
Advanced Data Management (CSCI 640/490)

Data Fusion

Dr. David Koop

D. Koop, CSCI 640/490, Spring 2024

Tidy Data Principles
• Tidy Data: Codd's 3rd Normal Form (Databases)
1. Each variable forms a column
2. Each observation forms a row
3. Each type of observational unit forms a table (DataFrame)

• Other structures are messy data

2

[H. Wickham, 2014]
D. Koop, CSCI 640/490, Spring 2024

Journal of Statistical Software 11

id year month element d1 d2 d3 d4 d5 d6 d7 d8

MX17004 2010 1 tmax — — — — — — — —
MX17004 2010 1 tmin — — — — — — — —
MX17004 2010 2 tmax — 27.3 24.1 — — — — —
MX17004 2010 2 tmin — 14.4 14.4 — — — — —
MX17004 2010 3 tmax — — — — 32.1 — — —
MX17004 2010 3 tmin — — — — 14.2 — — —
MX17004 2010 4 tmax — — — — — — — —
MX17004 2010 4 tmin — — — — — — — —
MX17004 2010 5 tmax — — — — — — — —
MX17004 2010 5 tmin — — — — — — — —

Table 11: Original weather dataset. There is a column for each possible day in the month. Columns
d9 to d31 have been omitted to conserve space.

id date element value

MX17004 2010-01-30 tmax 27.8
MX17004 2010-01-30 tmin 14.5
MX17004 2010-02-02 tmax 27.3
MX17004 2010-02-02 tmin 14.4
MX17004 2010-02-03 tmax 24.1
MX17004 2010-02-03 tmin 14.4
MX17004 2010-02-11 tmax 29.7
MX17004 2010-02-11 tmin 13.4
MX17004 2010-02-23 tmax 29.9
MX17004 2010-02-23 tmin 10.7

(a) Molten data

id date tmax tmin

MX17004 2010-01-30 27.8 14.5
MX17004 2010-02-02 27.3 14.4
MX17004 2010-02-03 24.1 14.4
MX17004 2010-02-11 29.7 13.4
MX17004 2010-02-23 29.9 10.7
MX17004 2010-03-05 32.1 14.2
MX17004 2010-03-10 34.5 16.8
MX17004 2010-03-16 31.1 17.6
MX17004 2010-04-27 36.3 16.7
MX17004 2010-05-27 33.2 18.2

(b) Tidy data

Table 12: (a) Molten weather dataset. This is almost tidy, but instead of values, the element column
contains names of variables. Missing values are dropped to conserve space. (b) Tidy weather dataset.
Each row represents the meteorological measurements for a single day. There are two measured
variables, minimum (tmin) and maximum (tmax) temperature; all other variables are fixed.

Problem: Variables stored in both rows & columns

3

[H. Wickham, 2014]
D. Koop, CSCI 640/490, Spring 2024

Mexico Weather, Global Historical Climatology Network

Journal of Statistical Software 11

id year month element d1 d2 d3 d4 d5 d6 d7 d8

MX17004 2010 1 tmax — — — — — — — —
MX17004 2010 1 tmin — — — — — — — —
MX17004 2010 2 tmax — 27.3 24.1 — — — — —
MX17004 2010 2 tmin — 14.4 14.4 — — — — —
MX17004 2010 3 tmax — — — — 32.1 — — —
MX17004 2010 3 tmin — — — — 14.2 — — —
MX17004 2010 4 tmax — — — — — — — —
MX17004 2010 4 tmin — — — — — — — —
MX17004 2010 5 tmax — — — — — — — —
MX17004 2010 5 tmin — — — — — — — —

Table 11: Original weather dataset. There is a column for each possible day in the month. Columns
d9 to d31 have been omitted to conserve space.

id date element value

MX17004 2010-01-30 tmax 27.8
MX17004 2010-01-30 tmin 14.5
MX17004 2010-02-02 tmax 27.3
MX17004 2010-02-02 tmin 14.4
MX17004 2010-02-03 tmax 24.1
MX17004 2010-02-03 tmin 14.4
MX17004 2010-02-11 tmax 29.7
MX17004 2010-02-11 tmin 13.4
MX17004 2010-02-23 tmax 29.9
MX17004 2010-02-23 tmin 10.7

(a) Molten data

id date tmax tmin

MX17004 2010-01-30 27.8 14.5
MX17004 2010-02-02 27.3 14.4
MX17004 2010-02-03 24.1 14.4
MX17004 2010-02-11 29.7 13.4
MX17004 2010-02-23 29.9 10.7
MX17004 2010-03-05 32.1 14.2
MX17004 2010-03-10 34.5 16.8
MX17004 2010-03-16 31.1 17.6
MX17004 2010-04-27 36.3 16.7
MX17004 2010-05-27 33.2 18.2

(b) Tidy data

Table 12: (a) Molten weather dataset. This is almost tidy, but instead of values, the element column
contains names of variables. Missing values are dropped to conserve space. (b) Tidy weather dataset.
Each row represents the meteorological measurements for a single day. There are two measured
variables, minimum (tmin) and maximum (tmax) temperature; all other variables are fixed.

Problem: Variables stored in both rows & columns

3

[H. Wickham, 2014]
D. Koop, CSCI 640/490, Spring 2024

Mexico Weather, Global Historical Climatology Network

Variable in columns: day; Variable in rows: tmax/tmin

Journal of Statistical Software 11

id year month element d1 d2 d3 d4 d5 d6 d7 d8

MX17004 2010 1 tmax — — — — — — — —
MX17004 2010 1 tmin — — — — — — — —
MX17004 2010 2 tmax — 27.3 24.1 — — — — —
MX17004 2010 2 tmin — 14.4 14.4 — — — — —
MX17004 2010 3 tmax — — — — 32.1 — — —
MX17004 2010 3 tmin — — — — 14.2 — — —
MX17004 2010 4 tmax — — — — — — — —
MX17004 2010 4 tmin — — — — — — — —
MX17004 2010 5 tmax — — — — — — — —
MX17004 2010 5 tmin — — — — — — — —

Table 11: Original weather dataset. There is a column for each possible day in the month. Columns
d9 to d31 have been omitted to conserve space.

id date element value

MX17004 2010-01-30 tmax 27.8
MX17004 2010-01-30 tmin 14.5
MX17004 2010-02-02 tmax 27.3
MX17004 2010-02-02 tmin 14.4
MX17004 2010-02-03 tmax 24.1
MX17004 2010-02-03 tmin 14.4
MX17004 2010-02-11 tmax 29.7
MX17004 2010-02-11 tmin 13.4
MX17004 2010-02-23 tmax 29.9
MX17004 2010-02-23 tmin 10.7

(a) Molten data

id date tmax tmin

MX17004 2010-01-30 27.8 14.5
MX17004 2010-02-02 27.3 14.4
MX17004 2010-02-03 24.1 14.4
MX17004 2010-02-11 29.7 13.4
MX17004 2010-02-23 29.9 10.7
MX17004 2010-03-05 32.1 14.2
MX17004 2010-03-10 34.5 16.8
MX17004 2010-03-16 31.1 17.6
MX17004 2010-04-27 36.3 16.7
MX17004 2010-05-27 33.2 18.2

(b) Tidy data

Table 12: (a) Molten weather dataset. This is almost tidy, but instead of values, the element column
contains names of variables. Missing values are dropped to conserve space. (b) Tidy weather dataset.
Each row represents the meteorological measurements for a single day. There are two measured
variables, minimum (tmin) and maximum (tmax) temperature; all other variables are fixed.

Solution: Melting + Pivot

4

[H. Wickham, 2014]
D. Koop, CSCI 640/490, Spring 2024

Getting Lost in Transformations

5

[Z. Jin et al., 2017]
D. Koop, CSCI 640/490, Spring 2024

Foofah: Transforming Data By Example

Zhongjun Jin Michael R. Anderson Michael Cafarella H. V. Jagadish
University of Michigan, Ann Arbor

{markjin,mrander,michjc,jag}@umich.edu

ABSTRACT
Data transformation is a critical first step in modern data
analysis: before any analysis can be done, data from a va-
riety of sources must be wrangled into a uniform format
that is amenable to the intended analysis and analytical
software package. This data transformation task is tedious,
time-consuming, and often requires programming skills be-
yond the expertise of data analysts. In this paper, we develop
a technique to synthesize data transformation programs by
example, reducing this burden by allowing the analyst to de-
scribe the transformation with a small input-output example
pair, without being concerned with the transformation steps
required to get there. We implemented our technique in a
system, Foofah, that e�ciently searches the space of pos-
sible data transformation operations to generate a program
that will perform the desired transformation. We experimen-
tally show that data transformation programs can be created
quickly with Foofah for a wide variety of cases, with 60%
less user e↵ort than the well-known Wrangler system.

Keywords
Data Transformation; Program Synthesis; Programming By
Example; A* algorithm; Heuristic

1. INTRODUCTION
The many fields that depend on data for decision making

have at least one thing in common: raw data is often in a non-
relational or poorly structured form, possibly with extraneous
information, and cannot be directly used by a downstream
information system, like a database or visualization system.
Figure 1 from [16] is a good example of such raw data.
In modern data analytics, data transformation (or data
wrangling) is usually a crucial first step that reorganizes
raw data into a more desirable format that can be easily
consumed by other systems. Figure 2 showcases a relational
form obtained by transforming Figure 1.

Traditionally, domain experts handwrite task specific scripts
to transform unstructured data—a task that is often labor-

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD’17, May 14-19, 2017, Chicago, IL, USA

c� 2017 ACM. ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3064034

Bureau of I.A.
Regional Director Numbers
Niles C. Tel: (800)645-8397

Fax: (907)586-7252

Jean H. Tel: (918)781-4600
Fax: (918)781-4604

Frank K. Tel: (615)564-6500
Fax: (615)564-6701

. . .
Figure 1: A spreadsheet of business contact information

Tel Fax
Niles C. (800)645-8397 (907)586-7252
Jean H. (918)781-4600 (918)781-4604
Frank K. (615)564-6500 (615)564-6701

. . .
Figure 2: A relational form of Figure 1

intensive and tedious. The requirement for programming
hamstrings data users that are capable analysts but have
limited coding skills. Even worse, these scripts are tailored to
particular data sources and cannot adapt when new sources
are acquired. People normally spend more time preparing
data than analyzing it; up to 80% of a data scientist’s time
can be spent on transforming data into a usable state [28].

Recent research into automated and assisted data transfor-
mation systems have tried to reduce the need of a program-
ming background for users, with some success [19, 22, 41].
These tools help users generate reusable data transformation
programs, but they still require users to know which data
transformation operations are needed and in what order they
should be applied. Current tools still require some level of im-
perative programming, placing a significant burden on data
users. Take Wrangler [22], for example, where a user must
select the correct operators and parameters to complete a
data transformation task. This is often challenging if the user
has no experience in data transformation or programming.

In general, existing data transformation tools are di�cult
to use due to two usability issues:

• High Skill : Users must be familiar with the often compli-
cated transformation operations and then decide which
operations to use and in what order.

• High E↵ort : The amount of user e↵ort increases as the
data transformation program gets lengthy.

To resolve the above usability issues, we envision a data
transformation program synthesizer that can be successfully
used by people without a programming background and that
requires minimal user e↵ort. Unlike Wrangler, which asks

the user for procedural hints, this system should allow the
user to specify a desired transformation simply by providing
an input-output example: the user only needs to know how
to describe the transformed data, as opposed to knowing any
particular transformation operation that must be performed.

Our Approach — In this paper, we solve the data trans-
formation program synthesis problem using a Programming
By Example (PBE) approach. Our proposed technique aims
to help an unsophisticated user easily generate a quality
data transformation program using purely input-output ex-
amples. The synthesized program is designed to be easy-to-
understand (it is a straight-line program comprised of simple
primitives), so an unsophisticated user can understand the
semantics of the program and validate it. Because it is often
infeasible to examine and approve a very large transformed
dataset synthesizing a readable transformation program is
preferred over performing an opaque transformation.

We model program synthesis as a search problem in a state
space graph and use a heuristic search approach based on
the classic A* algorithm to synthesize the program. A major
challenge in applying A* to program synthesis is to create a
heuristic function estimating the cost of any proposed par-
tial solution. Unlike robotic path planning, where a metric
like Euclidean distance naturally serves as a good heuristic
function, there is no straightforward heuristic for data trans-
formation. In this work, we define an e↵ective A* heuristic
for data transformation, as well as lossless pruning rules that
significantly reduce the size of the search space. We have im-
plemented our methods in a prototype data transformation
program synthesizer called Foofah.

Organization — After motivating our problem with an
example in Section 2 and formally defining the problem in
Section 3, we discuss the following contributions:

• We present a PBE data transformation program syn-
thesis technique backed by an e�cient heuristic-search-
based algorithm inspired by the A* algorithm. It has a
novel, operator-independent heuristic, Table Edit Dis-
tance Batch, along with pruning rules designed specifi-
cally for data transformation (Section 4).

• We prototype our method in a system, Foofah, and
evaluate it with a comprehensive set of benchmark test
scenarios that show it is both e↵ective and e�cient in
synthesizing data transformation programs. We also
present a user study that shows Foofah requires about
60% less user e↵ort than Wrangler(Section 5).

We explore Related Work in Section 6 and finish with a
discussion of future work in Section 7

2. MOTIVATING EXAMPLE
Data transformation can be a tedious task involving the

application of complex operations that may be di�cult for
a näıve user to understand, as illustrated by the following
simple but realistic scenario:

Example 1. Bob wants to load a spreadsheet of business
contact information (Figure 1) into a database system. Un-
fortunately, the raw data cannot be loaded in its original
format, so Bob hopes to transform it into a relational format
(Figure 2). Manually transforming the data record-by-record
would be tedious and error-prone, so he uses the interactive
data cleaning tool Wrangler [22].

Niles C. Tel (800)645-8397
Fax (907)586-7252

Jean H. Tel (918)781-4600
Fax (918)781-4604

Frank K. Tel (615)564-6500
Fax (615)564-6701

Figure 3: Intermediate table state

Tel Fax
Niles C. (800)645-8397

(615)564-6701
Jean H. (918)781-4600
Frank K. (615)564-6500

Figure 4: Perform Unfold before Fill

Bob first removes the rows of irrelevant data (rows 1 and
2) and empty rows (rows 5, 8, and more). He then splits the
cells containing phone numbers on “:”, extracting the phone
numbers into a new column. Now that almost all the cells from
the desired table exist in the intermediate table (Figure 3),
Bob intends to perform a cross-tabulation operation that
tabulates phone numbers of each category against the human
names. He looks through Wrangler’s provided operations
and finally decides that Unfold should be used. But Unfold
does not transform the intermediate table correctly, since
there are missing values in the column of names, resulting
in “null” being the unique identifier for all rows without a
human name (Figure 4). Bob backtracks and performs a Fill
operation to fill in the empty cells with the appropriate names
before finally performing the Unfold operation. The final data
transformation program is shown in Figure 5.

The usability issues described in Section 1 have occurred in
this example. Lines 1–3 in Figure 5 are lengthy and repetitive
(High E↵ort). Lines 5–6 require a good understanding of the
Unfold operation, causing di�culty for the näıve user (High
Skill). Note that Deletes in Lines 1–2 are di↵erent from the
Delete in Line 3 in that the latter could apply to the entire file.
Non-savvy users may find such conditional usage of Delete
di�cult to discover, further illustrating the High Skill issue.
Consider another scenario where the same task becomes

much easier for Bob, our data analyst:

Example 2. Bob decides to use an alternative data transfor-
mation system, Foofah. To use Foofah, Bob simply needs
to choose a small sample of the raw data (Figure 1) and
describe what this sample should be after being transformed
(Figure 2). Foofah automatically infers the data transfor-
mation program in Figure 6 (which is semantically the same
as Figure 5, and even more succinct). Bob takes this inferred
program and executes it on the entire raw dataset and finds
that raw data are transformed exactly as desired.

The motivating example above gives an idea of the real-
world data transformation tasks our proposed technique
is designed to address. In general, we aim to transform a
poorly-structured grid of values (e.g., a spreadsheet table) to
a relational table with coherent rows and columns. Such a
transformation can be a combination of the following chores:

1. changing the structure of the table

2. removing unnecessary data fields

3. filling in missing values

4. extracting values from cells

5. creating new cell values out of several cell values

the user for procedural hints, this system should allow the
user to specify a desired transformation simply by providing
an input-output example: the user only needs to know how
to describe the transformed data, as opposed to knowing any
particular transformation operation that must be performed.

Our Approach — In this paper, we solve the data trans-
formation program synthesis problem using a Programming
By Example (PBE) approach. Our proposed technique aims
to help an unsophisticated user easily generate a quality
data transformation program using purely input-output ex-
amples. The synthesized program is designed to be easy-to-
understand (it is a straight-line program comprised of simple
primitives), so an unsophisticated user can understand the
semantics of the program and validate it. Because it is often
infeasible to examine and approve a very large transformed
dataset synthesizing a readable transformation program is
preferred over performing an opaque transformation.

We model program synthesis as a search problem in a state
space graph and use a heuristic search approach based on
the classic A* algorithm to synthesize the program. A major
challenge in applying A* to program synthesis is to create a
heuristic function estimating the cost of any proposed par-
tial solution. Unlike robotic path planning, where a metric
like Euclidean distance naturally serves as a good heuristic
function, there is no straightforward heuristic for data trans-
formation. In this work, we define an e↵ective A* heuristic
for data transformation, as well as lossless pruning rules that
significantly reduce the size of the search space. We have im-
plemented our methods in a prototype data transformation
program synthesizer called Foofah.

Organization — After motivating our problem with an
example in Section 2 and formally defining the problem in
Section 3, we discuss the following contributions:

• We present a PBE data transformation program syn-
thesis technique backed by an e�cient heuristic-search-
based algorithm inspired by the A* algorithm. It has a
novel, operator-independent heuristic, Table Edit Dis-
tance Batch, along with pruning rules designed specifi-
cally for data transformation (Section 4).

• We prototype our method in a system, Foofah, and
evaluate it with a comprehensive set of benchmark test
scenarios that show it is both e↵ective and e�cient in
synthesizing data transformation programs. We also
present a user study that shows Foofah requires about
60% less user e↵ort than Wrangler(Section 5).

We explore Related Work in Section 6 and finish with a
discussion of future work in Section 7

2. MOTIVATING EXAMPLE
Data transformation can be a tedious task involving the

application of complex operations that may be di�cult for
a näıve user to understand, as illustrated by the following
simple but realistic scenario:

Example 1. Bob wants to load a spreadsheet of business
contact information (Figure 1) into a database system. Un-
fortunately, the raw data cannot be loaded in its original
format, so Bob hopes to transform it into a relational format
(Figure 2). Manually transforming the data record-by-record
would be tedious and error-prone, so he uses the interactive
data cleaning tool Wrangler [22].

Niles C. Tel (800)645-8397
Fax (907)586-7252

Jean H. Tel (918)781-4600
Fax (918)781-4604

Frank K. Tel (615)564-6500
Fax (615)564-6701

Figure 3: Intermediate table state

Tel Fax
Niles C. (800)645-8397

(615)564-6701
Jean H. (918)781-4600
Frank K. (615)564-6500

Figure 4: Perform Unfold before Fill

Bob first removes the rows of irrelevant data (rows 1 and
2) and empty rows (rows 5, 8, and more). He then splits the
cells containing phone numbers on “:”, extracting the phone
numbers into a new column. Now that almost all the cells from
the desired table exist in the intermediate table (Figure 3),
Bob intends to perform a cross-tabulation operation that
tabulates phone numbers of each category against the human
names. He looks through Wrangler’s provided operations
and finally decides that Unfold should be used. But Unfold
does not transform the intermediate table correctly, since
there are missing values in the column of names, resulting
in “null” being the unique identifier for all rows without a
human name (Figure 4). Bob backtracks and performs a Fill
operation to fill in the empty cells with the appropriate names
before finally performing the Unfold operation. The final data
transformation program is shown in Figure 5.

The usability issues described in Section 1 have occurred in
this example. Lines 1–3 in Figure 5 are lengthy and repetitive
(High E↵ort). Lines 5–6 require a good understanding of the
Unfold operation, causing di�culty for the näıve user (High
Skill). Note that Deletes in Lines 1–2 are di↵erent from the
Delete in Line 3 in that the latter could apply to the entire file.
Non-savvy users may find such conditional usage of Delete
di�cult to discover, further illustrating the High Skill issue.
Consider another scenario where the same task becomes

much easier for Bob, our data analyst:

Example 2. Bob decides to use an alternative data transfor-
mation system, Foofah. To use Foofah, Bob simply needs
to choose a small sample of the raw data (Figure 1) and
describe what this sample should be after being transformed
(Figure 2). Foofah automatically infers the data transfor-
mation program in Figure 6 (which is semantically the same
as Figure 5, and even more succinct). Bob takes this inferred
program and executes it on the entire raw dataset and finds
that raw data are transformed exactly as desired.

The motivating example above gives an idea of the real-
world data transformation tasks our proposed technique
is designed to address. In general, we aim to transform a
poorly-structured grid of values (e.g., a spreadsheet table) to
a relational table with coherent rows and columns. Such a
transformation can be a combination of the following chores:

1. changing the structure of the table

2. removing unnecessary data fields

3. filling in missing values

4. extracting values from cells

5. creating new cell values out of several cell values

Foofah: Transforming Data By Example

Zhongjun Jin Michael R. Anderson Michael Cafarella H. V. Jagadish
University of Michigan, Ann Arbor

{markjin,mrander,michjc,jag}@umich.edu

ABSTRACT
Data transformation is a critical first step in modern data
analysis: before any analysis can be done, data from a va-
riety of sources must be wrangled into a uniform format
that is amenable to the intended analysis and analytical
software package. This data transformation task is tedious,
time-consuming, and often requires programming skills be-
yond the expertise of data analysts. In this paper, we develop
a technique to synthesize data transformation programs by
example, reducing this burden by allowing the analyst to de-
scribe the transformation with a small input-output example
pair, without being concerned with the transformation steps
required to get there. We implemented our technique in a
system, Foofah, that e�ciently searches the space of pos-
sible data transformation operations to generate a program
that will perform the desired transformation. We experimen-
tally show that data transformation programs can be created
quickly with Foofah for a wide variety of cases, with 60%
less user e↵ort than the well-known Wrangler system.

Keywords
Data Transformation; Program Synthesis; Programming By
Example; A* algorithm; Heuristic

1. INTRODUCTION
The many fields that depend on data for decision making

have at least one thing in common: raw data is often in a non-
relational or poorly structured form, possibly with extraneous
information, and cannot be directly used by a downstream
information system, like a database or visualization system.
Figure 1 from [16] is a good example of such raw data.
In modern data analytics, data transformation (or data
wrangling) is usually a crucial first step that reorganizes
raw data into a more desirable format that can be easily
consumed by other systems. Figure 2 showcases a relational
form obtained by transforming Figure 1.

Traditionally, domain experts handwrite task specific scripts
to transform unstructured data—a task that is often labor-

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD’17, May 14-19, 2017, Chicago, IL, USA

c� 2017 ACM. ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3064034

Bureau of I.A.
Regional Director Numbers
Niles C. Tel: (800)645-8397

Fax: (907)586-7252

Jean H. Tel: (918)781-4600
Fax: (918)781-4604

Frank K. Tel: (615)564-6500
Fax: (615)564-6701

. . .
Figure 1: A spreadsheet of business contact information

Tel Fax
Niles C. (800)645-8397 (907)586-7252
Jean H. (918)781-4600 (918)781-4604
Frank K. (615)564-6500 (615)564-6701

. . .
Figure 2: A relational form of Figure 1

intensive and tedious. The requirement for programming
hamstrings data users that are capable analysts but have
limited coding skills. Even worse, these scripts are tailored to
particular data sources and cannot adapt when new sources
are acquired. People normally spend more time preparing
data than analyzing it; up to 80% of a data scientist’s time
can be spent on transforming data into a usable state [28].

Recent research into automated and assisted data transfor-
mation systems have tried to reduce the need of a program-
ming background for users, with some success [19, 22, 41].
These tools help users generate reusable data transformation
programs, but they still require users to know which data
transformation operations are needed and in what order they
should be applied. Current tools still require some level of im-
perative programming, placing a significant burden on data
users. Take Wrangler [22], for example, where a user must
select the correct operators and parameters to complete a
data transformation task. This is often challenging if the user
has no experience in data transformation or programming.

In general, existing data transformation tools are di�cult
to use due to two usability issues:

• High Skill : Users must be familiar with the often compli-
cated transformation operations and then decide which
operations to use and in what order.

• High E↵ort : The amount of user e↵ort increases as the
data transformation program gets lengthy.

To resolve the above usability issues, we envision a data
transformation program synthesizer that can be successfully
used by people without a programming background and that
requires minimal user e↵ort. Unlike Wrangler, which asks

Original Table

Intermediate Table

Problem Table

Desired Solution

Split+Delete

Unfold

Fill+
Unfold

FOOFAH: A Programming-By-Example System for
Synthesizing Data Transformation Program

Zhongjun Jin, Michael R. Anderson, Michael Cafarella, H. V. Jagadish
University of Michigan

Most real-world data is unstructured and must be transformed
into a structured form to be used. Manual transformation (e.g.,
using Excel) requires too much user effort. Traditional
transformation often requires good programming skills beyond
most of the users. Data transformation tools, like Data
Wranger [1], often require repetitive and tedious work and a
depth of data transformation knowledge from the user.
Our goal: minimize a user's effort and reduce the required
background knowledge for data transformation tasks.

Motivation

Design of FOOFAH

Related Work

markjin@umich.edu w https://markjin1990.github.io w SIGMOD 2017

Our Solution

Proposed Heuristic Function

1. Kandel,	Sean,	et	al.	“Wrangler:	Interactive	visual	specification	of	data	transformation	scripts.” CHI,	2011.
2. V.	Raman	and	J.	M.	Hellerstein.	“Potter’s	Wheel:	An	interactive	data	cleaning	system”.	VLDB,	2001.
3. Gulwani,	Sumit.	"Automating	string	processing	in	spreadsheets	using	input-output	examples." ACM	SIGPLAN	Notices.	

Vol.	46.	No.	1.	ACM,	2011.
4. Harris,	William	R.,	and	Sumit Gulwani.	"Spreadsheet	table	transformations	from	examples." ACM	SIGPLAN	Notices.	Vol.	

46.	No.	6.	ACM,	2011.
5. Barowy,	Daniel	W.,	et	al.	"FlashRelate:	extracting	relational	data	from	semi-structured	spreadsheets	using	

examples." ACM	SIGPLAN	Notices.	Vol.	50.	No.	6.	ACM,	2015.
6. Guo,	Philip	J.,	et	al.	"Proactive	wrangling:	mixed-initiative	end-user	programming	of	data	transformation	

scripts." Proceedings	of	the	24th	annual	ACM	symposium	on	User	interface	software	and	technology.	ACM,	2011.

User Study

Our PBE technique prototype
FOOFAH:
1. can handle most test cases from

the benchmarks.
2. requires little user effort
3. generally efficient (low system

runtime)

Benchmark Tests

Tasks: 8 tasks from
benchmarks covering both
simple and complex tasks
Comparisons: Wrangler

• FOOFAH on average requires 60% less user effort than Wrangler

0
100
200
300
400
500
600

Task	completion	time:	Wrangler	vs	Foofah

Wrangler
Foofah

50.00% 40.00%

10.00%
0%

20%
40%
60%
80%

100%

1 2 Failure
#	OF	RECORDS

Sizes	of	input-output	examples	required	
for	benchmark	tests

74.00%
86.00% 88.00%

0%
20%
40%
60%
80%

100%

≤	1	sec ≤	5	sec ≤	30	secPE
RC

EN
T	
OF

	T
ES
T	
SC
EN

AR
IO
S

Worst-case	system	runtime	for	each	
synthesis	

Tasks: 50 test scenarios selected
from [1,2,4,6]
Test Approach: lazy approach [4]
Comparison: [1,3,4,5]

Input	
Example	ei Input	

Example	eo
?

A search problem
solved by A* algorithm

edges: operation
nodes: different views of the data
A* search: iteratively explore the

node with min f(n)
f(n) = g(n) + h(n)

observed distance
estimated distance

Intuition: Most data transformation operations can be seen as many
cell-level transformation operations

Solution: Table Edit Distance as the heuristic function

Table Edit Distance (TED) Definition:
The cost of transforming Table T1 to Table T2 using the cell-level
operators Add/Remove/Move/Transform cell.

TED $%, $' = min,-,… ,	,0 ∈2 3-,	34
56789 :;
<

;=>
• P(T1, T2): Set of all “paths” transforming T1 to T2 using cell-level operators

Batching: a remedy for Table Edit Distance to scale down heuristic

Batch the geometrically-adjacent cell-level operations of the same type

8 Transform operations 2 “batched” Transform operations

88.40% 97.70%
74.40%

55.80%

0%
20%
40%
60%
80%

100%

Success	rates	on pure layout
transformation	benchmark tasks

Foofah FlashRelate ProgFromEx Wrangler

100.00%

0.00% 0.00%

85.70%

0%
20%
40%
60%
80%

100%

Success	rates	on benchmark	tasks
requiring syntactic transformations

Foofah FlashRelate ProgFromEx Wrangler

Program to synthesize:
• A loop-free Potter’s Wheel [2] program

SystemInput-output	
Example

Synthesized	
Program

Raw	Data

Programming-By-Example interaction model: User provides input-
output examples rather than demonstrating correct operations

Note:	Ideally,	Wrangler	should	be	able	
to	handle	same	tasks	as	FOOFAH

User Input:
• Sample from raw data
• Transformed view of the sample

Raw Data:
• A grid of values, i.e., spreadsheets
• “Somewhat” structured - must have some

regular structure or is automatically generated.

Transformations Targeted:
1. Layout transformation 2. String transformation

05/16/2017
05/17/2017
…

05-16-2017
05-17-2017
…

Foofah: Input, Output, and Transformations

6

[Z. Jin et al., 2017]
D. Koop, CSCI 640/490, Spring 2024

AutoSuggest
• Goals:
- Automate "Complex" Data Preparation steps
- Focus on frame transformations (not per-cell transformations)
- Learn from Jupyter Notebooks
- Use interactive methods to help users select from top-k options

• Two Types of Predictions:
- Single-Operator Prediction: Given two tables and an operation, decide how

to best apply the operation (what are the parameters)
- Next-Operator Prediction: Given all operations performed so far, predict the

next one

7

[C. Yan & Y. He]
D. Koop, CSCI 640/490, Spring 2024

https://congyan.org/JupyterNotebooks.pdf

Pivot/Unpivot Prediction
• Pivot is hard to get right
- Index
- Header
- Aggregation Function
- Aggregation Columns

• Use GroupBy Prediction
• Look for NULLs and use affiinity
• Affinity-Maximizing Pivot Table
• Unpivot requires compatibility

8

[C. Yan & Y. He]
D. Koop, CSCI 640/490, Spring 2024

Figure 7: Example Pivot operation that creates two-dimensional Pivot-table (right) from an input table (left).

Figure 8: Example of a “bad” Pivot-table (with many
NULLs) that uses the same dimensions as Figure 7.

Figure 9: UI Wizard to create Pivot-table in Excel. It
requires users to drag suitable columns into 4 possi-
ble buckets (shown at bottom) to properly con�gure
Pivot, which typically takes many trials to get right.
Creating Pivot in other systems is similarly complex.
essentially predicting GroupBy columns (both are dimension
attributes); while predicting aggregation-column in Pivot
is the same as predicting Aggregation (both are measures).
E������ 2. Observe that the input table for Pivot in Fig-

ure 7 and the input table for GroupBy in Figure 6 are identical.
Furthermore, the candidate GroupBy columns in Figure 6
(�rst 5 columns) are all reasonable choices as index/header
in a Pivot table. Similarly, the candidate Aggregation columns
in Figure 6 (“Market Cap” and “Revenue”) are all valid choices
for aggregation-column in Pivot.
We therefore directly apply the GroupBy/Aggregation

prediction in Section 4.2, which would determine “Market
Cap” and “Revenue” in Figure 7 as aggregation-column,
and the rest as index/header. From here, users can pick
columns of interest for the desired Pivot. In Figure 7, users
would pick “Sector”, “Ticker”, “Company”, “Year” as relevant
dimensions, and “Revenue” as the aggregation-column.

Predict to Split Index vs. Header. From user-selected
dimension columns, our second prediction task is to auto-
matically identify a “good” placement of these columns by
splitting them into index vs. header, which is di�cult for
users and typically require multiple trial-and-errors.

E������ 3. Users have selected { Sector, Ticker, Company,
Year } from Figure 7 as desired dimension columns. Since

they can either be arranged as index (on the left of the result-
ing Pivot) or header (on the top), there are a total of 24 = 16
possible choices to Pivot. Many of these arrangements are,
however, not ideal.
Figure 8 shows one such example. Observe that since

{ Company, Ticker, Year } are selected as index, while { Sec-
tor } as header, it creates a large number of “NULL” entries
in the resulting Pivot-table, because of a strong dependency
between “Sector” and “Company”. Splitting the two columns
with one at the top and one to the left of the resulting Pivot
would create a large number of empty cells (with 20 indus-
tries in the table, roughly 95% of the entries in the resulting
Pivot is empty).
Similarly arranging “Company” and “Ticker” to di�erent

sides of Pivot is also undesirable as it creates even more
number of empty cells.

These bad Pivots are unlikely to be selected by data scien-
tists and in the data we collect.

We formulate the problem of splitting dimension columns
into index vs. header as an optimization problem. Speci�-
cally, given columns C = {Ci } that users select as dimensions
for the desired Pivot, we need to partition them into index
vs. header. This requires us to consider desirable factors
such as minimizing emptiness, which we will �rst quantify.
Speci�cally, given two columns Ci ,Cj , we model their

“a�nity score”, denoted by a(Ci ,Cj), as the likelihood of
Ci ,Cj being on the same side of Pivot (both in index or
header), which can be seen as their conceptual “closeness”.
To do so, from a large number of Pivot-tables collected from
notebooks, we build a regression model to learn the a�nity
score between any pair of columns, using two features:
• Emptiness-reduction-ratio: This reduction ratio is de�ned
as | {u |u 2T (Ci)} | | {� |� 2T (Cj)} |

| {(u,�) |(u,�)2T (Ci ,Cj)} | , where T (C) denotes values in
column C 2 T . This ratio shows how much emptiness
we can “save” multiplicatively by arranging Ci and Cj
on the same side. For example, Figure 8 has 20 sectors
and 1000 companies, so the reduction-ratio for Sector and
Company is 20⇤1000

1000 = 20, which is signi�cant. However
the reduction-ratio between Year and Sector is 3⇤20

60 = 1,
indicating no saving. Attributes with higher reduction-
ratio should ideally be arranged on the same side to reduce
emptiness of the resulting Pivot.

• Column-position-di�erence: This is the relative di�erence of
positions betweenCi andCj inT . What we observe is that
columns that are close to each other in T are more likely

Figure 7: Example Pivot operation that creates two-dimensional Pivot-table (right) from an input table (left).

Figure 8: Example of a “bad” Pivot-table (with many
NULLs) that uses the same dimensions as Figure 7.

Figure 9: UI Wizard to create Pivot-table in Excel. It
requires users to drag suitable columns into 4 possi-
ble buckets (shown at bottom) to properly con�gure
Pivot, which typically takes many trials to get right.
Creating Pivot in other systems is similarly complex.
essentially predicting GroupBy columns (both are dimension
attributes); while predicting aggregation-column in Pivot
is the same as predicting Aggregation (both are measures).
E������ 2. Observe that the input table for Pivot in Fig-

ure 7 and the input table for GroupBy in Figure 6 are identical.
Furthermore, the candidate GroupBy columns in Figure 6
(�rst 5 columns) are all reasonable choices as index/header
in a Pivot table. Similarly, the candidate Aggregation columns
in Figure 6 (“Market Cap” and “Revenue”) are all valid choices
for aggregation-column in Pivot.
We therefore directly apply the GroupBy/Aggregation

prediction in Section 4.2, which would determine “Market
Cap” and “Revenue” in Figure 7 as aggregation-column,
and the rest as index/header. From here, users can pick
columns of interest for the desired Pivot. In Figure 7, users
would pick “Sector”, “Ticker”, “Company”, “Year” as relevant
dimensions, and “Revenue” as the aggregation-column.

Predict to Split Index vs. Header. From user-selected
dimension columns, our second prediction task is to auto-
matically identify a “good” placement of these columns by
splitting them into index vs. header, which is di�cult for
users and typically require multiple trial-and-errors.

E������ 3. Users have selected { Sector, Ticker, Company,
Year } from Figure 7 as desired dimension columns. Since

they can either be arranged as index (on the left of the result-
ing Pivot) or header (on the top), there are a total of 24 = 16
possible choices to Pivot. Many of these arrangements are,
however, not ideal.
Figure 8 shows one such example. Observe that since

{ Company, Ticker, Year } are selected as index, while { Sec-
tor } as header, it creates a large number of “NULL” entries
in the resulting Pivot-table, because of a strong dependency
between “Sector” and “Company”. Splitting the two columns
with one at the top and one to the left of the resulting Pivot
would create a large number of empty cells (with 20 indus-
tries in the table, roughly 95% of the entries in the resulting
Pivot is empty).
Similarly arranging “Company” and “Ticker” to di�erent

sides of Pivot is also undesirable as it creates even more
number of empty cells.

These bad Pivots are unlikely to be selected by data scien-
tists and in the data we collect.

We formulate the problem of splitting dimension columns
into index vs. header as an optimization problem. Speci�-
cally, given columns C = {Ci } that users select as dimensions
for the desired Pivot, we need to partition them into index
vs. header. This requires us to consider desirable factors
such as minimizing emptiness, which we will �rst quantify.
Speci�cally, given two columns Ci ,Cj , we model their

“a�nity score”, denoted by a(Ci ,Cj), as the likelihood of
Ci ,Cj being on the same side of Pivot (both in index or
header), which can be seen as their conceptual “closeness”.
To do so, from a large number of Pivot-tables collected from
notebooks, we build a regression model to learn the a�nity
score between any pair of columns, using two features:
• Emptiness-reduction-ratio: This reduction ratio is de�ned
as | {u |u 2T (Ci)} | | {� |� 2T (Cj)} |

| {(u,�) |(u,�)2T (Ci ,Cj)} | , where T (C) denotes values in
column C 2 T . This ratio shows how much emptiness
we can “save” multiplicatively by arranging Ci and Cj
on the same side. For example, Figure 8 has 20 sectors
and 1000 companies, so the reduction-ratio for Sector and
Company is 20⇤1000

1000 = 20, which is signi�cant. However
the reduction-ratio between Year and Sector is 3⇤20

60 = 1,
indicating no saving. Attributes with higher reduction-
ratio should ideally be arranged on the same side to reduce
emptiness of the resulting Pivot.

• Column-position-di�erence: This is the relative di�erence of
positions betweenCi andCj inT . What we observe is that
columns that are close to each other in T are more likely

Figure 7: Example Pivot operation that creates two-dimensional Pivot-table (right) from an input table (left).

Figure 8: Example of a “bad” Pivot-table (with many
NULLs) that uses the same dimensions as Figure 7.

Figure 9: UI Wizard to create Pivot-table in Excel. It
requires users to drag suitable columns into 4 possi-
ble buckets (shown at bottom) to properly con�gure
Pivot, which typically takes many trials to get right.
Creating Pivot in other systems is similarly complex.
essentially predicting GroupBy columns (both are dimension
attributes); while predicting aggregation-column in Pivot
is the same as predicting Aggregation (both are measures).
E������ 2. Observe that the input table for Pivot in Fig-

ure 7 and the input table for GroupBy in Figure 6 are identical.
Furthermore, the candidate GroupBy columns in Figure 6
(�rst 5 columns) are all reasonable choices as index/header
in a Pivot table. Similarly, the candidate Aggregation columns
in Figure 6 (“Market Cap” and “Revenue”) are all valid choices
for aggregation-column in Pivot.
We therefore directly apply the GroupBy/Aggregation

prediction in Section 4.2, which would determine “Market
Cap” and “Revenue” in Figure 7 as aggregation-column,
and the rest as index/header. From here, users can pick
columns of interest for the desired Pivot. In Figure 7, users
would pick “Sector”, “Ticker”, “Company”, “Year” as relevant
dimensions, and “Revenue” as the aggregation-column.

Predict to Split Index vs. Header. From user-selected
dimension columns, our second prediction task is to auto-
matically identify a “good” placement of these columns by
splitting them into index vs. header, which is di�cult for
users and typically require multiple trial-and-errors.

E������ 3. Users have selected { Sector, Ticker, Company,
Year } from Figure 7 as desired dimension columns. Since

they can either be arranged as index (on the left of the result-
ing Pivot) or header (on the top), there are a total of 24 = 16
possible choices to Pivot. Many of these arrangements are,
however, not ideal.
Figure 8 shows one such example. Observe that since

{ Company, Ticker, Year } are selected as index, while { Sec-
tor } as header, it creates a large number of “NULL” entries
in the resulting Pivot-table, because of a strong dependency
between “Sector” and “Company”. Splitting the two columns
with one at the top and one to the left of the resulting Pivot
would create a large number of empty cells (with 20 indus-
tries in the table, roughly 95% of the entries in the resulting
Pivot is empty).
Similarly arranging “Company” and “Ticker” to di�erent

sides of Pivot is also undesirable as it creates even more
number of empty cells.

These bad Pivots are unlikely to be selected by data scien-
tists and in the data we collect.

We formulate the problem of splitting dimension columns
into index vs. header as an optimization problem. Speci�-
cally, given columns C = {Ci } that users select as dimensions
for the desired Pivot, we need to partition them into index
vs. header. This requires us to consider desirable factors
such as minimizing emptiness, which we will �rst quantify.
Speci�cally, given two columns Ci ,Cj , we model their

“a�nity score”, denoted by a(Ci ,Cj), as the likelihood of
Ci ,Cj being on the same side of Pivot (both in index or
header), which can be seen as their conceptual “closeness”.
To do so, from a large number of Pivot-tables collected from
notebooks, we build a regression model to learn the a�nity
score between any pair of columns, using two features:
• Emptiness-reduction-ratio: This reduction ratio is de�ned
as | {u |u 2T (Ci)} | | {� |� 2T (Cj)} |

| {(u,�) |(u,�)2T (Ci ,Cj)} | , where T (C) denotes values in
column C 2 T . This ratio shows how much emptiness
we can “save” multiplicatively by arranging Ci and Cj
on the same side. For example, Figure 8 has 20 sectors
and 1000 companies, so the reduction-ratio for Sector and
Company is 20⇤1000

1000 = 20, which is signi�cant. However
the reduction-ratio between Year and Sector is 3⇤20

60 = 1,
indicating no saving. Attributes with higher reduction-
ratio should ideally be arranged on the same side to reduce
emptiness of the resulting Pivot.

• Column-position-di�erence: This is the relative di�erence of
positions betweenCi andCj inT . What we observe is that
columns that are close to each other in T are more likely

https://congyan.org/JupyterNotebooks.pdf

Data Integration
select title, startTime
from Movie, Plays
where Movie.title=Plays.movie AND
 location=“New York” AND
 director=“Ava DuVernay”

Sources S1 and S3 are relevant, sources S4 and S5 are irrelevant, and
source S2 is relevant but possibly redundant.

9

[AH Doan et al., 2012]
D. Koop, CSCI 640/490, Spring 2024

Cinemas:
place, movie,

start

Reviews:
title, date

grade, review

Movies:
 name, actors,
director, genre

Cinemas in NYC:
cinema, title,

startTime

Cinemas in SF:
location, movie,

startingTime

Movie: Title, director, year, genre
Actors: title, actor
Plays: movie, location, startTime
Reviews: title, rating, description

S1 S2 S3 S4 S5

Data Integration
• Lots of data sources, how do we answer questions where we need to

access data from more than one?
• Schema matching
• Problem of heterogeneity
• AI-Complete problem: difficulty is the same as making computers as

intelligent as people
• Two techniques:
- Mediation
- Data Warehouses

10D. Koop, CSCI 640/490, Spring 2024

Data Warehouses: Offline Replication
• Determine physical schema
• Define a database with this schema
• Define procedural mappings in an “ETL tool”

to import the data and clean it.
• Periodically copy all of the data from the data

sources
- Note that the sources and the warehouse

are basically independent at this point

11

[A. Doan et al., 2012]
D. Koop, CSCI 640/490, Spring 2024

Data Warehouse

Query Results

Virtual Data Warehouses

12

[A. Doan et al., 2012]
D. Koop, CSCI 640/490, Spring 2024

Mediated Schema

Query

S1 S2 S3

SSN Name Category
123-45-6789 Charles undergrad
234-56-7890 Dan grad
 … …

SSN CID
123-45-6789 CSE444
123-45-6789 CSE444
234-56-7890 CSE142
 …

CID Name Quarter
CSE444 Databases fall
CSE541 Operating systems winter

… …

Semantic

Mappings

Independence of:

• source & location

• data model, syntax

• semantic variations

• …

<cd> <title> The best of … </title>
 <artist> Carreras </artist>
 <artist> Pavarotti </artist>
 <artist> Domingo </artist>
 <price> 19.95 </price>
</cd>

Integrated Schema Example

13

[A. Doan et al., 2012]
D. Koop, CSCI 640/490, Spring 2024

Movie (title , director , year , genre)
Actors (title , actor)

Plays (movie , location , startTime)
Reviews (title , rating , description)

Movies (name ,
actors , director ,

genre)

Cinemas (place ,
movie , start)

CinemasInNYC
(cinema , title ,

startTime)

CinemasInSF
(location , movie ,

startingTime)

Reviews (title ,
date , grade ,

review)

S 1 S 2 S 3 S 4 S 5

Why is Data Integration Hard?
• Systems-level reasons:

- Managing different platforms
- SQL across multiple systems is not so simple
- Distributed query processing

• Logical reasons:
- Schema (and data) heterogeneity

• ‘Social’ reasons:
- Locating and capturing relevant data in the enterprise.
- Convincing people to share (data fiefdoms)

• Security, privacy and performance implications

14

[A. Doan et al., 2012]
D. Koop, CSCI 640/490, Spring 2024

15

Reading Quiz

D. Koop, CSCI 640/490, Spring 2024

Assignment 3
• Met Art Data
• Use OpenRefine & Pandas (no loops)

16D. Koop, CSCI 640/490, Spring 2024

https://faculty.cs.niu.edu/~dakoop/cs640-2024sp/assignment3.html

17

Data Fusion

D. Koop, CSCI 640/490, Spring 2024

Record Linkage Motivation
• Often data from different sources need to be integrated and linked
- To allow data analyses that are impossible on individual databases
- To improve data quality
- To enrich data with additional information

• Lack of unique entity identifiers means that linking is often based on
personal information

• When databases are linked across organisations, maintaining privacy and
confidentiality is vital

• The linking of databases is challenged by data quality, database size, and
privacy concerns

18

[P. Christen , 2019]
D. Koop, CSCI 640/490, Spring 2024

http://users.cecs.anu.edu.au/~Peter.Christen/publications/christen2019csic-tutorial-slides.pdf

Motivating Example
• Preventing the outbreak of epidemics

requires monitoring of occurrences of
unusual patterns of symptoms,
ideally in real time

• Data from many different sources will
need to be collected (including travel
and immigration records; doctors,
emergency and hospital admissions;
drug purchases; social network and
location data; and possibly even
animal health data)

19

[P. Christen , 2019], image: [Pharexia, Wikipedia]
D. Koop, CSCI 640/490, Spring 2024

http://users.cecs.anu.edu.au/~Peter.Christen/publications/christen2019csic-tutorial-slides.pdf
https://commons.wikimedia.org/wiki/File:COVID-19_Outbreak_World_Map.svg

Record Linkage

P. Christen

D. Koop, CSCI 640/490, Spring 2024

http://users.cecs.anu.edu.au/~Peter.Christen/publications/christen2019csic-tutorial-slides.pdf

The record linkage process

Comparison

Matches

Non−
matches

Matches

processing

Data pre−

processing

Data pre−

Classif−
ication

Clerical
Review

Evaluation

Potential

Indexing /
Searching

Database A Database B

CSIC, July 2019 – p. 30/110

Record Linkage Process

21

[P. Christen , 2019]
D. Koop, CSCI 640/490, Spring 2024

http://users.cecs.anu.edu.au/~Peter.Christen/publications/christen2019csic-tutorial-slides.pdf

Record Linkage Techniques
• Deterministic matching
- Rule-based matching (complex to build and maintain)

• Probabilistic record linkage [Fellegi and Sunter, 1969]
- Use available attributes for linking (often personal information, like names,

addresses, dates of birth, etc.)
- Calculate match weights for attributes

• “Computer science” approaches
- Based on machine learning, data mining, database, or information retrieval

techniques
- Supervised classification: Requires training data (true matches)
- Unsupervised: Clustering, collective, and graph based

22

[P. Christen , 2019]
D. Koop, CSCI 640/490, Spring 2024

http://users.cecs.anu.edu.au/~Peter.Christen/publications/christen2019csic-tutorial-slides.pdf

Record Linkage/Entity Resolution Recipe
• Problem: Link references to the same entity
• Short Answers:
- Random Forest with attribute similarity features
- Deep Learning to handle text and noise
- End-to-end solutions still being worked on

23

[X. L. Dong and T. Rekatsinas, 2018]
D. Koop, CSCI 640/490, Spring 2024

Data Integration and Data Fusion
• Data Integration: focus on integrating data from different sources
• When sources are orthogonal, no problems
• What happens when two sources provide the same type of information and

they conflict?
• Data Fusion: create a single object while resolving conflicting values

24D. Koop, CSCI 640/490, Spring 2024

Data Fusion—
Resolving Data Conflicts in Integration

X. L. Dong and F. Naumann

D. Koop, CSCI 640/490, Spring 2024

http://lunadong.com/talks/dataFusion_vldb.pptx
http://lunadong.com/talks/dataFusion_vldb.pptx

Data Fusion Summary
• Conflict resolution strategies
• "Truth-discovery" techniques
- Accuracy
- Freshness
- Dependence

• Fusion Issues
- Accuracy
- Efficiency
- Usability
- How fusion fits with the rest of data integration?

26D. Koop, CSCI 640/490, Spring 2024

Data Conflicts

27

[L. Dong and F. Naumann, 2009]
D. Koop, CSCI 640/490, Spring 2024

Schering CRM Bayer CRM

Integrated data

Information Integration

28

[L. Dong and F. Naumann, 2009]
D. Koop, CSCI 640/490, Spring 2024

Source A

Source B

<pub>
 <Titel> Federated Database
 Systems </Titel>
 <Autoren>
 <Autor> Amit Sheth </Autor>
 <Autor> James Larson </Autor>
 </Autoren>
</pub>

<publication>
 <title> Federated Database
 Systems for Managing
 Distributed, Heterogeneous,
 and Autonomous
 Databases </title>
 <author> Scheth & Larson </author>
 <year> 1990 </year>
</publication>

Schema
Mapping

Data
Transformation

Duplicate
Detection Data Fusion

Information Integration

29

[L. Dong and F. Naumann, 2009]
D. Koop, CSCI 640/490, Spring 2024

Source A

Source B

<pub>
 <title> Federated Database
 Systems </title>
 <Autoren>
 <author> Amit Sheth </author>
 <author> James Larson </author>
 </Autoren>
</pub>
<pub>
 <title> Federated Database Systems for
 Managing Distributed,
 Heterogeneous, and Autonomous
 Databases </title>
 <Autoren>
 <author> Scheth & Larson </author>
 </Autoren>
 <year> 1990 </year>
</pub>

Schema
Mapping

Data
Transformation

Duplicate
Detection Data Fusion

<pub>
 <title> Federated Database Systems for
 Managing Distributed,
 Heterogeneous, and
 Autonomous Databases </title>
 <Autoren>
 <author> Amit Sheth </author>
 <author> James Larson </author>
 </Autoren>
 <year> 1990 </year>

Preserve lineage

Data Fusion
• Problem: Given a duplicate, create a single object representation while

resolving conflicting data values.
• Difficulties:
- Null values: Subsumption and complementation
- Contradictions in data values
- Uncertainty & truth: Discover the true value and model uncertainty in this

process
- Metadata: Preferences, recency, correctness
- Lineage: Keep original values and their origin
- Implementation in DBMS: SQL, extended SQL, UDFs, etc.

30D. Koop, CSCI 640/490, Spring 2024

Conflict Resolution Strategies

31

[L. Dong and F. Naumann, 2009]
D. Koop, CSCI 640/490, Spring 2024

conflict
ignorance

conflict
avoidance

conflict
resolution

conflict resolution
strategies

instance
based

instance
based

metadata
based

metadata
based

deciding mediating deciding mediating

PASS IT ON

TAKE THE
INFORMATION
NO GOSSIPING

TRUST YOUR
FRIENDS

CRY WITH THE
WOLVES

ROLL THE DICE

MEET IN
THE MIDDLE

NOTHING IS OLDER
THAN THE NEWS FROM

YESTERDAY

Integrating Conflicting Data:
The Role of Source Dependence

X. L. Dong, L. Berti-Equille, and D. Srivastava

D. Koop, CSCI 640/490, Spring 2024

http://www.lunadong.com/publication/dependence_vldb.pdf
http://www.lunadong.com/publication/dependence_vldb.pdf

Discussion
• What is the paper's main contribution?
• Do you buy the argument? Any issues with the experiments?
• Can you think of any scenarios where the proposed technique will fail?
• Questions?

33D. Koop, CSCI 640/490, Spring 2024

Example Problem

34

[X L Dong et al., 2009]
D. Koop, CSCI 640/490, Spring 2024

http://www.lunadong.com/talks/depenDetection.pptx

Example Problem

34

[X L Dong et al., 2009]
D. Koop, CSCI 640/490, Spring 2024

S1 S2 S3

Stonebraker MIT Berkeley MIT

Dewitt MSR MSR UWisc

Bernstein MSR MSR MSR

Carey UCI AT&T BEA

Halevy Google Google UW

http://www.lunadong.com/talks/depenDetection.pptx

Naive Voting Works

35

[X L Dong et al., 2009]
D. Koop, CSCI 640/490, Spring 2024

S1 S2 S3

Stonebraker MIT Berkeley MIT

Dewitt MSR MSR UWisc

Bernstein MSR MSR MSR

Carey UCI AT&T BEA

Halevy Google Google UW

http://www.lunadong.com/talks/depenDetection.pptx

Naive Voting Only Works if Data Sources are Independent

36

[X L Dong et al., 2009]
D. Koop, CSCI 640/490, Spring 2024

http://www.lunadong.com/talks/depenDetection.pptx

Naive Voting Only Works if Data Sources are Independent

36

[X L Dong et al., 2009]
D. Koop, CSCI 640/490, Spring 2024

S1 S2 S3 S4 S5

Stonebraker MIT Berkeley MIT MIT MS

Dewitt MSR MSR UWisc UWisc UWisc

Bernstein MSR MSR MSR MSR MSR

Carey UCI AT&T BEA BEA BEA

Halevy Google Google UW UW UW

http://www.lunadong.com/talks/depenDetection.pptx

S4 and S5 copy from S3

37

[X L Dong et al., 2009]
D. Koop, CSCI 640/490, Spring 2024

S1 S2 S3 S4 S5

Stonebraker MIT Berkeley MIT MIT MS

Dewitt MSR MSR UWisc UWisc UWisc

Bernstein MSR MSR MSR MSR MSR

Carey UCI AT&T BEA BEA BEA

Halevy Google Google UW UW UW

http://www.lunadong.com/talks/depenDetection.pptx

S4 and S5 copy from S3

37

[X L Dong et al., 2009]
D. Koop, CSCI 640/490, Spring 2024

S1 S2 S3 S4 S5

Stonebraker MIT Berkeley MIT MIT MS

Dewitt MSR MSR UWisc UWisc UWisc

Bernstein MSR MSR MSR MSR MSR

Carey UCI AT&T BEA BEA BEA

Halevy Google Google UW UW UW

http://www.lunadong.com/talks/depenDetection.pptx

Challenges in Dependence Discovery

38

[X L Dong et al., 2009]
D. Koop, CSCI 640/490, Spring 2024

S1 S2 S3 S4 S5

Stonebraker MIT Berkeley MIT MIT MS

Dewitt MSR MSR UWisc UWisc UWisc

Bernstein MSR MSR MSR MSR MSR

Carey UCI AT&T BEA BEA BEA

Halevy Google Google UW UW UW

http://www.lunadong.com/talks/depenDetection.pptx

Challenges in Dependence Discovery

38

[X L Dong et al., 2009]
D. Koop, CSCI 640/490, Spring 2024

S1 S2 S3 S4 S5

Stonebraker MIT Berkeley MIT MIT MS

Dewitt MSR MSR UWisc UWisc UWisc

Bernstein MSR MSR MSR MSR MSR

Carey UCI AT&T BEA BEA BEA

Halevy Google Google UW UW UW

http://www.lunadong.com/talks/depenDetection.pptx

Challenges in Dependence Discovery

38

[X L Dong et al., 2009]
D. Koop, CSCI 640/490, Spring 2024

S1 S2 S3 S4 S5

Stonebraker MIT Berkeley MIT MIT MS

Dewitt MSR MSR UWisc UWisc UWisc

Bernstein MSR MSR MSR MSR MSR

Carey UCI AT&T BEA BEA BEA

Halevy Google Google UW UW UW

2. With only a snapshot it is hard to
decide which source is a copier.

http://www.lunadong.com/talks/depenDetection.pptx

Challenges in Dependence Discovery

38

[X L Dong et al., 2009]
D. Koop, CSCI 640/490, Spring 2024

S1 S2 S3 S4 S5

Stonebraker MIT Berkeley MIT MIT MS

Dewitt MSR MSR UWisc UWisc UWisc

Bernstein MSR MSR MSR MSR MSR

Carey UCI AT&T BEA BEA BEA

Halevy Google Google UW UW UW

3. A copier can also provide or verify some data by
itself, so it is inappropriate to ignore all of its data.

1. Sharing common data does
not in itself imply copying.

2. With only a snapshot it is hard to
decide which source is a copier.

http://www.lunadong.com/talks/depenDetection.pptx

Source Dependence
• Source dependence: two sources S and T deriving the same part of data

directly or transitively from a common source (can be one of S or T).
- Independent source
- Copier

• copying part (or all) of data from other sources
• may verify or revise some of the copied values
• may add additional values

• Assumptions
- Independent values
- Independent copying
- No loop copying

39

[X L Dong et al., 2009]
D. Koop, CSCI 640/490, Spring 2024

http://www.lunadong.com/talks/depenDetection.pptx

Core Case
• Conditions
- Same source accuracy
- Uniform false-value distribution
- Categorical value

• Proposition: W. independent “good” sources, Naïve voting selects values with
highest probability to be true.

40

[X L Dong et al., 2009]
D. Koop, CSCI 640/490, Spring 2024

http://www.lunadong.com/talks/depenDetection.pptx

Ideas
• If two sources share a lot of false values, they are more likely to be

dependent.
• S1 is more likely to copy from S2, if the accuracy of the common data is

highly different from the accuracy of S1.

41

[X L Dong et al., 2009]
D. Koop, CSCI 640/490, Spring 2024

http://www.lunadong.com/talks/depenDetection.pptx

Combining Accuracy and Dependence

42

[X L Dong et al., 2009]
D. Koop, CSCI 640/490, Spring 2024

Truth
Discovery

Source-accuracy
Computation

Dependence
Detection

http://www.lunadong.com/talks/depenDetection.pptx

Combining Accuracy and Dependence

42

[X L Dong et al., 2009]
D. Koop, CSCI 640/490, Spring 2024

Truth
Discovery

Source-accuracy
Computation

Dependence
Detection

Step 1Step 3

Step 2

http://www.lunadong.com/talks/depenDetection.pptx

The Motivating Example

43

[X L Dong et al., 2009]
D. Koop, CSCI 640/490, Spring 2024

S1 S2 S3 S4 S5

Stonebraker MIT Berkeley MIT MIT MS
Dewitt MSR MSR UWisc UWisc UWisc

Bernstein MSR MSR MSR MSR MSR
Carey UCI AT&T BEA BEA BEA
Halevy Google Google UW UW UW

S1

S2

S4

S3

S5

.87 .2

.2

.99

.99
.99

Rnd 2

Rnd 11Rnd 3 …

S1

S2

S4

S3

S5

.14

.49

.49
.49

.08

.49 .49

.49
S1

S2

S4

S3

S5

.55

.49
.55.49 .44

.44

http://www.lunadong.com/talks/depenDetection.pptx

The Motivating Example

44

[X L Dong et al., 2009]
D. Koop, CSCI 640/490, Spring 2024

Accuracy S1 S2 S3 S4 S5

Round 1 .52 .42 .53 .53 .53
Round 2 .63 .46 .55 .55 .55
Round 3 .71 .52 .53 .53 .37
Round 4 .79 .57 .48 .48 .31

… … … … … …
Round 11 .97 .61 .40 .40 .21

Value
Confidence

Carey Halevy
UCI AT&T BEA Google UW

Round 1 1.61 1.61 2.0 2.1 2.0
Round 2 1.68 1.3 2.12 2.74 2.12
Round 3 2.12 1.47 2.24 3.59 2.24
Round 4 2.51 1.68 2.14 4.01 2.14

… … … … … …
Round 11 4.73 2.08 1.47 6.67 1.47

http://www.lunadong.com/talks/depenDetection.pptx

