
Advanced Data Management (CSCI 640/490)

Data Wrangling & Data Cleaning

Dr. David Koop

D. Koop, CSCI 640/490, Spring 2024

Types of Dirty Data Problems
• Separator Issues: e.g. CSV without respecting double quotes

- 12, 13, "Doe, John", 45

• Naming Conventions: NYC vs. New York
• Missing required fields, e.g. key
• Different representations: 2 vs. two
• Truncated data: "Janice Keihanaikukauakahihuliheekahaunaele"

becomes "Janice Keihanaikukauakahihuliheek" on Hawaii license
• Redundant records: may be exactly the same or have some overlap
• Formatting issues: 2017-11-07 vs. 07/11/2017 vs. 11/07/2017

2

[J. Canny et al.]
D. Koop, CSCI 640/490, Spring 2024

https://bcourses.berkeley.edu/files/50707513/download?download_frd=1&verifier=njoObzWKAmeihDjqFN9EMrY0IRlDbUWy2mFegnXN

Dirty Data: Data Scientist's View
• Combination of:
- Statistician's View: data has non-ideal samples for model
- Database Expert's View: missing data, corrupted data
- Domain Expert's View: data doesn't pass the smell test

• All of the views present problems with the data
• The goal may dictate the solutions:
- Median value: don't worry too much about crazy outliers
- Generally, aggregation is less susceptible by numeric errors
- Be careful, the data may be correct…

3

[J. Canny et al.]
D. Koop, CSCI 640/490, Spring 2024

https://bcourses.berkeley.edu/files/50707513/download?download_frd=1&verifier=njoObzWKAmeihDjqFN9EMrY0IRlDbUWy2mFegnXN

Be careful how you detect dirty data
• The appearance of a hole in the earth’s ozone layer over Antarctica, first

detected in 1976, was so unexpected that scientists didn’t pay attention to
what their instruments were telling them; they thought their instruments were
malfunctioning.
– National Center for Atmospheric Research

4

[Wikimedia]
D. Koop, CSCI 640/490, Spring 2024

https://commons.wikimedia.org/wiki/File:Agujero_en_la_capa_de_ozono_2008.jpg

Wrangler
• Data cleaning takes a lot of time and human effort
• "Tedium is the message"
• Repeating this process on multiple data sets is even worse!
• Solution:
- interactive interface (mixed-initiative)
- transformation language with natural language "translations"
- suggestions + "programming by demonstration"

5D. Koop, CSCI 640/490, Spring 2024

Transform Definition
Format φ(R, i, f) = {(a1, . . . , ai−1, ai+1, . . . , an, f(ai)) | (a1, . . . , an) ∈ R}
Add α(R, x) = {(a1, . . . , an, x) | (a1, . . . , an) ∈ R}
Drop π(R, i) = {(a1, . . . , ai−1, ai+1, . . . , an) | (a1, . . . , an) ∈ R}
Copy κ((a1, . . . , an), i) = {(a1, . . . , an, ai) | (a1, . . . , an) ∈ R}
Merge µ((a1, . . . , an), i, j, glue) = {(a1, . . . , ai−1, ai+1, . . . , aj−1, aj+1, . . . , an, ai ⊕ glue⊕ aj) | (a1, . . . , an) ∈ R}
Split ω((a1, . . . , an), i, splitter) = {(a1, . . . , ai−1, ai+1, . . . , an, left(ai, splitter), right(ai, splitter)) | (a1, . . . , an) ∈ R}
Divide δ((a1, . . . , an), i, pred) = {(a1, . . . , ai−1, ai+1, . . . , an, ai, null) | (a1, . . . , an) ∈ R ∧ pred(ai)} ∪

{(a1, . . . , ai−1, ai+1, . . . , an, null, ai) | (a1, . . . , an) ∈ R ∧ ¬pred(ai)}
Fold λ(R, i1, i2, . . . ik) = {(a1, . . . , ai1−1, ai1+1, . . . , ai2−1, ai2+1, . . . , aik−1, aik+1, . . . , an, ail) |

(a1, . . . , an) ∈ R ∧ 1 ≤ l ≤ k}
Select σ(R, pred) = {(a1, . . . , an) | (a1, . . . , an) ∈ R ∧ pred((a1, . . . , an))}

Notation: R is a relation with n columns. i, j are column indices and ai represents the value of a column in a row. x and glue are
values. f is a function mapping values to values. x ⊕ y concatenates x and y. splitter is a position in a string or a regular expression,
left(x, splitter) is the left part of x after splitting by splitter. pred is a function returning a boolean.

Table 1: Definitions of the various transforms. Unfold is defined in the full paper [22].

2 Merges

Format
'(.*), (.*)' to '\2 \1'

Stewart,Bob

Dole,Jerry
Davis

Marsh

Anna

Joan

Stewart
Anna Davis

Dole
Joan Marsh
Jerry

Bob Bob

Jerry

Stewart

Dole
Anna

Joan

Davis

Marsh

Split at ' '

Anna

Joan

Davis

Marsh

Bob Stewart

Jerry Dole

Figure 6: Using Format, Merge and Split to clean name for-
mat differences
Value Translation
The Format transform applies a function to every value in
a column. We provide built-in functions for common oper-
ations like regular-expression based substitutions and arith-
metic operations, but also allow user defined functions. Col-
umn and table names can be demoted into column values us-
ing special characters in regular expressions; these are useful
in conjunction with the Fold transform described below.
One-to-one Mappings of Rows
One-to-one transforms are column operations that transform
individual rows. As illustrated in Figures 6 and 7, they can
be used to unify data collected from different sources.
TheMerge transform concatenates values in two columns,

optionally interposing a constant (the delimiter) in the mid-
dle, to form a single new column. Split splits a column into
two or more parts, and is used typically to parse a value into
its constituent parts. The split positions are often difficult
to specify if the data is not well structured. We allow split-
ting by specifying character positions, regular expressions,
or by interactively performing splits on example values (Sec-
tion 4.3).

Drop, Copy, and Add allow users to drop or copy a col-
umn, or add a new column. Occasionally, logically different
values (maybe from multiple sources) are bunched into the
same column, and we want to transform only some of them.
Divide conditionally divides a column, sending values into
one of two new columns based on a predicate.
Many-to-Many Mappings of Rows
Many-to-Many transforms help to tackle higher-order
schematic heterogeneities [18] where information is stored

partly in data values, and partly in the schema, as shown in
Figure 8. Fold ”flattens” tables by converting one row into
multiple rows, folding a set of columns together into one col-
umn and replicating the rest. Conversely Unfold ”unflattens”
tables; it takes two columns, collects rows that have the same
values for all the other columns, and unfolds the two chosen
columns. Values in one column are used as column names to
align the values in the other column. Figures 8 and 9 show
an example with student grades where the subject names are
demoted into the row via Format, grades are Folded together,
and then Split to separate the subject from the grade. Fold
and UnFold are adapted from the restructuring operators of
SchemaSQL [16], and are discussed in more detail in the
full paper [22].
Power of Transforms: As we prove in the full paper [22],
these transforms can be used to perform all one-to-many row
mappings of rows. Fold andUnfold can also be used to f latten
tables, converting them to a form where column and table
names are all literals and do not have data values. For a for-
mal definition of (un)flattening and an analysis of the power
of Fold and Unfold, see [16].

4.2 Interactive Application of Transforms
We want to apply the transforms on tuples incrementally, as
they stream in, so that the effects of transforms can be imme-
diately shown on tuples visible on the screen of the UI. It also
lets the system pipeline discrepancy detection on the results
of the transforms, thereby giving the interactivity advantages
described in the introduction.
Among the transforms discussed above, all the one-to-one

transforms as well as the Fold transform are functions on a
single row. Hence they are easy to apply incrementally.
However Unfold operates on a set of rows with match-

ing values. Since this could potentially involve scanning the
entire data, we do not allow Unfold to be specified graphi-
cally. For displaying records on the screen we can avoid this
problem by not showing a complete row but instead show-
ing more and more columns as distinct values are found, and
filling data values in these columns as the corresponding in-
put rows are read. Such progressive column addition in the
spreadsheet interface could confuse the user; hence we plan
to implement an abstraction interface where all newly cre-
ated columns are shown as one rolled up column. When

Potter's Wheel: Example

6

[V. Raman and J. Hellerstein, 2001]
D. Koop, CSCI 640/490, Spring 2024

Transform Definition
Format φ(R, i, f) = {(a1, . . . , ai−1, ai+1, . . . , an, f(ai)) | (a1, . . . , an) ∈ R}
Add α(R, x) = {(a1, . . . , an, x) | (a1, . . . , an) ∈ R}
Drop π(R, i) = {(a1, . . . , ai−1, ai+1, . . . , an) | (a1, . . . , an) ∈ R}
Copy κ((a1, . . . , an), i) = {(a1, . . . , an, ai) | (a1, . . . , an) ∈ R}
Merge µ((a1, . . . , an), i, j, glue) = {(a1, . . . , ai−1, ai+1, . . . , aj−1, aj+1, . . . , an, ai ⊕ glue⊕ aj) | (a1, . . . , an) ∈ R}
Split ω((a1, . . . , an), i, splitter) = {(a1, . . . , ai−1, ai+1, . . . , an, left(ai, splitter), right(ai, splitter)) | (a1, . . . , an) ∈ R}
Divide δ((a1, . . . , an), i, pred) = {(a1, . . . , ai−1, ai+1, . . . , an, ai, null) | (a1, . . . , an) ∈ R ∧ pred(ai)} ∪

{(a1, . . . , ai−1, ai+1, . . . , an, null, ai) | (a1, . . . , an) ∈ R ∧ ¬pred(ai)}
Fold λ(R, i1, i2, . . . ik) = {(a1, . . . , ai1−1, ai1+1, . . . , ai2−1, ai2+1, . . . , aik−1, aik+1, . . . , an, ail) |

(a1, . . . , an) ∈ R ∧ 1 ≤ l ≤ k}
Select σ(R, pred) = {(a1, . . . , an) | (a1, . . . , an) ∈ R ∧ pred((a1, . . . , an))}

Notation: R is a relation with n columns. i, j are column indices and ai represents the value of a column in a row. x and glue are
values. f is a function mapping values to values. x ⊕ y concatenates x and y. splitter is a position in a string or a regular expression,
left(x, splitter) is the left part of x after splitting by splitter. pred is a function returning a boolean.

Table 1: Definitions of the various transforms. Unfold is defined in the full paper [22].

2 Merges

Format
'(.*), (.*)' to '\2 \1'

Stewart,Bob

Dole,Jerry
Davis

Marsh

Anna

Joan

Stewart
Anna Davis

Dole
Joan Marsh
Jerry

Bob Bob

Jerry

Stewart

Dole
Anna

Joan

Davis

Marsh

Split at ' '

Anna

Joan

Davis

Marsh

Bob Stewart

Jerry Dole

Figure 6: Using Format, Merge and Split to clean name for-
mat differences
Value Translation
The Format transform applies a function to every value in
a column. We provide built-in functions for common oper-
ations like regular-expression based substitutions and arith-
metic operations, but also allow user defined functions. Col-
umn and table names can be demoted into column values us-
ing special characters in regular expressions; these are useful
in conjunction with the Fold transform described below.
One-to-one Mappings of Rows
One-to-one transforms are column operations that transform
individual rows. As illustrated in Figures 6 and 7, they can
be used to unify data collected from different sources.
TheMerge transform concatenates values in two columns,

optionally interposing a constant (the delimiter) in the mid-
dle, to form a single new column. Split splits a column into
two or more parts, and is used typically to parse a value into
its constituent parts. The split positions are often difficult
to specify if the data is not well structured. We allow split-
ting by specifying character positions, regular expressions,
or by interactively performing splits on example values (Sec-
tion 4.3).

Drop, Copy, and Add allow users to drop or copy a col-
umn, or add a new column. Occasionally, logically different
values (maybe from multiple sources) are bunched into the
same column, and we want to transform only some of them.
Divide conditionally divides a column, sending values into
one of two new columns based on a predicate.
Many-to-Many Mappings of Rows
Many-to-Many transforms help to tackle higher-order
schematic heterogeneities [18] where information is stored

partly in data values, and partly in the schema, as shown in
Figure 8. Fold ”flattens” tables by converting one row into
multiple rows, folding a set of columns together into one col-
umn and replicating the rest. Conversely Unfold ”unflattens”
tables; it takes two columns, collects rows that have the same
values for all the other columns, and unfolds the two chosen
columns. Values in one column are used as column names to
align the values in the other column. Figures 8 and 9 show
an example with student grades where the subject names are
demoted into the row via Format, grades are Folded together,
and then Split to separate the subject from the grade. Fold
and UnFold are adapted from the restructuring operators of
SchemaSQL [16], and are discussed in more detail in the
full paper [22].
Power of Transforms: As we prove in the full paper [22],
these transforms can be used to perform all one-to-many row
mappings of rows. Fold andUnfold can also be used to f latten
tables, converting them to a form where column and table
names are all literals and do not have data values. For a for-
mal definition of (un)flattening and an analysis of the power
of Fold and Unfold, see [16].

4.2 Interactive Application of Transforms
We want to apply the transforms on tuples incrementally, as
they stream in, so that the effects of transforms can be imme-
diately shown on tuples visible on the screen of the UI. It also
lets the system pipeline discrepancy detection on the results
of the transforms, thereby giving the interactivity advantages
described in the introduction.
Among the transforms discussed above, all the one-to-one

transforms as well as the Fold transform are functions on a
single row. Hence they are easy to apply incrementally.
However Unfold operates on a set of rows with match-

ing values. Since this could potentially involve scanning the
entire data, we do not allow Unfold to be specified graphi-
cally. For displaying records on the screen we can avoid this
problem by not showing a complete row but instead show-
ing more and more columns as distinct values are found, and
filling data values in these columns as the corresponding in-
put rows are read. Such progressive column addition in the
spreadsheet interface could confuse the user; hence we plan
to implement an abstraction interface where all newly cre-
ated columns are shown as one rolled up column. When

Potter's Wheel: Transforms

7

[V. Raman and J. Hellerstein, 2001]
D. Koop, CSCI 640/490, Spring 2024

Interface
• Automated Transformation Suggestions
• Editable Natural Language Explanations

• Visual Transformation Previews
• Transformation History

8

[S. Kandel et al., 2011]
D. Koop, CSCI 640/490, Spring 2024

intended to enhance analysts’ ability to review and refine
transformation steps. Textual annotations enable communi-
cation of analyst intent. Wrangler also couples verification
(run in the background as data is transformed) with visual-
ization to help users discover data quality issues.

Basic Interactions
The Wrangler interface supports six basic interactions within
the data table. Users can select rows, select columns, click
bars in the data quality meter, select text within a cell, edit
data values within the table (for mass editing [14, 19]), and
assign column names, data types or semantic roles. Users
can also choose transforms from the menu or refine sugges-
tions by editing transform descriptions as described below.

Automated Transformation Suggestions
As a user interacts with data, Wrangler generates a list of
suggested transforms. In some cases the set of possible sug-
gestions is large (in the hundreds), but we wish to show only
a relevant handful to avoid overload. Instead of enumerat-
ing the entire suggestion space, users can prune and reorder
the space in three ways. First, users can provide more exam-
ples to disambiguate input to the inference engine. Providing
examples is especially effective for text selections needed
for splitting, extraction, and reformatting; two or three well-
chosen examples typically suffice. Second, users can filter
the space of transforms by selecting an operator from the
transform menu. Third, users can edit a transform by alter-
ing the parameters of a transform to a desired state.

Wrangler does not immediately execute a selected sugges-
tion. Instead, Wrangler makes it the current working trans-
form. The user can edit this transform directly; as a user edits
parameters, the suggestion space updates to reflect these ed-
its. Also, a user can instead interact with the table to generate
new suggestions that use the working transform as context.

Natural Language Descriptions
To aid apprehension of suggested transforms, Wrangler gen-
erates short natural language descriptions of the transform
type and parameters. These descriptions are editable, with
parameters presented as bold hyperlinks (Fig. 8). Clicking
a link reveals an in-place editor appropriate to the parameter
(Fig. 8b). Enumerable variables (such as the direction of a
fill) are mapped to drop-down menus while free-form text
parameters are mapped to text editors with autocomplete.

We designed these descriptions to be concise; default param-
eters that are not critical to understanding may be omitted.
For example, the unless between parameter for split opera-
tions indicates regions of text to ignore while splitting. In
most cases, this parameter is left undefined and including it
would bloat the description. To edit hidden parameters, users
can click the expansion arrow to the left of the description,
revealing an editor with entries for all possible parameters.

We also sought to make parameters within descriptions read-
able by non-experts. For instance, we translate regular ex-
pressions into natural language via pattern substitution (e.g.,
(\d+) to ‘number’). This translation can make some descrip-
tions less concise but increases readability. Translation is

Figure 8. Editable Natural Language Descriptions. (a) An example of

an editable description; highlighted text indicates editable parameters.

(b) Clicking on a parameter reveals an in-place editor. (c) After editing,

the description may update to include new parameters. In this case, a

new window size parameter is displayed for the moving average.

only performed with regular expressions generated by the
Wrangler inference engine. If a user types in a custom ex-
pression, Wrangler will reflect their input.

Visual Transformation Previews
Wrangler uses visual previews to enable users to quickly
evaluate the effect of a transform. For most transforms, Wran-
gler displays these previews in the source data, and not as
a separate visualization (e.g., side-by-side before and after
views). In-place previews provide a visual economy that
serves a number of goals. First, displaying two versions of
a table inherently forces both versions to be small, which
is particularly frustrating when the differences are sparse.
Second, presenting in-place modifications draws user atten-
tion to the effect of the transformation in its original context,
without requiring a shift in focus across multiple tables. As
we discuss next, in-place previews better afford direct ma-
nipulation for users to revise the current transform.

Wrangler maps transforms to at least one of five preview
classes: selection, deletion, update, column and table. In
defining these mappings, we attempted to convey a trans-
form’s effect with minimum displacement of the original
data. This stability allows users to continue interacting with
the original data, e.g., to provide new selection examples.

Selection previews highlight relevant regions of text in all
affected cells (Fig. 3). Deletion previews color to-be-deleted
cells in red (Fig. 2). Update previews overwrite values in a
column and indicate differences with yellow highlights (Fig.
4). Column previews display new derived columns, e.g., as
results from an extract operation (Fig. 3). We show a side-
by-side display of versions when previewing fold and unfold
transforms. These alter the structure of the table to such an
extent that the best preview is to show another table (Fig.
6, 9). These table previews use color highlights to match
input data to their new locations in the output table. Some
transforms map to multiple classes; e.g., extract transforms
use both selection and column previews.

When possible, previews also indicate where the user can
modify the transform through either direct manipulation or
description refinement. Highlighting selected text or cells
works well for certain transformations. For example, by

DataWrangler
ExportImport

Split data repeatedly on
newline into rows

Split split repeatedly on
","

Promote row 0 to header

Delete rows 0,1

Fill row 0 by copying
values from the left

Transform Script

Text

Split

Cut

Columns

Fill

Drop

Rows

Delete

Fill

Promote

Table

Fold

Unfold

Clear

split split1 split2 split3 split4
0 2004 2004 2004 2003
1 STATE Participation Rate 2004 Mean SAT I Verbal Mean SAT I Math Participation Rate 2003
2 New York 87 497 510 82
3 Connecticut 85 515 515 84
4 Massachusetts 85 518 523 82
5 New Jersey 83 501 514 85
6 New Hampshire 80 522 521 75
7 D.C. 77 489 476 77
8 Maine 76 505 501 70
9 Pennsylvania 74 501 502 73

10 Delaware 73 500 499 73
11 Georgia 73 494 493 66

split fold fold1 value
0 New York 2004 Participation Rate 2004
1 New York 2004 Mean SAT I Verbal
2 New York 2004 Mean SAT I Math
3 New York 2003 Participation Rate 2003
4 New York 2003 Mean SAT I Verbal
5 New York 2003 Mean SAT I Math
6 Connecticut 2004 Participation Rate 2004
7 Connecticut 2004 Mean SAT I Verbal
8 Connecticut 2004 Mean SAT I Math
9 Connecticut 2003 Participation Rate 2003

10 Connecticut 2003 Mean SAT I Verbal
11 Connecticut 2003 Mean SAT I Math

87
497
510
82
496
510
85
515
515
84
512
514

Figure 9. Visual preview of a fold operation. For transforms that rear-

range table layout, Wrangler previews the output table and uses color

highlights to show the correspondence of values across table states.

highlighting the text selected by a regular expression in each
cell, users can determine which examples they need to fix.
For reshape transforms, Wrangler highlights the input data
in the same color as the corresponding output in the sec-
ondary table. For instance, in a fold operation, data values
that will become keys are colored to match the keys in the
output table (Fig. 9). Wrangler also highlights the param-
eters in the transform description using the same colors as
those generated in previews (Fig. 3–6). The consistent use
of colors allows users to associate clauses in a description
with their effects in the table.

Transformation Histories and Export
As successive transforms are applied, Wrangler adds their
descriptions to an interactive transformation history viewer.
Users can edit individual transform descriptions and selec-
tively enable and disable prior transforms. Upon changes,
Wrangler runs the edited script and updates the data table.
Toggling or editing a transform may result in downstream er-
rors; Wrangler highlights broken transforms in red and pro-
vides an error message to aid debugging.

Wrangler scripts also support lightweight text annotations.
Analysts can use annotations to document their rationale for
a particular transform and may help future users better un-
derstand data provenance. To annotate a transform, users can
click the edit icon next to the desired transform and write
their annotation in the resulting text editor. Users can view
an annotation by mousing over the same edit icon. These
annotations appear as comments in code-generated scripts.
Users can export both generated scripts and transformed data;
clicking the Export button in the transform history invokes
export options. Analysts can later run saved or exported
scripts on new data sources, modifying the script as needed.

TYPES, ROLES, AND VERIFICATION
It is often difficult to discover data quality issues and there-
fore difficult to address them by constructing the appropri-
ate transform. Wrangler aids discovery of data quality issues
through the use of data types and semantic roles.

As users transform data, Wrangler attempts to infer the data
type and semantic role for each column. Wrangler applies
validation functions to a sample of a column’s data to infer

these types, assigning the type that validates for over half of
the non-missing values. When multiple types satisfy this cri-
teria, Wrangler assigns the more specific one (e.g., integer is
more specific than double). Wrangler infers semantic roles
analogously. An icon in the column header indicates the se-
mantic role of the column, or the underlying data type if no
role has been assigned. Clicking the icon reveals a menu
with which users can manually assign a type or role.

Above each column is a data quality meter: a divided bar
chart that indicates the proportion of values in the column
that verify completely. Values that parse successfully are in-
dicated in green; values that match the type but do not match
the role (e.g., a 6 digit zip code) are shown in yellow; those
that do not match the type (e.g., ‘One’ does not parse as an
integer) are shown in red; and missing data are shown in
gray. Clicking a bar generates suggested transforms for that
category. For instance, clicking the missing values bar will
suggest transforms to fill in missing values or delete those
rows. Clicking the fails role bar will suggest transforms such
as a similarity join on misspelled country names.

THE WRANGLER INFERENCE ENGINE
We now present the design of the Wrangler inference engine,
which is responsible for generating a ranked list of suggested
transforms. Inputs to the engine consist of user interactions;
the current working transform; data descriptions such as col-
umn data types, semantic roles, and summary statistics; and
a corpus of historical usage statistics. Transform sugges-
tion proceeds in three phases: inferring transform parame-
ters from user interactions, generating candidate transforms
from inferred parameters, and finally ranking the results.

Usage Corpus and Transform Equivalence
To generate and rank transforms, Wrangler’s inference en-
gine relies on a corpus of usage statistics. The corpus con-
sists of frequency counts of transform descriptors and initi-
ating interactions. We built our initial corpus by wrangling
our collection of gathered data sets. The corpus updates over
time as more analysts use Wrangler.

For any given transform, we are unlikely to find an exact
match in the corpus. For instance, an analyst may perform
a fold operation over a combination of columns and rows
that does not appear in the corpus. In order to get useful
transform frequencies, we define a relaxed matching routine:
two transforms are considered equivalent in our corpus if (a)
they have an identical transform type (e.g., extract or fold)
and (b) they have equivalent parameters as defined below.

Wrangler transforms accept four basic types of parameters:
row, column or text selections and enumerables. We treat
two row selections as equivalent if they both (a) contain fil-
tering conditions (either index- or predicate-based) or (b)
match all rows in a table. Column selections are equivalent
if they refer to columns with the same data type or semantic
role. We based this rule on the observation that transforms
that operate on identical data types are more likely to be
similar. Text selections are equivalent if both (a) are index-
based selections or (b) contain regular expressions. We con-

Data Wrangler Demo
• http://vis.stanford.edu/wrangler/app/

9D. Koop, CSCI 640/490, Spring 2024

DataWrangler
ExportImport

Split data repeatedly on newline into
rows

Split split repeatedly on ','

Promote row 0 to header

Delete row 7

Delete empty rows

Fill row 7 by copying values from above

Fill row 7 by copying values from below

Fold using row 7 as a key

Fold Year using row 7 as a key

Transform Script

Text

Split

Cut

Columns

Fill

Drop

Rows

Delete

Fill

Promote

Table

Fold

Unfold

Clear

Year Property_crime_rate
0 Reported crime in Alabama
1
2 2004 4029.3
3 2005 3900
4 2006 3937
5 2007 3974.9
6 2008 4081.9
7
8 Reported crime in Alaska
9

10 2004 3370.9
11 2005 3615
12 2006 3582
13 2007 3373.9
14 2008 2928.3
15
16 Reported crime in Arizona
17
18 2004 5073.3
19 2005 4827
20 2006 4741.6
21 2007 4502.6
22 2008 4087.3
23

24 Reported crime in
Arkansas

25

Figure 1. The Wrangler Interface. The left panel contains (from top-to-bottom) a history of transforms, a transform selection menu, and automat-

ically suggested transforms based on the current selection. Bold text within the transform descriptions indicate parameters that can be clicked and

revised. The right panel contains an interactive data table; above each column is a data quality meter.

short natural language descriptions—which users can refine
via interactive parameters—and visual previews of transform
results. These techniques enable analysts to rapidly navigate
and assess the space of viable transforms.

As analysts transform data, their steps are recorded in a script
to facilitate reuse and provide documentation of data prove-
nance. Wrangler’s interactive history viewer supports re-
view, refinement, and annotation of these scripts. Wran-
gler’s high-level language supports a variety of runtime plat-
forms: Wrangler scripts can be run in a web browser using
JavaScript or translated into MapReduce or Python code.

We also present a controlled user study comparing Wran-
gler and Excel across a set of data wrangling tasks. We find
that Wrangler significantly reduces specification time and
promotes the use of robust transforms rather than manual
editing. Wrangler is one piece of a larger effort to address
bottlenecks in the data lifecycle by integrating insights and
methods from the HCI and database communities.

RELATED WORK
The database and machine learning communities have con-
tributed a number of algorithmic techniques for aiding data
cleaning and integration. These techniques include meth-
ods for detecting erroneous values [10, 11], information ex-
traction [1, 25], entity resolution [6], type inference [7], and
schema matching [9, 21]. In the Wrangler interface we seek
to surface such techniques in an accessible manner.

A number of commercial and research systems provide graph-
ical interfaces leveraging the above methods. Many of these
tools provide interfaces for schema matching or entity reso-
lution [3, 9, 16, 23]. Toped++ [24] is an interface for creating
Topes, objects that validate and transform data. Topes sup-
port transformations such as text formatting and lookups, but
provide little support for filtering, reshaping, or aggregation.
Bellman [5] helps users understand the structure and quality
of a database, but does not enable transformations.

Many data cleaning applications apply direct manipulation
and programming-by-demonstration (PBD) methods to spe-
cific cleaning tasks. Users of SWYN [2] build regular ex-
pressions by providing example text selections and can eval-
uate their effect in visual previews. Potluck [14] applies si-
multaneous text editing [19] to merge data sources. Karma
[26] infers text extractors and transformations for web data
from examples entered in a table. Vegemite [18] applies
PBD to integrate web data, automates the use of web ser-
vices, and generates shareable scripts. Other interfaces [15]
apply PBD to data integration via copy and paste actions.

Wrangler applies a number of these techniques: it infers reg-
ular expressions from example selections [2] and supports
mass editing [14, 19]. Wrangler uses semantic roles akin
to Topes [24] and provides natural language descriptions of
transforms [18]. However, Wrangler differs in important
ways. PBD data tools support text extraction or data integra-
tion, but lack operations such as reshaping, aggregation, and
missing value imputation. Prior tools (except for Vegemite
[18]) also do not generate scripts to document provenance.

Most closely related to Wrangler is prior work on interactive
data cleaning. Potter’s Wheel [22] provides a transformation
language for data formatting and outlier detection. Wrangler
extends the Potter’s Wheel language with key differences
discussed later. Ajax [8] also provides an interface to spec-
ify transforms, with advanced facilities for entity resolution.
Neither tool provides much support for direct manipulation:
interaction is largely restricted to menu-based commands or
entering programming statements. Google Refine [13] (for-
merly Freebase GridWorks) leverages Freebase to enable en-
tity resolution and discrepancy detection. It provides sum-
marization and filtering support through faceted histograms.
Though users can specify some commands graphically, oth-
ers must be written in a command language. Moreover, the
system assumes that input data arrives in a proper tabular
format, limiting the forms of data to which it can be applied.

http://vis.stanford.edu/wrangler/app/

Evaluation
• Compare with Excel
• Tests:
- Extract text from a single string entry
- Fill in missing values with estimates
- Reshape tables

• Allowed users to ask questions about Excel, not Wrangler
• Found significant effect of tool and users found previews and suggestions

helpful
• Complaint: No manual fallback, make implications of user choices more

obvious for users

10D. Koop, CSCI 640/490, Spring 2024

COMPARATIVE EVALUATION WITH EXCEL
As an initial evaluation of Wrangler, we conducted a com-
parative user study with Microsoft Excel. Subjects performed
three common data cleaning tasks: value extraction, missing
value imputation, and table reshaping. Our goal was to com-
pare task completion times and observe data cleaning strate-
gies. We chose Excel because it is the most popular data ma-
nipulation tool and provides an ecologically valid baseline
for comparison: all subjects use it regularly and half self-
report as experts. Excel also supports our chosen tasks. Nei-
ther Potter’s Wheel [22] (no support for fill) nor Google Re-
fine [13] (lack of reshaping) support the full set. In contrast,
Excel includes specific tools for each task (text-to-columns,
goto-special & pivot tables) in addition to manual editing.

Participants and Methods
We recruited 12 participants, all professional analysts or grad-
uate students who regularly work with data. Subjects rated
their prior experience with Excel on a 10-point scale (1 be-
ing basic knowledge and 10 being expert); the median score
was 5. Participants had never used the Wrangler interface.

We first presented a 10 minute Wrangler tutorial describ-
ing how to create, edit, and execute transforms. We then
asked subjects to complete three tasks (described below) us-
ing both Wrangler and Excel. We randomized the presenta-
tion of tasks and tools across subjects. In each task, we asked
subjects to transform a data set into a new format, presented
to them as a picture of the final data table.

Task 1: Extract Text. In this task, we asked users to ex-
tract the number of bedrooms and housing price from hous-
ing listings on craigslist. The original data set contained one
cell for each listing, with all the information in a text string.
The target data set consisted of two columns: one for the
number of bedrooms and one for the housing price.

Task 2: Fill Missing Values. We gave users data containing
year-by-year agricultural data for three countries. Some of
the values in the data set were blank. The target data set con-
tained the same data with all missing values replaced with
the closest non-empty value from a previous year.1

Task 3: Reshape Table Structure. Users started with three
columns of housing data: year, month, and price. The target
data set contained the same data formatted as a cross-tab: the
data contained one row for each year, with the 12 months as
column headers and housing prices as cell values.

When using Excel, we allowed subjects to ask for references
to functions they could describe concretely (e.g., we would
answer “how do I split a cell?” but not “how do I get the
number of bedrooms out?”). For Wrangler tasks, we did not
respond to user inquiries. We permitted a maximum of 10
minutes per task. Each data set had at most 30 rows and 4
columns; complete manual manipulation in Excel was eas-
ily attainable within the time limits. Afterwards, each user
completed a post-study questionnaire.
1We acknowledge that this is not an ideal cleaning solution for the
data, but it nonetheless served as a useful test.

0 1 2 3 4 5 6 7 8 9 10

T1

T2

T3

User Study Task Completion Time (minutes) Wrangler Excel

Figure 11. Task completion times. Black bars indicate median values.

Median Wrangler performance is over twice as fast in all tasks.

Wrangler Accelerates Transform Specification
We performed a repeated-measures ANOVA of completion
times with task, tool, and Excel novice/expert2 as indepen-
dent factors; we log-transformed responses to better approx-
imate a normal distribution. We found a significant main
effect of tool (F1,54 = 23.65, p < 0.001), but no main effect
of task (F1,54 = 0.01, p = 0.943) or expertise (F1,54 = 0.30,
p = 0.596). We found a significant interaction effect of task
and expertise (F1,54 = 11.10, p < 0.002) driven by improved
performance by experts (regardless of tool) in the reshaping
task (T3). No other interactions were significant.

Across all tasks, median performance in Wrangler was over
twice as fast as Excel (Fig. 11). Users completed the clean-
ing tasks significantly more quickly with Wrangler than with
Excel, and this speed-up benefitted novice and expert Excel
users alike. Moreover, the user study tasks involved small
data sets amenable to manual manipulation. As data set size
grows, we expect the benefits of Wrangler to come into even
sharper relief. Of course, larger data sets might complicate
the process of assessing transform effects and so may benefit
from additional validation and visualization techniques.

Strategies for Navigating Suggestion Space
When working with Wrangler, users applied different nav-
igation strategies for different tasks. These strategies were
largely consistent across users. For text selection, users fre-
quently provided multiple examples. For other operations,
users performed an initial selection and then previewed each
suggestion. One subject noted, “I just look at the picture.”
Users with a programming background spent time reading
transform descriptions, whereas the other users relied almost
entirely on the previews. When users did not find a transform
among the initial suggestions, they most often filtered the
suggestions by selecting a transform type from the menu. If
only imperfect matches were found, users then selected the
nearest transform and edited its parameters. In other words,
users turned to manual parameterization only as a last resort.

Our post-study questionnaire asked users to rate automated
suggestions, visual previews, and direct editing of transforms
on a scale from 1 (not useful) to 5 (most useful). We per-
formed an ANOVA and found a significant difference among
the ratings (F2,33 = 17.33, p < 0.001). Users rated previews
(µ = 4.8) and suggestions (µ = 4.3) significantly more use-
ful than direct editing (µ = 2.5) (p < 0.001 in both cases by

2We divided subjects into “novices” and “experts” according to
their median self-reported expertise rating (5).

Task Completion Times

11

[S. Kandel et al., 2011]
D. Koop, CSCI 640/490, Spring 2024

Courselets
• Make sure to complete these two courselets to learn about how to use

pandas to do data wrangling and data cleaning
- using-pandas.ipynb
- data-cleaning.ipynb

12D. Koop, CSCI 640/490, Spring 2024

Test 1
• Wednesday, Feb. 28
• In-class, 9:30-10:45am
• Format:
- Multiple Choice
- Free Response

13D. Koop, CSCI 640/490, Spring 2024

https://faculty.cs.niu.edu/~dakoop/cs640-2024sp/test1.html

Assignment 3
• Same Met Art dataset
• Data Wrangling
- Using OpenRefine
- Using pandas

14D. Koop, CSCI 640/490, Spring 2024

Data Formats
• CSV
- Text
- No type information

• JSON
- Text, Hierarchical
- Limited type information

• Parquet
- Binary, Column-oriented
- Type information
- Other features: compression

15D. Koop, CSCI 640/490, Spring 2024

Reading & Writing Data in Pandas

16

[https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html]
D. Koop, CSCI 640/490, Spring 2024

Format
Type

Data Description Reader Writer
text CSV read_csv to_csv
text Fixed-Width Text File read_fwf
text JSON read_json to_json
text HTML read_html to_html
text Local clipboard read_clipboard to_clipboard

MS Excel read_excel to_excel
binary OpenDocument read_excel
binary HDF5 Format read_hdf to_hdf
binary Feather Format read_feather to_feather
binary Parquet Format read_parquet to_parquet
binary ORC Format read_orc
binary Msgpack read_msgpack to_msgpack
binary Stata read_stata to_stata
binary SAS read_sas
binary SPSS read_spss
binary Python Pickle Format read_pickle to_pickle
SQL SQL read_sql to_sql
SQL Google BigQuery read_gbq to_gbq

https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html
https://en.wikipedia.org/wiki/Comma-separated_values
https://www.json.org/
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/Microsoft_Excel
http://www.opendocumentformat.org/
https://support.hdfgroup.org/HDF5/whatishdf5.html
https://github.com/wesm/feather
https://parquet.apache.org/
https://https//orc.apache.org/
https://msgpack.org/index.html
https://en.wikipedia.org/wiki/Stata
https://en.wikipedia.org/wiki/SAS_(software)
https://en.wikipedia.org/wiki/SPSS
https://docs.python.org/3/library/pickle.html
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/BigQuery

Types of arguments for readers
• Indexing: choose a column to index the data, get column names from file or user
• Type inference and data conversion: automatic or user-defined
• Datetime parsing: can combine information from multiple columns
• Iterating: deal with very large files
• Unclean Data: skip rows (e.g. comments) or deal with formatted numbers

(e.g. 1,000,345)

17D. Koop, CSCI 640/490, Spring 2024

Reading/Writing CSV Data with pandas
• Read: df = pd.read_csv(<path>)
• Write: df.to_csv(<path>)
• Parameters:

- sep (or delimiter): the delimiter (',', ' ', '\t', '\s+')
- header: if None, no header
- names: list of header names (e.g. if the file has no header)
- skiprows: number of list of lines to skip

18D. Koop, CSCI 640/490, Spring 2024

Reading/Writing CSV Data with DuckDB
• Importing:

- read_csv method with parameters for delimter, header, etc.
- read_csv_auto automatically infer these parameters
- CREATE TABLE ontime AS SELECT * FROM
read_csv_auto('flights.csv');

• Exporting:
- Use the COPY function
- COPY tbl TO 'output.csv' (HEADER, DELIMITER ',');

19D. Koop, CSCI 640/490, Spring 2024

Parquet
• "Open source, column-oriented data file format designed for efficient data

storage and retrieval" [parquet.apache.org]
• Available in multiple languages including python
• Binary format
• Column-oriented: can read a column at a time (e.g. from the cloud)
• Self-describing (schema can be embedded)
• Supports compression
• Also supported via Apache Arrow (pyarrow in python) with zero-copy reads

20D. Koop, CSCI 640/490, Spring 2024

http://parquet.apache.org

Parquet/CSV Comparison

21

[T. Spicer]
D. Koop, CSCI 640/490, Spring 2024

https://blog.openbridge.com/how-to-be-a-hero-with-powerful-parquet-google-and-amazon-f2ae0f35ee04

Parquet Support
• Pandas:
- Install pyarrow
- df = pd.read_parquet('input.parquet')

- df.to_parquet('output.parquet')

• DuckDB
- CREATE TABLE new_tbl AS SELECT * FROM
read_parquet('input.parquet');

- COPY tbl TO 'output.parquet' (FORMAT PARQUET);

22D. Koop, CSCI 640/490, Spring 2024

23

Transform Data by Example

D. Koop, CSCI 640/490, Spring 2024

Wrangler
• Have to know what operations to apply
• What about an example-based approach instead?

24D. Koop, CSCI 640/490, Spring 2024

25

Microsoft's Transform by Example

D. Koop, CSCI 640/490, Spring 2024

https://www.youtube.com/watch?v=cl7RXSHdsyo

Figure 2: TDE transformation for date-time. (Left): user provides two desired output examples in column-D,
for the input data in column-C. (Right): After clicking on the “Get Transformation” button, TDE synthesizes
programs consistent with the given examples, and return them as a ranked list within a few seconds. Hovering
over the first program (using System.DateTime.Parse) gives a preview of all results (shaded in green).

Figure 3: (Left): transformation for names. The first three values in column-D are provided as output
examples. The desired first-names and last-names are marked in bold for ease of reading. A composed
program using library CSharpNameParser from GitHub is returned. (Right): transformations for addresses.
The first two values are provided as output examples to produce city, state, and zip-code. Note that some of
these info are missing from the input. A program invoking Bing Maps API is returned as the top result.

entered. For instance, in the first column dates are rep-
resented in many di↵erent formats. In the second column,
some customer names have first-name followed by last-name,
while others are last-name followed by comma, then first-
name, with various salutations (Mr., Dr., etc.) and su�xes
(II, Jr., etc.). Phone numbers are also inconsistent, with
various international calling codes (+1) and extensions (ext
2001), etc. Addresses in the last column are also not clean,
often with missing state and zip-code information.

This data in Figure 1 is clearly not ready for analysis
yet – an analyst wanting to figure out which day-of-the-
week has the most sales, for instance, cannot find it out
by executing a SQL query: the date column needs to be
transformed to day-of-the-week first, which however is non-
trivial even for programmers. Similarly the analyst may
want to analyze sales by area-code (which can be extracted
from phone-numbers), or by zip-code (from addresses), both
of which again require non-trivial data transformations.

In a separate scenario, suppose one would like identified
possible duplicate customer records in Figure 1, by first stan-
dardizing customer names into a format with only last and
first names (e.g., both the first two records will convert into
“Doe, John”). This again requires complex transformations.

Data transformation is clearly di�cult. However, our ob-
servation is that these domain-specific transformation prob-
lems like name parsing and address standardization are re-
ally not new – for decades developers have built custom
code libraries to solve them in a variety of domains, and
shared their code in places like GitHub. In a recent crawl,
we obtained over 1.8M functions extracted from code li-
braries crawled from GitHub, and over 2M code snippets
from StackOverflow, some of which specifically written to
handle data transformations in a variety of domains.

Transform-Data-by-Example. The overarching goal of
the project is to build a search engine for end-users to eas-
ily reuse code for transformations from existing sources.
Specifically, we adopt the by-example paradigm and build a
production-quality system called Transform-Data-by-Example
(TDE). The front-end of TDE is an Excel add-in, currently
in beta and available from O�ce Store [7]. From the Excel
add-in, users can find transformations by providing a few in-
put/output examples. In Figure 2(left), a user provides two
output examples to specify the desired output. Once she
clicks on the “Get Suggestions” button, the front-end talks
to the TDE back-end service running on Microsoft Azure
cloud, which searches over thousands of indexed functions,
to on-the-fly synthesize new programs consistent with all
examples. In the right part of Figure 2, a ranked list of pro-
grams are returned based on program complexity. The top-
ranked program uses the System.DateTime.Parse() func-
tion from the .Net system library to generate correct output
for all input. Figure 3 shows additional examples for trans-
forming names and addresses using the data in Figure 1.
TDE has a number of unique features, which we believe

are important first steps towards realizing self-service data
transformation.
• Search-by-Example. TDE works like a search engine, which
allows end-users to search transformations by just a few ex-
amples, a paradigm known as program-by-example (PBE) [23]
that was also used by FlashFill [16] for data transformation
with much success. Compared to existing PBE systems such
as FlashFill that compose a small number of string primi-
tives predefined in a Domain Specific Language (DSL), TDE
synthesizes programs from a much larger search space (tens
of thousands of functions). We develop novel algorithms to
make it possible at an interactive speed.

1166

TDE: Transform Data by Example

26

[Y. He et al., 2018]
D. Koop, CSCI 640/490, Spring 2024

Figure 2: TDE transformation for date-time. (Left): user provides two desired output examples in column-D,
for the input data in column-C. (Right): After clicking on the “Get Transformation” button, TDE synthesizes
programs consistent with the given examples, and return them as a ranked list within a few seconds. Hovering
over the first program (using System.DateTime.Parse) gives a preview of all results (shaded in green).

Figure 3: (Left): transformation for names. The first three values in column-D are provided as output
examples. The desired first-names and last-names are marked in bold for ease of reading. A composed
program using library CSharpNameParser from GitHub is returned. (Right): transformations for addresses.
The first two values are provided as output examples to produce city, state, and zip-code. Note that some of
these info are missing from the input. A program invoking Bing Maps API is returned as the top result.

entered. For instance, in the first column dates are rep-
resented in many di↵erent formats. In the second column,
some customer names have first-name followed by last-name,
while others are last-name followed by comma, then first-
name, with various salutations (Mr., Dr., etc.) and su�xes
(II, Jr., etc.). Phone numbers are also inconsistent, with
various international calling codes (+1) and extensions (ext
2001), etc. Addresses in the last column are also not clean,
often with missing state and zip-code information.

This data in Figure 1 is clearly not ready for analysis
yet – an analyst wanting to figure out which day-of-the-
week has the most sales, for instance, cannot find it out
by executing a SQL query: the date column needs to be
transformed to day-of-the-week first, which however is non-
trivial even for programmers. Similarly the analyst may
want to analyze sales by area-code (which can be extracted
from phone-numbers), or by zip-code (from addresses), both
of which again require non-trivial data transformations.

In a separate scenario, suppose one would like identified
possible duplicate customer records in Figure 1, by first stan-
dardizing customer names into a format with only last and
first names (e.g., both the first two records will convert into
“Doe, John”). This again requires complex transformations.

Data transformation is clearly di�cult. However, our ob-
servation is that these domain-specific transformation prob-
lems like name parsing and address standardization are re-
ally not new – for decades developers have built custom
code libraries to solve them in a variety of domains, and
shared their code in places like GitHub. In a recent crawl,
we obtained over 1.8M functions extracted from code li-
braries crawled from GitHub, and over 2M code snippets
from StackOverflow, some of which specifically written to
handle data transformations in a variety of domains.

Transform-Data-by-Example. The overarching goal of
the project is to build a search engine for end-users to eas-
ily reuse code for transformations from existing sources.
Specifically, we adopt the by-example paradigm and build a
production-quality system called Transform-Data-by-Example
(TDE). The front-end of TDE is an Excel add-in, currently
in beta and available from O�ce Store [7]. From the Excel
add-in, users can find transformations by providing a few in-
put/output examples. In Figure 2(left), a user provides two
output examples to specify the desired output. Once she
clicks on the “Get Suggestions” button, the front-end talks
to the TDE back-end service running on Microsoft Azure
cloud, which searches over thousands of indexed functions,
to on-the-fly synthesize new programs consistent with all
examples. In the right part of Figure 2, a ranked list of pro-
grams are returned based on program complexity. The top-
ranked program uses the System.DateTime.Parse() func-
tion from the .Net system library to generate correct output
for all input. Figure 3 shows additional examples for trans-
forming names and addresses using the data in Figure 1.
TDE has a number of unique features, which we believe

are important first steps towards realizing self-service data
transformation.
• Search-by-Example. TDE works like a search engine, which
allows end-users to search transformations by just a few ex-
amples, a paradigm known as program-by-example (PBE) [23]
that was also used by FlashFill [16] for data transformation
with much success. Compared to existing PBE systems such
as FlashFill that compose a small number of string primi-
tives predefined in a Domain Specific Language (DSL), TDE
synthesizes programs from a much larger search space (tens
of thousands of functions). We develop novel algorithms to
make it possible at an interactive speed.

1166

TDE: Transform Data by Example

27

[Y. He et al., 2018]
D. Koop, CSCI 640/490, Spring 2024

Figure 2: TDE transformation for date-time. (Left): user provides two desired output examples in column-D,
for the input data in column-C. (Right): After clicking on the “Get Transformation” button, TDE synthesizes
programs consistent with the given examples, and return them as a ranked list within a few seconds. Hovering
over the first program (using System.DateTime.Parse) gives a preview of all results (shaded in green).

Figure 3: (Left): transformation for names. The first three values in column-D are provided as output
examples. The desired first-names and last-names are marked in bold for ease of reading. A composed
program using library CSharpNameParser from GitHub is returned. (Right): transformations for addresses.
The first two values are provided as output examples to produce city, state, and zip-code. Note that some of
these info are missing from the input. A program invoking Bing Maps API is returned as the top result.

entered. For instance, in the first column dates are rep-
resented in many di↵erent formats. In the second column,
some customer names have first-name followed by last-name,
while others are last-name followed by comma, then first-
name, with various salutations (Mr., Dr., etc.) and su�xes
(II, Jr., etc.). Phone numbers are also inconsistent, with
various international calling codes (+1) and extensions (ext
2001), etc. Addresses in the last column are also not clean,
often with missing state and zip-code information.

This data in Figure 1 is clearly not ready for analysis
yet – an analyst wanting to figure out which day-of-the-
week has the most sales, for instance, cannot find it out
by executing a SQL query: the date column needs to be
transformed to day-of-the-week first, which however is non-
trivial even for programmers. Similarly the analyst may
want to analyze sales by area-code (which can be extracted
from phone-numbers), or by zip-code (from addresses), both
of which again require non-trivial data transformations.

In a separate scenario, suppose one would like identified
possible duplicate customer records in Figure 1, by first stan-
dardizing customer names into a format with only last and
first names (e.g., both the first two records will convert into
“Doe, John”). This again requires complex transformations.

Data transformation is clearly di�cult. However, our ob-
servation is that these domain-specific transformation prob-
lems like name parsing and address standardization are re-
ally not new – for decades developers have built custom
code libraries to solve them in a variety of domains, and
shared their code in places like GitHub. In a recent crawl,
we obtained over 1.8M functions extracted from code li-
braries crawled from GitHub, and over 2M code snippets
from StackOverflow, some of which specifically written to
handle data transformations in a variety of domains.

Transform-Data-by-Example. The overarching goal of
the project is to build a search engine for end-users to eas-
ily reuse code for transformations from existing sources.
Specifically, we adopt the by-example paradigm and build a
production-quality system called Transform-Data-by-Example
(TDE). The front-end of TDE is an Excel add-in, currently
in beta and available from O�ce Store [7]. From the Excel
add-in, users can find transformations by providing a few in-
put/output examples. In Figure 2(left), a user provides two
output examples to specify the desired output. Once she
clicks on the “Get Suggestions” button, the front-end talks
to the TDE back-end service running on Microsoft Azure
cloud, which searches over thousands of indexed functions,
to on-the-fly synthesize new programs consistent with all
examples. In the right part of Figure 2, a ranked list of pro-
grams are returned based on program complexity. The top-
ranked program uses the System.DateTime.Parse() func-
tion from the .Net system library to generate correct output
for all input. Figure 3 shows additional examples for trans-
forming names and addresses using the data in Figure 1.
TDE has a number of unique features, which we believe

are important first steps towards realizing self-service data
transformation.
• Search-by-Example. TDE works like a search engine, which
allows end-users to search transformations by just a few ex-
amples, a paradigm known as program-by-example (PBE) [23]
that was also used by FlashFill [16] for data transformation
with much success. Compared to existing PBE systems such
as FlashFill that compose a small number of string primi-
tives predefined in a Domain Specific Language (DSL), TDE
synthesizes programs from a much larger search space (tens
of thousands of functions). We develop novel algorithms to
make it possible at an interactive speed.

1166

TDE: Transform Data by Example

28

[Y. He et al., 2018]
D. Koop, CSCI 640/490, Spring 2024

Figure 13: Produce desired output from input in TDE : a function invocation followed by program synthesis.

Given the intermediate tables with rich semantic informa-
tion derived from the input values, the task now is to “as-
sembly” bits and pieces in them to produce target T.O[i].
We illustrate it with an example below.

Example 4. In Figure 13, given that the target output
is 2011-01-12 (Wed) and 2011-09-15 (Thu), it can be seen
that they can be produced by concatenating relevant fields
from the intermediate tables. Specifically, if we concatenate
the Year field with a “-”, then append with the Month field
followed by a “-”, then with the Day field followed by a “ (”,
then with the first three characters of the Day-of-week field,
and finally append with a closing parenthesis “)”. It can
be verified that this synthesized program produce the desired
target output for both input strings.

Suppose the desired output is instead 2011-Jan-12 (Wed)
and 2011-Sep-15 (Thu). Note that the required months are
now Jan and Sep, which cannot be produced from the Month
column. For this we take the column corresponding to the
output of method ToLongDateString(), and perform the fol-
lowing operations: We split each value using “,”, and take
the second component from the split (the substring after the
first comma), from which we take a substring of length 3
starting at the second character. This would produce the de-
sired Jan and Sep; all other operations in this synthesized
program will remain the same as the previous example.

This example shows the power of synthesis using inter-
mediate results from member properties and methods – by
being able to synthesize multi-step sequences, we produce
powerful and expressive programs to match user output.

We note that similar techniques for generating string trans-
formation programs in this step have been the focus of FlashFill-
like PBE systems [16, 20, 26]. However, the requirement of
TDE is unique, because the intermediate tables shown in
Figure 13 (from which results are synthesized) can often be
very “wide” with hundreds of columns for complex objects.
Furthermore, the synthesis algorithm needs to be invoked
for hundreds of times for each function returned by the L1
ranker. Given that TDE needs to be interactive, the syn-
thesis algorithm is required to be highly e�cient. In par-
ticular, we find existing approaches such as [16] insu�cient
for TDE. We develop new algorithms based on a recursive
greedy search. A basic version of this synthesis algorithm
was described in [32] (used for a di↵erent purpose, which
is to auto-join tables). Compared to prior work, our syn-
thesis is (1) substantially more e�cient; and (2) provides
probabilistic guarantees of success under certain assump-
tions ([32]). We defer details to a full version of the paper.
5.2.2 Parameter learning in multi-function synthesis
In the previous example, when executing a top-ranked

function f 2 RK , we use reflection to not only consider
all member properties, but also member methods that are
parameter-less, since it is straightforward to execute them.
However, there are also many parameterized member meth-
ods that are useful for transformations. For instance, con-
sider the Ttime shown in Figure 14, where the task is to

Figure 14: TDE transformation between timezones.

convert input time in US western timezone, to US eastern
time. Note that this ”+3 hours” operation can lead to a
change in the day, month, and year, as shown in the figure.
This transformation would require not only using relevant

methods but also appropriate parameters (”+3 hours”). TDE
performs this transformation by synthesizing the following
program: it first invokes System.DateTime.Parse() to con-
vert each input string into a DateTime object, whose member
method DateTime.Add(Timespan) is then invoked using a
parameter of type Timespan corresponding to 3 hours. This
leads to a new DateTime object, from which we can synthe-
size the target output as described in Section 5.2.1. The key
challenge here is parameterization, or finding an appropri-
ate Timespan object as parameter – exhaustive enumeration
would not work as the parameter space is infinite.
For parameterization, in TDE we perform o✏ine learn-

ing for relationships between functions in same classes, to
discover concepts such as inverse relationships. Specifically,
we first identify functions f1 and f2 as a candidate pair, if
the result of f1 is of the same type as the parameter of f2.
In the example above, in the class DateTime we have the
function TimeSpan DateTime.Subtract(DateTime) that re-
turns an object of type TimeSpan, and we also have function
DateTime DateTime.Add(Timespan) taking a parameter of
type TimeSpan. We thus treat the two as a candidate pair.
We then instantiate pairs of DateTime objects o1, o2 (with
suitable parameters obtained from indexes in Figure 8), and
invoke o1.Subtract(o2) to produce a TimeSpan object t12.
To test if the inverse relationship holds, we then invoke
o1.Add(t12) to produce o02, and see if o02 is identical to o2.
Since this holds true for all pairs of o1, o2 tested, we can
infer that the two are inverse functions.
With the inverse relationship, given Ttime at run time, we

can use Ttime.I[i] as o1 and Ttime.O[i] as o2, and compute
t12 = o2.Subtract(o1), which turns out to be 3 hours con-
sistently for all i 2 {1, 2, 3}. We can thus produce a correct
program with right parameters as described above.
Another type of parameterized functions we can invoke is

the ones that have parameters with limited cardinality. For
example, the function DateTime.ToString(string format)

accepts a parameter with a limited number of formats (e.g.,
“MM/dd/yyyy”, etc.). Using the index in Figure 8, if we de-
termine a parameter of f to be of small cardinality, we treat
it as an “enum” type and “memorize” all its possible values,
which we then use to exhaustively invoke f . This allows us

1173

TDE: Synthesized Function

29

[Y. He et al., 2018]
D. Koop, CSCI 640/490, Spring 2024

TDE: Transform Data by Example
• Row-to-row translation only
• Search System, GitHub, and StackOverflow for functions
• Given dataset with examples
- Use L1 from library
- Compose synthesized programs (L2)
- Rank best transformations

30D. Koop, CSCI 640/490, Spring 2024

TDE Benchmarks

• TDE and FlashFill focused on row-to-row transformations
• Foofah considers a wider range of transformations (table reformatting)

31

[Y. He et al., 2018]
D. Koop, CSCI 640/490, Spring 2024

Table 3: Precision of benchmark cases, reported as precentage of cases solved (number of cases in parenthesis).
System Total cases (239) FF-GR-Trifacta (46) Head cases (44) StackOverflow (49) BingQL-Unit (50) BingQL-Other (50)

TDE 72% (173) 91% (42) 82% (36) 63% (31) 96% (48) 32% (16)
TDE -NF 53% (128) 87% (40) 41% (18) 35% (17) 96% (48) 10% (5)
FlashFill 23% (56) 57% (26) 34% (15) 31% (15) 0% (0) 0% (0)
Foofah 3% (7) 9% (4) 2% (1) 4% (2) 0% (0) 0% (0)

DataXFormer-UB 38% (90) 7% (3) 36% (16) 35% (17) 62% (31) 46% (23)
System-A 13% (30) 52% (24) 2% (1) 10% (5) 0% (0) 0% (0)

OpenRefine-Menu8 4% (9) 13% (6) 2% (1) 4% (2) 0% (0) 0% (0)

reasonably well in all sub-categories except BingQL-Other,
where the coverage is 36%. This category contains diverse
transformations (e.g., conversion of color encoding, geo co-
ordinates, etc.) that are di�cult. We find the C# code
crawled from GitHub lack many such functionalities, which
however are often available in other languages (e.g., Python).
Extending TDE with other languages would clearly help.

TDE -NF uses no external functions and can be considered
as a traditional PBE system. Its overall result is reasonable,
but it clearly falls short on cases requiring more complex
transformations that are di�cult to synthesize from scratch.

Both FlashFill and Foofah lag behind TDE/TDE -NF. We
would like to note that while both FlashFill and TDE work
in the same space of row-to-row transformation, which is
exactly what our benchmark is designed to evaluate, the
benchmark is unfavorable to Foofah, as it is more focused
on orthogonal tasks such as table reformatting (e.g., pivot
and un-pivot)10. Unifying Foofah-like capabilities with row-
to-row transformation is interesting future work.

DataXFormer-UB solves 90 out of the 239 test cases (38%),
showing the power of search engines and web services, which
however is limited by the lack of program-synthesis. When
nontrivial synthesis is required (e.g., output date-time in a
specific format, or rounding numbers to a specific precision),
vanilla web services can often fall short. In addition, We find
that certain classes of transformations, such as names and
date-time, are not typically handled by online web services.

System-A can handle 30 (13%) cases. We find System-
A’s approach the most e↵ective when a test case requires
extracting common sub-components from input. Such op-
erations can be more easily predicted and are often solved
correctly. However, there are many cases where selection
alone is insu�cient to fully specify the desired transforma-
tion (e.g., add 3 hours for time-zone conversion, switch the
order of last/first name, etc.), which is an inherent short-
coming of predicting transformations using input only.

OpenRefine solves only 9 test cases (e.g., upper-casing) us-
ing built-in transformations from its menus. This is not en-
tirely surprising, as the types of transformations supported
by menu options are typically limited.

L1-Function-ranking. Recall that TDE uses L1-rankers
(Section 5.1) to select a small set of promising functions from
all functions its indexes, so that it can execute and synthe-
size them at an interactive speed. L1-ranking is a critical
component for performance(the better we rank, the faster
TDE can synthesize relevant programs).

Figure 15 evaluates the e↵ectiveness of our two L1-rankers,
where y-axis shows the percentage of cases that can be
solved using only top-K functions from L1-rankers, and x-
axis shows the number K, which a↵ects response time. As
we can see, the two L1-rankers are complementary, and their
union is substantially better. Overall around 70% cases can
be solved with top-200 functions, and that number goes up

10Despite the di↵erence we evaluate Foofah as requested.

Figure 15: E↵ectiveness of ranking.

to 90% for top-1000 functions (which corresponds to a re-
sponse time of around 5 seconds on our machine).
E�ciency. The average end-to-end latency to produce

the first correct program (including function ranking, ex-
ecution and synthesis) is 3.4 seconds, which is reasonably
interactive. We note that TDE streams back results as they
are found – once a worker finds a program it will show up
on the right-pane for users to inspect.

9.3 Analysis of real usage logs
Since TDE is used by real Excel users, it provides an op-

portunity to understand how TDE performs on real tasks
by analyzing user query logs. We use logs collected over sev-
eral days to obtain 1244 unique transformation tasks (users
have to “opt in” for TDE to log their queries – the default
is opt-out). We manually inspect each query.
For 910 out of the 1244 tasks, TDE returns at least one

synthesized program consistent with all input/output. We
manually inspect users’ input/output examples to under-
stand the intent, and then verify the correctness of the re-
sult. Out of these, 496 tasks (39.8%) are verified to be cor-
rect for the rank-1 program produced (of which 153 invoke at
least one function, and 343 use pure string transformations).
Verifying lower-ranked programs (e.g. top-10) is more labor-
intensive but should lead to a higher success rate.
For the tasks that TDE fails (defined as either having

no programs produced, or the rank-1 program is judged to
be incorrect), we analyze the underlying cause. For 206
tasks (16.5%), users provide only 1 or 2 output examples to
demonstrate the task (we recommend 3), which makes the
tasks di�cult and even ambiguous. For 170 tasks (13.6%),
we find the task itself to be ill-formed, due to bad input
(e.g., users not understanding this feature and provide only
one column of data), input/output in languages other than
English (currently not supported), and tasks with unclear
intent. For about 40 tasks (3%), a mapping relationship is
needed not indexed. The remaining tasks (around 27%) fail
mostly due to missing functionalities in TDE index.
While our initial experience with TDE reveals a number

of areas for improvement, it also shows the promise of TDE
in solving complex transformations using existing domain-
specific logic. Just like Google and Bing were not perfect
in finding relevant documents in their early days, we hope
TDE will continue to improve as a “search engine” for data
transformation, by growing its index and improving its al-
gorithms using logged user interactions.

1176

32

Trifacta's Transform by Example

D. Koop, CSCI 640/490, Spring 2024

https://www.youtube.com/watch?v=b5GWoZOEkhM

Figure 2: Two tables R and S with schema (time-stamps,
phone-number, geo-coordinates). Integrating the two would
require values to be reformatted using transformations.

invokes the TBE feature, and enters two output examples
(1997-01-12 and 1997-02-02) in the “Custom” column on the
right, to demonstrates a desired transformation. In response
to user input, the system synthesizes a transformation pro-
gram consistent with the two given input/output examples,
which is shown at the top of the figure (this program invokes
a total of 7 functions, including Text.Combine, Date.ToText,
etc.). Furthermore, a preview of remaining output values
is shown in gray (beneath user-provided examples), which
helps users to verify the correctness of the suggested trans-
formation.

Transform-by-Pattern (TBP). The by-example TBE
paradigm is clearly an excellent fit for Excel-like spread-
sheet environments. As we will see below, however, in other
settings it may not be as easy to invoke TBE, for it can
be hard for users to identify columns requiring transforma-
tions, and then provide paired input/output examples. We
in this work propose an alternative Transform-by-Pattern
(TBP) paradigm to complement the TBE approach, which
can proactively suggest relevant transformations based only
on input/output data patterns (with no paired examples).

More concretely, each TBP program is a triple (Ps, Pt,
T), where Ps and Pt are data “patterns” (e.g., in regex)
describing the source and target column, for which the cor-
responding program T is applicable.

Table 1 shows a list of example TBP programs (we will
discuss how to harvest them in detail). Each row here is a
TBP program that consists of a triple (Ps, Pt, T). For the
TBP program labeled as TBP-1 in the first row, its source
pattern Ps is: “<letter>{3}. <digit>{2}, <digit>{4}” and
target pattern Pt is: “<digit>{4}-<digit>{2}-<digit>{2}”.
Note that these two patterns can be used to describe the
example TBE case shown in Figure 1; the corresponding
transformation program (shown at the top of Figure 1) can
be “memorized” in the last column T of Table 1 (omitted in
the table in the interest of space).

In the following, we use two concrete applications, Auto-
Unify and Auto-Repair, to demonstrate that such TBP pro-
grams can enable scenarios complementary to TBE. We em-
phasize that TBP is not meant to replace the general-purpose
TBE, especially in spreadsheet settings where users can eas-
ily identify target output and enter examples.

TBP for “Auto-Unify”. Data transformation is of-
ten required in applications like ETL and data integration,
where data of di�erent formats from multiple sources need
to be unified and standardized.

Figure 2 shows two example tables denoted by R and S,

both containing telemetry data of the form: (time-stamp,
cellular-device-numbers, geo-coordinates). As is often the
case in the real world, R and S are formatted di�erently
(e.g., the telemetry may be generated by di�erent types of
devices, or di�erent versions of programs), and need to be
integrated, which is a common task in ETL [26, 44].

Today, data engineers need to first identify such issues like
in Figure 2 (a time-consuming task when there are many
such feeds and columns). They would then write ad-hoc
transformation scripts, in order to unify each pair of incom-
patible data columns.

We argue that armed with a repository of TBP programs
like in Table 1, the task of identifying and addressing afore-
mentioned issues can be partially automated. Specifically,
given that R-timestamp and S-timestamp need to be merged,
based on the patterns of values in these two columns, we can
suggest TBP-1 in Table 1 to be used, because its source pat-
tern Ps = “<letter>{3}. <digit>{2}, <digit>{4}” and tar-
get pattern Pt = “<digit>{4}-<digit>{2}-<digit>{2}” match
with R-timestamp and S-timestamp, respectively. This allows
us to proactively suggest the corresponding T to perform
this transformation.

Similarly, the patterns Ps and Pt in TBP-2 and TBP-3 from
Table 1 would match with column-pairs (S-phone, R-phone)
and (S-coordinates, R-coordinates) in Figure 2, respectively,
suggesting two additional transformations that can be per-
formed. It should be noted that TBE typically requires
paired examples and would not apply here.

TBP for “Auto-Repair”. As an additional example
application, we show that TBP can also help to identify and
fix inconsistent data values in tables. Figure 3 shows real
data quality issues in Wikipedia tables that are identified
and fixed by TBP programs produced in this work.

For instance, in Figure 3(a), using TBP we can detect
that values in the Date column have two distinct patterns:
“<digit>{4}-<digit>{2}-<digit>{2}” (e.g., “1997-06-04”) as
well as “<letter>+ <digit>{2}, <digit>{4}” (“January 12,
1997”). Since these two patterns match with Ps and Pt of
a TBP program in Table 1, it likely indicates data inconsis-
tency. With TBP, we could bring these two groups of values
to users attention, and propose fixes by applying the cor-
responding T (e.g., transforming “1997-06-04” to “June 4,
1997”).

We note that the TBP framework is general and applies
to diverse types of transformations, including data in dif-
ferent languages (e.g., Spanish, Chinese, etc.), and data in
di�erent domains (e.g., chemical, financial, etc.). For exam-
ple, some of the cases in Figure 3 require transformations in
languages other than English, such as Figure 3(e) (fixable
by TBP-15), and Figure 3(l) (fixable by TBP-16), etc. These
are all real TBP programs harvested from di�erent table
corpora (e.g., Wikipedia tables in di�erent languages). Our
evaluation suggests that these TBP programs can detect and
fix thousands of real issues across di�erent languages.

For non-technical users working on spreadsheet data (e.g.,
in Microsoft Excel or Tableau), TBP makes it possible to au-
tomatically flag and repair a subclass of data format issues.
We note that TBP once again complements traditional TBE
approaches, which would require explicit paired-examples in
order to suggest transformations.

In short, TBP can program a rich class of transformations,
creating opportunities to simplify data transformation in ap-
plications such as Auto-Repair and Auto-Unify.

2369

Transform by Pattern (TBP)
• Focus on non-technical users
• More general than Transform by Example
• No need for paired examples
• Use Cases:
- Auto-Unify: Unify data in different formats
- Auto-Repair: Fix data quality issues

• Example (Auto-Unify):
- PS = <letter>{3}. <digit>{2},
<digit>{4}

- PT = <digit>{4}-<digit>{2}-<digit>{2}

33

[Jin et al.]
D. Koop, CSCI 640/490, Spring 2024

http://www.vldb.org/pvldb/vol13/p2368-he.pdf

TBP Use Cases
• Auto-Unify

• Auto-Repair

34

[Jin et al.]
D. Koop, CSCI 640/490, Spring 2024

(a) EN-Wiki: Dates (b) EN-Wiki: Currency values (c) EN-

wiki:time

(d) EN-Wiki: Date

(e) ZH-Wiki: Units (f) ZH-Wiki: Ordinals (g) ZH-Wiki: Date (h) JA-Wiki: Year

(i) JA-Wiki: Date (j) ES-Wiki: Numbers (k) ES-Wiki: Numbers (l) ES-Wiki: Date

Figure 3: Auto-Repair: Real quality issues (in red boxes) from Wikipedia tables that are fixable by TBP programs. Note
that the examples span di�erent languages (English, Chinese, Japanese, Spanish, etc.)

2. SYSTEM ARCHITECTURE
Figure 6 gives a high-level overview of the architecture

of our system. There are three main components, which
are all o�ine processing steps. The first component takes a
large corpus of tables (e.g., web tables or enterprise spread-
sheets), find related tables, link/join records across tables
(like shown in Figure 4 and Figure 5), to produce paired
columns (C, CÕ) like in Table 2 (Section 3).

The second component uses paired columns (C, CÕ) as if
they are input/output columns in a transformation task, and
invokes TBE to find possible transformation T consistent
with all examples in (C, CÕ). If TBE synthesizes such a T ,
the (C, CÕ, T) triple is populated in Table 2 (Section 4).

In the last stage, we analyze (C, CÕ, T) triples in Table 2
in a global manner, in order to identify TBP programs that
are both commonly-used and highly-accurate. We formulate
an automated approach to harvest such programs, as well
as a human-curated variant that can leverage human labels
e�ectively (Section 5).

We now discuss each component in turn.

3. PAIR COLUMNS WITH LINKED ROWS
In this section, we discuss the first part of our system,

which takes a large collection of tables T as input, and pro-

duces pairs of columns that are linked row-by-row. In this
section, we discuss 3 di�erent ways to achieve this in turn,
using a corpus of over 100M web tables [18]6

3.1 Pair Columns by Search Engine
Our first approach leverages search engines, utilizing the

observation that pages returned for the same keyword query
often contain related tables. We perform 3 steps here: pair-
ing tables, linking rows, and pairing columns.

Pairing tables. We take the query-logs of a commercial
search engine, and first use a production classifier [18] to
select queries known as “table-intent queries” [18], which are
data-seeking queries such as “list of us presidents”, “list
of national parks”, “list of chemical elements”, etc. We
obtain a total of 16M table-intent queries, denoted by Q.

For each query q œ Q, we retrieve all web tables in the
top-20 pages returned by the search engine, denoted by Tq,
which contains tables related to query q. For example, ta-
bles in Figure 4 are all retrieved for the query “list of us
presidents”. We can then pair such tables in Tq to produce
table-pairs PQ = {(T, T Õ)|T œ Tq, T Õ œ Tq, T ”= T Õ, q œ Q}.

Linking rows. Recall that in order to utilize TBE to
generate programs, we need paired input/output examples.
6Similar web-table data sets are publicly available in [2, 8].

2371

Figure 2: Two tables R and S with schema (time-stamps,
phone-number, geo-coordinates). Integrating the two would
require values to be reformatted using transformations.

invokes the TBE feature, and enters two output examples
(1997-01-12 and 1997-02-02) in the “Custom” column on the
right, to demonstrates a desired transformation. In response
to user input, the system synthesizes a transformation pro-
gram consistent with the two given input/output examples,
which is shown at the top of the figure (this program invokes
a total of 7 functions, including Text.Combine, Date.ToText,
etc.). Furthermore, a preview of remaining output values
is shown in gray (beneath user-provided examples), which
helps users to verify the correctness of the suggested trans-
formation.

Transform-by-Pattern (TBP). The by-example TBE
paradigm is clearly an excellent fit for Excel-like spread-
sheet environments. As we will see below, however, in other
settings it may not be as easy to invoke TBE, for it can
be hard for users to identify columns requiring transforma-
tions, and then provide paired input/output examples. We
in this work propose an alternative Transform-by-Pattern
(TBP) paradigm to complement the TBE approach, which
can proactively suggest relevant transformations based only
on input/output data patterns (with no paired examples).

More concretely, each TBP program is a triple (Ps, Pt,
T), where Ps and Pt are data “patterns” (e.g., in regex)
describing the source and target column, for which the cor-
responding program T is applicable.

Table 1 shows a list of example TBP programs (we will
discuss how to harvest them in detail). Each row here is a
TBP program that consists of a triple (Ps, Pt, T). For the
TBP program labeled as TBP-1 in the first row, its source
pattern Ps is: “<letter>{3}. <digit>{2}, <digit>{4}” and
target pattern Pt is: “<digit>{4}-<digit>{2}-<digit>{2}”.
Note that these two patterns can be used to describe the
example TBE case shown in Figure 1; the corresponding
transformation program (shown at the top of Figure 1) can
be “memorized” in the last column T of Table 1 (omitted in
the table in the interest of space).

In the following, we use two concrete applications, Auto-
Unify and Auto-Repair, to demonstrate that such TBP pro-
grams can enable scenarios complementary to TBE. We em-
phasize that TBP is not meant to replace the general-purpose
TBE, especially in spreadsheet settings where users can eas-
ily identify target output and enter examples.

TBP for “Auto-Unify”. Data transformation is of-
ten required in applications like ETL and data integration,
where data of di�erent formats from multiple sources need
to be unified and standardized.

Figure 2 shows two example tables denoted by R and S,

both containing telemetry data of the form: (time-stamp,
cellular-device-numbers, geo-coordinates). As is often the
case in the real world, R and S are formatted di�erently
(e.g., the telemetry may be generated by di�erent types of
devices, or di�erent versions of programs), and need to be
integrated, which is a common task in ETL [26, 44].

Today, data engineers need to first identify such issues like
in Figure 2 (a time-consuming task when there are many
such feeds and columns). They would then write ad-hoc
transformation scripts, in order to unify each pair of incom-
patible data columns.

We argue that armed with a repository of TBP programs
like in Table 1, the task of identifying and addressing afore-
mentioned issues can be partially automated. Specifically,
given that R-timestamp and S-timestamp need to be merged,
based on the patterns of values in these two columns, we can
suggest TBP-1 in Table 1 to be used, because its source pat-
tern Ps = “<letter>{3}. <digit>{2}, <digit>{4}” and tar-
get pattern Pt = “<digit>{4}-<digit>{2}-<digit>{2}” match
with R-timestamp and S-timestamp, respectively. This allows
us to proactively suggest the corresponding T to perform
this transformation.

Similarly, the patterns Ps and Pt in TBP-2 and TBP-3 from
Table 1 would match with column-pairs (S-phone, R-phone)
and (S-coordinates, R-coordinates) in Figure 2, respectively,
suggesting two additional transformations that can be per-
formed. It should be noted that TBE typically requires
paired examples and would not apply here.

TBP for “Auto-Repair”. As an additional example
application, we show that TBP can also help to identify and
fix inconsistent data values in tables. Figure 3 shows real
data quality issues in Wikipedia tables that are identified
and fixed by TBP programs produced in this work.

For instance, in Figure 3(a), using TBP we can detect
that values in the Date column have two distinct patterns:
“<digit>{4}-<digit>{2}-<digit>{2}” (e.g., “1997-06-04”) as
well as “<letter>+ <digit>{2}, <digit>{4}” (“January 12,
1997”). Since these two patterns match with Ps and Pt of
a TBP program in Table 1, it likely indicates data inconsis-
tency. With TBP, we could bring these two groups of values
to users attention, and propose fixes by applying the cor-
responding T (e.g., transforming “1997-06-04” to “June 4,
1997”).

We note that the TBP framework is general and applies
to diverse types of transformations, including data in dif-
ferent languages (e.g., Spanish, Chinese, etc.), and data in
di�erent domains (e.g., chemical, financial, etc.). For exam-
ple, some of the cases in Figure 3 require transformations in
languages other than English, such as Figure 3(e) (fixable
by TBP-15), and Figure 3(l) (fixable by TBP-16), etc. These
are all real TBP programs harvested from di�erent table
corpora (e.g., Wikipedia tables in di�erent languages). Our
evaluation suggests that these TBP programs can detect and
fix thousands of real issues across di�erent languages.

For non-technical users working on spreadsheet data (e.g.,
in Microsoft Excel or Tableau), TBP makes it possible to au-
tomatically flag and repair a subclass of data format issues.
We note that TBP once again complements traditional TBE
approaches, which would require explicit paired-examples in
order to suggest transformations.

In short, TBP can program a rich class of transformations,
creating opportunities to simplify data transformation in ap-
plications such as Auto-Repair and Auto-Unify.

2369

http://www.vldb.org/pvldb/vol13/p2368-he.pdf

TBP Programs and Triples

35

[Jin et al.]
D. Koop, CSCI 640/490, Spring 2024

Table 1: An example repository of TBP programs (Ps, Pt, T), where each line is a TBP program. The first three programs
can be used to auto-unify the two tables shown in Figure 2.

TBP-id Source-pattern (Ps) Target-pattern (Pt) (T)

TBP-1 <letter>{3}. <digit>{2}, <digit>{4} <digit>{4}-<digit>{2}-<digit>{2} ...

TBP-2 (<digit>{3}) <digit>{3}-<digit>{4} <letter>{3}-<digit>{3}-<digit>{4} ...

TBP-3 (<digit>+¶<num>’<letter>{1}, <digit>+¶<num>’<letter>{1}) <letter>{1}<digit>+¶<num>’ <letter>{1}<digit>+¶<num>’ ...

...

TBP-7 <digit>{4}/<digit>{2}/<digit>{2} <letter>{3} <digit>{2} ...

TBP-8 <num> kg <num> lb ...

TBP-9 <num> lb <num> lb <num> oz ...

...

TBP-15 <num> kg <num>l§ ...

TBP-16 <letter>+ de <digit>{4} <digit>{4} ...

...

Table 2: Example table with (C, CÕ, T) triples, where (C, CÕ) are paired columns, and T is a synthesized program that can
transform C to CÕ. The first triple CCT-1 corresponds to the column-pair (“Born”, “Date of birth”) in Figure 4, with an
inferred program in Listing 1. CCT-4 shows another pair of columns with similar data format and an identical program. Not
all column-pairs have programmatic relationships, such as CCT-9, leading to an empty program.

CCT-id Input-column (C) Output-column (CÕ
) Program (T)

CCT-1 (C1) “Born” = {“02/22/1732”, “10/30/1735”, ... } (CÕ
1) “Date of birth” = {“February 22, 1732”, ... } Listing 1

CCT-2 (C2) “Date of birth” = {“February 22, 1732”, ... } (CÕ
2) “Born” = {“02/22/1732”, “10/30/1735”, ... } ...

CCT-3 (C3) “Died” = {“02/14/1799”, “07/04/1826”, ... } (CÕ
3) “Date of birth” = {“February 22, 1732”, ... } ...

CCT-4 (C4) “Date” = {“11/01/2019”, “12/01/2019”, ... } (CÕ
4) “Date-2” = {“November 01, 2019”, ... } Listing 1

...

CCT-9 (C9) “Name” = {“Washington, George”, “Adam, John”, ... } (CÕ
9) “Date of birth” = {“February 22, 1732”, ... } ÿ

...

“Learned” TBP programs from TBE query logs.
Given the benefit of TBP, we set out to harvest such pro-
grams at scale (as manually curating them would not scale).

One possible approach is to leverage the “query-logs” of
a TBE system. This is analogous to search engines like
Google and Bing, which have long used their query logs con-
taining (keyword-query, user-clicked-document) to improve
search relevance. We argue that the same is true for TBE
systems – specifically, since we have developed TDE [33]
and deployed a version of the system as an Excel add-in,
we are able to collect telemetry of TBE tasks submitted
by Excel users. We should emphasize that we could not
log user data in any form due to legal and compliance rea-
sons – we only collect high-level statistics such as whether a
top-ranked transformation program suggested by TDE is ac-
cepted. Hypothetically, imagine that we could fully log users
input/output data sets, then like search engines we could
leverage the logs to identify common (input-data-pattern,
output-data-pattern, program) triples that are likely good
TBP programs.

Because we are not able to obtain detailed logs in spread-
sheet programs, in this work we develop alternative ap-
proaches to harvest TBP programs.

“Learned” TBP programs from tables. In this work
we propose to harvest TBP transformations from a large
collection of tables. Specifically, we develop techniques to
automatically “link” together table columns with related
content, from which we can exploit content redundancy to
“learn” common transformations.

Figure 4 shows 6 example web tables about US presidents.
We develop techniques to link them together at a row-level
– e.g., the first row of each table corresponds to “George
Washington” and will link/join. After rows are linked, we
can pair columns together “as if” they are input/output
columns, to see if any transformation can be learned us-
ing TBE – for example, the “Born” column {“02/22/1732”,
“10/30/1735”, . . . } in T1 can be paired with the “Date of

birth” column {“February 22, 1732”, “October 30, 1735”,
. . . } from T2, etc. Table 2 shows this column-pair, in row
CCT-1, as well as many other column pairs so produced.These
column pairs are then fed into a TBE system (in our case,
TDE [33]) to learn possible transformation programs, which
are stored in the last column of the table. Notice that given
6 di�erent date-formats used by 6 tables for date-of-birth
in Figure 4, we can already construct a total of 2

!6
2
"

= 30
distinct pairs of formats and their corresponding transfor-
mations, which are all validate TBP programs.

Figure 5 shows another group of 5 tables from Wikipedia,
each of which has a table for US presidents but in di�erent
languages. We develop methods to again automatically link
rows between these tables, and then construct column-pairs
for TBE systems to learn possible transformation programs
across di�erent languages (e.g., from “April 30, 1789” to
“30 de abril de 1789”).

By analyzing many such (Input-column, Output-column,
Transformation-program) triples in Table 2, we can identify
programs that are used repeatedly across the corpus – for
example, the same program (labeled as Listing 1 in Figure 2)
is being used by column-pair CCT-1, CCT-4 and many others,
suggesting that this is likely a good TBP program. In this
work, we develop methods to construct a large “transforma-
tion graph”, to reason about the goodness of TBP programs
in a global manner. TBP programs so produced can then
be used to enable applications like Auto-Repair.

Inter-operability of structured data. TBP is one
step toward achieving inter-operability of tabular data. We
note that by “lifting” data values from a “string” space into
a “program/code” space using TBP, values become inter-
operable (via programs). This is analogous to knowledge-
bases used in search engines, which also “lift” strings into
“entities” for richer experiences (e.g., knowledge cards and
related entities as opposed to 10 blue links). TBP can sim-
ilarly light up new experiences for tabular data like Auto-
Repair, and is a useful step toward inter-operability.

2370

Table 1: An example repository of TBP programs (Ps, Pt, T), where each line is a TBP program. The first three programs
can be used to auto-unify the two tables shown in Figure 2.

TBP-id Source-pattern (Ps) Target-pattern (Pt) (T)

TBP-1 <letter>{3}. <digit>{2}, <digit>{4} <digit>{4}-<digit>{2}-<digit>{2} ...

TBP-2 (<digit>{3}) <digit>{3}-<digit>{4} <letter>{3}-<digit>{3}-<digit>{4} ...

TBP-3 (<digit>+¶<num>’<letter>{1}, <digit>+¶<num>’<letter>{1}) <letter>{1}<digit>+¶<num>’ <letter>{1}<digit>+¶<num>’ ...

...

TBP-7 <digit>{4}/<digit>{2}/<digit>{2} <letter>{3} <digit>{2} ...

TBP-8 <num> kg <num> lb ...

TBP-9 <num> lb <num> lb <num> oz ...

...

TBP-15 <num> kg <num>l§ ...

TBP-16 <letter>+ de <digit>{4} <digit>{4} ...

...

Table 2: Example table with (C, CÕ, T) triples, where (C, CÕ) are paired columns, and T is a synthesized program that can
transform C to CÕ. The first triple CCT-1 corresponds to the column-pair (“Born”, “Date of birth”) in Figure 4, with an
inferred program in Listing 1. CCT-4 shows another pair of columns with similar data format and an identical program. Not
all column-pairs have programmatic relationships, such as CCT-9, leading to an empty program.

CCT-id Input-column (C) Output-column (CÕ
) Program (T)

CCT-1 (C1) “Born” = {“02/22/1732”, “10/30/1735”, ... } (CÕ
1) “Date of birth” = {“February 22, 1732”, ... } Listing 1

CCT-2 (C2) “Date of birth” = {“February 22, 1732”, ... } (CÕ
2) “Born” = {“02/22/1732”, “10/30/1735”, ... } ...

CCT-3 (C3) “Died” = {“02/14/1799”, “07/04/1826”, ... } (CÕ
3) “Date of birth” = {“February 22, 1732”, ... } ...

CCT-4 (C4) “Date” = {“11/01/2019”, “12/01/2019”, ... } (CÕ
4) “Date-2” = {“November 01, 2019”, ... } Listing 1

...

CCT-9 (C9) “Name” = {“Washington, George”, “Adam, John”, ... } (CÕ
9) “Date of birth” = {“February 22, 1732”, ... } ÿ

...

“Learned” TBP programs from TBE query logs.
Given the benefit of TBP, we set out to harvest such pro-
grams at scale (as manually curating them would not scale).

One possible approach is to leverage the “query-logs” of
a TBE system. This is analogous to search engines like
Google and Bing, which have long used their query logs con-
taining (keyword-query, user-clicked-document) to improve
search relevance. We argue that the same is true for TBE
systems – specifically, since we have developed TDE [33]
and deployed a version of the system as an Excel add-in,
we are able to collect telemetry of TBE tasks submitted
by Excel users. We should emphasize that we could not
log user data in any form due to legal and compliance rea-
sons – we only collect high-level statistics such as whether a
top-ranked transformation program suggested by TDE is ac-
cepted. Hypothetically, imagine that we could fully log users
input/output data sets, then like search engines we could
leverage the logs to identify common (input-data-pattern,
output-data-pattern, program) triples that are likely good
TBP programs.

Because we are not able to obtain detailed logs in spread-
sheet programs, in this work we develop alternative ap-
proaches to harvest TBP programs.

“Learned” TBP programs from tables. In this work
we propose to harvest TBP transformations from a large
collection of tables. Specifically, we develop techniques to
automatically “link” together table columns with related
content, from which we can exploit content redundancy to
“learn” common transformations.

Figure 4 shows 6 example web tables about US presidents.
We develop techniques to link them together at a row-level
– e.g., the first row of each table corresponds to “George
Washington” and will link/join. After rows are linked, we
can pair columns together “as if” they are input/output
columns, to see if any transformation can be learned us-
ing TBE – for example, the “Born” column {“02/22/1732”,
“10/30/1735”, . . . } in T1 can be paired with the “Date of

birth” column {“February 22, 1732”, “October 30, 1735”,
. . . } from T2, etc. Table 2 shows this column-pair, in row
CCT-1, as well as many other column pairs so produced.These
column pairs are then fed into a TBE system (in our case,
TDE [33]) to learn possible transformation programs, which
are stored in the last column of the table. Notice that given
6 di�erent date-formats used by 6 tables for date-of-birth
in Figure 4, we can already construct a total of 2

!6
2
"

= 30
distinct pairs of formats and their corresponding transfor-
mations, which are all validate TBP programs.

Figure 5 shows another group of 5 tables from Wikipedia,
each of which has a table for US presidents but in di�erent
languages. We develop methods to again automatically link
rows between these tables, and then construct column-pairs
for TBE systems to learn possible transformation programs
across di�erent languages (e.g., from “April 30, 1789” to
“30 de abril de 1789”).

By analyzing many such (Input-column, Output-column,
Transformation-program) triples in Table 2, we can identify
programs that are used repeatedly across the corpus – for
example, the same program (labeled as Listing 1 in Figure 2)
is being used by column-pair CCT-1, CCT-4 and many others,
suggesting that this is likely a good TBP program. In this
work, we develop methods to construct a large “transforma-
tion graph”, to reason about the goodness of TBP programs
in a global manner. TBP programs so produced can then
be used to enable applications like Auto-Repair.

Inter-operability of structured data. TBP is one
step toward achieving inter-operability of tabular data. We
note that by “lifting” data values from a “string” space into
a “program/code” space using TBP, values become inter-
operable (via programs). This is analogous to knowledge-
bases used in search engines, which also “lift” strings into
“entities” for richer experiences (e.g., knowledge cards and
related entities as opposed to 10 blue links). TBP can sim-
ilarly light up new experiences for tabular data like Auto-
Repair, and is a useful step toward inter-operability.

2370

http://www.vldb.org/pvldb/vol13/p2368-he.pdf

Learning TBP Programs
• User Logs
- Similar to Search Engines
- (Privacy Issues)

• Tables
- Find common tables whose rows can be linked
- Link Wikipedia tables across languages
- Obtain different data formats and abbreviations that can be used as

patterns

36

[Jin et al.]
D. Koop, CSCI 640/490, Spring 2024

http://www.vldb.org/pvldb/vol13/p2368-he.pdf

Figure 4: An example group of 6 web tables on US presidents, extracted from top-ranked documents for query “list of us
presidents”. Note that the same date-of-birth information is being represented in 6 di�erent formats, which can be used as
input/output examples for TBE to learn common TBP transformations.

Figure 5: An example group of 4 Wikipedia tables in di�erent languages (clockwise: English, Chinese, German, Spanish)
that we can link at a row-level (using Wiki inter-language links for pages with the same content). Note that the “date-in-o�ce”
is being represented in di�erent languages across 4 tables, providing examples to learn such transformations.

Figure 6: System Architecture: Learn TBP Programs.

So for a given pair (T, T Õ) œ PQ, we additionally need to
find row-level “links” between T and T Õ (e.g., the first row
of T1 in Figure 4 corresponds to the first row of T2, etc.).

In an ideal setting, such row-level links can be obtained by
equi-joins on key-columns. However, in practice equi-joins
typically fail, because values are often coded/formatted dif-
ferently between tables in the wild – e.g., names of presidents
are formatted di�erently as shown in Figure 4.

To account for syntactic variations in the key-columns, we
leverage an existing “auto-join” system [68]7 to automati-
cally identify join relationships. Specifically, given (T, T Õ) œ
PQ, we take two left-most non-numeric columns from T and

7
A variant of this system is publicly available in Azure ML Data

Prep: https://docs.microsoft.com/en-us/python/api/azureml-dataprep/azureml.dataprep.

api.builders.joinbuilder

T Õ (which likely include key columns), and invoke the “auto-
join” system to find possible joins.

Example 1. For T1, T2 in Figure 4, we use [68] to au-
tomatically infer a join-program J , which performs the fol-
lowing operations on the “Name” column of T1: (1) splitting
names like “Washington, George” by comma (producing an
array with two elements like [“Washington”, “George”]); (2)
concatenating the second element with the first element us-
ing a space (producing values like “George Washington”).

Note that applying J on the “Name” column in T1 produces
values like {“George Washington”, “John Adams”, . . . }, which
precisely match the key values in T2, such that an “equi-
join” can now be performed to link the two tables together.
We consider this J to be reliable, as most rows can be joined
1:1 using J .

The auto-join approach allows us to link rows together
between other table-pairs in Figure 4 similarly. We find this
approach produces substantially more links than equi-join,
which are also more accurate than fuzzy-join (because it
uses precise transformations). More details of this step can

2372

TBP Learning from Tables

37

[Jin et al.]
D. Koop, CSCI 640/490, Spring 2024

Figure 4: An example group of 6 web tables on US presidents, extracted from top-ranked documents for query “list of us
presidents”. Note that the same date-of-birth information is being represented in 6 di�erent formats, which can be used as
input/output examples for TBE to learn common TBP transformations.

Figure 5: An example group of 4 Wikipedia tables in di�erent languages (clockwise: English, Chinese, German, Spanish)
that we can link at a row-level (using Wiki inter-language links for pages with the same content). Note that the “date-in-o�ce”
is being represented in di�erent languages across 4 tables, providing examples to learn such transformations.

Figure 6: System Architecture: Learn TBP Programs.

So for a given pair (T, T Õ) œ PQ, we additionally need to
find row-level “links” between T and T Õ (e.g., the first row
of T1 in Figure 4 corresponds to the first row of T2, etc.).

In an ideal setting, such row-level links can be obtained by
equi-joins on key-columns. However, in practice equi-joins
typically fail, because values are often coded/formatted dif-
ferently between tables in the wild – e.g., names of presidents
are formatted di�erently as shown in Figure 4.

To account for syntactic variations in the key-columns, we
leverage an existing “auto-join” system [68]7 to automati-
cally identify join relationships. Specifically, given (T, T Õ) œ
PQ, we take two left-most non-numeric columns from T and

7
A variant of this system is publicly available in Azure ML Data

Prep: https://docs.microsoft.com/en-us/python/api/azureml-dataprep/azureml.dataprep.

api.builders.joinbuilder

T Õ (which likely include key columns), and invoke the “auto-
join” system to find possible joins.

Example 1. For T1, T2 in Figure 4, we use [68] to au-
tomatically infer a join-program J , which performs the fol-
lowing operations on the “Name” column of T1: (1) splitting
names like “Washington, George” by comma (producing an
array with two elements like [“Washington”, “George”]); (2)
concatenating the second element with the first element us-
ing a space (producing values like “George Washington”).

Note that applying J on the “Name” column in T1 produces
values like {“George Washington”, “John Adams”, . . . }, which
precisely match the key values in T2, such that an “equi-
join” can now be performed to link the two tables together.
We consider this J to be reliable, as most rows can be joined
1:1 using J .

The auto-join approach allows us to link rows together
between other table-pairs in Figure 4 similarly. We find this
approach produces substantially more links than equi-join,
which are also more accurate than fuzzy-join (because it
uses precise transformations). More details of this step can

2372

http://www.vldb.org/pvldb/vol13/p2368-he.pdf

Generating Patterns
• Generate potential regex patterns
• Want more general patterns
• (<digits>/<digits>/<digits> vs. <digits>/<digits>/17<digits>)
• Can be too general: <num><symbol><num><symbol><num>
• Want high "coverage" and high "accuracy"
•

38

[Jin et al.]
D. Koop, CSCI 640/490, Spring 2024

http://www.vldb.org/pvldb/vol13/p2368-he.pdf

Graph Pattern Relationships
• Lossless inverses: can go back and forth
• Triangular equivalent programs: applying one transformation on a column

matches the output of apply two other transformations in sequence

39

[Jin et al.]
D. Koop, CSCI 640/490, Spring 2024

Figure 9: An example TBP graph (with some edges omitted to avoid clutter). Each vertex corresponds to a data pattern
P , and each edge (P, P Õ, T) is a program between two patterns P and P Õ. (We use short-hand notation of pattern tokens,
such as <d>, <l> and <n> that stand for <digit>, <letter> and <num>, respectively).

lossless and can corroborate each other. Spurious programs
“over-fitted” on limited examples in the TBE step would
often fail the test.

Triangular equivalent programs. Because not all trans-
formations are lossless (a prerequisite for inverse-programs),
we also consider a second type of triangular relationship be-
tween programs.

Definition 5. Three programs (P, P ÕÕ, T), (P, P Õ, T Õ) and
(P Õ, P ÕÕ, T ÕÕ) are defined as triangular equivalent programs,
if applying T on column C matching P (or P œ P(C)) pro-
duces output T (C), which is identical to applying T Õ fol-
lowed by T ÕÕ sequentially on C, or T ÕÕ(T Õ(C)) = T (C).

Example 8. Consider the triangle between P5, P6 and P7
in Figure 9. It can be seen that the program T67 is lossy
(the time part is dropped after the transformation), and
thus cannot be part of an inverse program.

However, applying T67 on suitable input (e.g. 07:38AM, 30
December 2019) produces output (Dec. 2019) that is identi-
cal to applying T65 followed by T57, suggesting a triangular
relationship, which can be used as a piece of evidence to
substantiate the validity of T65.

Like inverse-programs, we test each triple (P, P ÕÕ, T), (P,
P Õ, T Õ) and (P Õ, P ÕÕ, T ÕÕ), by performing tests on column data
in TCCT . The success rate Stri can be calculated as:

|{(C, CÕÕ, T) œ TCCT , P œ P(C), P ÕÕ œ P(CÕÕ
), T ÕÕ

(T Õ
(C)) = CÕÕ}|

|{(C, CÕÕ, T) œ TCCT , P œ P(C), P ÕÕ œ P(CÕÕ), T (C) = CÕÕ}|
(4)We consider triangular-equivalence to hold on a program-

triple, if the test above holds on most column pairs from
TCCT (e.g., Stri > 0.8).

Harvest TBP programs by program relationships.

We note that because the program relationships above can
identify high-quality TBP programs, this provides an auto-
mated approach to harvest TBP programs. We implement
tests of inverse and triangular relationships as Map-Reduce
style jobs, using success-rates defined in Equation (3) and
Equation (4).
5.4 Harvest TBP programs by curation

We note that there are many application scenarios where
suggested TBP-transformations are required to be close to
100% correct (e.g., suggesting data-repairs in Excel or Google
Sheets). Such TBP programs need to be manually inspected
and verified beforehand.

As a result, we also consider a problem variant where TBP
programs have to be verified by human curators, who can
inspect and verify up to k candidate programs, and label
them as correct or incorrect. The key technical challenge is
to select programs of high “impact” for humans to verify, so
that the benefit of the k labels can be maximized.

For this task, we start with the graph where edges/pro-
grams are already verified as inverse or triangular. Recall
that each edge/program has a “coverage” score Cov(P, P Õ, T),
indicating the popularity/importance of the program. Intu-
itively, frequently-used transformations (e.g., for common
date-time formats) have high coverage scores and are more
important to be verified first. Our overall objective is thus
to maximize total coverage scores of edges/programs given
a budget of k labels.

Our observation here is that because of relationships be-
tween programs, verifying a program on one edge can have
super-modular benefits, as shown in the example below.

Example 9. In the curation setting, each edge/program in
Figure 9 needs to be verified and has an associated coverage
score. Observe that if a human curator can verify T89 to
be correct, then the inverse T98 is verified implicitly and
be assumed correct. We thus “gain” the coverage-scores
on both T89 and T98 by verifying one edge. Similarly, if
both T65 and T57 are verified as correct, T67 is also likely
correct (because of the triangular relationship), allowing us
to obtain the coverage score on T67 without labeling it.

Given that we try to maximize total coverage scores, and
the inverse/triangular relationships that we can leverage
(e.g., verifying an edge also implicitly verifies the inverse
of the edge), the incremental benefit of labeling an edge is
“super-modular” in regions of the graph with a dense cluster
of edges (e.g., the middle part of Figure 9). In comparison,
verifying an edge not well-connected to other nodes would
have reduced impact.

We formulate this as an optimization problem. Given a
TBP graph G = (V, E), where each edge e œ E has a cover-
age score Cov(e). Our objective is to find a subset of edges
Es µ E to verify, with |Es| Æ k, such that the total coverage
score of these verified programs, together with ones implic-
itly verified through program relationships, is maximized.

We write this in an ILP formulation, termed as CMPS
(coverage-maximizing program selection) below:

(CMPS) max
ÿ

eiœE

Cov(ei)vi (5)

s.t.
ÿ

eiœE

xi Æ k (6)

ym Æ xi + xj , ’ Invm(ei, ej) œ Inv(G) (7)
zn Æ xi + xj + xl ≠ 1, ’Trin(ei, ej , el) œ Tri(G) (8)

vi Æ xi +
ÿ

eiœInvm

ym +
ÿ

eiœTrin

zn, ’ei œ E (9)

vi, xi, ym, zn œ {0, 1} (10)

2376

http://www.vldb.org/pvldb/vol13/p2368-he.pdf

(a) Wiki-en (b) Wiki-zh (c) Wiki-ja (d) Wiki-es
Figure 10: Quality of repairs on Wiki-en, Wiki-zh, Wiki-ja, Wiki-es, using TBP programs learned from corresponding corpus.

(a) Web-en (b) Wiki-zh (c) Wiki-ja (d) Wiki-es
Figure 11: Quality of TBP programs produced on Web-en, Wiki-zh, Wiki-ja, Wiki-es, respectively.

“123.456.7890” to “123-456-7890”), so is splitting (e.g., from
“1234567890” to “123-456-7890”), etc. (2) “Datetime Con-
version”: if a column is recognized as datetime (based on
known date-time formats), then datetime-specific rules kick
in, which allow transformations on up to two token-groups
(e.g., from “Jan 1, 1981” to “01/01/1981”), but not more
than two (e.g., from “Jan 1, 1981” to “01/01/81”).

While these curated rules provide a strong baseline that
handles many common transformations, they can also pro-
duce false-positives that are not entirely intuitive to humans
– for example, in a column with <alpha>+ (<digit>.<digit>)
(e.g. “Washington (8.5)”) and <alpha>+ (<digit>{2}) (e.g.,
“Washington (12)”), a suggestion to transform “Washington
(8.5)” into “Washington (85)” will be produced. This is be-
cause dropping the symbol “.” is allowed by rule, even
though it is not semantically meaningful.
• Syntactic-Generic. This is Syntactic but with only generic
conversion rules as defined in System-A documentation. We
ran both Syntactic and Syntactic-Generic on the entire test
corpus, and label their respective top-K results.
• Grok-Types. An alternative to repairing data format
issues in columns, is to use predefined regex patterns to de-
tect known data-types (e.g., date-time, email, url, ip, etc.).
If more than one known pattern/format is detected in the
same column (e.g., date-format-1 and date-format-2), it is
likely a format issue that needs to be fixed.

We use Grok-patterns [3] for type-detection, which has
over 70 curated regex patterns for common data-types. For
each repair from Auto-Transform, we evaluate if the same
issue can be detected by Grok (by testing if there are two
Grok patterns in the column), and if so we mark it as “fix-
able” by Grok (even though no repair exists in Grok). We
report the total number of fixable issues for Grok.
• Excel-Types. Observing that Excel can auto-format data
of certain known types (e.g., date-time and currency) into
standard formats [1], we simulate the Excel logic from [5]

(which has over 110 date-time formats for “en-us” alone).
Like in Grok-Types, this is to understand the potential cov-
erage of Excel types – specifically, for each real issue detected
by Auto-Transform, we check if Excel type-detection logic
can discover two known formats mixed in the same col-
umn. We again report the fraction of issues fixed by Auto-
Transform that are also fixable by Excel.
• Functional Dependency (FD). First-order logic like
FD is widely used for error detection and repair (e.g., [11,
13, 23]), which conceptually addresses an orthogonal type of
errors manifested as inconsistency across multiple columns
(whereas TBP leverage information within single columns).

Even though the errors addressed by the two are largely
complementary, we nevertheless perform a comparison to
quantify the possible overlap between FD-based approaches
and TBP-based methods. Specifically, if the column C of
tuple t (written as C(t)) is fixed by Auto-Transform from
v to v̄, we check whether there is any approximate FD: Cl æ
C in the same table (with column Cl being the LHS), that
can possibly fix v to v̄. Namely, we check if there exists
another tuple tÕ with Cl(tÕ) = Cl(t) and C(tÕ) = v̄, which
would make the fix v æ v̄ possible. We report the fraction
of issues fixed by Auto-Transform that are fixable by FD.

6.3 Experiment Results
TBP-based Data Repairs. Figure 10 shows the qual-

ity of top-K repairs generated on Web-en, Wiki-zh, Wiki-ja,
Wiki-es, respectively, using TBP programs generated from
corresponding corpora listed in Table 4.

Overall the trend is consistent across the 4 test corpora.
Auto-Transform can generate high-quality repairs across
di�erent languages (examples of which are shown in Fig-
ure 3). Note that these TBP programs are harvested us-
ing the graph-based analysis without human curation (Sec-
tion 5.3). This experiment shows that our approach can
indeed generalize across di�erent types of table corpora (in

2378

Experiment Results

40

[Jin et al.]
D. Koop, CSCI 640/490, Spring 2024

http://www.vldb.org/pvldb/vol13/p2368-he.pdf

41

Data Cleaning

D. Koop, CSCI 640/490, Spring 2024

Data Cleaning Types
• How can statistical techniques improve efficiency or reliability of data

cleaning? (Data Cleaning with Statistics)
- Example: Trifacta

• How how can we improve the reliability of statistical analytics with data
cleaning? (Data Cleaning for Statistics)

- Example: SampleClean

42

[D. Haas et al., 2016]
D. Koop, CSCI 640/490, Spring 2024

Misconceptions about Data Cleaning
• Surveyed Technology Professionals
• The end goal of data cleaning is clean data
- "We typically clean our data until the desired analytics works without error."

• Data cleaning is a sequential operation
- "[It’s an] iterative process, where I assess biggest problem, devise a fix, re-

evaluate. It is dirty work."
• Data cleaning is performed by one person
- "There are often long back and forths with senior data scientists, devs, and

the business units that provided the data on data quality."

43

[D. Haas et al., 2016]
D. Koop, CSCI 640/490, Spring 2024

Misconceptions about Data Cleaning
• Data quality is easy to evaluate
- "I wish there were a more rigorous way to do this but we look at the models

and guess if the data are correct"
- "Other than common sense we do not have a procedure to do this"
- "Usually [a data error] is only caught weeks later after someone notices."

44

[D. Haas et al., 2016]
D. Koop, CSCI 640/490, Spring 2024

Data Cleaning
• Two key tasks:
- Error Detection
- Data Repairing

45D. Koop, CSCI 640/490, Spring 2024

3

Single-Source Problems

Schema Level
(Lack of integrity
constraints, poor
schema design)

Instance Level
(Data entry errors)

Multi-Source Problems

Schema Level Instance Level

Data Quality Problems

- Naming conflicts
- Structural conflicts
…

- Inconsistent aggregating
- Inconsistent timing
…

(Heterogeneous
data models and
schema designs)

(Overlapping,
contradicting and
inconsistent data)

- Uniqueness
- Referential integrity
…

- Misspellings
- Redundancy/duplicates
- Contradictory values
…

Figure 2. Classification of data quality problems in data sources

2.1 Single-source problems
The data quality of a source largely depends on the degree to which it is governed by schema and integrity
constraints controlling permissable data values. For sources without schema, such as files, there are few
restrictions on what data can be entered and stored, giving rise to a high probability of errors and
inconsistencies. Database systems, on the other hand, enforce restrictions of a specific data model (e.g., the
relational approach requires simple attribute values, referential integrity, etc.) as well as application-specific
integrity constraints. Schema-related data quality problems thus occur because of the lack of appropriate
model-specific or application-specific integrity constraints, e.g., due to data model limitations or poor
schema design, or because only a few integrity constraints were defined to limit the overhead for integrity
control. Instance-specific problems relate to errors and inconsistencies that cannot be prevented at the
schema level (e.g., misspellings).

Scope/Problem Dirty Data Reasons/Remarks
Attribute Illegal values bdate=30.13.70 values outside of domain range
Record Violated attribute

dependencies
age=22, bdate=12.02.70 age = (current date – birth date)

should hold
Record
type

Uniqueness
violation

emp1=(name=”John Smith”, SSN=”123456”)
emp2=(name=”Peter Miller”, SSN=”123456”)

uniqueness for SSN (social security
number) violated

Source Referential
integrity violation

emp=(name=”John Smith”, deptno=127) referenced department (127) not defined

Table 1. Examples for single-source problems at schema level (violated integrity constraints)
For both schema- and instance-level problems we can differentiate different problem scopes: attribute (field),
record, record type and source; examples for the various cases are shown in Tables 1 and 2. Note that
uniqueness constraints specified at the schema level do not prevent duplicated instances, e.g., if information
on the same real world entity is entered twice with different attribute values (see example in Table 2).

Scope/Problem Dirty Data Reasons/Remarks
Missing values phone=9999-999999 unavailable values during data entry

(dummy values or null)
Misspellings city=”Liipzig” usually typos, phonetic errors
Cryptic values,
Abbreviations

experience=”B”;
occupation=”DB Prog.”

Embedded values name=”J. Smith 12.02.70 New York” multiple values entered in one attribute
(e.g. in a free-form field)

Attribute

Misfielded values city=”Germany”
Record Violated attribute

dependencies
city=”Redmond”, zip=77777 city and zip code should correspond

Word
transpositions

name1= “J. Smith”, name2=”Miller P.” usually in a free-form field

Duplicated records emp1=(name=”John Smith”,...);
emp2=(name=”J. Smith”,...)

same employee represented twice due to
some data entry errors

Record
type

Contradicting
records

emp1=(name=”John Smith”, bdate=12.02.70);
emp2=(name=”John Smith”, bdate=12.12.70)

the same real world entity is described by
different values

Source Wrong references emp=(name=”John Smith”, deptno=17) referenced department (17) is defined but
wrong

Table 2. Examples for single-source problems at instance level

Classifying Data Quality Problems

46

[E. Rahm & H. H. Do, 2000]
D. Koop, CSCI 640/490, Spring 2024

https://dbs.uni-leipzig.de/file/TBDE2000.pdf

3

Single-Source Problems

Schema Level
(Lack of integrity
constraints, poor
schema design)

Instance Level
(Data entry errors)

Multi-Source Problems

Schema Level Instance Level

Data Quality Problems

- Naming conflicts
- Structural conflicts
…

- Inconsistent aggregating
- Inconsistent timing
…

(Heterogeneous
data models and
schema designs)

(Overlapping,
contradicting and
inconsistent data)

- Uniqueness
- Referential integrity
…

- Misspellings
- Redundancy/duplicates
- Contradictory values
…

Figure 2. Classification of data quality problems in data sources

2.1 Single-source problems
The data quality of a source largely depends on the degree to which it is governed by schema and integrity
constraints controlling permissable data values. For sources without schema, such as files, there are few
restrictions on what data can be entered and stored, giving rise to a high probability of errors and
inconsistencies. Database systems, on the other hand, enforce restrictions of a specific data model (e.g., the
relational approach requires simple attribute values, referential integrity, etc.) as well as application-specific
integrity constraints. Schema-related data quality problems thus occur because of the lack of appropriate
model-specific or application-specific integrity constraints, e.g., due to data model limitations or poor
schema design, or because only a few integrity constraints were defined to limit the overhead for integrity
control. Instance-specific problems relate to errors and inconsistencies that cannot be prevented at the
schema level (e.g., misspellings).

Scope/Problem Dirty Data Reasons/Remarks
Attribute Illegal values bdate=30.13.70 values outside of domain range
Record Violated attribute

dependencies
age=22, bdate=12.02.70 age = (current date – birth date)

should hold
Record
type

Uniqueness
violation

emp1=(name=”John Smith”, SSN=”123456”)
emp2=(name=”Peter Miller”, SSN=”123456”)

uniqueness for SSN (social security
number) violated

Source Referential
integrity violation

emp=(name=”John Smith”, deptno=127) referenced department (127) not defined

Table 1. Examples for single-source problems at schema level (violated integrity constraints)
For both schema- and instance-level problems we can differentiate different problem scopes: attribute (field),
record, record type and source; examples for the various cases are shown in Tables 1 and 2. Note that
uniqueness constraints specified at the schema level do not prevent duplicated instances, e.g., if information
on the same real world entity is entered twice with different attribute values (see example in Table 2).

Scope/Problem Dirty Data Reasons/Remarks
Missing values phone=9999-999999 unavailable values during data entry

(dummy values or null)
Misspellings city=”Liipzig” usually typos, phonetic errors
Cryptic values,
Abbreviations

experience=”B”;
occupation=”DB Prog.”

Embedded values name=”J. Smith 12.02.70 New York” multiple values entered in one attribute
(e.g. in a free-form field)

Attribute

Misfielded values city=”Germany”
Record Violated attribute

dependencies
city=”Redmond”, zip=77777 city and zip code should correspond

Word
transpositions

name1= “J. Smith”, name2=”Miller P.” usually in a free-form field

Duplicated records emp1=(name=”John Smith”,...);
emp2=(name=”J. Smith”,...)

same employee represented twice due to
some data entry errors

Record
type

Contradicting
records

emp1=(name=”John Smith”, bdate=12.02.70);
emp2=(name=”John Smith”, bdate=12.12.70)

the same real world entity is described by
different values

Source Wrong references emp=(name=”John Smith”, deptno=17) referenced department (17) is defined but
wrong

Table 2. Examples for single-source problems at instance level

Single-Source Schema Problems

47

[E. Rahm & H. H. Do, 2000]
D. Koop, CSCI 640/490, Spring 2024

https://dbs.uni-leipzig.de/file/TBDE2000.pdf

3

Single-Source Problems

Schema Level
(Lack of integrity
constraints, poor
schema design)

Instance Level
(Data entry errors)

Multi-Source Problems

Schema Level Instance Level

Data Quality Problems

- Naming conflicts
- Structural conflicts
…

- Inconsistent aggregating
- Inconsistent timing
…

(Heterogeneous
data models and
schema designs)

(Overlapping,
contradicting and
inconsistent data)

- Uniqueness
- Referential integrity
…

- Misspellings
- Redundancy/duplicates
- Contradictory values
…

Figure 2. Classification of data quality problems in data sources

2.1 Single-source problems
The data quality of a source largely depends on the degree to which it is governed by schema and integrity
constraints controlling permissable data values. For sources without schema, such as files, there are few
restrictions on what data can be entered and stored, giving rise to a high probability of errors and
inconsistencies. Database systems, on the other hand, enforce restrictions of a specific data model (e.g., the
relational approach requires simple attribute values, referential integrity, etc.) as well as application-specific
integrity constraints. Schema-related data quality problems thus occur because of the lack of appropriate
model-specific or application-specific integrity constraints, e.g., due to data model limitations or poor
schema design, or because only a few integrity constraints were defined to limit the overhead for integrity
control. Instance-specific problems relate to errors and inconsistencies that cannot be prevented at the
schema level (e.g., misspellings).

Scope/Problem Dirty Data Reasons/Remarks
Attribute Illegal values bdate=30.13.70 values outside of domain range
Record Violated attribute

dependencies
age=22, bdate=12.02.70 age = (current date – birth date)

should hold
Record
type

Uniqueness
violation

emp1=(name=”John Smith”, SSN=”123456”)
emp2=(name=”Peter Miller”, SSN=”123456”)

uniqueness for SSN (social security
number) violated

Source Referential
integrity violation

emp=(name=”John Smith”, deptno=127) referenced department (127) not defined

Table 1. Examples for single-source problems at schema level (violated integrity constraints)
For both schema- and instance-level problems we can differentiate different problem scopes: attribute (field),
record, record type and source; examples for the various cases are shown in Tables 1 and 2. Note that
uniqueness constraints specified at the schema level do not prevent duplicated instances, e.g., if information
on the same real world entity is entered twice with different attribute values (see example in Table 2).

Scope/Problem Dirty Data Reasons/Remarks
Missing values phone=9999-999999 unavailable values during data entry

(dummy values or null)
Misspellings city=”Liipzig” usually typos, phonetic errors
Cryptic values,
Abbreviations

experience=”B”;
occupation=”DB Prog.”

Embedded values name=”J. Smith 12.02.70 New York” multiple values entered in one attribute
(e.g. in a free-form field)

Attribute

Misfielded values city=”Germany”
Record Violated attribute

dependencies
city=”Redmond”, zip=77777 city and zip code should correspond

Word
transpositions

name1= “J. Smith”, name2=”Miller P.” usually in a free-form field

Duplicated records emp1=(name=”John Smith”,...);
emp2=(name=”J. Smith”,...)

same employee represented twice due to
some data entry errors

Record
type

Contradicting
records

emp1=(name=”John Smith”, bdate=12.02.70);
emp2=(name=”John Smith”, bdate=12.12.70)

the same real world entity is described by
different values

Source Wrong references emp=(name=”John Smith”, deptno=17) referenced department (17) is defined but
wrong

Table 2. Examples for single-source problems at instance level

Single-Source Instance Problems

48

[E. Rahm & H. H. Do, 2000]
D. Koop, CSCI 640/490, Spring 2024

https://dbs.uni-leipzig.de/file/TBDE2000.pdf

4

Given that cleaning data sources is an expensive process, preventing dirty data to be entered is obviously an
important step to reduce the cleaning problem. This requires an appropriate design of the database schema
and integrity constraints as well as of data entry applications. Also, the discovery of data cleaning rules
during warehouse design can suggest improvements to the constraints enforced by existing schemas.

2.2 Multi-source problems
The problems present in single sources are aggravated when multiple sources need to be integrated. Each
source may contain dirty data and the data in the sources may be represented differently, overlap or
contradict. This is because the sources are typically developed, deployed and maintained independently to
serve specific needs. This results in a large degree of heterogeneity w.r.t. data management systems, data
models, schema designs and the actual data.
At the schema level, data model and schema design differences are to be addressed by the steps of schema
translation and schema integration, respectively. The main problems w.r.t. schema design are naming and
structural conflicts [2][24][17]. Naming conflicts arise when the same name is used for different objects
(homonyms) or different names are used for the same object (synonyms). Structural conflicts occur in many
variations and refer to different representations of the same object in different sources, e.g., attribute vs. table
representation, different component structure, different data types, different integrity constraints, etc.
In addition to schema-level conflicts, many conflicts appear only at the instance level (data conflicts). All
problems from the single-source case can occur with different representations in different sources (e.g.,
duplicated records, contradicting records,…). Furthermore, even when there are the same attribute names and
data types, there may be different value representations (e.g., for marital status) or different interpretation of
the values (e.g., measurement units Dollar vs. Euro) across sources. Moreover, information in the sources
may be provided at different aggregation levels (e.g., sales per product vs. sales per product group) or refer
to different points in time (e.g. current sales as of yesterday for source 1 vs. as of last week for source 2).
A main problem for cleaning data from multiple sources is to identify overlapping data, in particular
matching records referring to the same real-world entity (e.g., customer). This problem is also referred to as
the object identity problem [11], duplicate elimination or the merge/purge problem [15]. Frequently, the
information is only partially redundant and the sources may complement each other by providing additional
information about an entity. Thus duplicate information should be purged out and complementing
information should be consolidated and merged in order to achieve a consistent view of real world entities.
Customer (source 1)
CID Name Street City Sex
 11 Kristen Smith 2 Hurley Pl South Fork, MN 48503 0
 24 Christian Smith Hurley St 2 S Fork MN 1
Client (source 2)
Cno LastName FirstName Gender Address Phone/Fax
24 Smith Christoph M 23 Harley St, Chicago

IL, 60633-2394
333-222-6542 /
333-222-6599

493 Smith Kris L. F 2 Hurley Place, South
Fork MN, 48503-5998

444-555-6666

Customers (integrated target with cleaned data)
No LName FName Gender Street City State ZIP Phone Fax CID Cno
1 Smith Kristen L. F 2 Hurley

Place
South
Fork

MN 48503-
5998

444-555-
6666

11 493

2 Smith Christian M 2 Hurley
Place

South
Fork

MN 48503-
5998

24

3 Smith Christoph M 23 Harley
Street

Chicago IL 60633-
2394

333-222-
6542

333-222-
6599

24

Figure 3. Examples of multi-source problems at schema and instance level

The two sources in the example of Fig. 3 are both in relational format but exhibit schema and data conflicts.
At the schema level, there are name conflicts (synonyms Customer/Client, Cid/Cno, Sex/Gender) and
structural conflicts (different representations for names and addresses). At the instance level, we note that
there are different gender representations (“0”/”1” vs. “F”/”M”) and presumably a duplicate record (Kristen
Smith). The latter observation also reveals that while Cid/Cno are both source-specific identifiers, their
contents are not comparable between the sources; different numbers (11/493) may refer to the same person
while different persons can have the same number (24). Solving these problems requires both schema

Multi-Source Schema & Instance Problems

49

[E. Rahm & H. H. Do, 2000]
D. Koop, CSCI 640/490, Spring 2024

https://dbs.uni-leipzig.de/file/TBDE2000.pdf

SampleClean (and Variants)
• Dirty Data?
- Missing Values
- Duplicate Values
- Incorrect Values
- Inconsistent Values

• Estimate query results using a sample of the data
• Two ideas:
- Direct Estimate
- Correction

50D. Koop, CSCI 640/490, Spring 2024

Typical Data Cleaning Steps

51

[sampleclean.org]
D. Koop, CSCI 640/490, Spring 2024

http://sampleclean.org

2. QUERY PROCESSING ON DIRTY DATA

Like other SAQP systems, our main focus is on aggregate
numerical queries (avg, sum, count, var, geomean, product)
of the form:

SELECT f(attrs) FROM table
WHERE predicate
GROUP BY attrs

When running the aggregate queries on large and dirty
datasets, there may be two separate sources of errors that
a↵ect result quality. (1) Sampling error: since data is large,
we may execute queries on a sample of the data to reduce
query times. (2) Data error: since real-world data is dirty,
queries on the dirty data also lead to inaccurate query re-
sults.

In this section, we first precisely characterize sampling and
data errors, and then present our SampleClean framework to
deal with these two types of errors. Throughout the section,
we will refer to the following example query on a dataset of
academic publications:

SELECT AVG(citation_count) FROM papers
GROUP BY pub_year

which finds the average number of citations of the publica-
tions published every year.

2.1 Sampling Error

There are many di↵erent ways to sample data; a data
sample could be either created online during the query
time [14,32,47,57] or built o✏ine from past query work-
loads [2,3,5,11]. Consider our example citation query. A
uniform random-sampling scheme randomly selects a set of
papers from papers such that every paper has an equal
probability of selection. To answer queries with a highly
selective predicate or a group-by clause, prior works em-
ploy stratified-sampling [1,3,32], which performs a uniform
random sampling scheme in each group, to guarantee that
every group has a large enough sample size to estimate a
good result. The approaches presented in this paper can
support both uniformly random samples and stratified sam-
ples. However, for simplicity, we present our analysis with
uniform samples.

Answering queries on a sample has an inherent uncer-
tainty since a di↵erent sample may yield a di↵erent result.
Quantifying this uncertainty has been extensively studied
in statistics [43]. Due to this uncertainty, we return confi-
dence intervals in addition to results. For example, given
a confidence probability (e.g., 95%), we can apply results
from sampling statistics to estimate the average number of
citations along with a confidence interval (e.g. ±10), which
means that the estimated average number is within ±10 of
the actual value with 95% probability. The confidence in-
terval quantifies the uncertainty introduced by sampling the
data.

2.2 Data Error

In this work, we focus on three types of data errors: value
error, condition error, and duplication error. We use our ex-
ample query to illustrate how these errors can a↵ect results.

Value error: When an error occurs in the aggregation at-
tributes of the query (i.e. citation_count), it will lead to an
incorrect aggregate result. For example, consider the dirty
data in Figure 1(a). The first paper t1 involves value error
since its citation count should be 144 instead of 18.

Condition error: When an error occurs in the predicate or
group-by attribute of the query (i.e. pub_year), there may

(a) Dirty Data

YFilter()(ICDE 2982002t10000
...

6871997Online(Aggr.t7

1569

1

106

cita%on
_count

18

107

298

CrowdERt6 2012

DataSpace 2008t5
t4 Aqua

YFilter Feb,(2002t3
t2 TinyDB 2005

11t1 CrowdDB

pub_year%tleid

1

2

2

#dup

1

1
1

3

(b) Cleaned Sample

6871997Online(Aggr.t7

1569

34

106

cita%on
_count

144

107

298

CrowdERt6 2012

DataSpace 2008t5
1999t4 Aqua

YFilter 2002t3
t2 TinyDB 2005

2011t1 CrowdDB

pub_year%tleid

Figure 1: An example of dirty data and cleaned
sample (Shaded cells denote dirty values, and their
cleaned values are in bold font).

be some tuples that are falsely added into or excluded from
a group, leading to an incorrect result. In Figure 1(a), the
first paper t1 also has condition error since it was published
in the year 2011 rather than 11.

Duplication error: If data contains duplicate tuples (e.g.,
di↵erent representations of the same paper), the aggregate
result will also be a↵ected. This type of error commonly
happens when the data is integrated from multiple sources.
For instance, in Figure 1(a), the third paper t3 has duplica-
tion error as it refers to the same paper as t10000.

While data cleaning can fix the data errors, cleaning the
entire data is usually time consuming, often requiring user
confirmation or crowdsourcing. For this reason, we have
developed the SampleClean framework.

2.3 SampleClean Framework

Figure 2 illustrates all of the components of our frame-
work. SampleClean first creates a random sample of dirty
data, and then applies a data-cleaning technique to clean
the sample. After cleaning the sample, SampleClean uses
the cleaned sample to answer aggregate queries. Sample-
Clean gives results that are unbiased which means in expec-
tation the estimates are equal to the query results if the
entire dataset was cleaned by the data-cleaning technique.
The SampleClean framework is independent of how sam-

ples are cleaned, and in this paper, we consider data cleaning
as a user-provided module. Specifically, for each tuple in the
sample, the cleaning module corrects the attribute values of
the tuple, and estimates the number of duplicates for the
tuple from the dirty data. For example, consider a sample,
S = {t1, t2, · · · , t7} of the dirty data in Figure 1(a). Fig-
ure 1(b) shows the corresponding cleaned sample. For the
first paper t1, we correct pub_year from 11 to 2011, correct
citation_count from 18 to 144, and identify two duplicate
papers (including t1 itself) in the dirty data.

2.3.1 Cleaning Value and Condition Errors
To reduce value errors and condition errors, the data-

cleaning technique only needs to clean attribute values in
the sample, and we can apply a variety of recently proposed
data cleaning techniques to achieve this. For example, out-
lier detection [31,35] and rule-based approaches [17,23] have
been proposed to solve this problem. In addition, Fan et
al. [24] proposed editing rules, master data and user con-
firmation to correct attribute values, and they proved that
their approaches can always obtain perfect cleaning results.
There are also some data-cleaning tools [19,46] that can fa-
cilitate users to clean data based on their domain knowledge.
For example, OpenRefine [46] allows users to define facets
on a per attribute basis, and helps them to quickly identify
incorrect attribute values via faceted search.

2.3.2 Identifying Duplicates
The SampleClean framework defines the duplicate factor

for a tuple as the number of times the tuple appears in the

Dirty and Cleaned Data

52

[J. Wang et al., 2014]
D. Koop, CSCI 640/490, Spring 2024

Two Sources of Error
• Approximate Query Processing (AQP): Don't process the entire dataset, but

use samples to get an approximate result
• Now add dirty data
• Two sources of error:

53

[S. Krishnan et al., 2015]
D. Koop, CSCI 640/490, Spring 2024

describes SampleClean, View Cleaning, and ActiveClean respectively. Section 7 reviews the related work in
this field. In Section 8, we highlight some of the open problems and future directions of the SampleClean
project. Finally, we conclude in Section 9.

2 Background and Main Ideas

This section describes the key idea of SampleClean, namely, that data cleaning can be integrated with approx-
imate query processing leading to bounded approximations of clean query results for a fraction of the cleaning
cost.

2.1 Traditional Approximate Query Processing

A number of approximation schemes have been proposed including using Sampling, Wavelets, Sketching, and
Hashing (see Cormode et al. for a survey [16]). This article focuses on Sampling-based approximations and
we will use the term AQP to refer to such systems (e.g., BlinkDB[6]). Sampling-based approximate query
processing is a powerful technique that allows for fast approximate results on large datasets. It has been well
studied in the database community since the 1990s [27, 5, 36, 35], and methods such as BlinkDB [6] have drawn
renewed attention in recent big data research. An important aspect of this work is confidence intervals, as many
types of aggregates can be bounded with techniques such as concentration inequalities (e.g., Hoeffding bounds),
large-deviation inequalities (e.g., Central Limit Theorem), or empirically (e.g., Bootstrap). Suppose, there is a
relation R and a uniform sample S. AQP applies a query Q to S (possibly with some scaling c) to return an
estimate:

Q(R) ≈ est = c ·Q(S)

Traditionally, AQP sacrifices accuracy due to sampling for improved query latency. However in AQP, the
bounds on est assume that the only source of error is approximation error introduced by sampling, however, the
data itself may contain errors which could also affect query results. When the data itself is erroneous, a query
result on the full data–let alone a sample, will be incorrect. The main argument for SampleClean is that when
data errors significantly affect query results, sampling can be combined with data cleaning to actually improve
accuracy. This leads to a counter-intuitive result where it is possible that a query on a cleaned sample of data is
more accurate than a query on the entire dirty data.

2.2 Approximate Query Processing on Dirty Data

2.2.1 Two Sources of Errors: Sampling Error and Data Error

If R is dirty, then there is a true relation Rclean.
Q(Rclean) ̸= Q(R) ≈ est = c ·Q(S)

The error in est has two components: error due to sampling ϵs and error due to the difference with the cleaned
relation ϵc = Q(Rclean)−Q(R):

| Q(Rclean)− est |≤ ϵs + ϵc
While they are both forms of query result error, ϵs and ϵc are very different quantities. ϵs is a random

variable due to the sampling, and different samples would result in different realizations of ϵs. As a random
variable introduced by sampling, ϵs can be bounded by a variety of techniques as a function of the sample size.
On the other hand, ϵc is deterministic, and by definition is an unknown quantity until all the data is cleaned.
Thus, the bounds returned by a typical AQP framework on dirty data would neglect ϵc.

It is possible that Rclean ̸= R but ϵc = 0. Consider a sum query on the relation R(a), where a is a
numerical attribute. If half of the rows in R are corrupted with +1 and the other half are corrupted with−1, then

61

!

Dirty!Data!

Result!Es.ma.on!
(RawSC)!

Dirty!
Sample!

Cleaned!
Sample!

Result!Es.ma.on!
(NormalizedSC)!

Results!with!Con<!
fidence!Intervals!

Aggregate!
Queries!

Sample!Crea.on!

Data!Cleaning!

Results!with!Con<!
fidence!Intervals!

Figure 2: The SampleClean framework.

entire table. To determine it, one way would be to estimate
its value from the sample. However, both analytical proofs
and empirical tests have shown that this method can lead to
highly inaccurate query results [10]. Therefore, in our pa-
per, we determine the duplication factor from the complete
relation.

It is important to note, however, that compared to full
cleaning, we only need to determine the duplication factor
for those tuples in the sample. As with other uses of sam-
pling, this can result in significant cost savings in duplicate
detection. In the following, we will describe how to apply ex-
isting deduplication techniques to compute the duplication
factor, and explain why it is cheaper to determine the du-
plication factor for a sample of the data, even though doing
so requires access to the complete relation.

Duplicate detection (also known as entity resolution) aims
to identify di↵erent tuples that refer to the same real-world
entity. This problem has been extensively studied for several
decades [22]. Most deduplication approaches consist of two
phases:

1. Blocking. Due to the large (quadratic) cost of all-

pair comparisons, data is partitioned into a number

of blocks, and duplicates are considered only within a

block. For instance, if we partition papers based on

conference_name, then only the papers that are pub-

lished in the same conference will be checked for dupli-

cates;

2. Matching. To decide whether two tuples are duplicates

or not, existing techniques typically model this problem

as a classification problem, and train a classifier to la-

bel each tuple pair as duplicate or non-duplicate [9].

In some recent research (and also at many compa-

nies) crowdsourcing is used to get humans to match

tuples [20,54].

A recent survey on duplicate detection has argued that the
matching phase is typically much more expensive than the
blocking phase [13]. For instance, an evaluation of the popu-
lar duplicate detection technique [9] shows that the matching
phase takes on the order of minutes for a dataset of thou-
sands of tuples [39]. This is especially true in the context of
crowdsourced matching where each comparison is performed
by a crowd worker costing both time and money. Sample-
Clean reduces the number of comparisons in the matching
phase, as we only have to match each tuple in the sample
with the others in its block. For example, if we sample 1% of
the table, then we can reduce the matching cost by a factor
of 100.

2.3.3 Result Estimation
After cleaning a sample, SampleClean uses the cleaned

sample to estimate the result of aggregate queries. Simi-
lar to existing SAQP systems, we can estimate query results
directly from the cleaned sample. However, due to data er-
ror, result estimation can be very challenging. For example,

consider the avg(citation_count) query in previous section.
Assume that the data has duplication errors and that papers
with a higher citation count tend to have more duplicates.
The greater the number of duplicates, the higher probability
a paper is sampled, and thus the cleaned sample may con-
tain more highly cited papers, leading to an over-estimated
citation count. We formalize these issues and propose the
RawSC approach to address them in Section 3.
Another quantity of interest is how much the dirty data

di↵ers from the cleaned data. We can estimate the mean
di↵erence based on comparing the dirty and cleaned sam-
ple, and then correct a query result on the dirty data with
this estimate. We describe this alternative approach, called
NormalizedSC, and compare its performance with RawSC
in Section 4.

SampleClean v.s. SAQP: SAQP assumes perfectly clean
data while SampleClean relaxes this assumption and makes
cleaning feasible. In RawSC, we take a sample of data, ap-
ply a data cleaning technique, and then estimate the result.
The result estimation is similar to SAQP, however, we re-
quire a few additional scaling factors related to the clean-
ing. On the other hand, NormalizedSC is quite di↵erent
from typical SAQP frameworks. NormalizedSC estimates
the average di↵erence between the dirty and cleaned data,
and this is only possible in systems that couple data clean-
ing and sampling. What is surprising about SampleClean
is that sampling a relatively small population of the overall
data makes it feasible to manually or algorithmically clean
the sample, and experiments confirm that this cleaning of-
ten more than compensates for the error introduced by the
sampling.

2.3.4 Example: SampleClean with OpenRefine
In this section, we will walk through an example imple-

mentation of SampleClean using OpenRefine [46] to clean
the data. Consider our example dirty dataset of publica-
tions in Figure 1(a). First, the user creates a sample of data
(e.g., 100 records) and loads this sample into the OpenRefine
spreadsheet interface. The user can use the tool to detect
data errors such as missing attributes, and fill in the cor-
rect values (e.g., from another data source or based on prior
domain expertise). Next, for deduplication, the system will
propose potential matches for each publication in the sam-
ple based on a blocking technique and the user can accept
or reject these matches. Finally, the clean sample with the
deduplication information is loaded back into the dataset.
In this example, sampling reduces the data cleaning e↵ort
for the user. The user needs to inspect only 100 records in-
stead of the entire dataset, and has no more than 100 sets
of potential duplicates to manually check.
To query this clean sample, we need to apply Sample-

Clean’s result estimation to ensure that the estimate remains
unbiased after cleaning since some records may have been
corrected, or marked as duplicates. In the rest of the paper,
we discuss the details of how to ensure unbiased estimates,
and how large the sample needs to be to get a result of
acceptable quality.

3. RawSC ESTIMATION

In this section, we present the RawSC estimation ap-
proach. RawSC takes a sample of data as input, applies
a data cleaning technique to the sample, runs an aggregate
query directly on the clean sample, and returns a result with
a confidence interval.

3.1 Sample Estimates

We will first introduce the estimation setting without data
errors and explain some results about estimates from sam-

SampleClean Framework

54

[J. Wang et al., 2014]
D. Koop, CSCI 640/490, Spring 2024

Types of Direct Estimation Errors
• Attribute Errors:
- value of one attribute is wrong
- affect a single row
- does not affect sampling

• Duplication Errors
- same items appear multiple times
- those items are over-represented
- count up duplicates and divide the influence

55D. Koop, CSCI 640/490, Spring 2024

3.3 Direct Estimation with Data Errors

We are actually interested in estimating an aggregate query on Rclean. However, since we do not have the clean
data, we cannot directly sample from Rclean. We must draw our sample from the dirty data R and then clean
the sample. Running an aggregate query on the cleaned sample is not equivalent to computing the query result
on a sample directly drawn from the clean data. Consider the case where data is duplicated, sampling from the
dirty data leads to an over representation of the duplicated data in the sample. Even if cleaning is subsequently
applied it does not change the fact that the sample is not uniform; and thus, the estimation method without errors
presented before does not apply. Our goal is to define a new function φclean(·), an analog to φ(·), that corrects
attribute values and re-scales to ensures that the estimate remains unbiased.

3.3.1 Attribute Errors

Attribute errors affect an individual row and thus do not change the sampling statistics. Consequently, if we
apply the φ(·) to the corrected tuple, we still preserve the uniform sampling properties of the sample S. In other
words, the probability that a given tuple is sampled is not changed by the cleaning, thus we define φclean(t) as:

φclean(t) = φ (Correct(t)) .

Note that the φ(·) for an avg query is dependent on the parameter kpred. If we correct values in the predicate
attributes, we need to recompute kpred in the cleaned sample.

3.3.2 Duplication Errors

The duplicated data is more likely to be sampled and thus be over-represented in the estimate of the mean. We
can address this with a weighted mean to reduce the effects of this over-representation. Furthermore, we can
incorporate this weighting into φclean(·). Specifically, if a tuple r is duplicated m = Numdup(r) times, then
it is m times more likely to be sampled, and we should down weight it with a 1

m factor compared to the other
tuples in the sample. We formalize this intuition with the following lemma (proved in [45]):

Lemma 1: Let R be a population with duplicated tuples. Let S ⊆ R be a uniform sample of size k. For each
ri ∈ S, let mi denote its number of duplicates in R. (1) For sum and count queries, applying φclean(ri) =
φ(ri)
mi

yields an unbiased estimate; (2) For an avg query, the result has to be scaled by the duplication rate d = k
k′ ,

where k′ =
∑

i
1
mi

, so using φclean(ri) = d · φ(ri)
mi

yields an unbiased estimate.

These results follow directly from importance sampling [32], where expected values can be estimated with
respect to one probability measure, and corrected to reflect the expectation with respect to another.

3.3.3 Summary and Algorithm

In Table 1, we describe the transformation φclean(·). Using this function, we formulate the direct estimation
procedure:

1. Given a sample S and an aggregation function f(·)
2. Apply φclean(·) to each ti ∈ S and call the resulting set φclean(S)
3. Calculate the mean µc, and the variance σ2

c of φclean(S)

4. Return µc ± λ
√

σ2
c

K

64

Direct Estimation with Errors

56

[S. Krishnan et al., 2015]
D. Koop, CSCI 640/490, Spring 2024

Table 1: φclean(·) for count, sum, and avg. Note that N is the total size of dirty data (including duplicates).

Query φclean(·)
count Predicate(Correct(r)) ·N · 1

Numdup(r)

sum Predicate(Correct(r)) ·N · Correct(r)[a]Numdup(r)

avg Predicate(Correct(t)) · dk
kpred

· Correct(r)[a]Numdup(r)

3.4 Correction with Data Errors

Due to data errors, the result of the aggregation function f on the dirty population R differs from the true result
f(R) = f(Rclean) + ϵ. We derived a function φclean(·) for the direct estimation. We contrasted this function
with φ(·) which does not clean the data. Therefore, we can write:

f(R) =
1

N

∑

r∈R
φ(r) f(Rclean) =

1

N

∑

r∈R
φclean(t)

If we solve for ϵ, we find that:

ϵ =
1

N

∑

r∈R

(
φ(r)− φclean(r)

)

In other words, for every tuple r, we calculate how much φclean(r) changes φ(r). For a sample S, we can
construct the set of differences between the two functions:

Q = {φ(r1)− φclean(r1),φ(r2)− φclean(r2), · · · , φ(rK)− φclean(rK)}
The mean difference is an unbiased estimate of ϵ, the difference between f(R) and f(Rclean). We can subtract
this estimate from an existing aggregation of data to get an estimate of f(Rclean).

We derive the correction estimation procedure, which corrects an aggregation result:

1. Given a sample S and an aggregation function f(·)

2. Apply φ(·) and φclean(·) to each ri ∈ S and call the set of differences Q(S).

3. Calculate the mean µq, and the variance σq of Q(S)

4. Return (f(R)− µq)± λ
√

σ2
q

k

3.5 Analysis

Direct Estimate vs. Correction: In terms of the confidence intervals, we can analyze how direct estimation
compares to correction for a fixed sample size k. Direct estimation gives an estimate that is proportional to
the variance of the clean sample view: σ2

c
k . Correction gives and estimate proportional to the variance of the

differences before and after cleaning: σ2
q

k . σ2
q can be rewritten as
σ2
c + σ2

q − 2cov(S, Sclean)

cov(S, Sclean) is the covariance between the the variables φ(r) and φclean(r). Therefore, a correction will have
less variance when:

σ2
S ≤ 2cov(S, Sclean) (11)

If there are no errors Sclean = S and then cov(S, Sclean) = σ2
c clearly satisfying the condition. Generally,

if errors are small (i.e., the cleaned data is highly correlated with the dirty data) corrections will give higher
accuracy. In practice, we can run both the correction and the direct estimate and take the one with a narrower
confidence interval:

error2 ≤ O(
min{σ2

c ,σ
2
q}

k
) (12)

65

Correction with Data Errors

57

[S. Krishnan et al., 2015]
D. Koop, CSCI 640/490, Spring 2024

200 400 600 800 1000 1200 1400
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Cleaned Samples

P
ro

b
a

b
ili

ty
 o

f
C

o
rr

e
ct

 O
rd

e
ri
n

g

Name Dirty Clean Pred % Dup
Rakesh Agarwal 353 211 18.13% 1.28

Jeffery Ullman 460 255 05.00% 1.65
Michael Franklin 560 173 65.09% 1.13

Figure 2: We can return the correct ranking with 95% probability after cleaning only 210 total samples. To
achieve a correct ranking with 99% probability, we require 326 samples to be cleaned.

Selectivity: Let p be the selectivity of the query and k be the sample size; that is, a fraction p records from the
relation satisfy the predicate. For these queries, we can model selectivity as a reduction of effective sample size
k · p making the estimate variance: O(1

k∗p). Thus, the confidence interval’s size is scaled up by 1√
p . Just like

there is a tradeoff between accuracy and maintenance cost, for a fixed accuracy, there is also a tradeoff between
answering more selective queries and maintenance cost.

3.6 Results: Ranking Academic Authors

Microsoft maintains a public database of academic publications4. The errors in this dataset are primarily du-
plicated publications and mis-attributed publications. We selected publications from three database researchers:
Jeffrey Ullman, Michael Franklin, and Rakesh Agarwal. To clean a sample of publications, we first manually
removed the mis-attributions in the sample. Then, we applied the technique used in [44] to identify potential
duplicates for all of publications in our sample, and manually examined the potential matches. For illustration
purpose, we cleaned the entire dataset, and showed the cleaning results in Figure 2.

This table shows the difference between the reported number of publications (Dirty) and the number of
publications after our cleaning (Clean). We also diagnosed the errors and recorded the duplication ratio (Dup)
and the percentage of mis-attributed papers (Pred). Both Rakesh Agarwal and Michael Franklin had a large
number of mis-attributed papers due to other authors with the same name (64 and 402 respectively). Jeffery
Ullman had a comparatively larger number of duplicated papers (182).

If we were interested in ranking the authors, the dirty data would give us the wrong result. In Figure 2, we
plot the probability of a correct ranking as a function of number of cleaned records with SampleClean. We show
how we can return the correct ranking with 95% probability after cleaning only 210 total samples. To achieve
a correct ranking with 99% probability, we require 326 samples to be cleaned. In comparison, AllDirty always
returns an incorrect ranking. SampleClean provides a flexible way to achieve a desired confidence on decision
based on dirty data queries.

4 View Cleaning: Stale Views are Dirty Data [30]

Suppose the relation R is in fact a derived relation V of an underlying dirty database D. We explored how we
can efficiently apply a data cleaning operation to a sample of V . This extension has an important application in
approximate Materialized View maintenance, where we model a stale Materialized View as dirty data, and the
maintenance procedure as cleaning.

4http://academic.research.microsoft.com (Accessed Nov. 3, 2013)

66

Example

58

[S. Krishnan et al., 2015]
D. Koop, CSCI 640/490, Spring 2024

Figure 1: Comparison of the convergence
of the methods on two TPC-H datasets of
6M tuples with simulated errors 50% error
and 5% error. On the dataset with larger
errors, the direct estimate gives a narrower
confidence interval, and on the other the
correction is more accurate. 0 2000 4000 6000 8000 100000

2

4

6

8

10

12

Number of Cleaned Samples

Er
ro

r %

Less Dirty

AllDirty
Direct
Correction

0 2000 4000 6000 8000 100000

10

20

30

40

50

Number of Cleaned Samples
Er

ro
r %

Very Dirty

AllDirty
Direct
Correction

Q(Rclean) = Q(R). The interesting problem is when there are systematic errors[43] i.e., | ϵc |> 0. In other
words, the corruption that is correlated with the data, e.g., where every record is corrupted with a +1.

2.2.2 Key Idea I: Direct Estimate vs. Correction

The key quantity of interest is ϵc, and to be able to bound a query result on dirty data, requires that ϵc is 0 or
bound ϵc.

Direct Estimate: This technique is a direct extension of AQP to handle data cleaning. A set of k rows is
sampled uniformly at random from the dirty relation R resulting in a sample S. Data cleaning is applied to the
sample S resulting in Sclean. Data cleaning and sampling may change the statistical and scaling properties of
the query Q, so Q may have to be re-written to a query Q̂. Q̂ is applied to the sample Sclean and the result
is returned. There are a couple of important points to note about this techniques. First, as in AQP, the direct
estimate only processes a sample of data. Next, since it processes a cleaned sample of data, at no point is there
a dependence on the dirty data. As we will show later in the article, the direct estimate returns a result whose
accuracy is independent of the magnitude or rate of data error. One way to think about this technique is that it
ensures ϵc = 0 within the sample.

Correction: The direct estimate suffers a subtle drawback. Suppose, there are relatively few errors in the data.
The errors introduced by sampling may dominate any error reductions due to data cleaning. As an alternative,
we can try to estimate ϵc. A set of k rows is sampled uniformly at random from the dirty relation R resulting in
a sample S. Data cleaning is applied to the sample S resulting in Sclean. The difference in applying Q̂ to S and
Q̂ to Sclean gives an estimate of ϵc. The interpretation of this estimate is a correction to the query result on the
full dirty data. In contrast to the direct estimate, this technique requires processing the entire dirty data (but only
cleaning a sample). However, as we will later show, if errors are rare this technique gives significantly improved
accuracy over the direct estimates.

2.2.3 Key Idea II: Sampling to Improve Accuracy

Figure 1 plots error as a function of the cleaned sample size on a corrupted TPCH dataset for a direct estimate,
correction, and AllDirty (query on the full dirty data). In both cases, there is a break-even point (in terms of
number of cleaned samples) when the data cleaning has mitigated more data error than the approximation error
introduced by sampling. After this point, SampleClean improves query accuracy in comparison to AllDirty.
When errors are relatively rare (5% corruption rate), the correction is more accurate. When errors are more
significant (50% corruption rate), the direct estimate is more accurate. Note that the direct estimate returns
results of the same accuracy regardless of the corruption rate.

62

Comparing the Two Approaches

59

[S. Krishnan et al., 2015]
D. Koop, CSCI 640/490, Spring 2024

