Advanced Data Management (CSCI 640/490)

Time Series Data

Dr. David Koop

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University



Dataframes, Databases, and the Cloud

e How do we take advantage of different architectures?
e | ots of work in scaling databases and specialized computational engines

e \What is the code that people actually write”?

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University 2




Data Science Jungle

p
. —=— LU \

Higher-level =:: MODIN ~o~ Koalas

Abstractions

> - ~/"

g 1

APls il pandas Vaex DASK Cuda Ray PySpark SQL +

Dataframe | Dataframe| Dataframe| Programs | Dataframe SQL + User Defined Functions Built-in SQL Extensions
Functions

‘:”’ APACHE _I I I . ——
Data Ni’ ARROW>>> __ Distri Relational Tables

Layer | NumPy Cl
\_ Arrays

f m <
Backends Native [f PASK %RAY - :, o EEIIb gcésoii\Sefver‘

Python Dask Nvidia PostareSQ Microsoft | Apache | Google |Microsoft
- ) | RAPIDS | A¥1a|3l?tics | 7 } SCOPE MADIib | BigQuery |SQL Server
4

\
A N\ N\

\
e

A A A N\ A j

Extending Python ecosystem Extending SQL databases

[A. Jindal et al., 2021]

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University 3



Magpie Goals

-

N\

\_

Pythonic Environment
s
Unified Dataframe API
>
Magple
Middleware
Common Data Layer
’ N
Polyengines O AQ} SOL |
& Mappers Azure Synapse Alchem Native P
L PP Analytics Koalas % ) python Spython
Database , : ﬁb“ﬂ( th . % . =
Backends M “ ft Apache AEaChe Google ClInCIiClS [S)tlfﬁs)
S'E'BE,CE park PostgreSQL I\/IADI|b Bnguery SQL Server P
A

AN

Familiar Python surface

Ongoing standardization

Batching Pandas into large
query expressions

Backend selection using
past workloads

Cache commonly seen
dataframes

Multi-backend
environments and libraries

Cloud backends

[A. Jindal et al.,

2021]

Northern Illinois University 4

D. Koop, CSCI 640/490, Spring 2024



Magpie Architecture

{ Pandas J
I Lazy
Translation

Ibis API
Interactive
Ibis Expression { Dataframe cache } experience
Cost-based
optimization { Backend Selection

=

€3 &3 B

L

P |

[A. Jindal et al., 2021]

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University 5



ConnectorX: Databases to Dataframes

ConnectorX

Modin

Pandas

Dask

0 500 1000 1500

Time (s)

ConnectorX

Modin

Pandas

Dask

0 50 100 150

Memory (GB)

[X. Wang, 2022]

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University 6



Dataframe API?

e SQL, pandas, or something else?

Doris Lee
@dorisjlee

J Hot Takes on Enterprise Pandas — Day 2 J

Doris Lee
@dorisjlee
Z¢ In many cases, SQL isn’t the solution, and pandas is the easier path.

B below J Hot Takes on Enterprise Pandas — Day 5 _J
115 AM - Mar 27, 2023 - 6,517 Views o  Beware of "pandas-like" APIs that aren't actually compatible with
pandas. Many dataframe libraries may look similar to pandas but lack
support for critical pandas functionalities.

Doris Lee
@dorisjlee 11:15 AM - Mar 30, 2023 - 5,225 Views

"2+ SQL is good for certain things, but there are things that SQL wasn’t
meant to do, and if you contort SQL to do them, you wind up with
nightmarish queries. Many of these can be no more than a few lines in
pandas.

11:15 AM - Mar 27, 2023 - 172 Views

[D. Lee, Ponder CEO]
D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University 7




Assignment 4

e \Nork on Data Integration and Data Fusion
o [ntegrate artist datasets from different institutions (Met, NGA, AlIC, CMA)
- Integrate iInformation based on ids and matching
e Record Matching:
- Which artists are the same”?
e Data Fusion:
- Names
- Dates
- Nationalities

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University 8


http://faculty.cs.niu.edu/~dakoop/cs640-2024sp/assignment4.html

lest 2

e Next Monday... April 8

e Similar format, but more emphasis on topics we have covered including the
research papers

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University 9


http://faculty.cs.niu.edu/~dakoop/cs640-2024sp/test2.html

Time Series Data

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University 10



What Is time series data”?

e [echnically, it's normal tabular data with a timestamp attached
e But... we have observations of the same values over time, usually In order
e [Nhis allows more analysis
o Example: Web site database that tracks the last time a user logged In
- 1: Keep an attribute 1astLogin that iIs overwritten every time user [ogs In

- 2: Add a new row with login information every time the user logs in
- Option 2 takes more storage, but we can also do a lot more analysis!

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University 11



What is Time Series Data”?

e A row of data that consists of a timestamp, a value, optional tags

1 tags value
U
————

time generated message_subtype scaler short_id tenant value
2016-07-12T11:51:45Z "true” "34" 4" = "saarlouis” 465110000
2016-07-12T11:51:45Z "true" "34" "-6" "2" "saarlouis" 0.061966999999999994
2016-07-12T12:10:00Z "true" "34" "7" SO "saarlouis" 49370000000
2016-07-12T12:10:00Z "true" "34" "6" "2" "saarlouis" 18573000000
2016-07-12T12:10:00Z "true" "34" "5" "7" "saarlouis" 5902300000

[A. Bader, 2017]

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University 12



Time Series Data

* Metrics: measurements at regular intervals
e Fvents: measurements that are not gathered at regular intervals

Metrics (Regular) &W%@/\@Ww
Measurements
gathered at regular
time intervals
Events (Irregular) 0——0-0 O—0—O0———00—0-0 A—mmw—o
Measurements
gathered at irregular
time intervals
O m

[INfluxDB]

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University 13


https://www.influxdata.com/what-is-time-series-data/

Types of Time Series Data

® time series: observations for a single entity at different time intervals
- one patient’'s heart rate every minute

® Cross-section: observations for multiple entities at the same point in time
- heart rates of 100 patients at 8:01pm

e panel data: observations for multiple entities at different time intervals
- heart rates of 100 patients every minute over the past hour

[INfluxDB]

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University 14


https://www.influxdata.com/what-is-time-series-data/

Features of Time Series Data

® [rend. long-term increase or decrease in the data

e Seasonal Pattern: time series Is affected by seasonal factors such as the time
of the year or the day of the week (fixed and of known frequency)

e Cyclic Pattern: rises and falls that are not of a fixed frequency

e Stationary: no predictable patterns (roughly horizontal with constant variance)
- \White noise series Is stationary
- Will look the basically the same whenever you observe it

[Hyndman and Athanosopoulos]

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University 15



https://otexts.com/fpp2/

Examples

US Treasury bill contracts Australian electricity production
5— o
o
o_
o | 3
(@)
3 S
8_
3 o s -
g @ o
g S
e
O _|
(e 0]
o
0 _| o |
B 3
| | | | | | | | | |
0 20 40 60 80 100 1980 1985 1990 1995
Day Year
Sales of new one—-family houses, USA o Annual Canadian Lynx trappings
3 8
'\ \
2 S-
o 3 \
N7 S
W \j 5
(%)) o o
o o] % 8‘
5 © 5 ¥ \
g o J g &1
° g £ 3
=z
o
8_
Q- Y
o
o _|
o _ =
; Y
o_
| | | | | | | | | | |
1975 1980 1985 1990 1995 1820 1840 1860 1880 1900 1920

Time

R. J. Hyndman]

D. Koop, CSCI 640/490, Spring 2024 @ Northern Illinois University 16


https://robjhyndman.com/seminars/uwa/

Examples

US Treasury bill contracts Australian electricity production
5 i o
o
o p—
o | 3
(@)
3 S
8 pu—
Trend ¢ s = "
S 0]
g S
e
O _|
(e 0]
o
L0 _| 8 _
@ (e o)
| | | | | | | | | |
0 20 40 60 80 100 1980 1985 1990 1995
Day Year
o Sales of new one—-family houses, USA Annual Canadian Lynx trappings
o | -]
o _| \
S _

]
/

Total sales
50 60
] ]
—_—
—
Number trapped

40

1000 2000 3000 4O|OO 5000 6000 7000

30

C

V

T T T T T | T T T T T
1975 1980 1985 1990 1995 1820 1840 1860 1880 1900 1920

0
|

Time

R. J. Hyndman]

D. Koop, CSCI 640/490, Spring 2024 @ Northern Illinois University 16


https://robjhyndman.com/seminars/uwa/

Examples

US Treasury bill contracts Australian electricity production
5— o
o
o_
o | 3
(0}
3 S
. - Trend +
Trend ¢ s £ " |
- - Seasonality
0 S |
e
O _|
(o0}
o
0 _| o |
) 3
| | | | | | | | | |
0 20 40 60 80 100 1980 1985 1990 1995
Day Year
Sales of new one—-family houses, USA o Annual Canadian Lynx trappings
3 8
'\ \
o
3 §_
2 w = \
N7 S
(%)) o o
O o O]
g o g g \
: J g5 g
(@] —
F 8- g 3
< o
8_
Q- Y
o
o _|
; \/
o_
| | | | | | | | | | |
1975 1980 1985 1990 1995 1820 1840 1860 1880 1900 1920

Time

R. J. Hyndman]

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University 16


https://robjhyndman.com/seminars/uwa/

Examples

US Treasury bill contracts Australian electricity production
5_ o
o
o 3
(0}
3 S
. . & Trend +
Trend ¢£ = = |
- - Seasonality
0 o
§_
8_
o
3 S
(e o)
(') 2'0 4'o 6'0 8|0 1 cl)o 1 9|80 1 9|85 1 9|90 1 9|95
Day Year
o Sales of new one—-family houses, USA Annual Canadian Lynx trappings
o | -

|

Seasonality +

80

]
/

Total sales
50 60
] ]
=
—_—
—
Number trapped

40

1000 2000 3000 4O|OO 5000 6000 7000

30

u J

T T T T T | T T T T T
1975 1980 1985 1990 1995 1820 1840 1860 1880 1900 1920

C

0
|

Time

R. J. Hyndman]

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University 16


https://robjhyndman.com/seminars/uwa/

Examples

US Treasury bill contracts Australian electricity production
5— o
o
o 3
(0}
3 S
. . & Trend +
Trend ¢ s s |
- - Seasonality
0 8_
e
8_
3- S-
(e o)
(') 2'0 4'o 6'0 8'0 1 cl)o 1 9|80 1 9|85 1 9|90 1 9|95
Day Year
o Sales of new one—-family houses, USA Annual Canadian Lynx trappings
o | -
Seasonality + _ |
Q- _

Stationary

]
/

Total sales
50 60
] ]
=
—_—
—
Number trapped

40

1000 2000 3000 4O|OO 5000 6000 7000

30

u J

T T T T T | T T T T T
1975 1980 1985 1990 1995 1820 1840 1860 1880 1900 1920

C

0
|

Time

R. J. Hyndman]

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University 16


https://robjhyndman.com/seminars/uwa/

lypes of Time Data

e [imestamps: specific instants in time (.9. 2018-11-27 14:15:00)

e Periods: have a standard start and length
(e.g. the month November 2018)

¢ Intervals: have a start and end timestamp
- Periods are special case
- Example: 2018-11-21 14:15:00 — 2018-12-01 05:15:00

e Elapsed time: measure of time relative to a start time (15 minutes)

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University 17



Dates and imes

e \What is time to a computer”?
- Can be stored as seconds since Unix Epoch (January 1st, 1970)
e Often useful to break down into minutes, hours, days, months, years...
e | ots of different ways to write time:
- How could you write "November 29, 2016"?
- European vs. American ordering...
e \\What about time zones”?

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University 18




Python Support for Time

e [he datetime package

- Has date, time, and datetime classes
- .now () method: the current datetime

- Can access properties of the time (year, month, seconds, etc.)
e Converting from strings to datetimes:
- datetime.strptime: good for known formats

- dateutil.parser.parse: good for unknown formats
e Converting to strings

- str(dt) Ordt.strftime (<format>)

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University 19




Datetime format specification

e | OOK It Up:
- http://strftime.org

e (Generally, can create whatever format you
need using these format strings

D. Koop, CSCI 640/490, Spring 2024

Meaning
Weekday as locale’s abbreviated name.
Weekday as locale’s full name.

Weekday as a decimal number, where O is Sunday and 6
is Saturday.

Day of the month as a zero-padded decimal number.

Day of the month as a decimal number. (Platform
specific)

Month as locale’s abbreviated name.

Month as locale’s full name.

Month as a zero-padded decimal number.
Month as a decimal number. (Platform specific)

Year without century as a zero-padded decimal
number.

Year with century as a decimal number.

Hour (24-hour clock) as a zero-padded decimal
number.

Hour (24-hour clock) as a decimal number. (Platform
specific)

Hour (12-hour clock) as a zero-padded decimal
number.

Hour (12-hour clock) as a decimal number. (Platform
specific)

Locale’s equivalent of either AM or PM.

Minute as a zero-padded decimal number.
Minute as a decimal number. (Platform specific)
Second as a zero-padded decimal number.

Second as a decimal number. (Platform specific)

Example
Mon
Monday

1

30

30

Sep
September
09

9

13

2013

07

07

06
6
05

5

I%I Northern Illinois University
NIU


http://strftime.org

Pandas Support for Datetime

® pd.to datetime:
- convenience method
- can convert an entire column to datetime
e Has a NaT to indicate a missing time value
e Stores in a numpy.datetime64 format
* pd.Timestamp: a wrapper for the datetime64 oObjects

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University 21




Resampling

e Could be
- downsample: higher frequency to lower frequency
- upsample: lower frequency to higher frequency
- neither: e.g. Wednesdays to Fridays

e resample method: e.g. ts.resample ('M') .mean ()

freq String or DateOffset indicating desired resampled frequency (e.g., ‘M', '5min’, or Second(15))
axis Axis to resample on; default axis=0
fill_method How tointerpolate when upsampling, asin ' ffi11' or 'bfil1l"; by default does no interpolation

closed In downsampling, which end of each interval is closed (inclusive), ' right' or 'left'

label In downsampling, how to label the aggregated result, with the ' right' or ' Lleft' bin edge (e.g., the
9:30 to 9:35 five-minute interval could be labeled 9:30 or 9:35)

loffset Time adjustment to the bin labels, such as ' -1s' / Second( - 1) to shift the aggregate labels one
second earlier

limit When forward or backward filling, the maximum number of periods to fill

kind Aggregate to periods (' period") or timestamps (' timestamp'); defaults to the type of index the

time series has

convention  When resampling periods, the convention (' start' or 'end") for converting the low-frequency period
to high frequency; defaults to 'end'

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 640/490, Spring 2024

Northern Illinois University 22



More Pandas Support

e Accessing a particular time or checking equivalence allows any string that
can be interpreted as a date:

- ts['1/10/2011'] Orts['20110110"]
e Date ranges: pd.date range('4/1/2012','6/1/2012"',freg="4h")
e Slicing works as expected

e Can do operations (add, subtract) on data indexed by datetime and the
iIndexes will match up

e As with strings, to treat a column as datetime, you can use the .dt accessor

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University 23




Generating Date Ranges

e index = pd.date range('4/1/2012', '6/1/2012")

e Can generate based on a number of periods as well
- index = pd.date range('4/1/2012', periods=20)

e Frequency (freqg) controls how the range is divided
- Codes for specitying this (e.g. 4h, D, M)

- In [90]: pd.date range('1/1/2000', '1/3/2000 23:59', freq='4h")
Out[90]:
<class 'pandas.tseries.index.DatetimeIndex’>
[2000-01-01 00:00:00, ..., 2000-01-03 20:00:00]
Length: 18, Freq: 4H, Timezone: None

- Can also mix them: "2n30m"

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University =~ 24



Time Series Frequencies

Alias Offset Type Description

D Day Calendar daily

B BusinessDay Business daily

H Hour Hourly

T or min Minute Minutely

S Second Secondly

L orms Milli Millisecond (1/1000th of 1 second)

U Micro Microsecond (1/1000000th of 1 second)

M MonthEnd ast calendar day of month

BM BusinessMonthEnd Last business day (weekday) of month

MS MonthBegin -irst calendar day of month

BMS BusinessMonthBegin  First weekday of month

W-MON, W-TUE, ... Week Weekly on given day of week: MON, TUE, WED, THU, FRI, SAT,
or SUN.

WOM-1MON, WOM-2MON, ...  WeekOfMonth Generate weekly dates in thefirst, second, third, or fourth week

of the month. For example, WOM- 3FRI for the 3rd Friday of
each month. [W. McKinney, Python for Data Analysis]

Northern Illinois University 25

D. Koop, CSCI 640/490, Spring 2024



Datetimelndex

e Can use time as an index

e data = [('2017-11-30", 48)

('2017-12-02"', 45)
44)
48)

4

=

('2017-12-03",

('2017-12-04",
dates, temps = zip(*data)
s = pd.Serles (temps, pd.to datetime (dates))

]

e Accessing a particular time or checking equivalence allows any string that
can be interpreted as a date:

- s['12/04/2017"'] Ors['20171204"]
e Using a less specific string will get all matching data:
- s['2017-12"] returns the three December entries

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University 26



Datetimelndex

e [Ime slices do not need to exist:
- s['2017-12-01":'2017-12-31"]

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University 27



Shifting Data
e | eading or Lagging Data

In [95]: ts = Series(np.random.randn(4),
ceeel index=pd.date range('1/1/2000', periods=4, freg='M'))

In [96]: ts In [97]: ts.shift(2) In [98]: ts.shift(-2)
Out[96]: Out[97]: Out[98]:

2000-01-31 -0.0667438 2000-01-31 NaN 2000-01-31 -0.117388
2000-02-29 0.838639 2000-02-29 NaN 2000-02-29 -0.517795
2000-03-31 -0.1173338 2000-03-31 -0.066748 2000-03-31 NaN
2000-04-30 -0.517795 2000-04-30 0.833639 2000-04-30 NaN
Freq: M, dtype: float64 Freq: M, dtype: float64 Freq: M, dtype: float64

e Shifting by time:

In [99]: ts.shift(2, freg='M")
Out[99]:

2000-03-31 -0.066743
2000-04-30 0.838639
2000-05-31 -0.117388
2000-06-30 -0.517795

Freq: M, dtype: float64

D. Koop, CSCI 640/490, Spring 2024 @ Northern Illinois University ~ 28



Shifting Time Series

e Data:
[ ('2017-11-30", 48), ('2017-12-02"', 45),
('"2017-12-03", 44), ('2017-12-04"', 48)]

e Compute day-to-day difference in high temperature;

- s - s.shift(l) (Sameas s.diff()) - s - s.shift(l, 'd'")
- 2017-11-30 NaN - 2017-11-30 NaN
2017-12-02  -=3.0 2017-12-01 NaN
2017-12-03  -1.0 2017-12-02 NaN
2017-12-04 4.0 2017-12-03  -1.0
2017-12-04 4.0
2017-12-05 NaN

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University 29



Timedelta

e Compute differences between dates

e [ ives In datetime Module

e diff = parse date ("1l Jan 2017") - datetime.now() .date ()
diff.days

e AlsO a pd.Timedelta Object that take strings:
- datetime.now () .date() + pd.Timedelta ("4 days")

H Hh
HFH Hh

® Also, Roll dates using anchored offsets
from pandas.tseries.offsets import Day, MonthEnd

now = datetime(2011, 11, 17)
In [107]: now + MonthEnd(2)
Out[107]: Timestamp('2011-12-31 00:00:00")

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University 30



Time Zones

e \\Vhy"

e Coordinated Universal Time (UTC) is the standard time (basically equivalent to
Greenwich Mean Time (GMT)

e Other time zones are UTC +/- a number in [1,12]
e DeKalb is UTC-6 (aka US/Central); Daylight Saving Time is UTC-5

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University 31



Python, Pandas, and |ime Zones

® [Ime series In pandas are time zone native
* [he pytz module keeps track of all of the time zone parameters

- even Daylight Savings Time
e | ocalize atimestamp using tz localize

- ts = pd.Timestamp ("1 Dec 2016 12:30 PM")
ts = ts.tz localize("US/Eastern")

e Convert a timestamp using tz_convert
- ts.tz convert ("Europe/Budapest")

e Operations involving timestamps from different time zones become UTC

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University 32




-reqguency

e (Generic time series in pandas are irregular

- there Is no fixed frequency

- we don't necessarily have data for every day/hour/etc.

e Date ranges have frequency

In [76]: pd.date_range(start='2012-

Out[76]:

DatetlmeIndex([ 2012-04-01"', '2012-
'2012-04-05', '2012-
'2012-04-09', '2012-
'2012-04-13", '2012-

'2012-04-17"', '2012-
dtype='datetime6b4[ns]’,

04-

04-
04-
04-

04-
04-

01', periods=20)

02',
06",
10",
14",
18",

'2012-04-03",
'2012-04-07",
'2012-04-11",
'2012-04-15",
'2012-04-19",

freqg='D")

'2012-04-04",
'2012-04-08",
'2012-04-12",
'2012-04-16",

'2012-04-20'

1,

D. Koop, CSCI 640/490, Spring 2024

Northern Illinois University 33



| ots of Frequencies (not comprehensive

D. Koop, CSCI 640/490, Spring 2024

Alias
D
B
H

Tormin

L orms

U

M

BM

MS

BMS

W-MON, W-TUE, ...

WOM-1MON, WOM-2MON, ...

Q-JAN, Q-FEB, ...

BQ-JAN, BQ-FEB, ...

QS-JAN, QS-FEB, ...

BQS-JAN, BQS-FEB, ...

A-JAN, A-FEB, ...

BA-JAN, BA-FEB, ...

AS-JAN, AS-FEB, ...
BAS-JAN, BAS-FEB, ...

Offset type

Day

BusinessDay

Hour

Minute

Second

M1l

Micro

MonthEnd
BusinessMonthEnd
MonthBegin
BusinessMonthBegin
Week

WeekOfMonth

QuarterEnd

BusinessQuarterEnd
QuarterBegin
BusinessQuarterBegin

YearEnd

BusinessYearEnd

YearBegin

BusinessYearBegin

Description

Calendar daily

Business daily

Hourly

Minutely

Secondly

Millisecond (1/1,000 of 1 second)
Microsecond (1/1,000,000 of 1 second)
Last calendar day of month

Last business day (weekday) of month
First calendar day of month

First weekday of month

Weekly on given day of week (MON, TUE, WED, THU,
FRI, SAT, or SUN)

Generate weekly dates in the first, second, third, or
fourth week of the month (e.g., WOM- 3FR1 for the
third Friday of each month)

Quarterly dates anchored on last calendar day of each
month, for year ending in indicated month (JAN, FEB,
MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, or DEC)

Quarterly dates anchored on last weekday day of each
month, for year ending in indicated month

Quarterly dates anchored on first calendar day of each
month, for year ending in indicated month

Quarterly dates anchored on first weekday day of each
month, for year ending in indicated month

Annual dates anchored on last calendar day of given
month (JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP,
OCT, NOV, or DEC)

Annual dates anchored on last weekday of given
month

Annual dates anchored on first day of given month

Annual dates anchored on first weekday of given
month

[W. McKinney, Python for Data Analysis]

@ Northern Illinois University 34



Resampling

e Could be
- downsample: higher frequency to lower frequency
- upsample: lower frequency to higher frequency
- neither: e.g. Wednesdays to Fridays

e resample method: e.g. ts.resample ('M') .mean ()

freq String or DateOffset indicating desired resampled frequency (e.g., ‘M', '5min’, or Second(15))
axis Axis to resample on; default axis=0
fill_method How tointerpolate when upsampling, asin ' ffi11' or 'bfil1l"; by default does no interpolation

closed In downsampling, which end of each interval is closed (inclusive), ' right' or 'left'

label In downsampling, how to label the aggregated result, with the ' right' or ' Lleft' bin edge (e.g., the
9:30 to 9:35 five-minute interval could be labeled 9:30 or 9:35)

loffset Time adjustment to the bin labels, such as ' -1s' / Second( - 1) to shift the aggregate labels one
second earlier

limit When forward or backward filling, the maximum number of periods to fill

kind Aggregate to periods (' period") or timestamps (' timestamp'); defaults to the type of index the

time series has

convention  When resampling periods, the convention (' start' or 'end") for converting the low-frequency period
to high frequency; defaults to 'end'

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 640/490, Spring 2024

Northern Illinois University 35



Downsampling

* Need to define bin edges which are used to group the time series into
intervals that can be aggregated

e Remember:
- Which side of the interval is closed
- How to label the aggregated bin (start or end of interval)

closed="left' | 900 | 901 | 902 | 903 | 904 | 905

Closed="right [ 900 | 301 | 502 | 503 | 904 | 905

label="1left" label="right’

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University 36



Upsampling

e NO aggregation necessary

In [222]: frame
Out[222]:

Colorado Texas New York Ohio
2000-01-05 -0.896431 0.677263 0.036503 0.087102
2000-01-12 -0.046662 0.927238 0.482284 -0.867130

In [225]: frame.resample('D").ffi1l1l()

In [223]: df_daily = frame.resample('D').asfreq() Out[225]:
Colorado Texas New York Ohio
In [224]: df daily 2000-01-05 -0.896431 0.677263 0.036503 0.087102
out[224]: 2000-01-06 -0.896431 0.677263 0.036503 0.087102
Colorado Texas  New York ohio 2000-01-07 -0.896431 0.677263 0.036503 0.087102
2000-01-05 -0.896431 0.677263 0.036503 0.087102 2000-01-08 -0.896431 0.677263 0.036503 0.087102
5000-01 - 06 NaN NaN NaN NaN 2000-01-09 -0.896431 0.677263 0.036503 0.087102
5000-01-07 NaN NaN NaN NaN 2000-01-10 -0.896431 0.677263 0.036503 0.087102
5000-01-08 NaN NaN NaN NaN 2000-01-11 -0.896431 0.677263 0.036503 0.087102
5000-01-09 NaN NaN NaN NaN 2000-01-12 -0.046662 0.927238 0.482284 -0.867130
2000-01-10 NaN NaN NaN NaN
2000-01-11 NaN NaN NaN NaN

2000-01-12 -0.046662 0.927238 0.482284 -0.867130

D. Koop, CSCI 640/490, Spring 2024

Northern Illinois University 37




Rolling Window Calculations

128 (7149|134 |11 3| 8

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University ~ 38



Rolling Window Calculations

128 (7149|134 |11 3| 8

7.8

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University ~ 38



Rolling Window Calculations

128 (7149 (13|14 |11 3| 8

7.8

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University ~ 38



Rolling Window Calculations

128 (7149 (13|14 |11 3| 8

7.8 7.0

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University ~ 38



Rolling Window Calculations

128 (7149 (134 |11 3| 8

7.8 7.0

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University ~ 38



Rolling Window Calculations

128 (7149 (134 |11 3| 8

7.8 7.0 8.3

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University ~ 38



Window Functions

® [dea: want to aggregate over a window of time, calculate the answer, and
then slide that window ahead. Repeat.

e rolling: SMooth out data

e Specify the window size in rolling, then an aggregation method
e Result is set to the right edge of window (change with center=True)

e Example:
- df.rolling('180D") .mean ()
- df.rolling ('90D") .sum{()

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University 39



INterpolation

e [l In the missing values with computed best estimates using various types of
algorithms

o Apply after resample

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University 40



Sales Data by Month

22.5 - ”
20.0 -

17.5 1

15.0 -

12.5 -

10.0 -

7.5 -

5.0 A

Jan Jul Jan Jul Jan Jul Jan
2001 2002 2003 2004
Month

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University 41




Resampled Sales Data (ffill)

22.5 -

20.0 - —]

17.5 1

15.0 -

12.5 -

10.0 - —

715 - T

5.0 A

Jan Jul Jan Jul Jan Jul Jan
2001 2002 2003 2004
Month

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University =~ 42




Resampled with Linear Interpolation (Default)

22.5 - A
20.0 -

17.5 -

15.0 -

12.5 -

10.0 -

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University 43



Resampled with Cubic Interpolation

22.5 - {\ /\

20.0 -
17.5 -

15.0 - \./

12.5 -

10.0 - /\

7.5 A
5-0 ‘ M

Jul Jan
2002

Jan Jul Jan Jul Jan
2001 2003 2004
Month

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University 44




Piecewise Cubic Hermite Interpolating Polynomial

22.5 - m
20.0 -

17.5 -

15.0 - /\

12.5 -
10.0 - (\ \/_/

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University 45



90-Day Rolling Window (Mean)

18 -

16 -

14 -

10 -

Jul Ja

Jul Ja n
2004

Jul Ja n
2003

Jan n
2001 2002
Month

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University ~ 46



180-Day Rolling Window (Mean)

18 -

16 -

14 -

10 -

Jul Ja

Jan Jul Jan Jul Jan n
2001 2002 2003 2004

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University ~ 47



Time Series Databases

e \ost time series data is heavy inserts, few updates
e Also analysis tends to be on ordered data with trends, prediction, etc.
e Can also consider stream processing
® Focus on time series allows databases to specialize
e Examples:
- InfluxDB (hoSQL)
- TimescaleDB (SQL-based)

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University ~ 48



Time Series Database Motivation

e Boeing 787 produces 500GB sensor data per flight
® PUrposes
- loT1
- Monitoring large industrial installations
- Data analytics
e Metrics (regular) and Events (irregular)
e Fvents can be obtained from metrics via binning

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University 49



What is a Time Series Database?

e A DBMS is called TSDB if it can
- store a row of data that consists of timestamp, value, and optional tags
- store multiple rows of time series data grouped together
- can query for rows of data

- can contain a timestamp or a time range In a query
ul “SELECT * FROM ul1 WHERE time >= '2016-07-12T12:10:00Z*”

time generated

message_subtype scaler short_id tenant value

2016-07-12T11:51:45Z

2016-07-12T11:51:45Z2

2016-07-12T12:10:00Z

2016-07-12T12:10:00Z

"saarlouis" 465110000
"34" "-6" "2" "saarlouis" 0.061966999999999994

"saarlouis" 49370000000

"saarlouis" 18573000000

2016-07-12T12:10:00Z

D. Koop, CSCI 640/490, Spring 2024

"saarlouis” 5902300000

[A. Bader, 2017]

Northern Illinois University 50



Storing Time Series Data in a RDBMS

e [Imestamp as a primary key
® [ags and timestamp as combined primary key
e Use an auto-incrementing primary key (timestamp is a normal attribute)

[A. Bader]
D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University 51




Gorilla Motivation

¢ | arge-scale internet services rely on |ots of
services and machines

FB Servers
e \Want to monitor the health ot the systems pebte
e \Writes dominate — g , Long term
o _f Gorilla ----> storage
e \Vant to detect state transitions L (HBase)
, . Services
e Must be highly available and fault tolerant ==y
E==*
Ad-hoc visualizations and
Alarms and Wct'lmashboards
motiation A
Time Series | | ‘f /“4'-‘
CorreISation L - \

[Pelkonen et al., 2015]
D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University ~ 52




Gorilla Requirements

o 2 pillion unique time series identified by a string key.

e /00 million data points (time stamp and value) added per minute.

e Store data for 26 hours.

e More than 40,000 queries per second at peak.

® Reads succeed In under one millisecond.

e Support time series with 15 second granularity (4 pts/minute per time series).
e WO In-memory, Not co-located replicas (for disaster recovery capacity).

® Always serve reads even when a single server crashes.

o ADIlity to quickly scan over all in memory data.

e Support at least 2x growth per year.
[Pelkonen et al., 2015]

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University 53



Gorilla

* [n-memory DB

e Data: 3-tuple string key, 64-bit timestamp Iinteger, double-precision float
® |nteger compression didn't work

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University 54



Time Series Data Patterns

e Numerical Data Features:
- Scale
- Delta
- Repeat
- Increase
(c) Vast Repeats (d) Vast Increases e [ext Data Features

= - Value
S~

(a) Large Scale (b) Large Delta

- Character

[J. Xiao, 2021]

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University 55



Gorilla Compression

Data stream

Compressed data

Header: e ~ -~ 0 e e o
March 24. 2015 02:00:00 | 62 | 12 10': -2 0 0 11" 11 : 1 21 000
Bit length 64 14 9 1 1 2+5+6+ 1
b) C)
N-2 timestamp 02:00:00 - Previous Value 12.0 0x4028000000000000
N-1 timestamp | 02:01:02 Delta: 62 Value 24.0 | 0x4038000000000000
timestamp 02:02:02 Delta: 60 XOR - 0x0010000000000000
— Delta of deltas:

-2 ( 11 leading zeros, # of meaningful bits is 1 )

[Pelkonen et al., 2015]

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University 56



Delta of Delta Compression

e Data usually recorded at regular intervals
e Deltas: 60, 60, 59, 61
e Delta of deltas (D): O, -1, 2
e \ariable-length encoding:
-D=0—-0

%6.

W
O

(1)

T
X85
XK

CRRKKK

<

3.35 (12)

Percent of time stamps
(w/ compressed bits for each)

o
:‘:‘0‘ 950
- Din [-63,64] — 10 + value (7 bits) PR O K
. — . TE RS | 0.03(16) 0.03 (3¢)
- Din [-255,256] = 110 + value (9 bits) 1o ELS o 1 R
' 0 6364y 125535, [:20475, Rese

- Din [-2047,2048] — 1110 + value (12 bits)
- else = 1111 + value (32 bits)
e 1 pbit 96% of the time

Timestamp delta-of-delta compression buckets

[Pelkonen et al., 2015]

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University 57



XOR Representation

e \/alues usually do not change significantly
e | ook at XOR

- Same = 0
" Decimal | Double Representation | XOR with previous

0x4028000000000000

0x4021000000000000

0x0010000000000000
0x0016000000000000
0x0006000000000000
0x0069800000000000

| Decimal | Double Representation |  XOR with previous

0x0003200000000000
0x0026200000000000
0x002b400000000000
0x000b733333333333

D. Koop, CSCI 640/490, Spring 2024

- Changes in Meaningful Bits
e Same as previous value = 10 + changed
pits
e QOutside previous value = 11 + leading
zeros + length of meaningtul bits + bits

[Pelkonen et al., 2015]

Northern Illinois University 58




XOR Compression

2 kD_Ok_d\r\rsz)uus I\ HQA\’"\“;W)
- — — .
O 002 blrOOOOOO00OCO0 T
\ \ O «x QO(Z (2.O0000 OO0OO0
‘(l
ANO %2 HOO000000C O X ’
OXE) S 2;\ Ox OOOE)7 %300@0@0000
N\
2, lgadinn \mﬁn..n@u\ s g 5% don+ v
2RSTUTS within Cano@ © \
Prvious Gg\u .& o rotL s (V\Qac;\;\cs!(w’\
enca\a —) /L :L 3 LQ' -7 575 |
. | \ ML Aa N\
/)\ N\ V\%f\\\f'\a\/uj\ [E)\\—'S COQ\C\’O\ b\\ﬁ R KQOL(&\F\S ( 6 (O é
conro\ DV 2o )
(Skik)

|A. Colyer]



https://blog.acolyer.org/2016/05/03/gorilla-a-fast-scalable-in-memory-time-series-database/

Enabling Gorilla Features

e Correlation Engine: "What happened
around the time my service broke?"

e Charting: Horizon charts to see 00
outliers and anomalies -

o Aggregations: Rollups locally in :
Gorllla every couple of hours

*
*
*
*
*
*
*
*
*
*
*
*
*
+*
*

Routine process of copying release binary begins

50

Percent of Memory Used

25

5 10 15 20 25 30

Minutes

[Pelkonen et al., 2015]

D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University 60



Gorilla Lessons Learned

e Prioritize recent data over historical data
e Read latency matters
e High availability trumps resource efficiency
- Withstand single-node failures and "disaster events” that affect region

- "[BJuilding a reliable, fault tolerant system was the most time consuming
part of the project”

- "[Kleep two redundant copies of data in memory"

[Pelkonen et al., 2015]
D. Koop, CSCI 640/490, Spring 2024 Northern Illinois University 61




