
Advanced Data Management (CSCI 640/490)

Scalable Dataframes

Dr. David Koop

D. Koop, CSCI 640/490, Spring 2024

History of Dataframes
• Originally in Statistical Models in S, [J. M. Chambers & T. J. Hastie, 1992]
• R, open-source alternative to S, developed in 2000 (with dataframes)
• Pandas, 2009
• Spark, 2010 (resilient distributed dataset [RDD], Dataset API)

2

[D. Petersohn, 2022]
D. Koop, CSCI 640/490, Spring 2024

import pandas as pd
products = pd.read_html(...)
products

R1. Read HTML

products.iloc[2, 0] = "12MP"
products

C1. Ordered point updates
products = products\
["Wireless Charging"].map(
lambda x: 1 if x is "Yes" else 0)

products

C3. Column transformation

A3. Matrix Covariance

iphone_df.cov()
iphone_df

products = products.T
products

C2. Matrix-like transpose

prices = pd.read_excel(...)
prices

C4. Read Excel A2. JoinsA1. One-to-many column mapping

one_hot_df = pd.get_dummies(products)
iphone_df = prices.merge(

one_hot_df,
left_index=True, right_index=True

)
iphone_df

Figure 1: Example of an end-to-end data science workflow, from data ingestion, preparation, wrangling, to analysis.

over, the performance of the pandas.DataFrame API breaks down
when processing even moderate volumes of data that do not fit in
memory (demonstrated in Section 3)—this is especially problematic
due to pandas’ eager evaluation semantics, wherein intermediate
data size often surpasses memory limits and must be paged to disk.

To address pandas’ scalability challenges, we developed MO-
DIN (github.com/modin-project/modin), our early implemen-
tation of a scalable dataframe system, which employs parallel query
execution to enable unmodified pandas code to run more efficiently
on large dataframes. MODIN is used by over 60 downstream projects,
and has over 250 forks and 4,800 stars on GitHub in its first 20
months, indicating the impact and need for scalable dataframe im-
plementations. MODIN rewrites pandas API calls into a sequence
of operators in a new, compact dataframe algebra. MODIN then
leverages simple parallelization and a new physical representation
to speed up the execution of these operators by up to 30⇥ in certain
cases, and is able to complete queries on datasets 25⇥ larger than
pandas in others.

Our initial optimizations in MODIN are promising, but only
scratch the surface of what’s possible. Given the success of our first
experience with MODIN, we believe there is room for a broad, com-
munity research agenda on making dataframe systems scalable
and efficient, with many novel research challenges. Our original
intent when developing MODIN was to adapt standard relational
database techniques to help make dataframes scalable. However,
while the principles (such as parallelism) do apply, their instanti-
ation in the form of specific techniques often differ, thanks to the
differences between the data models and algebra of dataframes and
relations. Therefore, a more principled foundation for dataframes is
needed, comprising a formal data model and an expressive and com-
pact algebra. We describe our first attempt at such a formalization in
Section 4. Then, armed with our data model and algebra, we outline
a number of research challenges organized around unique dataframe
characteristics and the unique ways in which they are processed.

In Section 5, we describe how the dataframe data model and
algebra result in new scalability challenges. Unlike relations, data-
frames have a flexible schema and are lazily typed, requiring careful
maintenance of metadata, and avoidance of the overhead of type
inference as far as possible. Dataframes treat rows and columns as
equivalent, and metadata (column/row labels) and data as equiva-
lent, placing new metadata awareness requirements on dataframe
query planners. In addition, dataframes are ordered—and dataframe
systems often enforce a strict coupling between logical and physical
layout; we identify several opportunities to deal with order in a more
light-weight, decoupled, and lazy fashion. Finally, the new space of
operators—encompassing relational, linear algebra, and spreadsheet
operators—introduce new challenges in query optimization.

In Section 6, we describe new challenges and opportunities that
emerge from how dataframes are used for data exploration. Un-
like SQL, which offers an all-or-nothing query modality, dataframe
queries are constructed one operator at a time, with ample think-time
between query fragments. This makes it more challenging to per-
form query optimization by reordering operators for higher overall
efficiency. At the same time, the additional thinking time between
steps can be exploited to do background processing. Dataframe
users often inspect intermediate results of query fragments, usually
for debugging, which requires a costly materialization after each
step of query processing. However, users are only shown an ordered
prefix or suffix of this intermediate dataframe as output, allowing us
to prioritize the execution to return this portion quickly and defer the
execution of the rest. Finally, users often revisit old processing steps
in an ad-hoc process of trial-and-error data exploration. We consider
opportunities to minimize redundant computation for operations
completed previously.
Outline and Contributions. In this paper, we begin with an ex-
ample dataframe workflow capturing typical dataframe capabilities
and user behavior. We then describe our experiences with MO-
DIN (Section 3). We use MODIN to ground our discussion of the
research challenges. We (i) provide a candidate formalism for
dataframes and enumerate their capabilities with a new algebra
(Section 4). We then outline research challenges and opportuni-
ties to build on our formalism and make dataframe systems more
scalable, by optimizing and accounting for (ii) the unique charac-
teristics of the new data model and algebra (Section 5), as well
as (iii) the unique ways in which dataframes are used in practice
for data exploration (Section 6). We draw on tools and techniques
from the database research literature throughout and discuss how
they might be adapted to meet novel dataframe needs.

In describing the aforementioned challenges, we focus on the
pandas dataframe system [12] for concreteness. Pandas is much
more popular than other dataframe implementations, and is therefore
well worth our effort to study and optimize. We discuss other
dataframe implementations and related work in Section 7. Many
details about MODIN and our dataframe data model and algebra are
omitted and can be found in our technical report [52].

2. DATAFRAME EXAMPLE
In Figure 1, we show the steps taken in a typical workflow of

an analyst exploring the relationship between various features of
different iPhone models in a Jupyter notebook [51].
Data ingest and cleaning. Initially, the analyst reads in the iPhone
comparison chart using read_html from an e-commerce webpage,
as shown in R1 in Figure 1. The data is verified by printing out the
first few lines of the dataframe products. (products.head() is

2034

Pandas Workflow: Ingest, Cleaning, Analysis

3

[D. Petersohn et al., 2020]
D. Koop, CSCI 640/490, Spring 2024

Problems Scaling: From Pandas to Other Solutions

4

[D. Petersohn]
D. Koop, CSCI 640/490, Spring 2024

Modin as a Solution

5

[D. Petersohn]
D. Koop, CSCI 640/490, Spring 2024

22

Modin Positioning

6

[D. Petersohn]
D. Koop, CSCI 640/490, Spring 2024

Dataframe Data Model
• Combines parts of matrices, databases, and

spreadsheets
• Ordered, but not necessarily sorted
- Rows and columns

• No predefined schema necessary
- Types can be induced at runtime

• Typed Row/column labels
- Labels can become data

• Indexing by label or row/column number
- “Named notation” or “Positional notation”

7

[D. Petersohn]
D. Koop, CSCI 640/490, Spring 2024

Comparing Dataframes and Relational Stores
• Dataframe Characteristics
- Ordered table
- Named rows labels
- A lazily-induced schema
- Column names from d ∈ Dom
- Column/row symmetry
- Support for linear alg. operators

• Relational Characteristics
- Unordered table
- No naming of rows
- Rigid schema
- Column names from att
- Columns and rows are distinct
- No native support

8

[D. Petersohn et al., 2020]
D. Koop, CSCI 640/490, Spring 2024

Comparing Dataframes and Matrices
• Dataframe Characteristics
- Heterogeneously typed
- Numeric & non-numeric types
- Explicit row and column labels
- Support for rel. algebra operators

• Matrix Characteristics
- Homogeneously typed
- Only numeric types
- No row or column labels
- No native support

9

[D. Petersohn et al., 2020]
D. Koop, CSCI 640/490, Spring 2024

Table 1: Dataframe Algebra. †: Ordered by left argument first, then right to break ties. ⌃: Order of columns is inherited from order of rows and vice-versa.

Operator (Meta)data Schema Origin Order Description
SELECTION ⇥ static REL Parent Eliminate rows
PROJECTION ⇥ static REL Parent Eliminate columns
UNION ⇥ static REL Parent† Set union of two dataframes
DIFFERENCE ⇥ static REL Parent† Set difference of two dataframes
CROSS PRODUCT / JOIN ⇥ static REL Parent† Combine two dataframes by element
DROP DUPLICATES ⇥ static REL Parent Remove duplicate rows
GROUPBY ⇥ static REL New Group identical values for a given (set of) attribute(s)
SORT ⇥ static REL New Lexicographically order rows
RENAME (⇥) static REL Parent Change the name of a column
WINDOW ⇥ static SQL Parent Apply a function via a sliding-window (either direction)
TRANSPOSE (⇥) ⇥ dynamic DF Parent⌃ Swap data and metadata between rows and columns
MAP (⇥) ⇥ dynamic DF Parent Apply a function uniformly to every row
TOLABELS (⇥) ⇥ dynamic DF Parent Set a data column as the row labels column
FROMLABELS (⇥) ⇥ dynamic DF Parent Convert the row labels column into a data column

the result of MAP(DF, f) is a dataframe (A0
mn0 , Rm, C0

n0 , D0
n0)

with f : Dn ! D0
n0 , where A0

mn0 is the result of the function f as
applied to each row, C0

n0 is the resulting column labels, and D0
n0 is

the resulting vector of domains. Notice that in this definition, the
number of columns (n0) and the column labels (C0

n0) can change
based on this definition, but they must be changed uniformly for
every row. The vector of domains D0

n0 may, in many cases, be
inferred from the type of the function f .
ToLabels. The TOLABELS operator projects one column out of the
matrix of data, Amn, to be set as new row labels for the resulting
dataframe, replacing the old labels. Given DF = (Amn, Rm, Cn,
Dn) and some column label L, TOLABELS(DF, L) returns a data-
frame (A0

m(n�1), L, C
0
n, D

0
n), where C0

n (respectively D0
n) is the

result of removing the label L from Cn (respectively Dn). With this
capability, data from Amn can be promoted into the metadata of the
dataframe and referenced by name during future interactions.
FromLabels. FROMLABELS creates a new dataframe with the row
labels inserted into the array Amn as a new column of data at
position 0 with a provided column label. The data type of the
new column starts as null until it can be induced by the schema
induction function S. The row labels of the resulting dataframe
are set to the default label: the order rank of each row (positional
notation). Formally, given a dataframe DF = (Amn, Rm, Cn, Dn)
and a new column label L we define FROMLABELS(DF, L) to
be a dataframe (Rm +Amn, Pm, [L] + Cn, [null] +Dn), where
Rm+Amn is the concatenation of the row labels Rm with the array
of data Amn, Pm is the positional notation values for all of the rows:
Pm = (0, ...,m� 1), and [L] + Cn is the result of prepending the
new column label L to the column labels Cn.
GroupBy. As in relational algebra, our GROUPBY operator groups by
one or more columns, and aggregates one or more columns together
or separately. Unlike relational algebra, where aggregation must
result in atomic values, dataframes can support composite values
within a cell, allowing a broader class of aggregation functions to be
applied. One special function, collect, groups rows with the same
grouping attribute values into separate dataframes and returns these
as the (composite) aggregate values. Pandas’s groupby function has
similar behavior and applies collect to the non-grouped attributes.
We will use collect in our examples subsequently.
Window. WINDOW-type operations are largely analogous to those
used in recent SQL extensions to RDBMSs like PostgreSQL and
SQL Server. The key difference is that, in SQL, many windowing
functions such as LAG and LEAD require an additional ORDER BY to

Wide Table of MONTHs
Month 2001 2002 2003

Jan 100 150 300
Feb 110 200 310
Mar 120 250 NULL

Year Jan Feb Mar
2001 100 110 120
2002 150 200 250
2003 300 310 NULL

Wide Table of YEARs

Narrow Table (SALES)
Year Month Sales
2001 Jan 100
2001 Feb 110
2001 Mar 120
2002 Jan 150
2002 Feb 200
2002 Mar 250
2003 Jan 300
2003 Feb 310

Pivot�!
 � Unpivot

Figure 4: Pivot table example, reproduced from [27], demonstrating pivoting
over two separate columns, “Month” and “Year”.

DF

"Year" collect

GROUPBY MAP

flatten

TOLABELS

"Year"

TRANSPOSE

Figure 5: Logical plan for pivoting a dataframe around the “Year” column
using the dataframe algebra from this section.

be well-defined; in dataframe algebra, the inherent ordering already
present in dataframes makes such a clause purely optional.

4.4 Pivot Case Study
To demonstrate the expressiveness of the algebra above, we show

how it can express pivot, which is particularly challenging in
relational databases due to the need for relations to be declared
schema-first [27, 67]. The pivot operator (Figure 4) elevates a
column of data into the column labels and creates a new dataframe
reshaped around these new labels.

Since there is no need to know the names of the new columns or
the resulting schema a priori, a pivot can be expressed concisely
in dataframe algebra as a combination of four operators in the plan
shown in Figure 5. Recall that it is possible to elevate data to
the column labels by using TOLABELS followed by TRANSPOSE. In
this case, the TOLABELS operator would be applied on the label
of the column being pivoted over, "Year" in this example. After
this step, we perform a GROUPBY on the pivoted attribute, "Year"
with a collect aggregation applied to the remaining attributes to
produce a per-Year dataframe as a composite aggregated value. This
aggregated value is manipulated by a MAP operator with a function
that flattens the grouped data into the correct orientation. This results
in a table pivoted around the attribute selected for the TOLABELS
operator. Notice in Figure 4 that transposing the dataframe labeled
“Wide Table in Months” results in the correct data layout for the
“Wide Table in Years”. This is one example of how TRANSPOSE can

2038

Dataframe Algebra

10

[D. Petersohn et al., 2020]
D. Koop, CSCI 640/490, Spring 2024

Pivot Example

11

[D. Petersohn et al., 2020]
D. Koop, CSCI 640/490, Spring 2024

Table 1: Dataframe Algebra. †: Ordered by left argument first, then right to break ties. ⌃: Order of columns is inherited from order of rows and vice-versa.

Operator (Meta)data Schema Origin Order Description
SELECTION ⇥ static REL Parent Eliminate rows
PROJECTION ⇥ static REL Parent Eliminate columns
UNION ⇥ static REL Parent† Set union of two dataframes
DIFFERENCE ⇥ static REL Parent† Set difference of two dataframes
CROSS PRODUCT / JOIN ⇥ static REL Parent† Combine two dataframes by element
DROP DUPLICATES ⇥ static REL Parent Remove duplicate rows
GROUPBY ⇥ static REL New Group identical values for a given (set of) attribute(s)
SORT ⇥ static REL New Lexicographically order rows
RENAME (⇥) static REL Parent Change the name of a column
WINDOW ⇥ static SQL Parent Apply a function via a sliding-window (either direction)
TRANSPOSE (⇥) ⇥ dynamic DF Parent⌃ Swap data and metadata between rows and columns
MAP (⇥) ⇥ dynamic DF Parent Apply a function uniformly to every row
TOLABELS (⇥) ⇥ dynamic DF Parent Set a data column as the row labels column
FROMLABELS (⇥) ⇥ dynamic DF Parent Convert the row labels column into a data column

the result of MAP(DF, f) is a dataframe (A0
mn0 , Rm, C0

n0 , D0
n0)

with f : Dn ! D0
n0 , where A0

mn0 is the result of the function f as
applied to each row, C0

n0 is the resulting column labels, and D0
n0 is

the resulting vector of domains. Notice that in this definition, the
number of columns (n0) and the column labels (C0

n0) can change
based on this definition, but they must be changed uniformly for
every row. The vector of domains D0

n0 may, in many cases, be
inferred from the type of the function f .
ToLabels. The TOLABELS operator projects one column out of the
matrix of data, Amn, to be set as new row labels for the resulting
dataframe, replacing the old labels. Given DF = (Amn, Rm, Cn,
Dn) and some column label L, TOLABELS(DF, L) returns a data-
frame (A0

m(n�1), L, C
0
n, D

0
n), where C0

n (respectively D0
n) is the

result of removing the label L from Cn (respectively Dn). With this
capability, data from Amn can be promoted into the metadata of the
dataframe and referenced by name during future interactions.
FromLabels. FROMLABELS creates a new dataframe with the row
labels inserted into the array Amn as a new column of data at
position 0 with a provided column label. The data type of the
new column starts as null until it can be induced by the schema
induction function S. The row labels of the resulting dataframe
are set to the default label: the order rank of each row (positional
notation). Formally, given a dataframe DF = (Amn, Rm, Cn, Dn)
and a new column label L we define FROMLABELS(DF, L) to
be a dataframe (Rm +Amn, Pm, [L] + Cn, [null] +Dn), where
Rm+Amn is the concatenation of the row labels Rm with the array
of data Amn, Pm is the positional notation values for all of the rows:
Pm = (0, ...,m� 1), and [L] + Cn is the result of prepending the
new column label L to the column labels Cn.
GroupBy. As in relational algebra, our GROUPBY operator groups by
one or more columns, and aggregates one or more columns together
or separately. Unlike relational algebra, where aggregation must
result in atomic values, dataframes can support composite values
within a cell, allowing a broader class of aggregation functions to be
applied. One special function, collect, groups rows with the same
grouping attribute values into separate dataframes and returns these
as the (composite) aggregate values. Pandas’s groupby function has
similar behavior and applies collect to the non-grouped attributes.
We will use collect in our examples subsequently.
Window. WINDOW-type operations are largely analogous to those
used in recent SQL extensions to RDBMSs like PostgreSQL and
SQL Server. The key difference is that, in SQL, many windowing
functions such as LAG and LEAD require an additional ORDER BY to

Wide Table of MONTHs
Month 2001 2002 2003

Jan 100 150 300
Feb 110 200 310
Mar 120 250 NULL

Year Jan Feb Mar
2001 100 110 120
2002 150 200 250
2003 300 310 NULL

Wide Table of YEARs

Narrow Table (SALES)
Year Month Sales
2001 Jan 100
2001 Feb 110
2001 Mar 120
2002 Jan 150
2002 Feb 200
2002 Mar 250
2003 Jan 300
2003 Feb 310

Pivot�!
 � Unpivot

Figure 4: Pivot table example, reproduced from [27], demonstrating pivoting
over two separate columns, “Month” and “Year”.

DF

"Year" collect

GROUPBY MAP

flatten

TOLABELS

"Year"

TRANSPOSE

Figure 5: Logical plan for pivoting a dataframe around the “Year” column
using the dataframe algebra from this section.

be well-defined; in dataframe algebra, the inherent ordering already
present in dataframes makes such a clause purely optional.

4.4 Pivot Case Study
To demonstrate the expressiveness of the algebra above, we show

how it can express pivot, which is particularly challenging in
relational databases due to the need for relations to be declared
schema-first [27, 67]. The pivot operator (Figure 4) elevates a
column of data into the column labels and creates a new dataframe
reshaped around these new labels.

Since there is no need to know the names of the new columns or
the resulting schema a priori, a pivot can be expressed concisely
in dataframe algebra as a combination of four operators in the plan
shown in Figure 5. Recall that it is possible to elevate data to
the column labels by using TOLABELS followed by TRANSPOSE. In
this case, the TOLABELS operator would be applied on the label
of the column being pivoted over, "Year" in this example. After
this step, we perform a GROUPBY on the pivoted attribute, "Year"
with a collect aggregation applied to the remaining attributes to
produce a per-Year dataframe as a composite aggregated value. This
aggregated value is manipulated by a MAP operator with a function
that flattens the grouped data into the correct orientation. This results
in a table pivoted around the attribute selected for the TOLABELS
operator. Notice in Figure 4 that transposing the dataframe labeled
“Wide Table in Months” results in the correct data layout for the
“Wide Table in Years”. This is one example of how TRANSPOSE can

2038

Table 1: Dataframe Algebra. †: Ordered by left argument first, then right to break ties. ⌃: Order of columns is inherited from order of rows and vice-versa.

Operator (Meta)data Schema Origin Order Description
SELECTION ⇥ static REL Parent Eliminate rows
PROJECTION ⇥ static REL Parent Eliminate columns
UNION ⇥ static REL Parent† Set union of two dataframes
DIFFERENCE ⇥ static REL Parent† Set difference of two dataframes
CROSS PRODUCT / JOIN ⇥ static REL Parent† Combine two dataframes by element
DROP DUPLICATES ⇥ static REL Parent Remove duplicate rows
GROUPBY ⇥ static REL New Group identical values for a given (set of) attribute(s)
SORT ⇥ static REL New Lexicographically order rows
RENAME (⇥) static REL Parent Change the name of a column
WINDOW ⇥ static SQL Parent Apply a function via a sliding-window (either direction)
TRANSPOSE (⇥) ⇥ dynamic DF Parent⌃ Swap data and metadata between rows and columns
MAP (⇥) ⇥ dynamic DF Parent Apply a function uniformly to every row
TOLABELS (⇥) ⇥ dynamic DF Parent Set a data column as the row labels column
FROMLABELS (⇥) ⇥ dynamic DF Parent Convert the row labels column into a data column

the result of MAP(DF, f) is a dataframe (A0
mn0 , Rm, C0

n0 , D0
n0)

with f : Dn ! D0
n0 , where A0

mn0 is the result of the function f as
applied to each row, C0

n0 is the resulting column labels, and D0
n0 is

the resulting vector of domains. Notice that in this definition, the
number of columns (n0) and the column labels (C0

n0) can change
based on this definition, but they must be changed uniformly for
every row. The vector of domains D0

n0 may, in many cases, be
inferred from the type of the function f .
ToLabels. The TOLABELS operator projects one column out of the
matrix of data, Amn, to be set as new row labels for the resulting
dataframe, replacing the old labels. Given DF = (Amn, Rm, Cn,
Dn) and some column label L, TOLABELS(DF, L) returns a data-
frame (A0

m(n�1), L, C
0
n, D

0
n), where C0

n (respectively D0
n) is the

result of removing the label L from Cn (respectively Dn). With this
capability, data from Amn can be promoted into the metadata of the
dataframe and referenced by name during future interactions.
FromLabels. FROMLABELS creates a new dataframe with the row
labels inserted into the array Amn as a new column of data at
position 0 with a provided column label. The data type of the
new column starts as null until it can be induced by the schema
induction function S. The row labels of the resulting dataframe
are set to the default label: the order rank of each row (positional
notation). Formally, given a dataframe DF = (Amn, Rm, Cn, Dn)
and a new column label L we define FROMLABELS(DF, L) to
be a dataframe (Rm +Amn, Pm, [L] + Cn, [null] +Dn), where
Rm+Amn is the concatenation of the row labels Rm with the array
of data Amn, Pm is the positional notation values for all of the rows:
Pm = (0, ...,m� 1), and [L] + Cn is the result of prepending the
new column label L to the column labels Cn.
GroupBy. As in relational algebra, our GROUPBY operator groups by
one or more columns, and aggregates one or more columns together
or separately. Unlike relational algebra, where aggregation must
result in atomic values, dataframes can support composite values
within a cell, allowing a broader class of aggregation functions to be
applied. One special function, collect, groups rows with the same
grouping attribute values into separate dataframes and returns these
as the (composite) aggregate values. Pandas’s groupby function has
similar behavior and applies collect to the non-grouped attributes.
We will use collect in our examples subsequently.
Window. WINDOW-type operations are largely analogous to those
used in recent SQL extensions to RDBMSs like PostgreSQL and
SQL Server. The key difference is that, in SQL, many windowing
functions such as LAG and LEAD require an additional ORDER BY to

Wide Table of MONTHs
Month 2001 2002 2003

Jan 100 150 300
Feb 110 200 310
Mar 120 250 NULL

Year Jan Feb Mar
2001 100 110 120
2002 150 200 250
2003 300 310 NULL

Wide Table of YEARs

Narrow Table (SALES)
Year Month Sales
2001 Jan 100
2001 Feb 110
2001 Mar 120
2002 Jan 150
2002 Feb 200
2002 Mar 250
2003 Jan 300
2003 Feb 310

Pivot�!
 � Unpivot

Figure 4: Pivot table example, reproduced from [27], demonstrating pivoting
over two separate columns, “Month” and “Year”.

DF

"Year" collect

GROUPBY MAP

flatten

TOLABELS

"Year"

TRANSPOSE

Figure 5: Logical plan for pivoting a dataframe around the “Year” column
using the dataframe algebra from this section.

be well-defined; in dataframe algebra, the inherent ordering already
present in dataframes makes such a clause purely optional.

4.4 Pivot Case Study
To demonstrate the expressiveness of the algebra above, we show

how it can express pivot, which is particularly challenging in
relational databases due to the need for relations to be declared
schema-first [27, 67]. The pivot operator (Figure 4) elevates a
column of data into the column labels and creates a new dataframe
reshaped around these new labels.

Since there is no need to know the names of the new columns or
the resulting schema a priori, a pivot can be expressed concisely
in dataframe algebra as a combination of four operators in the plan
shown in Figure 5. Recall that it is possible to elevate data to
the column labels by using TOLABELS followed by TRANSPOSE. In
this case, the TOLABELS operator would be applied on the label
of the column being pivoted over, "Year" in this example. After
this step, we perform a GROUPBY on the pivoted attribute, "Year"
with a collect aggregation applied to the remaining attributes to
produce a per-Year dataframe as a composite aggregated value. This
aggregated value is manipulated by a MAP operator with a function
that flattens the grouped data into the correct orientation. This results
in a table pivoted around the attribute selected for the TOLABELS
operator. Notice in Figure 4 that transposing the dataframe labeled
“Wide Table in Months” results in the correct data layout for the
“Wide Table in Years”. This is one example of how TRANSPOSE can

2038

DF GROUPBY

collect"Month"

MAP

flatten

TOLABELS

"Month"

T

(a) Original plan

DF GROUPBY

collect"Year"

MAP

flatten

T TOLABELS

"Month"

T

(b) Optimized rewrite that leverages sorted Year column
Figure 6: Alternative query plans for pivoting a dataframe around the “Month” column using the algebra from Section 4.3. TRANSPOSE is abbreviated as T.

In certain cases, we may indeed want to consider optimizing the
physical layout of the data given a TRANSPOSE operator as a part of a
query plan. This is in contrast with existing data systems that create
and optimize for a static data layout. A physical transpose may help
the optimizer match the layout to the access pattern (e.g., matrix
multiplication). A fixed data layout is likely to have a significant
performance penalty when the access pattern changes. Additionally,
consider a case where TRANSPOSE allows us more flexibility in
query planning. In the pivot case in Section 4.4, we observed that
transposing the result of a pivot is effectively a pivot across the
other column. Specifically, if we must pivot into the wide table with
Months as columns, we can either use the original plan (Figure 6a)
or one where we proceed as if the pivot is over Year, but then
transpose the final result so that the Month attribute values are used
as column headers (Figure 6b). The latter plan will be faster if
the optimizer leverages knowledge about the sorted order of the
Year column to avoid hashing the groups. This is an interesting
example of a new class of potential optimizations within dataframe
query plans that exploit an efficient TRANSPOSE. Because the axis
transpositions are happening in query expressions, the data layout
becomes a physical plan property akin to “interesting orders” [58]
or “hash teams” [33], expanding the rules for query optimization.

5.2.3 Metadata is Data (and Data is Metadata)
A standard feature of dataframes is the ability to fluidly move

values from data to metadata and back. This is made explicit in
the TOLABELS and FROMLABELS operators of our algebra, espe-
cially in combination with TRANSPOSE. These semantics cannot
be represented in languages like SQL or relational algebra that
are grounded in first-order logic; this is a signature of second-order
logic, as explored in languages like OQL [18], SchemaSQL [44] and
XQuery [23]. There is significant prior work on optimizing second-
order operations like the unnesting of nested data (e.g. [30, 60, 65]).
A distinguishing aspect of our setting is that a dataframe opera-
tion like TOLABELS commonly generates a volume of schema-level
metadata that is dependent on the size of the data; this raises new
challenges. The closest prior work to our needs studies spreadsheet-
style pivot/unpivot in databases (e.g. [27,67]); this work needs to be
generalized to the richer semantics of a dataframe algebra.

To address representational aspects, we could treat row labels
the way we treat primary keys in a relational database—by noting
the sequence of label columns in a metadata catalog. Some addi-
tional details arise in the support of positional notation: invoking
TOLABELS(c1, ..., cn) removes the relevant columns from their
positions, requiring a recalculation of the positions of all labels to
the right of c1. This can be handled by representing column order
in dynamic ranked data structures like ranked B-trees [43] or range
min-max trees [47]. In terms of data access, we may want to effi-
ciently process data columns without paying to access (dynamically
reassigned) metadata columns, and vice versa. In this case, colum-
nar layouts become attractive for projection. Alternatively, labels
can be moved into separate property tables [27], a form of “vertical
partitioning” that does not rely on columnar storage layouts.

Challenges arise in more complex expressions that include both
TOLABELS and other operators–notably MAP and TRANSPOSE. In
these cases, the number and types of columns in the dataframe is

data-dependent. This exacerbates the metadata storage issues dis-
cussed in the previous section, and brings up additional challenges.

In terms of query optimization, we now have a two-dimensional
estimation problem: both cardinality estimation (# of rows) and
arity estimation (# of columns). For most operations in our algebra
this would appear straightforward: even for TRANSPOSE, we know
the cardinality and arity of output based on input. The challenge
that arises is easy to see in a standard data science “macro”, namely
1-hot encoding (get_dummies in pandas). This operation takes a
single column as input, and produces a result table whose schema
concatenates the input schema with an (typically large) array of
boolean-typed columns, one column per distinct data value of the
input. Pivot presents a similar challenge: the width of the output
schema is based on the number of distinct data values in the input
columns. In our algebra, these macros can be implemented using
GROUPBY followed by MAP and TRANSPOSE. The resulting arity es-
timation problem reduces to distinct value estimation for the input
to GROUPBY. While techniques like hyperloglog sketches [31] could
assist here, note that we need to compute these estimates not only
on base tables that may be pre-sketched, but on intermediate results
of expressions! In short, we need to do distinct value estimation for
the outputs of query operators—including arithmetic calculations
(e.g. sums, products) and string manipulations (e.g. expanding a
document into constituent words).

In some scenarios, arity estimation is insufficient—we need exact
numbers and labels of columns. Consider the example of performing
a UNION of feature vectors generated from two different text corpora,
say Wikipedia articles unioned with DBLP articles. Each text cor-
pus begins as a dataframe with schema (documentID, content).
After a standard series of text featurization steps (word extraction
with stemming and stop-word filtering followed by 1-hot encoding),
each corpus becomes a dataframe with a documentID column, and
one boolean column for each word in the corpus. The problem is
that the UNION needs to dynamically check for compatibility of the
input schemas—it needs to first generate the full (large!) schema for
each input, and compare the two. Even if we relax our semantics to
an “outer” union, we want to identify and align the common words
across the corpora. These metadata requirements seem to require
two passes of the inner expression’s data: one to compute and align
metadata, and another to produce a result. There are opportunities
for optimization here to return to single-pass pipelining techniques,
but they merit investigation. This pipeline-breaking problem gener-
alizes to any operator that reasons about its input schema(s), so it
needs to be handled comprehensively.

In short, we expect that the fluid movement of large volumes of
data into metadata and vice versa introduces new challenges for
query processing and optimization in dataframes.

6. USER MODEL CHALLENGES
Unlike in SQL where queries are submitted all-or-nothing, data-

frame users construct queries in an incremental, iterative, and in-
teractive fashion. Queries are submitted as a series of statements
(as we saw in Figure 1) a few operators at a time in trial-and-error-
based sessions. Users rely on immediate feedback to debug and
rapidly iterate on these statements and frequently revisit results of
intermediate statements for experimentation and composition dur-
ing exploration. This interactive session-based programming model

2041

DF GROUPBY

collect"Month"

MAP

flatten

TOLABELS

"Month"

T

(a) Original plan

DF GROUPBY

collect"Year"

MAP

flatten

T TOLABELS

"Month"

T

(b) Optimized rewrite that leverages sorted Year column
Figure 6: Alternative query plans for pivoting a dataframe around the “Month” column using the algebra from Section 4.3. TRANSPOSE is abbreviated as T.

In certain cases, we may indeed want to consider optimizing the
physical layout of the data given a TRANSPOSE operator as a part of a
query plan. This is in contrast with existing data systems that create
and optimize for a static data layout. A physical transpose may help
the optimizer match the layout to the access pattern (e.g., matrix
multiplication). A fixed data layout is likely to have a significant
performance penalty when the access pattern changes. Additionally,
consider a case where TRANSPOSE allows us more flexibility in
query planning. In the pivot case in Section 4.4, we observed that
transposing the result of a pivot is effectively a pivot across the
other column. Specifically, if we must pivot into the wide table with
Months as columns, we can either use the original plan (Figure 6a)
or one where we proceed as if the pivot is over Year, but then
transpose the final result so that the Month attribute values are used
as column headers (Figure 6b). The latter plan will be faster if
the optimizer leverages knowledge about the sorted order of the
Year column to avoid hashing the groups. This is an interesting
example of a new class of potential optimizations within dataframe
query plans that exploit an efficient TRANSPOSE. Because the axis
transpositions are happening in query expressions, the data layout
becomes a physical plan property akin to “interesting orders” [58]
or “hash teams” [33], expanding the rules for query optimization.

5.2.3 Metadata is Data (and Data is Metadata)
A standard feature of dataframes is the ability to fluidly move

values from data to metadata and back. This is made explicit in
the TOLABELS and FROMLABELS operators of our algebra, espe-
cially in combination with TRANSPOSE. These semantics cannot
be represented in languages like SQL or relational algebra that
are grounded in first-order logic; this is a signature of second-order
logic, as explored in languages like OQL [18], SchemaSQL [44] and
XQuery [23]. There is significant prior work on optimizing second-
order operations like the unnesting of nested data (e.g. [30, 60, 65]).
A distinguishing aspect of our setting is that a dataframe opera-
tion like TOLABELS commonly generates a volume of schema-level
metadata that is dependent on the size of the data; this raises new
challenges. The closest prior work to our needs studies spreadsheet-
style pivot/unpivot in databases (e.g. [27,67]); this work needs to be
generalized to the richer semantics of a dataframe algebra.

To address representational aspects, we could treat row labels
the way we treat primary keys in a relational database—by noting
the sequence of label columns in a metadata catalog. Some addi-
tional details arise in the support of positional notation: invoking
TOLABELS(c1, ..., cn) removes the relevant columns from their
positions, requiring a recalculation of the positions of all labels to
the right of c1. This can be handled by representing column order
in dynamic ranked data structures like ranked B-trees [43] or range
min-max trees [47]. In terms of data access, we may want to effi-
ciently process data columns without paying to access (dynamically
reassigned) metadata columns, and vice versa. In this case, colum-
nar layouts become attractive for projection. Alternatively, labels
can be moved into separate property tables [27], a form of “vertical
partitioning” that does not rely on columnar storage layouts.

Challenges arise in more complex expressions that include both
TOLABELS and other operators–notably MAP and TRANSPOSE. In
these cases, the number and types of columns in the dataframe is

data-dependent. This exacerbates the metadata storage issues dis-
cussed in the previous section, and brings up additional challenges.

In terms of query optimization, we now have a two-dimensional
estimation problem: both cardinality estimation (# of rows) and
arity estimation (# of columns). For most operations in our algebra
this would appear straightforward: even for TRANSPOSE, we know
the cardinality and arity of output based on input. The challenge
that arises is easy to see in a standard data science “macro”, namely
1-hot encoding (get_dummies in pandas). This operation takes a
single column as input, and produces a result table whose schema
concatenates the input schema with an (typically large) array of
boolean-typed columns, one column per distinct data value of the
input. Pivot presents a similar challenge: the width of the output
schema is based on the number of distinct data values in the input
columns. In our algebra, these macros can be implemented using
GROUPBY followed by MAP and TRANSPOSE. The resulting arity es-
timation problem reduces to distinct value estimation for the input
to GROUPBY. While techniques like hyperloglog sketches [31] could
assist here, note that we need to compute these estimates not only
on base tables that may be pre-sketched, but on intermediate results
of expressions! In short, we need to do distinct value estimation for
the outputs of query operators—including arithmetic calculations
(e.g. sums, products) and string manipulations (e.g. expanding a
document into constituent words).

In some scenarios, arity estimation is insufficient—we need exact
numbers and labels of columns. Consider the example of performing
a UNION of feature vectors generated from two different text corpora,
say Wikipedia articles unioned with DBLP articles. Each text cor-
pus begins as a dataframe with schema (documentID, content).
After a standard series of text featurization steps (word extraction
with stemming and stop-word filtering followed by 1-hot encoding),
each corpus becomes a dataframe with a documentID column, and
one boolean column for each word in the corpus. The problem is
that the UNION needs to dynamically check for compatibility of the
input schemas—it needs to first generate the full (large!) schema for
each input, and compare the two. Even if we relax our semantics to
an “outer” union, we want to identify and align the common words
across the corpora. These metadata requirements seem to require
two passes of the inner expression’s data: one to compute and align
metadata, and another to produce a result. There are opportunities
for optimization here to return to single-pass pipelining techniques,
but they merit investigation. This pipeline-breaking problem gener-
alizes to any operator that reasons about its input schema(s), so it
needs to be handled comprehensively.

In short, we expect that the fluid movement of large volumes of
data into metadata and vice versa introduces new challenges for
query processing and optimization in dataframes.

6. USER MODEL CHALLENGES
Unlike in SQL where queries are submitted all-or-nothing, data-

frame users construct queries in an incremental, iterative, and in-
teractive fashion. Queries are submitted as a series of statements
(as we saw in Figure 1) a few operators at a time in trial-and-error-
based sessions. Users rely on immediate feedback to debug and
rapidly iterate on these statements and frequently revisit results of
intermediate statements for experimentation and composition dur-
ing exploration. This interactive session-based programming model

2041

Modin Challenges
• Massive API: 240+ operators, but with a lot of redundancy
• Parallel Execution: row-based, column-based, and block-based
• Data Model Challenges: Schema induction, reusing type info
• Order is important
• Supporting billions of columns: Row/Column equivalence (transpose)
• Metadata is data (and vice versa)
• Users want immediate feedback
• Users want to create queries incrementally

12D. Koop, CSCI 640/490, Spring 2024

Assignment 4
• Work on Data Integration and Data Fusion
• Integrate artist datasets from different institutions (Met, NGA, AIC, CMA)
- Integrate information based on ids and matching

• Record Matching:
- Which artists are the same?

• Data Fusion:
- Names
- Dates
- Nationalities

13D. Koop, CSCI 640/490, Spring 2024

http://faculty.cs.niu.edu/~dakoop/cs640-2024sp/assignment4.html

Test 2
• Upcoming… April 8
• Similar format, but more emphasis on topics we have covered including the

research papers

14D. Koop, CSCI 640/490, Spring 2024

Dataframes, Databases, and the Cloud
• How do we take advantage of different architectures?
• Lots of work in scaling databases and specialized computational engines
• What is the code that people actually write?

15D. Koop, CSCI 640/490, Spring 2024

Magpie: Python at Speed and Scale using Cloud
Backends

A. Jindal

D. Koop, CSCI 640/490, Spring 2024

https://alekh.org/slides/MagpieCIDRTalk.pdf
https://alekh.org/slides/MagpieCIDRTalk.pdf

The current landscape … is a fragmented jungle!

PySparkNvidia
RAPIDS

RayDask

NumPy
Arrays

DASK
Dataframe

PySpark
Dataframe

Ray
Programs

Cuda
Dataframe

Backends

Data
Layer

APIs

Higher-level
Abstractions

Ibis

Vaex
Dataframe

Native
Python

Distributed

Microsoft
SCOPE

Apache
MADlib

Google
BigQuery

Apache
Spark PostgreSQL Microsoft

SQL Server

SQL +
Built-in

Functions
SQL ExtensionsSQL + User Defined Functions

Azure Synapse Analytics

Relational Tables

Extending Python ecosystem Extending SQL databases

Data Science Jungle

17

[A. Jindal et al., 2021]
D. Koop, CSCI 640/490, Spring 2024

Magpie

Microsoft
SCOPE

Apache
MADlib

Database
Backends

Unified Dataframe API

Pythonic Environment

Cross Optimization

Common Data Layer

Magpie
Middleware

PyFroid Compiler

PostgreSQL

Polyengines
& Mappers Native

Python

Apache
Spark Google

BigQuery

Azure Synapse Analytics

SQL Server

Familiar Python surface

Ongoing standardization

Cloud backends

Multi-backend
environments and libraries

Batching Pandas into large
query expressions

Backend selection using
past workloads

Cache commonly seen
dataframes

Magpie Goals

18D. Koop, CSCI 640/490, Spring 2024

ConnectorX: Databases to Dataframes
• Write read_sql queries but write SQL
• Written in Rust
• Returns a dataframe

19D. Koop, CSCI 640/490, Spring 2024

query = f”””
SELECT l_orderkey,
 SUM(l_extendedprice * (1 — l_discount)) AS revenue,
 o_orderdate,
 o_shippriority
FROM customer,
 orders,
 lineitem
WHERE c_mktsegment = ‘BUILDING’
 AND c_custkey = o_custkey
 AND l_orderkey = o_orderkey
 AND o_orderdate < DATE ‘1995–03–15’
 AND l_shipdate > DATE ‘1995–03–15’
GROUP BY l_orderkey,
 o_orderdate,
 o_shippriority
“””
df = read_sql(“postgresql://postgres:postgres@localhost:5432/tpch”, query,
 partition_on=”l_orderkey”, partition_num=4)

ConnectorX Speed & Memory

20

[X. Wang, 2022]
D. Koop, CSCI 640/490, Spring 2024

Improvements in ConnectorX
• Written in native language (Rust)
• Copy exactly once (even during parallel computations)
• CPU cache-friendly: process in a streaming fashion

21D. Koop, CSCI 640/490, Spring 2024

An Opinionated Introduction to Polars

Nico Kreiling

D. Koop, CSCI 640/490, Spring 2024

https://www.dropbox.com/s/fphay3yav2b2rdq/2023_polars.pdf?dl=1

Handling Large Data with Polars

Etienne Bacher

D. Koop, CSCI 640/490, Spring 2024

https://www.handling-large-data.etiennebacher.com/#/title-slide

Discussion
• Data in the cloud and local exploration
• Languages: SQL or Pandas or Ibis or….?

24D. Koop, CSCI 640/490, Spring 2024

