) Finally, probabilistic inference is #P-complete in the presence
of complex correlations, such as hard constraints. Thus, approxi-
mate inference techniques such as Gibbs sampling are required. In
the presence of complex correlations, Gibbs sampling is known to
require an exponential number of samples in the number of random
variables to mix [45], i.e., reach a stationary distribution. Neverthe-
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Figure 1: A variety of signals can be used for data cleaning: integrity constraints, external dictionaries, and quantitative statistics of
the input dataset. Using each signal in isolation can lead to repairs that do not fix all errors or even introduce new errors.

limited coverage of external resources or these methods may not be
applicable as for many domains a knowledge base may not exist.

Finally, data repairing methods that are based on statistical anal-
ysis [39, 49], leverage quantitative statistics of the input dataset,
e.g., co-occurrences of attribute values, and use those for cleaning.
These techniques overlook integrity constraints. Figure 1(G) shows
such a repair. As shown the “DBAName” and “City” fields of tuple
t4 are updated as their original values correspond to outliers with
respect to other tuples in the dataset. However, this repair does not
have sufficient information to fix the zip code of tuples t2 and t3.

In our example, if we combine repairs that are based on different
signals, we can repair all errors in the input dataset correctly. If
we combine the zip code and city repairs from Figure 1(F) with the
DBAName repair from Figure 1(G) we can repair all inaccuracies
in the input dataset. Nonetheless, combining heterogeneous signals
can be challenging. This is not only because each type of signal is
associated with different operations over the input data (e.g., in-
tegrity constraints require reasoning about the satisfiability of con-
straints while external information requires efficient matching pro-
cedures) but different signals may suggest conflicting repairs. For
instance, if we naively combine the repairs in Figure 1 we end up
with conflicts on the zip code of tuples t2 and t3. The repairs in
Figure 1(E) and (G) assign value “60609” while the repair in Fig-
ure 1(F) assigns value “60608”. This raises the main question we
answer in this paper: How can we combine all aforementioned sig-
nals in a single unified data cleaning framework, and which signals
are useful for repairing different records in an input dataset?

Our Approach. We introduce HoloClean, the first data cleaning
system that unifies integrity constraints, external data, and quanti-
tative statistics, to repair errors in structured data sets. Instead of
considering each signal in isolation, we use all available signals
to suggest data repairs. We consider the input dataset as a noisy
version of a hidden clean dataset and treat each signal as evidence
on the correctness of different records in that dataset. To combine
different signals, we rely on probability theory as it allows us to
reason about inconsistencies across those.

HoloClean automatically generates a probabilistic model [35]
whose random variables capture the uncertainty over records in the
input dataset. Signals are converted to features of the graphical
model and are used to describe the distribution characterizing the
input dataset. To repair errors, HoloClean uses statistical learning
and probabilistic inference over the generated model.

HoloClean exhibits significant improvements over state-of-the-
art data cleaning methods: we show that across multiple datasets

HoloClean finds repairs with an average precision of ⇠ 90% and
an average recall of ⇠ 76%, obtaining an average F1-score im-
provement of more than 2⇥ against state-of-the-art data repairing
methods. Specifically, we find that combining all signals yields an
F1-score improvement of 2.7⇥ against methods that only use in-
tegrity constraints, an improvement of 2.81⇥ against methods that
only leverage external information, and an improvement of 2.29⇥
against methods that only use quantitative statistics.

Technical Challenges. Probabilistic models provide a means for
unifying all signals. However, it is unclear that inference scales
to large data repairing instances. Probabilistic inference involves
two tasks: (i) grounding, which enumerates all possible interac-
tions between correlated random variables to materialize a factor
graph that represents the joint distribution over all variables, and
(ii) inference where the goal is to compute the marginal probability
for every random variable. These tasks are standard but non-trivial:

(1) Integrity constraints that span multiple attributes can cause com-
binatorial explosion problems. Grounding the interactions due to
integrity constraints requires considering all value combinations
that attributes of erroneous tuples can take. If attributes are al-
lowed to obtain values from large domains, inference can become
intractable. For example, we consider repairing the smallest dataset
in our experiments, which contains 1,000 tuples, and allow attributes
in erroneous tuples to obtain any value from the set of consistent as-
signments present in the dataset. Inference over the resulting proba-
bilistic model does not terminate after an entire day. Thus, we need
mechanisms that limit the possible value assignments for records
that need to be repaired by HoloClean’s probabilistic model.

(2) Integrity constraints introduce correlations between pairs of ran-
dom variables associated with tuples in the input dataset. Enumer-
ating these interactions during grounding results in factor graphs
of quadratic size in the number of tuples. For example, in our ex-
periments we consider a dataset with more than two million tuples.
Enforcing the integrity constraints over all pairs of tuples, yields a
factor graph with more than four trillion interactions across random
variables. Thus, we need to avoid evaluating integrity constraints
for pairs of tuples that cannot result in violations.

(3) Finally, probabilistic inference is #P-complete in the presence
of complex correlations, such as hard constraints. Thus, approxi-
mate inference techniques such as Gibbs sampling are required. In
the presence of complex correlations, Gibbs sampling is known to
require an exponential number of samples in the number of random
variables to mix [45], i.e., reach a stationary distribution. Neverthe-
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Figure 1: A variety of signals can be used for data cleaning: integrity constraints, external dictionaries, and quantitative statistics of
the input dataset. Using each signal in isolation can lead to repairs that do not fix all errors or even introduce new errors.

limited coverage of external resources or these methods may not be
applicable as for many domains a knowledge base may not exist.

Finally, data repairing methods that are based on statistical anal-
ysis [39, 49], leverage quantitative statistics of the input dataset,
e.g., co-occurrences of attribute values, and use those for cleaning.
These techniques overlook integrity constraints. Figure 1(G) shows
such a repair. As shown the “DBAName” and “City” fields of tuple
t4 are updated as their original values correspond to outliers with
respect to other tuples in the dataset. However, this repair does not
have sufficient information to fix the zip code of tuples t2 and t3.

In our example, if we combine repairs that are based on different
signals, we can repair all errors in the input dataset correctly. If
we combine the zip code and city repairs from Figure 1(F) with the
DBAName repair from Figure 1(G) we can repair all inaccuracies
in the input dataset. Nonetheless, combining heterogeneous signals
can be challenging. This is not only because each type of signal is
associated with different operations over the input data (e.g., in-
tegrity constraints require reasoning about the satisfiability of con-
straints while external information requires efficient matching pro-
cedures) but different signals may suggest conflicting repairs. For
instance, if we naively combine the repairs in Figure 1 we end up
with conflicts on the zip code of tuples t2 and t3. The repairs in
Figure 1(E) and (G) assign value “60609” while the repair in Fig-
ure 1(F) assigns value “60608”. This raises the main question we
answer in this paper: How can we combine all aforementioned sig-
nals in a single unified data cleaning framework, and which signals
are useful for repairing different records in an input dataset?

Our Approach. We introduce HoloClean, the first data cleaning
system that unifies integrity constraints, external data, and quanti-
tative statistics, to repair errors in structured data sets. Instead of
considering each signal in isolation, we use all available signals
to suggest data repairs. We consider the input dataset as a noisy
version of a hidden clean dataset and treat each signal as evidence
on the correctness of different records in that dataset. To combine
different signals, we rely on probability theory as it allows us to
reason about inconsistencies across those.

HoloClean automatically generates a probabilistic model [35]
whose random variables capture the uncertainty over records in the
input dataset. Signals are converted to features of the graphical
model and are used to describe the distribution characterizing the
input dataset. To repair errors, HoloClean uses statistical learning
and probabilistic inference over the generated model.

HoloClean exhibits significant improvements over state-of-the-
art data cleaning methods: we show that across multiple datasets

HoloClean finds repairs with an average precision of ⇠ 90% and
an average recall of ⇠ 76%, obtaining an average F1-score im-
provement of more than 2⇥ against state-of-the-art data repairing
methods. Specifically, we find that combining all signals yields an
F1-score improvement of 2.7⇥ against methods that only use in-
tegrity constraints, an improvement of 2.81⇥ against methods that
only leverage external information, and an improvement of 2.29⇥
against methods that only use quantitative statistics.

Technical Challenges. Probabilistic models provide a means for
unifying all signals. However, it is unclear that inference scales
to large data repairing instances. Probabilistic inference involves
two tasks: (i) grounding, which enumerates all possible interac-
tions between correlated random variables to materialize a factor
graph that represents the joint distribution over all variables, and
(ii) inference where the goal is to compute the marginal probability
for every random variable. These tasks are standard but non-trivial:

(1) Integrity constraints that span multiple attributes can cause com-
binatorial explosion problems. Grounding the interactions due to
integrity constraints requires considering all value combinations
that attributes of erroneous tuples can take. If attributes are al-
lowed to obtain values from large domains, inference can become
intractable. For example, we consider repairing the smallest dataset
in our experiments, which contains 1,000 tuples, and allow attributes
in erroneous tuples to obtain any value from the set of consistent as-
signments present in the dataset. Inference over the resulting proba-
bilistic model does not terminate after an entire day. Thus, we need
mechanisms that limit the possible value assignments for records
that need to be repaired by HoloClean’s probabilistic model.

(2) Integrity constraints introduce correlations between pairs of ran-
dom variables associated with tuples in the input dataset. Enumer-
ating these interactions during grounding results in factor graphs
of quadratic size in the number of tuples. For example, in our ex-
periments we consider a dataset with more than two million tuples.
Enforcing the integrity constraints over all pairs of tuples, yields a
factor graph with more than four trillion interactions across random
variables. Thus, we need to avoid evaluating integrity constraints
for pairs of tuples that cannot result in violations.

(3) Finally, probabilistic inference is #P-complete in the presence
of complex correlations, such as hard constraints. Thus, approxi-
mate inference techniques such as Gibbs sampling are required. In
the presence of complex correlations, Gibbs sampling is known to
require an exponential number of samples in the number of random
variables to mix [45], i.e., reach a stationary distribution. Neverthe-
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Figure 1: A variety of signals can be used for data cleaning: integrity constraints, external dictionaries, and quantitative statistics of
the input dataset. Using each signal in isolation can lead to repairs that do not fix all errors or even introduce new errors.

limited coverage of external resources or these methods may not be
applicable as for many domains a knowledge base may not exist.

Finally, data repairing methods that are based on statistical anal-
ysis [39, 49], leverage quantitative statistics of the input dataset,
e.g., co-occurrences of attribute values, and use those for cleaning.
These techniques overlook integrity constraints. Figure 1(G) shows
such a repair. As shown the “DBAName” and “City” fields of tuple
t4 are updated as their original values correspond to outliers with
respect to other tuples in the dataset. However, this repair does not
have sufficient information to fix the zip code of tuples t2 and t3.

In our example, if we combine repairs that are based on different
signals, we can repair all errors in the input dataset correctly. If
we combine the zip code and city repairs from Figure 1(F) with the
DBAName repair from Figure 1(G) we can repair all inaccuracies
in the input dataset. Nonetheless, combining heterogeneous signals
can be challenging. This is not only because each type of signal is
associated with different operations over the input data (e.g., in-
tegrity constraints require reasoning about the satisfiability of con-
straints while external information requires efficient matching pro-
cedures) but different signals may suggest conflicting repairs. For
instance, if we naively combine the repairs in Figure 1 we end up
with conflicts on the zip code of tuples t2 and t3. The repairs in
Figure 1(E) and (G) assign value “60609” while the repair in Fig-
ure 1(F) assigns value “60608”. This raises the main question we
answer in this paper: How can we combine all aforementioned sig-
nals in a single unified data cleaning framework, and which signals
are useful for repairing different records in an input dataset?

Our Approach. We introduce HoloClean, the first data cleaning
system that unifies integrity constraints, external data, and quanti-
tative statistics, to repair errors in structured data sets. Instead of
considering each signal in isolation, we use all available signals
to suggest data repairs. We consider the input dataset as a noisy
version of a hidden clean dataset and treat each signal as evidence
on the correctness of different records in that dataset. To combine
different signals, we rely on probability theory as it allows us to
reason about inconsistencies across those.

HoloClean automatically generates a probabilistic model [35]
whose random variables capture the uncertainty over records in the
input dataset. Signals are converted to features of the graphical
model and are used to describe the distribution characterizing the
input dataset. To repair errors, HoloClean uses statistical learning
and probabilistic inference over the generated model.

HoloClean exhibits significant improvements over state-of-the-
art data cleaning methods: we show that across multiple datasets

HoloClean finds repairs with an average precision of ⇠ 90% and
an average recall of ⇠ 76%, obtaining an average F1-score im-
provement of more than 2⇥ against state-of-the-art data repairing
methods. Specifically, we find that combining all signals yields an
F1-score improvement of 2.7⇥ against methods that only use in-
tegrity constraints, an improvement of 2.81⇥ against methods that
only leverage external information, and an improvement of 2.29⇥
against methods that only use quantitative statistics.

Technical Challenges. Probabilistic models provide a means for
unifying all signals. However, it is unclear that inference scales
to large data repairing instances. Probabilistic inference involves
two tasks: (i) grounding, which enumerates all possible interac-
tions between correlated random variables to materialize a factor
graph that represents the joint distribution over all variables, and
(ii) inference where the goal is to compute the marginal probability
for every random variable. These tasks are standard but non-trivial:

(1) Integrity constraints that span multiple attributes can cause com-
binatorial explosion problems. Grounding the interactions due to
integrity constraints requires considering all value combinations
that attributes of erroneous tuples can take. If attributes are al-
lowed to obtain values from large domains, inference can become
intractable. For example, we consider repairing the smallest dataset
in our experiments, which contains 1,000 tuples, and allow attributes
in erroneous tuples to obtain any value from the set of consistent as-
signments present in the dataset. Inference over the resulting proba-
bilistic model does not terminate after an entire day. Thus, we need
mechanisms that limit the possible value assignments for records
that need to be repaired by HoloClean’s probabilistic model.

(2) Integrity constraints introduce correlations between pairs of ran-
dom variables associated with tuples in the input dataset. Enumer-
ating these interactions during grounding results in factor graphs
of quadratic size in the number of tuples. For example, in our ex-
periments we consider a dataset with more than two million tuples.
Enforcing the integrity constraints over all pairs of tuples, yields a
factor graph with more than four trillion interactions across random
variables. Thus, we need to avoid evaluating integrity constraints
for pairs of tuples that cannot result in violations.

(3) Finally, probabilistic inference is #P-complete in the presence
of complex correlations, such as hard constraints. Thus, approxi-
mate inference techniques such as Gibbs sampling are required. In
the presence of complex correlations, Gibbs sampling is known to
require an exponential number of samples in the number of random
variables to mix [45], i.e., reach a stationary distribution. Neverthe-
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HoloClean
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Assignment 3
• Same Met Art dataset 
• Data Wrangling 
- Using OpenRefine 
- Using pandas
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Tidy Data
• Dataset contain values: quantitative and categorical/qualitative 
• Value is either: 
- variable: all values that measure the same underlying attribute 
- observation: all values measured on the same unit across attributes
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Three Ways to Present the Same Data
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2.1. Data structure

Most statistical datasets are rectangular tables made up of rows and columns. The columns
are almost always labelled and the rows are sometimes labelled. Table 1 provides some data
about an imaginary experiment in a format commonly seen in the wild. The table has two
columns and three rows, and both rows and columns are labelled.

treatmenta treatmentb

John Smith — 2
Jane Doe 16 11
Mary Johnson 3 1

Table 1: Typical presentation dataset.

There are many ways to structure the same underlying data. Table 2 shows the same data
as Table 1, but the rows and columns have been transposed. The data is the same, but the
layout is di↵erent. Our vocabulary of rows and columns is simply not rich enough to describe
why the two tables represent the same data. In addition to appearance, we need a way to
describe the underlying semantics, or meaning, of the values displayed in table.

John Smith Jane Doe Mary Johnson

treatmenta — 16 3
treatmentb 2 11 1

Table 2: The same data as in Table 1 but structured di↵erently.

2.2. Data semantics

A dataset is a collection of values, usually either numbers (if quantitative) or strings (if
qualitative). Values are organised in two ways. Every value belongs to a variable and an
observation. A variable contains all values that measure the same underlying attribute (like
height, temperature, duration) across units. An observation contains all values measured on
the same unit (like a person, or a day, or a race) across attributes.

Table 3 reorganises Table 1 to make the values, variables and obserations more clear. The
dataset contains 18 values representing three variables and six observations. The variables
are:

1. person, with three possible values (John, Mary, and Jane).

2. treatment, with two possible values (a and b).

3. result, with five or six values depending on how you think of the missing value (-, 16,
3, 2, 11, 1).

The experimental design tells us more about the structure of the observations. In this exper-
iment, every combination of of person and treatment was measured, a completely crossed
design. The experimental design also determines whether or not missing values can be safely
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4 Tidy Data

dropped. In this experiment, the missing value represents an observation that should have
been made, but wasn’t, so it’s important to keep it. Structural missing values, which represent
measurements that can’t be made (e.g., the count of pregnant males) can be safely removed.

name trt result

John Smith a —
Jane Doe a 16
Mary Johnson a 3
John Smith b 2
Jane Doe b 11
Mary Johnson b 1

Table 3: The same data as in Table 1 but with variables in columns and observations in rows.

For a given dataset, it’s usually easy to figure out what are observations and what are variables,
but it is surprisingly di�cult to precisely define variables and observations in general. For
example, if the columns in the Table 1 were height and weight we would have been happy
to call them variables. If the columns were height and width, it would be less clear cut, as
we might think of height and width as values of a dimension variable. If the columns were
home phone and work phone, we could treat these as two variables, but in a fraud detection
environment we might want variables phone number and number type because the use of one
phone number for multiple people might suggest fraud. A general rule of thumb is that it is
easier to describe functional relationships between variables (e.g., z is a linear combination
of x and y, density is the ratio of weight to volume) than between rows, and it is easier
to make comparisons between groups of observations (e.g., average of group a vs. average of
group b) than between groups of columns.

In a given analysis, there may be multiple levels of observation. For example, in a trial of new
allergy medication we might have three observational types: demographic data collected from
each person (age, sex, race), medical data collected from each person on each day (number
of sneezes, redness of eyes), and meterological data collected on each day (temperature,
pollen count).

2.3. Tidy data

Tidy data is a standard way of mapping the meaning of a dataset to its structure. A dataset is
messy or tidy depending on how rows, columns and tables are matched up with observations,
variables and types. In tidy data:

1. Each variable forms a column.

2. Each observation forms a row.

3. Each type of observational unit forms a table.

This is Codd’s 3rd normal form (Codd 1990), but with the constraints framed in statistical
language, and the focus put on a single dataset rather than the many connected datasets
common in relational databases. Messy data is any other other arrangement of the data.

Initial Data

Transpose

Tidy Data



Tidy Data Principles
• Tidy Data: Codd's 3rd Normal Form (Databases) 
1. Each variable forms a column 
2. Each observation forms a row 
3. Each type of observational unit forms a table (DataFrame) 

• Other structures are messy data
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Tidy Data
• Benefits: 
- Easy for analyst to extract variables 
- Works well for vectorized programming 

• Organize variables by their role 
- Fixed variables: describe experimental design, known in advance 
- Measured variables: what is measured in study 

• Variables also known as dimensions and measures
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Messy Dataset Problems
• Column headers are values, not variable names 
• Multiple variables are stored in one column 
• Variables are stored in both rows and columns 
• Multiple types of observational units are stored in the same table 
• A single observational unit is stored in multiple tables

31D. Koop, CSCI 640/490, Spring 2024



6 Tidy Data

I would call this arrangement messy, in some cases it can be extremely useful. It provides
e�cient storage for completely crossed designs, and it can lead to extremely e�cient compu-
tation if desired operations can be expressed as matrix operations. This issue is discussed in
depth in Section 6.

Table 4 shows a subset of a typical dataset of this form. This dataset explores the relationship
between income and religion in the US. It comes from a report1 produced by the Pew Research
Center, an American think-tank that collects data on attitudes to topics ranging from religion
to the internet, and produces many reports that contain datasets in this format.

religion <$10k $10-20k $20-30k $30-40k $40-50k $50-75k

Agnostic 27 34 60 81 76 137
Atheist 12 27 37 52 35 70
Buddhist 27 21 30 34 33 58
Catholic 418 617 732 670 638 1116
Don’t know/refused 15 14 15 11 10 35
Evangelical Prot 575 869 1064 982 881 1486
Hindu 1 9 7 9 11 34
Historically Black Prot 228 244 236 238 197 223
Jehovah’s Witness 20 27 24 24 21 30
Jewish 19 19 25 25 30 95

Table 4: The first ten rows of data on income and religion from the Pew Forum. Three columns,
$75-100k, $100-150k and >150k, have been omitted

This dataset has three variables, religion, income and frequency. To tidy it, we need
to melt, or stack it. In other words, we need to turn columns into rows. While this is
often described as making wide datasets long or tall, I will avoid those terms because they are
imprecise. Melting is parameterised by a list of columns that are already variables, or colvars
for short. The other columns are converted into two variables: a new variable called column

that contains repeated column headings and a new variable called value that contains the
concatenated data values from the previously separate columns. This is illustrated in Table 5
with a toy dataset. The result of melting is a molten dataset.

The Pew dataset has one colvar, religion, and melting yields Table 6. To better reflect
their roles in this dataset, the variable column has been renamed to income, and the value
column to freq. This form is tidy because each column represents a variable and each row
represents an observation, in this case a demographic unit corresponding to a combination of
religion and income.

Another common use of this data format is to record regularly spaced observations over time.
For example, the Billboard dataset shown in Table 7 records the date a song first entered the
Billboard Top 100. It has variables for artist, track, date.entered, rank and week. The
rank in each week after it enters the top 100 is recorded in 75 columns, wk1 to wk75. If a song
is in the Top 100 for less than 75 weeks the remaining columns are filled with missing values.
This form of storage is not tidy, but it is useful for data entry. It reduces duplication since

1http://religions.pewforum.org/pdf/comparison-Income%20Distribution%20of%20Religious%
20Traditions.pdf

Problem: Column Headers are Values
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row a b c

A 1 4 7
B 2 5 8
C 3 6 9

(a) Raw data

row column value

A a 1
B a 2
C a 3
A b 4
B b 5
C b 6
A c 7
B c 8
C c 9

(b) Molten data

Table 5: A simple example of melting. (a) is melted with one colvar, row, yielding the molten dataset
(b). The information in each table is exactly the same, just stored in a di↵erent way.

religion income freq

Agnostic <$10k 27
Agnostic $10-20k 34
Agnostic $20-30k 60
Agnostic $30-40k 81
Agnostic $40-50k 76
Agnostic $50-75k 137
Agnostic $75-100k 122
Agnostic $100-150k 109
Agnostic >150k 84
Agnostic Don’t know/refused 96

Table 6: The first ten rows of the tidied Pew survey dataset on income and religion. The column has
been renamed to income, and value to freq.

Solution: Melt Data
• Turn columns into rows 
• One or more columns become rows 

under a new column (column) 
• Values become a new column 

(value) 
• After melt, data is molten 
• AKA pivot_longer 
• Inverse of pivot
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Solution: Molten Data

34

[H. Wickham, 2014]
D. Koop, CSCI 640/490, Spring 2024

6 Tidy Data

I would call this arrangement messy, in some cases it can be extremely useful. It provides
e�cient storage for completely crossed designs, and it can lead to extremely e�cient compu-
tation if desired operations can be expressed as matrix operations. This issue is discussed in
depth in Section 6.

Table 4 shows a subset of a typical dataset of this form. This dataset explores the relationship
between income and religion in the US. It comes from a report1 produced by the Pew Research
Center, an American think-tank that collects data on attitudes to topics ranging from religion
to the internet, and produces many reports that contain datasets in this format.

religion <$10k $10-20k $20-30k $30-40k $40-50k $50-75k

Agnostic 27 34 60 81 76 137
Atheist 12 27 37 52 35 70
Buddhist 27 21 30 34 33 58
Catholic 418 617 732 670 638 1116
Don’t know/refused 15 14 15 11 10 35
Evangelical Prot 575 869 1064 982 881 1486
Hindu 1 9 7 9 11 34
Historically Black Prot 228 244 236 238 197 223
Jehovah’s Witness 20 27 24 24 21 30
Jewish 19 19 25 25 30 95

Table 4: The first ten rows of data on income and religion from the Pew Forum. Three columns,
$75-100k, $100-150k and >150k, have been omitted

This dataset has three variables, religion, income and frequency. To tidy it, we need
to melt, or stack it. In other words, we need to turn columns into rows. While this is
often described as making wide datasets long or tall, I will avoid those terms because they are
imprecise. Melting is parameterised by a list of columns that are already variables, or colvars
for short. The other columns are converted into two variables: a new variable called column

that contains repeated column headings and a new variable called value that contains the
concatenated data values from the previously separate columns. This is illustrated in Table 5
with a toy dataset. The result of melting is a molten dataset.

The Pew dataset has one colvar, religion, and melting yields Table 6. To better reflect
their roles in this dataset, the variable column has been renamed to income, and the value
column to freq. This form is tidy because each column represents a variable and each row
represents an observation, in this case a demographic unit corresponding to a combination of
religion and income.
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Melting: Billboard Top Hits
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8 Tidy Data

otherwise each song in each week would need its own row, and song metadata like title and
artist would need to be repeated. This issue will be discussed in more depth in Section 3.4.

year artist track time date.entered wk1 wk2 wk3

2000 2 Pac Baby Don’t Cry 4:22 2000-02-26 87 82 72
2000 2Ge+her The Hardest Part Of ... 3:15 2000-09-02 91 87 92
2000 3 Doors Down Kryptonite 3:53 2000-04-08 81 70 68
2000 98^0 Give Me Just One Nig... 3:24 2000-08-19 51 39 34
2000 A*Teens Dancing Queen 3:44 2000-07-08 97 97 96
2000 Aaliyah I Don’t Wanna 4:15 2000-01-29 84 62 51
2000 Aaliyah Try Again 4:03 2000-03-18 59 53 38
2000 Adams, Yolanda Open My Heart 5:30 2000-08-26 76 76 74

Table 7: The first eight Billboard top hits for 2000. Other columns not shown are wk4, wk5, ..., wk75.

This dataset has colvars year, artist, track, time, and date.entered. Melting yields
Table 8. I have also done a little cleaning as well as tidying: column has been converted to
week by extracting the number, and date has been computed from date.entered and week.

year artist time track date week rank

2000 2 Pac 4:22 Baby Don’t Cry 2000-02-26 1 87
2000 2 Pac 4:22 Baby Don’t Cry 2000-03-04 2 82
2000 2 Pac 4:22 Baby Don’t Cry 2000-03-11 3 72
2000 2 Pac 4:22 Baby Don’t Cry 2000-03-18 4 77
2000 2 Pac 4:22 Baby Don’t Cry 2000-03-25 5 87
2000 2 Pac 4:22 Baby Don’t Cry 2000-04-01 6 94
2000 2 Pac 4:22 Baby Don’t Cry 2000-04-08 7 99
2000 2Ge+her 3:15 The Hardest Part Of ... 2000-09-02 1 91
2000 2Ge+her 3:15 The Hardest Part Of ... 2000-09-09 2 87
2000 2Ge+her 3:15 The Hardest Part Of ... 2000-09-16 3 92
2000 3 Doors Down 3:53 Kryptonite 2000-04-08 1 81
2000 3 Doors Down 3:53 Kryptonite 2000-04-15 2 70
2000 3 Doors Down 3:53 Kryptonite 2000-04-22 3 68
2000 3 Doors Down 3:53 Kryptonite 2000-04-29 4 67
2000 3 Doors Down 3:53 Kryptonite 2000-05-06 5 66

Table 8: First fifteen rows of the tidied billboard dataset. The date column does not appear in the
original table, but can be computed from date.entered and week.

3.2. Multiple variables stored in one column

After melting, the column variable names often becomes a combination of multiple underlying
variable names. This is illustrated by the tuberculosis (TB) dataset, a sample of which is
shown in Table 9. This dataset comes from the World Health Organisation, and records
the counts of confirmed tuberculosis cases by country, year, and demographic group. The
demographic groups are broken down by sex (m, f) and age (0–14, 15–25, 25–34, 35–44,
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Melting
• Pandas also has a melt function: 

In [41]: cheese = pd.DataFrame({'first' : ['John', 'Mary'],
   ....:                        'last' : ['Doe', 'Bo'],
   ....:                        'height' : [5.5, 6.0],
   ....:                        'weight' : [130, 150]})
   ....: 

In [42]: cheese
Out[42]: 
  first  height last  weight
0  John     5.5  Doe     130
1  Mary     6.0   Bo     150

In [43]: cheese.melt(id_vars=['first', 'last'])
Out[43]: 
  first last variable  value
0  John  Doe   height    5.5
1  Mary   Bo   height    6.0
2  John  Doe   weight  130.0
3  Mary   Bo   weight  150.0

In [44]: cheese.melt(id_vars=['first', 'last'], var_name='quantity')
Out[44]: 
  first last quantity  value
0  John  Doe   height    5.5
1  Mary   Bo   height    6.0
2  John  Doe   weight  130.0
3  Mary   Bo   weight  150.0
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45–54, 55–64, unknown).

country year m014 m1524 m2534 m3544 m4554 m5564 m65 mu f014

AD 2000 0 0 1 0 0 0 0 — —
AE 2000 2 4 4 6 5 12 10 — 3
AF 2000 52 228 183 149 129 94 80 — 93
AG 2000 0 0 0 0 0 0 1 — 1
AL 2000 2 19 21 14 24 19 16 — 3
AM 2000 2 152 130 131 63 26 21 — 1
AN 2000 0 0 1 2 0 0 0 — 0
AO 2000 186 999 1003 912 482 312 194 — 247
AR 2000 97 278 594 402 419 368 330 — 121
AS 2000 — — — — 1 1 — — —

Table 9: Original TB dataset. Corresponding to each ‘m’ column for males, there is also an ‘f’ column
for females, f1524, f2534 and so on. These are not shown to conserve space. Note the mixture of 0s
and missing values (—). This is due to the data collection process and the distinction is important for
this dataset.

Column headers in this format are often separated by some character (., -, _, :). While the
string can be broken into pieces using that character as a divider, in other cases, such as for
this dataset, more careful string processing is required. For example, the variable names can
be matched to a lookup table that converts single compound value into multiple component
values.

Table 10(a) shows the results of melting the TB dataset, and Table 10(b) shows the results
of splitting the single column column into two real variables: age and sex.

Storing the values in this form resolves another problem in the original data. We want to
compare rates, not counts. But to compute rates, we need to know the population. In the
original format, there is no easy way to add a population variable. It has to be stored in a
separate table, which makes it hard to correctly match populations to counts. In tidy form,
adding variables for population and rate is easy. They are just additional columns.

3.3. Variables are stored in both rows and columns

The most complicated form of messy data occurs when variables are stored in both rows and
columns. Table 11 shows daily weather data from the Global Historical Climatology Network
for one weather station (MX17004) in Mexico for five months in 2010. It has variables in
individual columns (id, year, month), spread across columns (day, d1–d31) and across rows
(tmin, tmax) (minimum and maximum temperature). Months with less than 31 days have
structural missing values for the last day(s) of the month. The element column is not a
variable; it stores the names of variables.

To tidy this dataset we first melt it with colvars id, year, month and the column that contains
variable names, element. This yields Table 12(a). For presentation, we have dropped the
missing values, making them implicit rather than explicit. This is permissible because we know
how many days are in each month and can easily reconstruct the explicit missing values.

This dataset is mostly tidy, but we have two variables stored in rows: tmin and tmax, the

Problem: Multiple variables stored in one column

37

[H. Wickham, 2014]
D. Koop, CSCI 640/490, Spring 2024

Tuberculosis Data, World Health Organization



Journal of Statistical Software 9

45–54, 55–64, unknown).

country year m014 m1524 m2534 m3544 m4554 m5564 m65 mu f014

AD 2000 0 0 1 0 0 0 0 — —
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AN 2000 0 0 1 2 0 0 0 — 0
AO 2000 186 999 1003 912 482 312 194 — 247
AR 2000 97 278 594 402 419 368 330 — 121
AS 2000 — — — — 1 1 — — —

Table 9: Original TB dataset. Corresponding to each ‘m’ column for males, there is also an ‘f’ column
for females, f1524, f2534 and so on. These are not shown to conserve space. Note the mixture of 0s
and missing values (—). This is due to the data collection process and the distinction is important for
this dataset.

Column headers in this format are often separated by some character (., -, _, :). While the
string can be broken into pieces using that character as a divider, in other cases, such as for
this dataset, more careful string processing is required. For example, the variable names can
be matched to a lookup table that converts single compound value into multiple component
values.

Table 10(a) shows the results of melting the TB dataset, and Table 10(b) shows the results
of splitting the single column column into two real variables: age and sex.

Storing the values in this form resolves another problem in the original data. We want to
compare rates, not counts. But to compute rates, we need to know the population. In the
original format, there is no easy way to add a population variable. It has to be stored in a
separate table, which makes it hard to correctly match populations to counts. In tidy form,
adding variables for population and rate is easy. They are just additional columns.

3.3. Variables are stored in both rows and columns

The most complicated form of messy data occurs when variables are stored in both rows and
columns. Table 11 shows daily weather data from the Global Historical Climatology Network
for one weather station (MX17004) in Mexico for five months in 2010. It has variables in
individual columns (id, year, month), spread across columns (day, d1–d31) and across rows
(tmin, tmax) (minimum and maximum temperature). Months with less than 31 days have
structural missing values for the last day(s) of the month. The element column is not a
variable; it stores the names of variables.

To tidy this dataset we first melt it with colvars id, year, month and the column that contains
variable names, element. This yields Table 12(a). For presentation, we have dropped the
missing values, making them implicit rather than explicit. This is permissible because we know
how many days are in each month and can easily reconstruct the explicit missing values.

This dataset is mostly tidy, but we have two variables stored in rows: tmin and tmax, the
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10 Tidy Data

country year column cases

AD 2000 m014 0
AD 2000 m1524 0
AD 2000 m2534 1
AD 2000 m3544 0
AD 2000 m4554 0
AD 2000 m5564 0
AD 2000 m65 0
AE 2000 m014 2
AE 2000 m1524 4
AE 2000 m2534 4
AE 2000 m3544 6
AE 2000 m4554 5
AE 2000 m5564 12
AE 2000 m65 10
AE 2000 f014 3

(a) Molten data

country year sex age cases

AD 2000 m 0-14 0
AD 2000 m 15-24 0
AD 2000 m 25-34 1
AD 2000 m 35-44 0
AD 2000 m 45-54 0
AD 2000 m 55-64 0
AD 2000 m 65+ 0
AE 2000 m 0-14 2
AE 2000 m 15-24 4
AE 2000 m 25-34 4
AE 2000 m 35-44 6
AE 2000 m 45-54 5
AE 2000 m 55-64 12
AE 2000 m 65+ 10
AE 2000 f 0-14 3

(b) Tidy data

Table 10: Tidying the TB dataset requires first melting, and then splitting the column column into
two variables: sex and age.

type of observation. Not shown in this example are the other meteorological variables prcp
(precipitation) and snow (snowfall). Fixing this requires the cast, or unstack, operation. This
performs the inverse of melting by rotating the element variable back out into the columns
(Table 12(b)). This form is tidy. There is one variable in each column, and each row represents
a day’s observations. The cast operation is described in depth in Wickham (2007).

3.4. Multiple types in one table

Datasets often involve values collected at multiple levels, on di↵erent types of observational
units. During tidying, each type of observational unit should be stored in its own table. This
is closely related to the idea of database normalisation, where each fact is expressed in only
one place. If this is not done, it’s possible for inconsistencies to occur.

The Billboard dataset described in Table 8 actually contains observations on two types of
observational units: the song and its rank in each week. This manifests itself through the
duplication of facts about the song: artist and time are repeated for every song in each
week. The billboard dataset needs to be broken down into two datasets: a song dataset
which stores artist, song name and time, and a ranking dataset which gives the rank of
the song in each week. Table 13 shows these two datasets. You could also imagine a week
dataset which would record background information about the week, maybe the total number
of songs sold or similar demographic information.

Normalisation is useful for tidying and eliminating inconsistencies. However, there are few
data analysis tools that work directly with relational data, so analysis usually also requires
denormalisation or the merging the datasets back into one table.

Solution: Melting + Splitting
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id year month element d1 d2 d3 d4 d5 d6 d7 d8

MX17004 2010 1 tmax — — — — — — — —
MX17004 2010 1 tmin — — — — — — — —
MX17004 2010 2 tmax — 27.3 24.1 — — — — —
MX17004 2010 2 tmin — 14.4 14.4 — — — — —
MX17004 2010 3 tmax — — — — 32.1 — — —
MX17004 2010 3 tmin — — — — 14.2 — — —
MX17004 2010 4 tmax — — — — — — — —
MX17004 2010 4 tmin — — — — — — — —
MX17004 2010 5 tmax — — — — — — — —
MX17004 2010 5 tmin — — — — — — — —

Table 11: Original weather dataset. There is a column for each possible day in the month. Columns
d9 to d31 have been omitted to conserve space.

id date element value

MX17004 2010-01-30 tmax 27.8
MX17004 2010-01-30 tmin 14.5
MX17004 2010-02-02 tmax 27.3
MX17004 2010-02-02 tmin 14.4
MX17004 2010-02-03 tmax 24.1
MX17004 2010-02-03 tmin 14.4
MX17004 2010-02-11 tmax 29.7
MX17004 2010-02-11 tmin 13.4
MX17004 2010-02-23 tmax 29.9
MX17004 2010-02-23 tmin 10.7

(a) Molten data

id date tmax tmin

MX17004 2010-01-30 27.8 14.5
MX17004 2010-02-02 27.3 14.4
MX17004 2010-02-03 24.1 14.4
MX17004 2010-02-11 29.7 13.4
MX17004 2010-02-23 29.9 10.7
MX17004 2010-03-05 32.1 14.2
MX17004 2010-03-10 34.5 16.8
MX17004 2010-03-16 31.1 17.6
MX17004 2010-04-27 36.3 16.7
MX17004 2010-05-27 33.2 18.2

(b) Tidy data

Table 12: (a) Molten weather dataset. This is almost tidy, but instead of values, the element column
contains names of variables. Missing values are dropped to conserve space. (b) Tidy weather dataset.
Each row represents the meteorological measurements for a single day. There are two measured
variables, minimum (tmin) and maximum (tmax) temperature; all other variables are fixed.

Problem: Variables stored in both rows & columns

39

[H. Wickham, 2014]
D. Koop, CSCI 640/490, Spring 2024

Mexico Weather, Global Historical Climatology Network



Journal of Statistical Software 11

id year month element d1 d2 d3 d4 d5 d6 d7 d8

MX17004 2010 1 tmax — — — — — — — —
MX17004 2010 1 tmin — — — — — — — —
MX17004 2010 2 tmax — 27.3 24.1 — — — — —
MX17004 2010 2 tmin — 14.4 14.4 — — — — —
MX17004 2010 3 tmax — — — — 32.1 — — —
MX17004 2010 3 tmin — — — — 14.2 — — —
MX17004 2010 4 tmax — — — — — — — —
MX17004 2010 4 tmin — — — — — — — —
MX17004 2010 5 tmax — — — — — — — —
MX17004 2010 5 tmin — — — — — — — —

Table 11: Original weather dataset. There is a column for each possible day in the month. Columns
d9 to d31 have been omitted to conserve space.

id date element value

MX17004 2010-01-30 tmax 27.8
MX17004 2010-01-30 tmin 14.5
MX17004 2010-02-02 tmax 27.3
MX17004 2010-02-02 tmin 14.4
MX17004 2010-02-03 tmax 24.1
MX17004 2010-02-03 tmin 14.4
MX17004 2010-02-11 tmax 29.7
MX17004 2010-02-11 tmin 13.4
MX17004 2010-02-23 tmax 29.9
MX17004 2010-02-23 tmin 10.7

(a) Molten data

id date tmax tmin

MX17004 2010-01-30 27.8 14.5
MX17004 2010-02-02 27.3 14.4
MX17004 2010-02-03 24.1 14.4
MX17004 2010-02-11 29.7 13.4
MX17004 2010-02-23 29.9 10.7
MX17004 2010-03-05 32.1 14.2
MX17004 2010-03-10 34.5 16.8
MX17004 2010-03-16 31.1 17.6
MX17004 2010-04-27 36.3 16.7
MX17004 2010-05-27 33.2 18.2

(b) Tidy data

Table 12: (a) Molten weather dataset. This is almost tidy, but instead of values, the element column
contains names of variables. Missing values are dropped to conserve space. (b) Tidy weather dataset.
Each row represents the meteorological measurements for a single day. There are two measured
variables, minimum (tmin) and maximum (tmax) temperature; all other variables are fixed.

Problem: Variables stored in both rows & columns
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Pivot
• Sometimes, we have data that is given in "long" format and we would like 

"wide" format (AKA pivot_wider) 
• Long format: column names are data values… 
• Wide format: more like spreadsheet format 
• Example:
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         two        1      6
         three      2      7
Colorado one        3      8
         two        4      9
         three      5     10

In [109]: df.unstack('state')                In [110]: df.unstack('state').stack('side')
Out[109]:                                    Out[110]:                                  
side    left            right                state         Ohio  Colorado               
state   Ohio  Colorado   Ohio  Colorado      number side                                
number                                       one    left      0         3               
one        0         3      5         8             right     5         8               
two        1         4      6         9      two    left      1         4               
three      2         5      7        10             right     6         9               
                                             three  left      2         5               
                                                    right     7        10

Pivoting “long” to “wide” Format
A common way to store multiple time series in databases and CSV is in so-called long
or stacked format:

data = pd.read_csv('ch07/macrodata.csv')
periods = pd.PeriodIndex(year=data.year, quarter=data.quarter, name='date')
data = DataFrame(data.to_records(),
                 columns=pd.Index(['realgdp', 'infl', 'unemp'], name='item'),
                 index=periods.to_timestamp('D', 'end'))

ldata = data.stack().reset_index().rename(columns={0: 'value'})

In [116]: ldata[:10]
Out[116]: 
        date     item     value
0 1959-03-31  realgdp  2710.349
1 1959-03-31     infl     0.000
2 1959-03-31    unemp     5.800
3 1959-06-30  realgdp  2778.801
4 1959-06-30     infl     2.340
5 1959-06-30    unemp     5.100
6 1959-09-30  realgdp  2775.488
7 1959-09-30     infl     2.740
8 1959-09-30    unemp     5.300
9 1959-12-31  realgdp  2785.204

Data is frequently stored this way in relational databases like MySQL as a fixed schema
(column names and data types) allows the number of distinct values in the item column
to increase or decrease as data is added or deleted in the table. In the above example
date and item would usually be the primary keys (in relational database parlance),
offering both relational integrity and easier joins and programmatic queries in many
cases. The downside, of course, is that the data may not be easy to work with in long
format; you might prefer to have a DataFrame containing one column per distinct
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item value indexed by timestamps in the date column. DataFrame’s pivot method per-
forms exactly this transformation:

In [117]: pivoted = ldata.pivot('date', 'item', 'value')

In [118]: pivoted.head()
Out[118]: 
item        infl   realgdp  unemp
date                             
1959-03-31  0.00  2710.349    5.8
1959-06-30  2.34  2778.801    5.1
1959-09-30  2.74  2775.488    5.3
1959-12-31  0.27  2785.204    5.6
1960-03-31  2.31  2847.699    5.2

The first two values passed are the columns to be used as the row and column index,
and finally an optional value column to fill the DataFrame. Suppose you had two value
columns that you wanted to reshape simultaneously:

In [119]: ldata['value2'] = np.random.randn(len(ldata))

In [120]: ldata[:10]
Out[120]: 
        date     item     value    value2
0 1959-03-31  realgdp  2710.349  1.669025
1 1959-03-31     infl     0.000 -0.438570
2 1959-03-31    unemp     5.800 -0.539741
3 1959-06-30  realgdp  2778.801  0.476985
4 1959-06-30     infl     2.340  3.248944
5 1959-06-30    unemp     5.100 -1.021228
6 1959-09-30  realgdp  2775.488 -0.577087
7 1959-09-30     infl     2.740  0.124121
8 1959-09-30    unemp     5.300  0.302614
9 1959-12-31  realgdp  2785.204  0.523772

By omitting the last argument, you obtain a DataFrame with hierarchical columns:

In [121]: pivoted = ldata.pivot('date', 'item')

In [122]: pivoted[:5]
Out[122]: 
            value                     value2                    
item         infl   realgdp  unemp      infl   realgdp     unemp
date                                                            
1959-03-31   0.00  2710.349    5.8 -0.438570  1.669025 -0.539741
1959-06-30   2.34  2778.801    5.1  3.248944  0.476985 -1.021228
1959-09-30   2.74  2775.488    5.3  0.124121 -0.577087  0.302614
1959-12-31   0.27  2785.204    5.6  0.000940  0.523772  1.343810
1960-03-31   2.31  2847.699    5.2 -0.831154 -0.713544 -2.370232

In [123]: pivoted['value'][:5]
Out[123]: 
item        infl   realgdp  unemp
date                             
1959-03-31  0.00  2710.349    5.8
1959-06-30  2.34  2778.801    5.1

Reshaping and Pivoting | 191

.pivot('date', 'item', 'value')
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id year month element d1 d2 d3 d4 d5 d6 d7 d8

MX17004 2010 1 tmax — — — — — — — —
MX17004 2010 1 tmin — — — — — — — —
MX17004 2010 2 tmax — 27.3 24.1 — — — — —
MX17004 2010 2 tmin — 14.4 14.4 — — — — —
MX17004 2010 3 tmax — — — — 32.1 — — —
MX17004 2010 3 tmin — — — — 14.2 — — —
MX17004 2010 4 tmax — — — — — — — —
MX17004 2010 4 tmin — — — — — — — —
MX17004 2010 5 tmax — — — — — — — —
MX17004 2010 5 tmin — — — — — — — —

Table 11: Original weather dataset. There is a column for each possible day in the month. Columns
d9 to d31 have been omitted to conserve space.

id date element value

MX17004 2010-01-30 tmax 27.8
MX17004 2010-01-30 tmin 14.5
MX17004 2010-02-02 tmax 27.3
MX17004 2010-02-02 tmin 14.4
MX17004 2010-02-03 tmax 24.1
MX17004 2010-02-03 tmin 14.4
MX17004 2010-02-11 tmax 29.7
MX17004 2010-02-11 tmin 13.4
MX17004 2010-02-23 tmax 29.9
MX17004 2010-02-23 tmin 10.7

(a) Molten data

id date tmax tmin

MX17004 2010-01-30 27.8 14.5
MX17004 2010-02-02 27.3 14.4
MX17004 2010-02-03 24.1 14.4
MX17004 2010-02-11 29.7 13.4
MX17004 2010-02-23 29.9 10.7
MX17004 2010-03-05 32.1 14.2
MX17004 2010-03-10 34.5 16.8
MX17004 2010-03-16 31.1 17.6
MX17004 2010-04-27 36.3 16.7
MX17004 2010-05-27 33.2 18.2

(b) Tidy data

Table 12: (a) Molten weather dataset. This is almost tidy, but instead of values, the element column
contains names of variables. Missing values are dropped to conserve space. (b) Tidy weather dataset.
Each row represents the meteorological measurements for a single day. There are two measured
variables, minimum (tmin) and maximum (tmax) temperature; all other variables are fixed.

Solution: Melting + Pivot
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ABSTRACT
Data transformation is a critical first step in modern data
analysis: before any analysis can be done, data from a va-
riety of sources must be wrangled into a uniform format
that is amenable to the intended analysis and analytical
software package. This data transformation task is tedious,
time-consuming, and often requires programming skills be-
yond the expertise of data analysts. In this paper, we develop
a technique to synthesize data transformation programs by
example, reducing this burden by allowing the analyst to de-
scribe the transformation with a small input-output example
pair, without being concerned with the transformation steps
required to get there. We implemented our technique in a
system, Foofah, that e�ciently searches the space of pos-
sible data transformation operations to generate a program
that will perform the desired transformation. We experimen-
tally show that data transformation programs can be created
quickly with Foofah for a wide variety of cases, with 60%
less user e↵ort than the well-known Wrangler system.

Keywords
Data Transformation; Program Synthesis; Programming By
Example; A* algorithm; Heuristic

1. INTRODUCTION
The many fields that depend on data for decision making

have at least one thing in common: raw data is often in a non-
relational or poorly structured form, possibly with extraneous
information, and cannot be directly used by a downstream
information system, like a database or visualization system.
Figure 1 from [16] is a good example of such raw data.
In modern data analytics, data transformation (or data
wrangling) is usually a crucial first step that reorganizes
raw data into a more desirable format that can be easily
consumed by other systems. Figure 2 showcases a relational
form obtained by transforming Figure 1.

Traditionally, domain experts handwrite task specific scripts
to transform unstructured data—a task that is often labor-
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Figure 1: A spreadsheet of business contact information
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Figure 2: A relational form of Figure 1

intensive and tedious. The requirement for programming
hamstrings data users that are capable analysts but have
limited coding skills. Even worse, these scripts are tailored to
particular data sources and cannot adapt when new sources
are acquired. People normally spend more time preparing
data than analyzing it; up to 80% of a data scientist’s time
can be spent on transforming data into a usable state [28].

Recent research into automated and assisted data transfor-
mation systems have tried to reduce the need of a program-
ming background for users, with some success [19, 22, 41].
These tools help users generate reusable data transformation
programs, but they still require users to know which data
transformation operations are needed and in what order they
should be applied. Current tools still require some level of im-
perative programming, placing a significant burden on data
users. Take Wrangler [22], for example, where a user must
select the correct operators and parameters to complete a
data transformation task. This is often challenging if the user
has no experience in data transformation or programming.

In general, existing data transformation tools are di�cult
to use due to two usability issues:

• High Skill : Users must be familiar with the often compli-
cated transformation operations and then decide which
operations to use and in what order.

• High E↵ort : The amount of user e↵ort increases as the
data transformation program gets lengthy.

To resolve the above usability issues, we envision a data
transformation program synthesizer that can be successfully
used by people without a programming background and that
requires minimal user e↵ort. Unlike Wrangler, which asks

the user for procedural hints, this system should allow the
user to specify a desired transformation simply by providing
an input-output example: the user only needs to know how
to describe the transformed data, as opposed to knowing any
particular transformation operation that must be performed.

Our Approach — In this paper, we solve the data trans-
formation program synthesis problem using a Programming
By Example (PBE) approach. Our proposed technique aims
to help an unsophisticated user easily generate a quality
data transformation program using purely input-output ex-
amples. The synthesized program is designed to be easy-to-
understand (it is a straight-line program comprised of simple
primitives), so an unsophisticated user can understand the
semantics of the program and validate it. Because it is often
infeasible to examine and approve a very large transformed
dataset synthesizing a readable transformation program is
preferred over performing an opaque transformation.

We model program synthesis as a search problem in a state
space graph and use a heuristic search approach based on
the classic A* algorithm to synthesize the program. A major
challenge in applying A* to program synthesis is to create a
heuristic function estimating the cost of any proposed par-
tial solution. Unlike robotic path planning, where a metric
like Euclidean distance naturally serves as a good heuristic
function, there is no straightforward heuristic for data trans-
formation. In this work, we define an e↵ective A* heuristic
for data transformation, as well as lossless pruning rules that
significantly reduce the size of the search space. We have im-
plemented our methods in a prototype data transformation
program synthesizer called Foofah.

Organization — After motivating our problem with an
example in Section 2 and formally defining the problem in
Section 3, we discuss the following contributions:

• We present a PBE data transformation program syn-
thesis technique backed by an e�cient heuristic-search-
based algorithm inspired by the A* algorithm. It has a
novel, operator-independent heuristic, Table Edit Dis-
tance Batch, along with pruning rules designed specifi-
cally for data transformation (Section 4).

• We prototype our method in a system, Foofah, and
evaluate it with a comprehensive set of benchmark test
scenarios that show it is both e↵ective and e�cient in
synthesizing data transformation programs. We also
present a user study that shows Foofah requires about
60% less user e↵ort than Wrangler(Section 5).

We explore Related Work in Section 6 and finish with a
discussion of future work in Section 7

2. MOTIVATING EXAMPLE
Data transformation can be a tedious task involving the

application of complex operations that may be di�cult for
a näıve user to understand, as illustrated by the following
simple but realistic scenario:

Example 1. Bob wants to load a spreadsheet of business
contact information (Figure 1) into a database system. Un-
fortunately, the raw data cannot be loaded in its original
format, so Bob hopes to transform it into a relational format
(Figure 2). Manually transforming the data record-by-record
would be tedious and error-prone, so he uses the interactive
data cleaning tool Wrangler [22].

Niles C. Tel (800)645-8397
Fax (907)586-7252

Jean H. Tel (918)781-4600
Fax (918)781-4604

Frank K. Tel (615)564-6500
Fax (615)564-6701

Figure 3: Intermediate table state
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Bob first removes the rows of irrelevant data (rows 1 and
2) and empty rows (rows 5, 8, and more). He then splits the
cells containing phone numbers on “:”, extracting the phone
numbers into a new column. Now that almost all the cells from
the desired table exist in the intermediate table (Figure 3),
Bob intends to perform a cross-tabulation operation that
tabulates phone numbers of each category against the human
names. He looks through Wrangler’s provided operations
and finally decides that Unfold should be used. But Unfold
does not transform the intermediate table correctly, since
there are missing values in the column of names, resulting
in “null” being the unique identifier for all rows without a
human name (Figure 4). Bob backtracks and performs a Fill
operation to fill in the empty cells with the appropriate names
before finally performing the Unfold operation. The final data
transformation program is shown in Figure 5.

The usability issues described in Section 1 have occurred in
this example. Lines 1–3 in Figure 5 are lengthy and repetitive
(High E↵ort). Lines 5–6 require a good understanding of the
Unfold operation, causing di�culty for the näıve user (High
Skill). Note that Deletes in Lines 1–2 are di↵erent from the
Delete in Line 3 in that the latter could apply to the entire file.
Non-savvy users may find such conditional usage of Delete
di�cult to discover, further illustrating the High Skill issue.
Consider another scenario where the same task becomes

much easier for Bob, our data analyst:

Example 2. Bob decides to use an alternative data transfor-
mation system, Foofah. To use Foofah, Bob simply needs
to choose a small sample of the raw data (Figure 1) and
describe what this sample should be after being transformed
(Figure 2). Foofah automatically infers the data transfor-
mation program in Figure 6 (which is semantically the same
as Figure 5, and even more succinct). Bob takes this inferred
program and executes it on the entire raw dataset and finds
that raw data are transformed exactly as desired.

The motivating example above gives an idea of the real-
world data transformation tasks our proposed technique
is designed to address. In general, we aim to transform a
poorly-structured grid of values (e.g., a spreadsheet table) to
a relational table with coherent rows and columns. Such a
transformation can be a combination of the following chores:

1. changing the structure of the table

2. removing unnecessary data fields

3. filling in missing values

4. extracting values from cells

5. creating new cell values out of several cell values

the user for procedural hints, this system should allow the
user to specify a desired transformation simply by providing
an input-output example: the user only needs to know how
to describe the transformed data, as opposed to knowing any
particular transformation operation that must be performed.
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2. MOTIVATING EXAMPLE
Data transformation can be a tedious task involving the

application of complex operations that may be di�cult for
a näıve user to understand, as illustrated by the following
simple but realistic scenario:

Example 1. Bob wants to load a spreadsheet of business
contact information (Figure 1) into a database system. Un-
fortunately, the raw data cannot be loaded in its original
format, so Bob hopes to transform it into a relational format
(Figure 2). Manually transforming the data record-by-record
would be tedious and error-prone, so he uses the interactive
data cleaning tool Wrangler [22].
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in “null” being the unique identifier for all rows without a
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operation to fill in the empty cells with the appropriate names
before finally performing the Unfold operation. The final data
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describe what this sample should be after being transformed
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ABSTRACT
Data transformation is a critical first step in modern data
analysis: before any analysis can be done, data from a va-
riety of sources must be wrangled into a uniform format
that is amenable to the intended analysis and analytical
software package. This data transformation task is tedious,
time-consuming, and often requires programming skills be-
yond the expertise of data analysts. In this paper, we develop
a technique to synthesize data transformation programs by
example, reducing this burden by allowing the analyst to de-
scribe the transformation with a small input-output example
pair, without being concerned with the transformation steps
required to get there. We implemented our technique in a
system, Foofah, that e�ciently searches the space of pos-
sible data transformation operations to generate a program
that will perform the desired transformation. We experimen-
tally show that data transformation programs can be created
quickly with Foofah for a wide variety of cases, with 60%
less user e↵ort than the well-known Wrangler system.

Keywords
Data Transformation; Program Synthesis; Programming By
Example; A* algorithm; Heuristic

1. INTRODUCTION
The many fields that depend on data for decision making

have at least one thing in common: raw data is often in a non-
relational or poorly structured form, possibly with extraneous
information, and cannot be directly used by a downstream
information system, like a database or visualization system.
Figure 1 from [16] is a good example of such raw data.
In modern data analytics, data transformation (or data
wrangling) is usually a crucial first step that reorganizes
raw data into a more desirable format that can be easily
consumed by other systems. Figure 2 showcases a relational
form obtained by transforming Figure 1.

Traditionally, domain experts handwrite task specific scripts
to transform unstructured data—a task that is often labor-
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Figure 1: A spreadsheet of business contact information
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Figure 2: A relational form of Figure 1

intensive and tedious. The requirement for programming
hamstrings data users that are capable analysts but have
limited coding skills. Even worse, these scripts are tailored to
particular data sources and cannot adapt when new sources
are acquired. People normally spend more time preparing
data than analyzing it; up to 80% of a data scientist’s time
can be spent on transforming data into a usable state [28].

Recent research into automated and assisted data transfor-
mation systems have tried to reduce the need of a program-
ming background for users, with some success [19, 22, 41].
These tools help users generate reusable data transformation
programs, but they still require users to know which data
transformation operations are needed and in what order they
should be applied. Current tools still require some level of im-
perative programming, placing a significant burden on data
users. Take Wrangler [22], for example, where a user must
select the correct operators and parameters to complete a
data transformation task. This is often challenging if the user
has no experience in data transformation or programming.

In general, existing data transformation tools are di�cult
to use due to two usability issues:

• High Skill : Users must be familiar with the often compli-
cated transformation operations and then decide which
operations to use and in what order.

• High E↵ort : The amount of user e↵ort increases as the
data transformation program gets lengthy.

To resolve the above usability issues, we envision a data
transformation program synthesizer that can be successfully
used by people without a programming background and that
requires minimal user e↵ort. Unlike Wrangler, which asks

Original Table

Intermediate Table

Problem Table

Desired Solution

Split+Delete

Unfold

Fill+ 
Unfold
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Most real-world data is unstructured and must be transformed 
into a structured form to be used. Manual transformation (e.g., 
using Excel) requires too much user effort. Traditional 
transformation often requires good programming skills beyond 
most of the users. Data transformation tools, like Data 
Wranger [1], often require repetitive and tedious work and a 
depth of data transformation knowledge from the user. 
Our goal: minimize a user's effort and reduce the required 
background knowledge for data transformation tasks.
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User Study

Our PBE technique prototype
FOOFAH:
1. can handle most test cases from

the benchmarks.
2. requires little user effort
3. generally efficient (low system

runtime)

Benchmark Tests
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simple and complex tasks
Comparisons: Wrangler

• FOOFAH on average requires 60% less user effort than Wrangler
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Solution: Table Edit Distance as the heuristic function

Table Edit Distance (TED) Definition:
The cost of transforming Table T1 to Table T2 using the cell-level
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;=>
• P(T1, T2): Set of all “paths” transforming T1 to T2 using cell-level operators

Batching: a remedy for Table Edit Distance to scale down heuristic
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Note:	Ideally,	Wrangler	should	be	able	
to	handle	same	tasks	as	FOOFAH

User Input:
• Sample from raw data
• Transformed view of the sample

Raw Data: 
• A grid of values, i.e., spreadsheets
• “Somewhat” structured - must have some 

regular structure or is automatically generated.

Transformations Targeted:
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FOOFAH: A Programming-By-Example System for
Synthesizing Data Transformation Program

Zhongjun Jin, Michael R. Anderson, Michael Cafarella, H. V. Jagadish
University of Michigan

Most real-world data is unstructured and must be transformed 
into a structured form to be used. Manual transformation (e.g., 
using Excel) requires too much user effort. Traditional 
transformation often requires good programming skills beyond 
most of the users. Data transformation tools, like Data 
Wranger [1], often require repetitive and tedious work and a 
depth of data transformation knowledge from the user. 
Our goal: minimize a user's effort and reduce the required 
background knowledge for data transformation tasks.

Motivation

Design of FOOFAH
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User Study

Our PBE technique prototype
FOOFAH:
1. can handle most test cases from

the benchmarks.
2. requires little user effort
3. generally efficient (low system

runtime)

Benchmark Tests

Tasks: 8 tasks from
benchmarks covering both
simple and complex tasks
Comparisons: Wrangler

• FOOFAH on average requires 60% less user effort than Wrangler
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Intuition: Most data transformation operations can be seen as many 
cell-level transformation operations

Solution: Table Edit Distance as the heuristic function

Table Edit Distance (TED) Definition:
The cost of transforming Table T1 to Table T2 using the cell-level
operators Add/Remove/Move/Transform cell.

TED $%, $' = min,-,… ,	,0 ∈2 3-,	34
56789 :;
<

;=>
• P(T1, T2): Set of all “paths” transforming T1 to T2 using cell-level operators

Batching: a remedy for Table Edit Distance to scale down heuristic

Batch the geometrically-adjacent cell-level operations of the same type
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Programming-By-Example interaction model: User provides input-
output examples rather than demonstrating correct operations

Note:	Ideally,	Wrangler	should	be	able	
to	handle	same	tasks	as	FOOFAH

User Input:
• Sample from raw data
• Transformed view of the sample

Raw Data: 
• A grid of values, i.e., spreadsheets
• “Somewhat” structured - must have some 

regular structure or is automatically generated.

Transformations Targeted:
1. Layout transformation              2. String transformation
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Most transformations are composed of cell-based operations



Table Edit Distance
• Akin to Graph Edit Distance 
• Count the number of operations required to transform one table to another 
• Use Add/Remove/Modify + Move
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FOOFAH: A Programming-By-Example System for
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Most real-world data is unstructured and must be transformed 
into a structured form to be used. Manual transformation (e.g., 
using Excel) requires too much user effort. Traditional 
transformation often requires good programming skills beyond 
most of the users. Data transformation tools, like Data 
Wranger [1], often require repetitive and tedious work and a 
depth of data transformation knowledge from the user. 
Our goal: minimize a user's effort and reduce the required 
background knowledge for data transformation tasks.
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User Study

Our PBE technique prototype
FOOFAH:
1. can handle most test cases from

the benchmarks.
2. requires little user effort
3. generally efficient (low system

runtime)

Benchmark Tests

Tasks: 8 tasks from
benchmarks covering both
simple and complex tasks
Comparisons: Wrangler

• FOOFAH on average requires 60% less user effort than Wrangler
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from [1,2,4,6]
Test Approach: lazy approach [4]
Comparison: [1,3,4,5]

Input	
Example	ei Input	

Example	eo
?

A search problem
solved by A* algorithm

edges: operation
nodes: different views of the data
A* search: iteratively explore the 

node with min f(n)
f(n) = g(n) + h(n)

observed distance
estimated distance

Intuition: Most data transformation operations can be seen as many 
cell-level transformation operations

Solution: Table Edit Distance as the heuristic function

Table Edit Distance (TED) Definition:
The cost of transforming Table T1 to Table T2 using the cell-level
operators Add/Remove/Move/Transform cell.

TED $%, $' = min,-,… ,	,0 ∈2 3-,	34
56789 :;
<

;=>
• P(T1, T2): Set of all “paths” transforming T1 to T2 using cell-level operators

Batching: a remedy for Table Edit Distance to scale down heuristic

Batch the geometrically-adjacent cell-level operations of the same type
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User Input:
• Sample from raw data
• Transformed view of the sample

Raw Data: 
• A grid of values, i.e., spreadsheets
• “Somewhat” structured - must have some 
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Goal
• Automate "Complex" Data Preparation steps 
• Focus on frame transformations (not per-cell transformations) 
• Learn from Jupyter Notebooks 
• Use interactive methods to help users select from top-k options
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https://congyan.org/JupyterNotebooks.pdf


Join Wizards
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(a) Paxata (b) Tableau Prep (c) Trifacta

Figure 1: Joins recommendation UI in commercial systems: likely join columns are suggested in ranked lists.

Similar recommendation features are also available for a
few other simple operators, such as recommending GroupBy
and Aggregation columns as ranked lists, when users open
the GroupBy/Aggregation UI wizards.
While these recommendation features are clearly bene�-

cial, they are currently limited to operators for which simple
heuristics can be devised (e.g., high value-overlap for predict-
ing Join columns, and low-cardinality for GroupBy columns),
which our analysis suggests are not always accurate.

More importantly, there are no recommendation-based
features for a number of equally common but more com-
plex operators, such as Pivot and Unpivot in the vendors we
surveyed, presumably because these complex operations are
more di�cult to predict with simple heuristics. Given that
Pivot and Unpivot are signi�cant pain-points for users, as
evidenced by a large number of questions on user-forums [3,
21, 24, 25, 29], extending intelligent recommendation to these
complex operators is clearly important.

“Learn-to-recommend”withnotebooks +Pandas.We
in this work propose a data-driven approach to learn-to-
recommend data prep operations, by leveraging a large col-
lection data science notebooks. Speci�cally, computational
notebooks such as Jupyter [8] are increasingly popular and
have become a de-facto standard in data science. Moreover,
such notebooks have becomewidely available in public repos-
itories like GitHub – our crawl in Mar 2019 suggests that the
number of notebooks on GitHub is around 4.7 million. Anal-
ysis shows that these notebooks cover a variety of use cases,
ranging from data science projects (e.g., Kaggle), data-driven
journalism (e.g., ProPublica), to reproducible academic pub-
lications.
Furthermore, we leverage the fact that Python, as well

as a table manipulation API in Python called Pandas, are
particularly popular in these notebooks. Pandas can roughly
be thought of as a rich super-set of SQL, where some example
operators are listed in Table 1.

Figure 2 shows an example step in a Python notebook. This
code block calls the “merge” method in Pandas (equivalent
to Join), which joins two input tables (“result” and “devices”)
using speci�ed columns (“device” and “Model”), as a left-
outer join. The resulting table is shown after the code block.

Figure 2: Example step in notebook for merge (Join).
Logical
Operator Join Pivot Unpivot Groupby Relationalize

JSON
Pandas
Operator merge[17] pivot[18] melt[16] groupby[14] json_normalize[15]

#nb crawled
w/ the operator 209.9K 68.9K 16.8K 364.3K 8.3K

Table 1: Popular table-manipulation operators used in
the Pandas DataFrameAPI, and their “logical” counter-
parts (the entire API [13] has over 100 methods).

The fact that Jupyter notebooks and Pandas in Python
are de-facto standards gives us a unique opportunity to har-
vest a large number of data pipelines, with real invocations
of data preparation operators (Join, GroupBy, Pivot, Unpivot,
etc.) on diverse data sets. We build a system to crawl, re-
play, and analyze such pipelines in notebooks at scale, and
log detailed input/output tables (known as DataFrames in
Pandas) of each operator, as well as exact choices data scien-
tists make to manipulate tables (e.g., what columns are used
in Join, how are tables Pivoted/Unpivoted, etc.)
We note that the detailed “logs” of how data scientists

interact with diverse data sets is a treasure trove that allows
us to learn-to-recommend data preparation steps. This is in
essence analogous to the “click-through logs” used by search
engines to improve search relevance.

Recommendation Tasks. In this work, we consider two
types of recommendation tasks for data preparation:
• Single-Operator Prediction: Given input tables and a user-
speci�ed target operation (e.g. Pivot, Join, etc.), the task is
to recommend suitable parameterization for the operator
(e.g., how to Pivot and Join), based on characteristics of the
input data. Note that the target operator is known, as the
recommendation is triggered only after a user opens relevant
UI Wizards (e.g., Figure 1 for Join), which gives a clear intent
in terms of which operation the user wants to perform.

(a) Paxata (b) Tableau Prep (c) Trifacta

Figure 1: Joins recommendation UI in commercial systems: likely join columns are suggested in ranked lists.

Similar recommendation features are also available for a
few other simple operators, such as recommending GroupBy
and Aggregation columns as ranked lists, when users open
the GroupBy/Aggregation UI wizards.
While these recommendation features are clearly bene�-

cial, they are currently limited to operators for which simple
heuristics can be devised (e.g., high value-overlap for predict-
ing Join columns, and low-cardinality for GroupBy columns),
which our analysis suggests are not always accurate.

More importantly, there are no recommendation-based
features for a number of equally common but more com-
plex operators, such as Pivot and Unpivot in the vendors we
surveyed, presumably because these complex operations are
more di�cult to predict with simple heuristics. Given that
Pivot and Unpivot are signi�cant pain-points for users, as
evidenced by a large number of questions on user-forums [3,
21, 24, 25, 29], extending intelligent recommendation to these
complex operators is clearly important.

“Learn-to-recommend”withnotebooks +Pandas.We
in this work propose a data-driven approach to learn-to-
recommend data prep operations, by leveraging a large col-
lection data science notebooks. Speci�cally, computational
notebooks such as Jupyter [8] are increasingly popular and
have become a de-facto standard in data science. Moreover,
such notebooks have becomewidely available in public repos-
itories like GitHub – our crawl in Mar 2019 suggests that the
number of notebooks on GitHub is around 4.7 million. Anal-
ysis shows that these notebooks cover a variety of use cases,
ranging from data science projects (e.g., Kaggle), data-driven
journalism (e.g., ProPublica), to reproducible academic pub-
lications.
Furthermore, we leverage the fact that Python, as well

as a table manipulation API in Python called Pandas, are
particularly popular in these notebooks. Pandas can roughly
be thought of as a rich super-set of SQL, where some example
operators are listed in Table 1.

Figure 2 shows an example step in a Python notebook. This
code block calls the “merge” method in Pandas (equivalent
to Join), which joins two input tables (“result” and “devices”)
using speci�ed columns (“device” and “Model”), as a left-
outer join. The resulting table is shown after the code block.

Figure 2: Example step in notebook for merge (Join).
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Table 1: Popular table-manipulation operators used in
the Pandas DataFrameAPI, and their “logical” counter-
parts (the entire API [13] has over 100 methods).

The fact that Jupyter notebooks and Pandas in Python
are de-facto standards gives us a unique opportunity to har-
vest a large number of data pipelines, with real invocations
of data preparation operators (Join, GroupBy, Pivot, Unpivot,
etc.) on diverse data sets. We build a system to crawl, re-
play, and analyze such pipelines in notebooks at scale, and
log detailed input/output tables (known as DataFrames in
Pandas) of each operator, as well as exact choices data scien-
tists make to manipulate tables (e.g., what columns are used
in Join, how are tables Pivoted/Unpivoted, etc.)
We note that the detailed “logs” of how data scientists

interact with diverse data sets is a treasure trove that allows
us to learn-to-recommend data preparation steps. This is in
essence analogous to the “click-through logs” used by search
engines to improve search relevance.

Recommendation Tasks. In this work, we consider two
types of recommendation tasks for data preparation:
• Single-Operator Prediction: Given input tables and a user-
speci�ed target operation (e.g. Pivot, Join, etc.), the task is
to recommend suitable parameterization for the operator
(e.g., how to Pivot and Join), based on characteristics of the
input data. Note that the target operator is known, as the
recommendation is triggered only after a user opens relevant
UI Wizards (e.g., Figure 1 for Join), which gives a clear intent
in terms of which operation the user wants to perform.
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Figure 1: Joins recommendation UI in commercial systems: likely join columns are suggested in ranked lists.

Similar recommendation features are also available for a
few other simple operators, such as recommending GroupBy
and Aggregation columns as ranked lists, when users open
the GroupBy/Aggregation UI wizards.
While these recommendation features are clearly bene�-

cial, they are currently limited to operators for which simple
heuristics can be devised (e.g., high value-overlap for predict-
ing Join columns, and low-cardinality for GroupBy columns),
which our analysis suggests are not always accurate.

More importantly, there are no recommendation-based
features for a number of equally common but more com-
plex operators, such as Pivot and Unpivot in the vendors we
surveyed, presumably because these complex operations are
more di�cult to predict with simple heuristics. Given that
Pivot and Unpivot are signi�cant pain-points for users, as
evidenced by a large number of questions on user-forums [3,
21, 24, 25, 29], extending intelligent recommendation to these
complex operators is clearly important.

“Learn-to-recommend”withnotebooks +Pandas.We
in this work propose a data-driven approach to learn-to-
recommend data prep operations, by leveraging a large col-
lection data science notebooks. Speci�cally, computational
notebooks such as Jupyter [8] are increasingly popular and
have become a de-facto standard in data science. Moreover,
such notebooks have becomewidely available in public repos-
itories like GitHub – our crawl in Mar 2019 suggests that the
number of notebooks on GitHub is around 4.7 million. Anal-
ysis shows that these notebooks cover a variety of use cases,
ranging from data science projects (e.g., Kaggle), data-driven
journalism (e.g., ProPublica), to reproducible academic pub-
lications.
Furthermore, we leverage the fact that Python, as well

as a table manipulation API in Python called Pandas, are
particularly popular in these notebooks. Pandas can roughly
be thought of as a rich super-set of SQL, where some example
operators are listed in Table 1.

Figure 2 shows an example step in a Python notebook. This
code block calls the “merge” method in Pandas (equivalent
to Join), which joins two input tables (“result” and “devices”)
using speci�ed columns (“device” and “Model”), as a left-
outer join. The resulting table is shown after the code block.

Figure 2: Example step in notebook for merge (Join).
Logical
Operator Join Pivot Unpivot Groupby Relationalize

JSON
Pandas
Operator merge[17] pivot[18] melt[16] groupby[14] json_normalize[15]

#nb crawled
w/ the operator 209.9K 68.9K 16.8K 364.3K 8.3K

Table 1: Popular table-manipulation operators used in
the Pandas DataFrameAPI, and their “logical” counter-
parts (the entire API [13] has over 100 methods).

The fact that Jupyter notebooks and Pandas in Python
are de-facto standards gives us a unique opportunity to har-
vest a large number of data pipelines, with real invocations
of data preparation operators (Join, GroupBy, Pivot, Unpivot,
etc.) on diverse data sets. We build a system to crawl, re-
play, and analyze such pipelines in notebooks at scale, and
log detailed input/output tables (known as DataFrames in
Pandas) of each operator, as well as exact choices data scien-
tists make to manipulate tables (e.g., what columns are used
in Join, how are tables Pivoted/Unpivoted, etc.)
We note that the detailed “logs” of how data scientists

interact with diverse data sets is a treasure trove that allows
us to learn-to-recommend data preparation steps. This is in
essence analogous to the “click-through logs” used by search
engines to improve search relevance.

Recommendation Tasks. In this work, we consider two
types of recommendation tasks for data preparation:
• Single-Operator Prediction: Given input tables and a user-
speci�ed target operation (e.g. Pivot, Join, etc.), the task is
to recommend suitable parameterization for the operator
(e.g., how to Pivot and Join), based on characteristics of the
input data. Note that the target operator is known, as the
recommendation is triggered only after a user opens relevant
UI Wizards (e.g., Figure 1 for Join), which gives a clear intent
in terms of which operation the user wants to perform.

https://congyan.org/JupyterNotebooks.pdf


Programmatic Operators
• Crawl, reapply, and analyze data piplelines from Jupyter+pandas 
• 7 API calls: concat, dropna, fillna, groupby, melt, merge, pivot
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Figure 1: Joins recommendation UI in commercial systems: likely join columns are suggested in ranked lists.

Similar recommendation features are also available for a
few other simple operators, such as recommending GroupBy
and Aggregation columns as ranked lists, when users open
the GroupBy/Aggregation UI wizards.
While these recommendation features are clearly bene�-

cial, they are currently limited to operators for which simple
heuristics can be devised (e.g., high value-overlap for predict-
ing Join columns, and low-cardinality for GroupBy columns),
which our analysis suggests are not always accurate.
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more di�cult to predict with simple heuristics. Given that
Pivot and Unpivot are signi�cant pain-points for users, as
evidenced by a large number of questions on user-forums [3,
21, 24, 25, 29], extending intelligent recommendation to these
complex operators is clearly important.

“Learn-to-recommend”withnotebooks +Pandas.We
in this work propose a data-driven approach to learn-to-
recommend data prep operations, by leveraging a large col-
lection data science notebooks. Speci�cally, computational
notebooks such as Jupyter [8] are increasingly popular and
have become a de-facto standard in data science. Moreover,
such notebooks have becomewidely available in public repos-
itories like GitHub – our crawl in Mar 2019 suggests that the
number of notebooks on GitHub is around 4.7 million. Anal-
ysis shows that these notebooks cover a variety of use cases,
ranging from data science projects (e.g., Kaggle), data-driven
journalism (e.g., ProPublica), to reproducible academic pub-
lications.
Furthermore, we leverage the fact that Python, as well

as a table manipulation API in Python called Pandas, are
particularly popular in these notebooks. Pandas can roughly
be thought of as a rich super-set of SQL, where some example
operators are listed in Table 1.

Figure 2 shows an example step in a Python notebook. This
code block calls the “merge” method in Pandas (equivalent
to Join), which joins two input tables (“result” and “devices”)
using speci�ed columns (“device” and “Model”), as a left-
outer join. The resulting table is shown after the code block.

Figure 2: Example step in notebook for merge (Join).
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JSON
Pandas
Operator merge[17] pivot[18] melt[16] groupby[14] json_normalize[15]

#nb crawled
w/ the operator 209.9K 68.9K 16.8K 364.3K 8.3K

Table 1: Popular table-manipulation operators used in
the Pandas DataFrameAPI, and their “logical” counter-
parts (the entire API [13] has over 100 methods).

The fact that Jupyter notebooks and Pandas in Python
are de-facto standards gives us a unique opportunity to har-
vest a large number of data pipelines, with real invocations
of data preparation operators (Join, GroupBy, Pivot, Unpivot,
etc.) on diverse data sets. We build a system to crawl, re-
play, and analyze such pipelines in notebooks at scale, and
log detailed input/output tables (known as DataFrames in
Pandas) of each operator, as well as exact choices data scien-
tists make to manipulate tables (e.g., what columns are used
in Join, how are tables Pivoted/Unpivoted, etc.)
We note that the detailed “logs” of how data scientists

interact with diverse data sets is a treasure trove that allows
us to learn-to-recommend data preparation steps. This is in
essence analogous to the “click-through logs” used by search
engines to improve search relevance.

Recommendation Tasks. In this work, we consider two
types of recommendation tasks for data preparation:
• Single-Operator Prediction: Given input tables and a user-
speci�ed target operation (e.g. Pivot, Join, etc.), the task is
to recommend suitable parameterization for the operator
(e.g., how to Pivot and Join), based on characteristics of the
input data. Note that the target operator is known, as the
recommendation is triggered only after a user opens relevant
UI Wizards (e.g., Figure 1 for Join), which gives a clear intent
in terms of which operation the user wants to perform.

notebooks. This is common because notebook authors of-
ten “hard-code” absolute paths of data �les in his/her local
environment, as shown below:
df = pd.read_csv(�D:\ my_project\titantic.csv�)

Such absolute paths are not valid in the GitHub repo or in
our local replay environment, and will thus fail. Our replay
system attempts to address missing data �les in a few ways:
(1) Given a �le path that we fail to load when executing a
notebook (e.g., D:\my_project\titantic.csv), we ignore
the path and search using the �le name (titantic.csv) in
the code repository, starting from the working directory;
(2) We look for URLs in comments and text cells adjacent to
the failed code cell, and attempt to download missing data
using the URLs extracted.
(3) Because many notebooks deal with data science chal-
lenges such as Kaggle [9], where the data sets are public
and may be hosted in online data repositories. We thus also
attempt to resolve missing data �les by programmatically
download using the Kaggle Dataset API [10] (e.g. command
kaggle datasets download -d titanic) to download
the missing dataset.
We are able to locate missing �les in most cases using a

combination of these methods.

3.3 Track Operator Sequences
In addition to instrumenting invocations of individual oper-
ators, we also keep track of the sequence of operations in
notebooks and reconstruct the data-�ow.

Speci�cally, we record input/output of 7 Pandas API calls
that take data-frames (tables) as parameters, or produce
data-frames as output. These are: concat, dropna, fillna,
groupby, melt, merge, and pivot. We record the unique
hash id of each data-frame, and trace input/output depen-
dencies between data-frames to construct data-�ow graphs
(even if dependencies are far apart in the notebook).

Figure 4 shows an example of the data-�ow graph for the
code snippet on the right. This code snippet �rst reads two
CSV �les into data-frames, before joining the two and saving
the result in psg. It then performs Pivot and GroupBy on psg
for exploratory data analysis. Figure 4 shows its correspond-
ing data-�ow graph we extract, where each node is a (ver-
sioned) data-frame variable, and each edge is an operation.
This allows us to construct operator sequences/pipelines, in
order to predict the “next operator”.

psg.v1 surv.v1

psg.v2

psg.v3 psg.v4

join join

pivot groupby

1 import pandas as pd
2
3 psg=pd.read_csv(‘passenger_data.csv’)
4 surv=pd.read_csv(‘survive.csv’)
5 psg=psg.merge(surv,on=‘PassengerId’,

how=‘left’)
6 psg.pivot(header=[‘Survived, Pclass’],

index=‘Sex’, aggrfunc=‘count’)
7 psg.groupby(‘Sex’,aggrfunc=‘count’)

Figure 4: Example code snippet and its data-�ow.

4 PREDICT SINGLE OPERATORS
Leveraging rich logs, we will �rst discuss “single-operator”
recommendations, using Join, GroupBy, Pivot and Unpivot as
example operators. Recommendation methods for additional
operators such as Normalize-Json can be found in a full
version of the paper.

Note that Join and GroupBy are relatively straightforward
as both can be modeled as simple feature-based machine-
learning. We start with the two nevertheless as they are
“building blocks” required for other operators.

Pivot and Unpivot are considerably more complex – we
formulate them as novel optimization problems and solve
them using custom-built algorithms.

4.1 Join Predictions

Figure 5: An example Join: The ground-truth is to join
using book-titles (in solid red boxes). Existing meth-
ods using heuristics tend to incorrectly pick columns
in dashed-boxes that have a higher value overlap.

Join is a widely-used operator that combines data from
multiple tables. Figure 5 shows an example taken from a real
notebook. The left table has a list of best-selling books, and
the right one has historical information about these books.
From our logs we observe that data scientists choose to left-
outer-join using “title” from the left and “title_on_list” from
the right (in solid boxes).

For Join we have two essential prediction tasks:
(1) Predict join columns: This is to decide which columns
should be used as join keys, which is a feature available
commercial systems (e.g., Figure 1), and has been studied
in the literature (e.g. [36, 56, 71, 83]).
(2) Predict join types: This predicts whether the join should
be inner/left-outer/right-outer/full-outer-join, etc. Since dif-
ferences between these choices can be subtle and not obvi-
ous to non-expert users, accurate predictions (with intuitive
explanations/visualization) would be bene�cial.
Join columnprediction.Given two tablesT andT 0, with

columns {C1, . . . ,Cn} 2 T and {C 0
1, . . . ,C

0
m} 2 T 0, our prob-

lem is to �nd two sets of columns (S , S 0) that are likely join
columns, with S ✓ T , S 0 ✓ T 0 and |S | = |S 0 | (note that this
can be single-column or multi-columns).
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Recommendation Tasks
• Single-Operator Prediction: Given two tables and an operation, decide how 

to best apply the operation (what are the parameters) 
• Next-Operator Prediction: Given all operations performed so far, predict the 

next one
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Join Prediction
• Predict columns 
- Use features of columns: value-overlap, "left-ness", statistics 

• Predict join type 
- Inner join is the default (also 78% of cases in data) 
- "Central" table vs. "filtering"
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Pivot/Unpivot
• Pivot is hard to get right 
- Index 
- Header 
- Aggregation Function 
- Aggregation Columns 

• Use GroupBy Prediction 
• Look for NULLs and use affiinity 
• Affinity-Maximizing Pivot Table 
• Unpivot requires compatibility
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Figure 7: Example Pivot operation that creates two-dimensional Pivot-table (right) from an input table (left).

Figure 8: Example of a “bad” Pivot-table (with many
NULLs) that uses the same dimensions as Figure 7.

Figure 9: UI Wizard to create Pivot-table in Excel. It
requires users to drag suitable columns into 4 possi-
ble buckets (shown at bottom) to properly con�gure
Pivot, which typically takes many trials to get right.
Creating Pivot in other systems is similarly complex.
essentially predicting GroupBy columns (both are dimension
attributes); while predicting aggregation-column in Pivot
is the same as predicting Aggregation (both are measures).
E������ 2. Observe that the input table for Pivot in Fig-

ure 7 and the input table for GroupBy in Figure 6 are identical.
Furthermore, the candidate GroupBy columns in Figure 6
(�rst 5 columns) are all reasonable choices as index/header
in a Pivot table. Similarly, the candidate Aggregation columns
in Figure 6 (“Market Cap” and “Revenue”) are all valid choices
for aggregation-column in Pivot.
We therefore directly apply the GroupBy/Aggregation

prediction in Section 4.2, which would determine “Market
Cap” and “Revenue” in Figure 7 as aggregation-column,
and the rest as index/header. From here, users can pick
columns of interest for the desired Pivot. In Figure 7, users
would pick “Sector”, “Ticker”, “Company”, “Year” as relevant
dimensions, and “Revenue” as the aggregation-column.

Predict to Split Index vs. Header. From user-selected
dimension columns, our second prediction task is to auto-
matically identify a “good” placement of these columns by
splitting them into index vs. header, which is di�cult for
users and typically require multiple trial-and-errors.

E������ 3. Users have selected { Sector, Ticker, Company,
Year } from Figure 7 as desired dimension columns. Since

they can either be arranged as index (on the left of the result-
ing Pivot) or header (on the top), there are a total of 24 = 16
possible choices to Pivot. Many of these arrangements are,
however, not ideal.
Figure 8 shows one such example. Observe that since

{ Company, Ticker, Year } are selected as index, while { Sec-
tor } as header, it creates a large number of “NULL” entries
in the resulting Pivot-table, because of a strong dependency
between “Sector” and “Company”. Splitting the two columns
with one at the top and one to the left of the resulting Pivot
would create a large number of empty cells (with 20 indus-
tries in the table, roughly 95% of the entries in the resulting
Pivot is empty).
Similarly arranging “Company” and “Ticker” to di�erent

sides of Pivot is also undesirable as it creates even more
number of empty cells.

These bad Pivots are unlikely to be selected by data scien-
tists and in the data we collect.

We formulate the problem of splitting dimension columns
into index vs. header as an optimization problem. Speci�-
cally, given columns C = {Ci } that users select as dimensions
for the desired Pivot, we need to partition them into index
vs. header. This requires us to consider desirable factors
such as minimizing emptiness, which we will �rst quantify.
Speci�cally, given two columns Ci ,Cj , we model their

“a�nity score”, denoted by a(Ci ,Cj ), as the likelihood of
Ci ,Cj being on the same side of Pivot (both in index or
header), which can be seen as their conceptual “closeness”.
To do so, from a large number of Pivot-tables collected from
notebooks, we build a regression model to learn the a�nity
score between any pair of columns, using two features:
• Emptiness-reduction-ratio: This reduction ratio is de�ned
as | {u |u 2T (Ci )} | | {� |� 2T (Cj )} |

| {(u,�) |(u,�)2T (Ci ,Cj )} | , where T (C) denotes values in
column C 2 T . This ratio shows how much emptiness
we can “save” multiplicatively by arranging Ci and Cj
on the same side. For example, Figure 8 has 20 sectors
and 1000 companies, so the reduction-ratio for Sector and
Company is 20⇤1000

1000 = 20, which is signi�cant. However
the reduction-ratio between Year and Sector is 3⇤20

60 = 1,
indicating no saving. Attributes with higher reduction-
ratio should ideally be arranged on the same side to reduce
emptiness of the resulting Pivot.

• Column-position-di�erence: This is the relative di�erence of
positions betweenCi andCj inT . What we observe is that
columns that are close to each other in T are more likely

Figure 7: Example Pivot operation that creates two-dimensional Pivot-table (right) from an input table (left).

Figure 8: Example of a “bad” Pivot-table (with many
NULLs) that uses the same dimensions as Figure 7.
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ble buckets (shown at bottom) to properly con�gure
Pivot, which typically takes many trials to get right.
Creating Pivot in other systems is similarly complex.
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attributes); while predicting aggregation-column in Pivot
is the same as predicting Aggregation (both are measures).
E������ 2. Observe that the input table for Pivot in Fig-

ure 7 and the input table for GroupBy in Figure 6 are identical.
Furthermore, the candidate GroupBy columns in Figure 6
(�rst 5 columns) are all reasonable choices as index/header
in a Pivot table. Similarly, the candidate Aggregation columns
in Figure 6 (“Market Cap” and “Revenue”) are all valid choices
for aggregation-column in Pivot.
We therefore directly apply the GroupBy/Aggregation

prediction in Section 4.2, which would determine “Market
Cap” and “Revenue” in Figure 7 as aggregation-column,
and the rest as index/header. From here, users can pick
columns of interest for the desired Pivot. In Figure 7, users
would pick “Sector”, “Ticker”, “Company”, “Year” as relevant
dimensions, and “Revenue” as the aggregation-column.

Predict to Split Index vs. Header. From user-selected
dimension columns, our second prediction task is to auto-
matically identify a “good” placement of these columns by
splitting them into index vs. header, which is di�cult for
users and typically require multiple trial-and-errors.
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they can either be arranged as index (on the left of the result-
ing Pivot) or header (on the top), there are a total of 24 = 16
possible choices to Pivot. Many of these arrangements are,
however, not ideal.
Figure 8 shows one such example. Observe that since

{ Company, Ticker, Year } are selected as index, while { Sec-
tor } as header, it creates a large number of “NULL” entries
in the resulting Pivot-table, because of a strong dependency
between “Sector” and “Company”. Splitting the two columns
with one at the top and one to the left of the resulting Pivot
would create a large number of empty cells (with 20 indus-
tries in the table, roughly 95% of the entries in the resulting
Pivot is empty).
Similarly arranging “Company” and “Ticker” to di�erent

sides of Pivot is also undesirable as it creates even more
number of empty cells.

These bad Pivots are unlikely to be selected by data scien-
tists and in the data we collect.

We formulate the problem of splitting dimension columns
into index vs. header as an optimization problem. Speci�-
cally, given columns C = {Ci } that users select as dimensions
for the desired Pivot, we need to partition them into index
vs. header. This requires us to consider desirable factors
such as minimizing emptiness, which we will �rst quantify.
Speci�cally, given two columns Ci ,Cj , we model their

“a�nity score”, denoted by a(Ci ,Cj ), as the likelihood of
Ci ,Cj being on the same side of Pivot (both in index or
header), which can be seen as their conceptual “closeness”.
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attributes); while predicting aggregation-column in Pivot
is the same as predicting Aggregation (both are measures).
E������ 2. Observe that the input table for Pivot in Fig-

ure 7 and the input table for GroupBy in Figure 6 are identical.
Furthermore, the candidate GroupBy columns in Figure 6
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in a Pivot table. Similarly, the candidate Aggregation columns
in Figure 6 (“Market Cap” and “Revenue”) are all valid choices
for aggregation-column in Pivot.
We therefore directly apply the GroupBy/Aggregation

prediction in Section 4.2, which would determine “Market
Cap” and “Revenue” in Figure 7 as aggregation-column,
and the rest as index/header. From here, users can pick
columns of interest for the desired Pivot. In Figure 7, users
would pick “Sector”, “Ticker”, “Company”, “Year” as relevant
dimensions, and “Revenue” as the aggregation-column.

Predict to Split Index vs. Header. From user-selected
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possible choices to Pivot. Many of these arrangements are,
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Figure 8 shows one such example. Observe that since

{ Company, Ticker, Year } are selected as index, while { Sec-
tor } as header, it creates a large number of “NULL” entries
in the resulting Pivot-table, because of a strong dependency
between “Sector” and “Company”. Splitting the two columns
with one at the top and one to the left of the resulting Pivot
would create a large number of empty cells (with 20 indus-
tries in the table, roughly 95% of the entries in the resulting
Pivot is empty).
Similarly arranging “Company” and “Ticker” to di�erent

sides of Pivot is also undesirable as it creates even more
number of empty cells.

These bad Pivots are unlikely to be selected by data scien-
tists and in the data we collect.

We formulate the problem of splitting dimension columns
into index vs. header as an optimization problem. Speci�-
cally, given columns C = {Ci } that users select as dimensions
for the desired Pivot, we need to partition them into index
vs. header. This requires us to consider desirable factors
such as minimizing emptiness, which we will �rst quantify.
Speci�cally, given two columns Ci ,Cj , we model their

“a�nity score”, denoted by a(Ci ,Cj ), as the likelihood of
Ci ,Cj being on the same side of Pivot (both in index or
header), which can be seen as their conceptual “closeness”.
To do so, from a large number of Pivot-tables collected from
notebooks, we build a regression model to learn the a�nity
score between any pair of columns, using two features:
• Emptiness-reduction-ratio: This reduction ratio is de�ned
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Predict Next Operator
• Two Signals: 
- Use past information (latent sequential connections) 
- Use table characteristics
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Figure 13: Model architecture to predict next operator.

Intuitively, we can leverage two main sources of signals:
(1) Since there are typically latent sequential correlations
between operators (e.g., an Aggregation is likely to follow
after GroupBy), we could leverage operators invoked in the
past to predict the next operator;
(2) The characteristics of input tables available at time-
stamp ti are also indicative of likely operations that will
follow. For example, a table Ti that “looks like” a pivot-
table (e.g., Figure 11) will likely see an Unpivot invoked. We
should note that such signals are implicitly captured in our
single-operator models – e.g., we obtain a large objective-
function value in CMUT, whenTi is appropriate for Unpivot.
Thus, invoking single-operator models for each operator
onTi would utilize the characteristics ofTi to produce addi-
tional signals of whether an operator may be invoked.
The sequence-based modeling in (1) above closely resem-

bles language-modeling problems in NLP [38], where a key
task is to predict the next word given a pre�x. We tested two
classical approaches to this problem: an N-gram language-
model from the statistical NLP literature [66], and a more
recent neural approach RNN [67]. As we will report in exper-
iments, We �nd RNN to be more e�ective in our task, which
we use as the starting point of our model.

In order to also leverage characteristics of Ti at time ti as
discussed in (2) above, we invoke single-operator prediction
onTi for each operator in Section 4, and concatenate the raw
scores of each operator with the continuous representation
produced by the RNN layer.We note that a concatenation like
this is widely used in deep models to combine information
from multiple sources [48].

Figure 13 shows the resulting architecture for our model.
The bottom layer on the left is an embedding layer that
activates based on the presence of an operator. This layer
gives a continuous representation of each operator after
training. These are then fed into an RNN layer (using ReLU
activation) that encodes operators invoked in the past, and
produces a representation that captures the current state
of the sequence at step ti . The output of the RNN layer is
then concatenated with prediction scores produced by single-
operator models on Ti (shown at the bottom right of the
�gure). The combined vector is �nally fed into an MLP layer

operator join pivot unpivot groupby normalize JSON
#nb crawled 209.9K 68.9K 16.8K 364.3K 8.3K
#nb sampled 80K 68.9K 16.8K 80K 8.3K
#nb replayed 12.6K 16.1K 5.7K 9.6K 3.2K

#operator replayed 58.3K 79K 7.2K 70.9K 4.3K
#operator post-�ltering 11.2K 7.7K 2.9K 8.9K 1.9K
Table 2: Statistics of data extracted from Notebooks.
(using Soft-max activation) to jointly produce the likelihood
score of the next operator.

6 EXPERIMENTS
6.1 Evaluation Datasets
We create our data set by replaying and instrumenting a
large number of Jupyter notebooks on GitHub. Table 2 shows
summary statistics of the data set. Because the number of
notebooks with certain popular operators (e.g., Join) is too
large, we sample a subset for replay in those cases.
We believe the data we collect is a representative re�ec-

tion of how data scientists manipulate data in the public
domain like Kaggle (there are many notebooks that we fail
to replay because of missing data �les, which may be propri-
etary enterprise data not uploaded to GitHub). We note that
our approach is generic and can be deployed in proprietary
domains like Enterprise Git [7], to learn from proprietary
notebooks and data in these enterprises, and produce models
that may be more tailored to these domains.

After a notebook is successfully replayed, we �lter invoca-
tions that are deemed as duplicate (e.g., identical invocation
on the same tables across notebooks, or repetitive invoca-
tions inside a loop that are similar), or uninformative (e.g.,
when input tables are trivially small with less than 5 rows).

The resulting data set is shown in the last line of Table 2. To
the best of our knowledge this is the �rst systematic attempt
at harvesting invocations of diverse table-manipulation oper-
ators in real pipelines, which we hope to open-source soon.
For each prediction task, we split the data 80%:20% into

train and test, while making sure that examples involving
the same �les/data-sets are either all in train or all in test to
avoid data leakage.

6.2 Methods Compared
For each prediction task, we compare the proposed A����
S������ with two main groups of methods:
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Evaluation
• Data 
- Jupyter Notebooks with working operations 

• Metrics: 
- Precision@K: Proportion of relevant results in the top K 
- NDCG@K (Normalized Discounted Cumulative Gain): ratio of relevance to 

ideal relevance on a per item basis
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Figure 13: Model architecture to predict next operator.

Intuitively, we can leverage two main sources of signals:
(1) Since there are typically latent sequential correlations
between operators (e.g., an Aggregation is likely to follow
after GroupBy), we could leverage operators invoked in the
past to predict the next operator;
(2) The characteristics of input tables available at time-
stamp ti are also indicative of likely operations that will
follow. For example, a table Ti that “looks like” a pivot-
table (e.g., Figure 11) will likely see an Unpivot invoked. We
should note that such signals are implicitly captured in our
single-operator models – e.g., we obtain a large objective-
function value in CMUT, whenTi is appropriate for Unpivot.
Thus, invoking single-operator models for each operator
onTi would utilize the characteristics ofTi to produce addi-
tional signals of whether an operator may be invoked.
The sequence-based modeling in (1) above closely resem-

bles language-modeling problems in NLP [38], where a key
task is to predict the next word given a pre�x. We tested two
classical approaches to this problem: an N-gram language-
model from the statistical NLP literature [66], and a more
recent neural approach RNN [67]. As we will report in exper-
iments, We �nd RNN to be more e�ective in our task, which
we use as the starting point of our model.

In order to also leverage characteristics of Ti at time ti as
discussed in (2) above, we invoke single-operator prediction
onTi for each operator in Section 4, and concatenate the raw
scores of each operator with the continuous representation
produced by the RNN layer.We note that a concatenation like
this is widely used in deep models to combine information
from multiple sources [48].

Figure 13 shows the resulting architecture for our model.
The bottom layer on the left is an embedding layer that
activates based on the presence of an operator. This layer
gives a continuous representation of each operator after
training. These are then fed into an RNN layer (using ReLU
activation) that encodes operators invoked in the past, and
produces a representation that captures the current state
of the sequence at step ti . The output of the RNN layer is
then concatenated with prediction scores produced by single-
operator models on Ti (shown at the bottom right of the
�gure). The combined vector is �nally fed into an MLP layer
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Table 2: Statistics of data extracted from Notebooks.
(using Soft-max activation) to jointly produce the likelihood
score of the next operator.

6 EXPERIMENTS
6.1 Evaluation Datasets
We create our data set by replaying and instrumenting a
large number of Jupyter notebooks on GitHub. Table 2 shows
summary statistics of the data set. Because the number of
notebooks with certain popular operators (e.g., Join) is too
large, we sample a subset for replay in those cases.
We believe the data we collect is a representative re�ec-

tion of how data scientists manipulate data in the public
domain like Kaggle (there are many notebooks that we fail
to replay because of missing data �les, which may be propri-
etary enterprise data not uploaded to GitHub). We note that
our approach is generic and can be deployed in proprietary
domains like Enterprise Git [7], to learn from proprietary
notebooks and data in these enterprises, and produce models
that may be more tailored to these domains.

After a notebook is successfully replayed, we �lter invoca-
tions that are deemed as duplicate (e.g., identical invocation
on the same tables across notebooks, or repetitive invoca-
tions inside a loop that are similar), or uninformative (e.g.,
when input tables are trivially small with less than 5 rows).

The resulting data set is shown in the last line of Table 2. To
the best of our knowledge this is the �rst systematic attempt
at harvesting invocations of diverse table-manipulation oper-
ators in real pipelines, which we hope to open-source soon.
For each prediction task, we split the data 80%:20% into

train and test, while making sure that examples involving
the same �les/data-sets are either all in train or all in test to
avoid data leakage.

6.2 Methods Compared
For each prediction task, we compare the proposed A����
S������ with two main groups of methods:

https://congyan.org/JupyterNotebooks.pdf
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feature left-
ness

val-range-
overlap

distinct-
val-ratio

val-
overlap

importance 0.35 0.35 0.11 0.05

feature single-col-
candidate

col-val-
types

table-
stats

sorted-
ness

importance 0.04 0.01 0.01 0.01
Table 4: Importance of Feature Groups for Join

method prec@1
A����S������ 0.88

Vendor-A 0.78
Table 5: Join type prediction.

containment and similarity) may be the most important (for
database FKs), we �nd that for ad-hoc joins performed by
data-scientists in the wild, this feature group is substantially
less important than many other features, such as left-ness
and val-range-overlap. It is surprising to see that val-range-
overlap is signi�cantly more important than val-overlap, sug-
gesting that containment arising from accidental overlap
may be common in practice (like shown in Example 5), and
thus not always a reliable signal.

6.5.2 Predict Join Types.
For this task, we compare with Vendor-A/B/C, all of which
default to use inner-join as the join type (and ask users to
modify if needed). We note that this is a sensible choice since
it is by far the most common type of joins.
The result is shown in Table 5. Although most joins are

indeed inner-joins (78% of the cases), A����S������ shows
a substantial improvement over the default-choice. Interest-
ingly, we �nd features measuring the relative “shapes” of the
two input tables (e.g., ratio of row-counts in two tables) to
be most useful in predicting outer-join vs. inner-joins.

6.5.3 Predict GroupBy Columns.
This task predicts GroupBy column (Section 4.2). We com-
pare with the following methods.
• SQL-history [60]. SnipSuggest [60] is an in�uential ap-
proach that suggests likely SQL snippets based on his-
torical queries. We adapt this to suggest GroupBy based
on the frequency of columns used in the past (training)
data.

• Coarse-grained-types [68]. This approach leverages a heuris-
tic that numerical attributes (including strings that can be
parsed as numbers) are likely Aggregation columns, while
categorical attributes are likely GroupBy columns.

• Fine-grained-types [2, 65]. This approach improves upon
the method above, by de�ning �ne-grained types and as-
signing them as measures (Aggregation) and dimensions
(GroupBy). For example, date-time and zip-code are likely
for GroupBy, even if they are numbers.

• Min-Cardinality. This heuristic approach picks columns
with low cardinality as GroupBy columns.

• Vendors-B/C. These are commercial systems that use pro-
prietary algorithms.

method prec@1 prec@2 ndcg@1 ndcg@2 full-accuracy
A����S������ 0.95 0.97 0.95 0.98 93%
SQL-history 0.58 0.61 0.58 0.63 53%

Coarse-grained-types 0.47 0.52 0.47 0.54 46%
Fine-grained-types 0.31 0.4 0.31 0.42 38%
Min-Cardinality 0.68 0.83 0.68 0.86 68%

Vendor-B 0.56 0.71 0.56 0.75 45%
Vendor-C 0.71 0.82 0.71 0.85 67%

Table 6: GroupBy column prediction.
feature col-

type
col-name-

freq
distinct-

val
val-
range

importance 0.78 0.11 0.06 0.02

feature left-
ness

peak-
freq

empti-
ness

importance 0.01 0.01 0.01
Table 7: Importance of Feature Groups for GroupBy
Table 6 shows the comparison. Prediction from A����

S������ is highly accurate, with a precision of 0.95 and 0.97
for the �rst 2 suggestions. Min-Cardinality performs sur-
prisingly well, as it typically picks string-columns with low
cardinality (numeric-columns tend to have high cardinality),
which are often good choices. SQL-history also performs rea-
sonably well, but would fail on cases where no prior SQL
history can be observed. While type-based heuristics may
seem reasonable, they do not work as reliably, showing the
complexity of the GroupBy task.
Note that the prediction of whether each column is used

as GroupBy vs. Aggregation, is a unit of evaluation in the
result above. In order to get a big picture of the overall
accuracy at the table-level (each table may have multiple
GroupBy columns), we additionally report the full-accuracy
at the table-level, which is de�ned as the fraction of table for
which we can predict completely correctly (i.e., all GroupBy
columns are ranked ahead of Aggregation columns).
This full-accuracy number is reported in the last column

of Table 6. Note that we can predict GroupBy/Aggregation
for 93% tables completely correctly, which is quite accurate.
Min-Cardinality is again the second-best approach when
accuracy is measured at the table-level.

The importance of features is reported in Table 7.While we
expect col-type to be important, it is interesting to see that col-
name-freq is the second-most important feature. Intuitively,
as humans we have prior knowledge of what columns are
likely GroupBy columns – e.g., “year”, “department-id”, etc.,
even if values in these columns are numbers. The col-name-
freq feature works similarly – after seeing enough example
column-names used as GroupBy in the training data, it can
predict such cases accurately (e.g., columns named “year”
are likely GroupBy and not Aggregation).

6.5.4 Predict Pivot: Index/header split.
For Pivot we focus on the task of splitting index vs. header
columns, which we solve using an optimization formulation

(1) Existing features available from commercial vendors,
which are often strong baselines but black-box algorithms.
We anonymize their names as Vendor-A, Vendor-B, etc., in
accordance with their EULAs that explicitly prevent any
benchmarking numbers to be revealed. We note that this is
in keeping with the tradition in the database benchmarking
literature [33, 42, 44, 62, 73].
(2) Related methods from the literature. These are white-box
methods that we will describe separately in each task.

6.3 Experimental Setup
All experiments are performed on a Linux VM on the cloud,
with 16 virtual CPU, and 64 GB memory. A����S������ and
alternative methods are implemented in Python 3.7.

6.4 Evaluation metric
Since most of our problems require a ranked list of sugges-
tions, we use ranking metrics from the Information Retrieval
(IR) literature [74] to evaluate suggestion quality.

Precision@K. De�ned as the proportion of relevant pre-
dictions in the top-K, or #-relevant-in-K

K . After all relevant items
in ground-truth have been correctly identi�ed, we do not
penalize additional predictions at lower-ranked positions.

NDCG@K. NDCG (Normalized Discounted Cumulative
Gain) is a popular metric in IR [74]. Intuitively, it computes a
relevance score called DCGK for the top-K ranked items, and
compare with the score of the ideal top-K, IDCGK . NDCG
at position K is then de�ned as NDCGK =

DCGK
IDCGK , where

DCGK =
ÕK

i=1
reli

log2 (i+1)
, in which reli is the relevance label

of prediction at position i (in our case 0 or 1), and IDCGK is
the DCG score of the ideal ranked list at position K .
Like Precision@K, NDCG@K is in the range of [0, 1],

where a higher score is more desirable.

6.5 Predict Single-Operators
We �rst evaluate the quality of all prediction tasks studied.

6.5.1 Predict Joins Columns.
We compare with the following methods:
• ML-FK [71]. This is an in�uential approach that uses ma-
chine learning and a large number of features to discover
foreign-key joins.

• PowerPivot [36]. PowerPivot [36] employs heuristic rules
to prune away unlikely join columns (e.g., boolean and
numbers), and leverages content similarity to discover
foreign-key joins.

• Multi [83]. This approach leverages distributional distances
between columns (e.g., EMD) to discover multi-column
foreign-keys.

• Holistic [56]. This recent approach proposes to combine
distributional distances like [83], with other features.

method (all data) prec@1 prec@2 ndcg@1 ndcg@2
A����S������ 0.89 0.92 0.89 0.93

ML-FK 0.84 0.87 0.84 0.87
PowerPivot 0.31 0.44 0.31 0.48

Multi 0.33 0.4 0.33 0.41
Holistic 0.57 0.63 0.57 0.65

max-overlap 0.53 0.61 0.53 0.63
method (sampled data) prec@1 prec@2 ndcg@1 ndcg@2

A����S������ 0.92 - 0.92 -
Vendor-A 0.76 - 0.76 -
Vendor-C 0.42 - 0.42 -
Vendor-B 0.33 - 0.33 -

Table 3: Evaluation of Join column prediction. (Top)
methods from the literature, evaluated on all test data.
(Bottom): Comparisons with commercial systems on a
random sample of 200 cases.
• Max-Overlap. This is a common heuristic widely used (e.g.,
in [39] and [36]) to predict join-columns based on value-
overlap (e.g., measured in Jaccard Similarity).

• Vendors-A/B/C. These are commercial systems that use pro-
prietary algorithms. Because there are no programmatic
methods to test their capabilities, we report results on 200
randomly sampled cases.
We should note thatmost existingmethods likeML-FK [71],

PowerPivot [36], Multi [83], and Holistic [56] were devel-
oped speci�cally for foreign-key (FK) joins, and thus impose
(semi)-strict checks of Uniqueness and Inclusion-Dependency.
While these requirements are perfectly reasonable in a cu-
rated database setting, for the join cases we collect from data
science notebooks, only 68% are strict foreign-key joins –
suggesting that these joins “in the wild” are more ad-hoc
than typical database joins. We thus relax the Inclusion-
Dependency requirements of these FK methods when appro-
priate, which yields better results for these methods.

Table 3 shows a comparison of the prediction quality. On
all test cases, A����S������ is able to predict correctly 89%
and 92% of joins at top-1 and top-2 ranked suggestions, re-
spectively, substantially more accurate than other methods.
We should note that this task is not trivial – on average 148
candidate join-columns are considered for each pair of tables,
thus the low scores for some of the alternative methods.
ML-FK employs a large number of carefully engineered

features, and produces strong quality results. Less sophisti-
cated methods that use only one or two factors (e.g., only
content-overlap) tend to be less accurate, suggesting that
these join cases tested are likely complex, making them in-
teresting test-beds for future research.
The bottom of Table 3 shows the comparison with com-

mercial systems on a sample of 200 test cases, where A����
S������ again outperforms alternatives.
The importance scores of features used are reported in

Table 4. Contrary to conventional wisdom in the foreign-
key (FK) discovery literature that value-overlap (e.g., Jaccard

https://congyan.org/JupyterNotebooks.pdf
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We additionally evaluate the precision/recall/F1 of the
columns predicted to Unpivot/Collapse, by comparing with
the ground-truth. These results are shown in the last three
columns of Table 9. It can be seen that over 90% of columns
that we predict to Unpivot overlap with the ground-truth,
suggesting that while our approach only gets 67% cases fully
correct, many of the incorrect ones are mostly partially cor-
rect. From the suggested Unpivot, users may be able to use
drag/drop to add/remove columns from the suggested list to
quickly converge to the desired result.

6.6 Predict Next Operator

operator groupby join concat dropna �llna pivot unpivot
percentage 33.3% 27.6% 12.2% 10.8% 9.6% 4.1% 2.4%

Table 10: Distribution of operators in data �ows.

method prec@1 prec@2 recall@1 recall@2
A����S������ 0.72 0.79 0.72 0.85

RNN 0.56 0.68 0.56 0.77
N-gram model 0.40 0.53 0.40 0.66
Single-Operators 0.32 0.41 0.32 0.50

Random 0.23 0.35 0.24 0.42

Table 11: Precision for next operator prediction.

We now describe an evaluation of the next-operator pre-
diction task (Section 5). The distribution of operators in the
crawled pipelines is shown in Table 10.

We compare results between the following methods.
• A����S������. This is the proposed approach using a
deep model architecture in Figure 13 (implemented using
Keras [11]), which combines signals from both sequence
modeling using RNN, as well as the characteristics of input
tables captured by single-operator predictions (Section 4).

• RNN [67]. We also compare with a neural RNN model,
which is e�ective for language modeling tasks in NLP
(given a pre�x of words, predict the next likely word). This
approach uses sequence information only.

• N-gram language model. N-gram [66] is another popular
language modeling approach for sequence prediction. Like
RNN, this uses sequence only. We implement this using
the popular NLTK [64], with trigrams and MLE estimator.

• Single-Operators. In addition to sequence-based models,
we also compare with a baseline that combines predictions
from all single-operator models on given table Ti . Such an
approach makes predictions using only the characteristics
of input tables, without considering operators invoked in
the past. It provides a reference point to see how much
additional bene�t can be obtained by using the sequence
history.
Table 11 shows the comparison. A����S������ clearly

improves over other approaches, and can predict the next
operator correctly 72% of the times at top-1, which we think

is reasonable given that there are 7 possible operators in the
candidate space.

Among sequence-based approaches, RNN is substantially
more accurate than N-gram, showing its strength in mod-
eling sequences, and is the reason we chose RNN as the
starting point of our model in Figure 13. There is a sizable
gap between A����S������ and RNN, showing a substantial
bene�t by considering the characteristics of the input table
(e.g., when the input table looks like a Pivot table, the single-
operator Unpivot-predictor would give a strong con�dence
score, boosting our next-operator prediction to be Unpivot).
Single-Operators uses only information from input tables

and not the sequence, which is also less accurate, showing
the need to take into account both sequences and the input
tables, as is the approach we take in A����S������.

7 RELATEDWORKS
The research community has played a signi�cant role in
thought-leadership that has in�uenced the �eld of self-service
data preparation. Prominent examples include the line of
work started by Wrangler [59] and its commercial instantia-
tion Trifacta [28]. Various methods have been proposed in
the literature to automate di�erent data preparation steps,
some of which we will brie�y review here.
Data transformation is a common data preparation step.

Recent progress includes the use of the program-by-example
paradigm, which signi�cantly lowers the barrier to perform-
ing data transformations. Systems like FlashFill [49] and
Transform-Data-by-Example (TDE) [51] allow users to pro-
vide input/output examples to specify desired transforma-
tions. Transformation programs consistent with the given
examples are then synthesized using DSL [49, 76], or code
on GitHub [51]. This line of work has signi�cant impacts on
commercial systems (e.g. FlashFill is available in Excel [4],
TDE is used in Power BI [1, 27], etc.).

Signi�cant progress has also been made towards automat-
ing a variety of other important operators, such as data-
extraction [37, 41, 45, 61, 69], transformation-join [52, 81, 84],
table restructuring [35, 57, 75], error-detection [54, 55, 80, 82],
etc. Some of these advances have already in�uenced the
commercial space and given rise to new features in existing
commercial systems.

8 CONCLUSIONS
We in this work propose a data-driven approach to “learn”
how data scientists manipulate diverse data sets in Jupyter
notebooks, whose best-practices are then captured as predic-
tive models to recommend data-preparation steps for less-
technical users in self-service data prep software. We show
the promise of such an approach, and believe that leveraging
notebooks is a promising direction for future research.

AMPT (Section 4.3).4 Since we �nd no recommendation fea-
tures for Pivot in commercial systems, we compare with a
few related methods studied in other contexts.
• A�nity [65]. ShowMe [65] is an in�uential approach from
the Visualization literature that studies best practices to
present data based on the type of visualization. For “cross-
tab” (which is similar to Pivot in spirit), an a�nity heuristic
is proposed to group together attributes with hierarchical
relationships (e.g., FD-like attributes).

• Type-Rules [43](Page 33, Section II). This patent publication
touches on a few simple heuristics that can be used to
automatically place attributes in a pivot table based on
data types (e.g., date-time, numeric attributes, etc.).

• Min-Emptiness. This is one of the signals considered in
our AMPT, which utilizes the observation that columns
with strong semantic dependency (e.g., “Ticker” and “Com-
pany”) should be arranged to the same side to reduce empty
cells in the resulting Pivot. We develop a greedy base-
line that minimizes the fraction of empty cells (by itera-
tively merging pairs of columns with maximum emptiness-
reduction-ratio).

• Balanced-Split. Since pivot-tables are often balanced in
terms of width vs. height, this approach cuts given index/-
header columns in a balanced manner.
Table 8 shows the quality comparison. When evaluated

using full-accuracy (i.e. the split has to be completely identi-
cal to the ground-truth), our approach gets 77% of the cases
correct. Both Min-Emptiness and A�nity are quite compet-
itive, showing that minimizing empty cells is a reasonably
e�ective approach to producing Pivot tables (which is a fac-
tor considered by AMPT). Type-Rules uses a static rule-based
heuristics, which performs substantially worse, showing that
it cannot handle diverse Pivot cases in practice.
In addition to full-accuracy, we also measure how close

the predicted split is to the ground-truth. Here, we use the
Rand-Index (RI) from the clustering literature [70] to evaluate
result quality, where RI = #-correct-edges

#-total-edges , in which an edge e
is deemed correct if the assignments of two vertices incident
to e are the same in the prediction and the ground-truth (e.g.,
the two are in the same cluster or not). RI gives partial-credit
to predictions that are close enough to the ground-truth,
where full-accuracy only produces 0/1 scores.

We report RI numbers in the second column of Table 8,
which are consistent with the full-accuracy evaluation. This
again shows the bene�t of AMPT that uses a principled
optimization-based formulation.
6.5.5 Predict Columns to Unpivot.
For Unpivot, recall that the prediction task is to select the
set of columns to “collapse” into two new columns.

4We omit details on predicting Index/header columns, as it is identical to
GroupBy column prediction, and our approach has high accuracy (0.96).

method full-accuracy Rand-Index (RI)
A����S������ 77% 0.87

A�nity 42% 0.56
Type-Rules 19% 0.55

Min-Emptiness 46% 0.70
Balanced-Cut 14% 0.55

Table 8: Pivot: splitting index/header columns.
method full

accuracy
column
precision

column
recall

column
F1

A����S������ 67% 0.93 0.96 0.94
Pattern-similarity 21% 0.64 0.46 0.54
Col-name-similarity 27% 0.71 0.53 0.61

Data-type 44% 0.87 0.92 0.89
Contiguous-type 46% 0.80 0.83 0.81
Table 9: Unpivot: Column prediction.

We observe that input tables in the Unpivot operations
we collect are typically wide, with 183 columns on average.
Furthermore, 170 out of the 183 columns need to be collapsed
in Unpivot on average, leaving the remaining 13 columns
untouched. Given the large number of choices this presents,
it is clearly a di�cult prediction task.
Like Pivot, there are no recommendation-based features

in the commercial systems we surveyed. There is also no
existing methods in the literature that directly address the
problem of predicting Unpivot. We therefore compare A����
S������with a few related methods that are studied in other
contexts.
• Pattern-similarity [58]. In studying methods to restructure
tables, the authors in [58] use a heuristic to Unpivot related
columns, which is measured by a form of pattern similarity
that they de�ne.

• Col-name-similarity [79]. This patent publication studies
data deduplication, and proposes a few heuristics to �nd
similar columns that can be collapsed/Unpivoted, the �rst
of which is based on column-name similarity (measured
in Jaccard). We implement it as the col-name-similarity
baseline.

• Data-type [79]. A second heuristic proposed in [79] uses
data types (e.g., string vs. numbers) to �nd related columns,
and is also a baseline we compare with.

• Contiguous-type [79]. This improves on Data-type method
above, by additionally requiring Unpivot columns to be
contiguous in input table T .
Table 9 shows the comparison of prediction quality. When

evaluated using full-accuracy (the full set of columns pre-
dicted for Unpivot has to be identical to ground-truth),A����
S������ uses the CMUT formulation and can correctly solve
67% of the cases, substantially better than other methods.
While there is clearly room for improvement in the future,
the fact that input tables for Unpivot have 183 columns on
average makes us believe that it is a really challenging task.

We note that other methods are substantially less accurate,
with Contiguous-type being the second-best approach.
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Data Integration
select title, startTime 
from Movie, Plays 
where Movie.title=Plays.movie AND 
           location=“New York”  AND 
           director=“Woody Allen” 

Sources S1 and S3 are relevant, sources S4 and S5 are irrelevant, and 
source S2 is relevant but possibly redundant.
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Cinemas: 
place, movie, 

start

Reviews: 
title, date

grade, review

Movies: 
 name, actors,  
director, genre

Cinemas in NYC: 
cinema, title, 

startTime

Cinemas in SF: 
location, movie, 

startingTime

Movie: Title, director, year, genre 
Actors: title, actor 
Plays: movie, location, startTime 
Reviews: title, rating, description

S1 S2 S3 S4 S5



Data Integration & Data Matching
• Data Integration: focus on integrating data from different sources 
• Data Matching (aka Entity Resolution aka Record Linkage):  

want to know that two entities (often in different sources) are the same "real" 
entity
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Record Linkage Motivation
• Often data from different sources need to be integrated and linked  
- To allow data analyses that are impossible on individual databases  
- To improve data quality 
- To enrich data with additional information  

• Lack of unique entity identifiers means that linking is often based on 
personal information  

• When databases are linked across organisations, maintaining privacy and 
confidentiality is vital  

• The linking of databases is challenged by data quality, database size, and 
privacy concerns
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Data Integration and Data Fusion
• Data Integration: focus on integrating data from different sources 
• When sources are orthogonal, no problems 
• What happens when two sources provide the same type of information and 

they conflict? 
• Data Fusion: create a single object while resolving conflicting values 
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Data Fusion— 
Resolving Data Conflicts in Integration
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Source A

Source B

<pub> 
    <Titel> Federated Database  
                Systems </Titel> 
    <Autoren> 
         <Autor> Amit Sheth </Autor> 
         <Autor> James Larson </Autor> 
     </Autoren> 
</pub>

<publication> 
    <title> Federated Database  
               Systems for Managing  
               Distributed, Heterogeneous,  
               and Autonomous  
               Databases </title> 
    <author> Scheth & Larson </author> 
    <year> 1990 </year> 
</publication>

Schema 
Mapping

Data 
Transformation

Duplicate 
Detection Data Fusion
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Source A

Source B

<pub> 
    <title> Federated Database  
                Systems </title> 
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         <author> Amit Sheth </author> 
         <author> James Larson </author> 
     </Autoren> 
</pub> 
<pub> 
    <title> Federated Database Systems for 
                Managing Distributed,  
                Heterogeneous, and Autonomous  
                Databases </title> 
    <Autoren> 
         <author> Scheth & Larson </author> 
     </Autoren> 
 <year> 1990 </year> 
</pub>

Schema 
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Data 
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<pub> 
 <title> Federated Database Systems for 
             Managing Distributed,  
             Heterogeneous, and 
             Autonomous  Databases </title> 
    <Autoren> 
         <author> Amit Sheth </author> 
         <author> James Larson </author> 
     </Autoren> 
 <year> 1990 </year> 

Preserve lineage
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