
Advanced Data Management (CSCI 640/490)

Machine Learning in Databases

Dr. David Koop

D. Koop, CSCI 640/490, Spring 2024

Commercial?

no
response

research
repeatable

Non−

research
repeatable

Non−

evidence
Anecdotal

builds 1? builds 2?

no
response

response
or late

research
repeatable

Non−

resolve issues
Issue survey,

resolve issues
Issue survey,

runs?
Record
resultsresearch

Repeatable

evidence
Anecdotal

ASPLOS’12, CCS’12, OOPSLA’12, OSDI’12,
PLDI’12, SIGMOD’12, SOSP’11, VLDB’12,
TACO’9, TISSEC’15, TOCS’30, TODS’37,
TOPLAS’34

no yes

no no

yes yes

Theoretical/HW

"yes"

"no" "no"

"yes"

no

yes yes

no

2nd email?

no

yes

Practical

by code?

Results backed

Links to code

http://...

http://...

Download

code

Source code

paper? web? 1st email?

Download

papers

Build and

execute

Scan

manually

Search for

link to code

Search for

other data

NSF support?

Figure 4: Process by which the study was performed.

11

Checking Computational Results in Systems

2

Commercial?

no
response

research
repeatable

Non−

research
repeatable

Non−

evidence
Anecdotal

builds 1? builds 2?

no
response

response
or late

research
repeatable

Non−

resolve issues
Issue survey,

resolve issues
Issue survey,

runs?
Record
resultsresearch

Repeatable

evidence
Anecdotal

ASPLOS’12, CCS’12, OOPSLA’12, OSDI’12,
PLDI’12, SIGMOD’12, SOSP’11, VLDB’12,
TACO’9, TISSEC’15, TOCS’30, TODS’37,
TOPLAS’34

no yes

no no

yes yes

Theoretical/HW

"yes"

"no" "no"

"yes"

no

yes yes

no

2nd email?

no

yes

Practical

by code?

Results backed

Links to code

http://...

http://...

Download

code

Source code

paper? web? 1st email?

Download

papers

Build and

execute

Scan

manually

Search for

link to code

Search for

other data

NSF support?

Figure 4: Process by which the study was performed.

11

[Collberg and Proebsting, 2015]
D. Koop, CSCI 640/490, Spring 2024

http://reproducibility.cs.arizona.edu/v2/RepeatabilityTR.pdf

601

NC
63

HW
30

508

Article
85

Web
54

EMyes

87

EX
106

226

OK∑30

130
OK>30

64
OKAuth

23

Build
fails

9

176

EMno

146
EM;

30

Figure 11: Study result. Blue numbers represent papers that were excluded from consideration,
green numbers papers that are weakly repeatable, red numbers papers that are non-weakly repeat-
able, and orange numbers represent papers that were excluded (due to our restriction of sending
at most one email to each author).

10. Notes:

(a) If a link was found through a web search go back and check the paper again to make
sure it was not there.

(b) It can be complicated to determine when there is a larger project of which the current
paper is a subset. In that case the paper may refer to the larger project as though it
were a separate subject when in fact their current code is included with it.

4 Results

Table 2, Figure 11, and Appendix B show the results of the study. Table 4 lists the abbreviations
we use.

Table 2 shows that out of an initial 601 papers, we excluded 30 because they required esoteric
hardware, 63 because the results presented were not backed by code, and 106 in order to avoid
sending multiple email requests to the same author, resulting in a total of 402 papers whose results
were backed by code. Out of these, we found 85 codes through links in the paper itself, 54 codes
through web searches, and 87 codes through email requests. For the remaining 176 papers backed
by code we either got a negative response to our email requests, or no response within two months.

Our results show that for 32.3% of the papers backed by code we were able to obtain the code
and, within  30 minutes, also build it (weak repeatability A); for 48.3% of the papers we managed
to build the code, but it may have required extra e↵ort (weak repeatability B); and for 54.0% of
the papers either we managed to build the code or the authors stated the code would build with
reasonable e↵ort (weak repeatability C).

21

Repeatability Results

3

[Collberg and Proebsting, 2015]
D. Koop, CSCI 640/490, Spring 2024

64 COMMUNICATIONS OF THE ACM | MARCH 2016 | VOL. 59 | NO. 3

contributed articles

take the expected level of repeatability
into consideration in their recommen-
dation to accept or reject. To this end,
we make a recommendation for add-
ing sharing contracts to publications—
a statement by authors as to the level of
repeatability readers can expect.

Background
Three previous empirical studies ex-
plored computer science researchers’
willingness to share code and data.
Kovac̆ević 5 rated 15 papers published
in the IEEE Transactions on Image
Proc essing and found that while all al-
gorithms had proofs, none had code
available, and 33% had data available.
Vandewalle et al.18 examined the 134
papers published in IEEE Transactions
on Image Processing in 2004, finding “…
code (9%) and data (33%) are available
online only in a minority of the cases
…” Stodden15 reported while 74% of the
registrants at the Neural Information
Processing Systems (machine-learn-
ing) conference said they were willing
to share post-publication code and 67%
post-publication data, only “ … 30% of
respondents shared some code and
20% shared some data on their own
websites.” The most common reasons
for not sharing code were “The time
it takes to clean up and document for
release,” “Dealing with questions from
users about the code,” “The possibility
that your code may be used without ci-
tation,” “The possibility of patents, or
other IP constraints,” and “Competi-
tors may get an advantage.” Stodden14
has since proposed “The Open Re-
search License,” which, if universally
adopted, would incentivize researchers
to share by ensuring “ … each scientist
is attributed for only the work he or she
has created.”13

Public repositories can help authors
make their research artifacts available
in perpetuity. Unfortunately, the “if you
build it they will come” paradigm does
not always work; for example, on the
RunMyCode17 and ResearchCompen-
dia Web portals,a only 143 and 236 arti-
facts, respectively, had been registered
as of January 2016.

One attractive proposition for re-
searchers to ensure repeatability is to
bundle code, data, operating system,

a http://RunMyCode.org and http://research-
compendia.org

the researchers’ experiment using the
same method in the same environ-
ment and obtain the same results.19
Sharing for repeatability is essential to
ensure colleagues and reviewers can
evaluate our results based on accurate
and complete evidence. Sharing for
benefaction allows colleagues to build
on our results, better advancing scien-
tific progress by avoiding needless rep-
lication of work.

Unlike repeatability, reproducibility
does not necessarily require access to
the original research artifacts. Rather,
it is the independent confirmation of a
scientific hypothesis,19 done post-pub-
lication, by collecting different proper-
ties from different experiments run on
different benchmarks, and using these
properties to verify the claims made in
the paper. Repeatability and reproduc-
ibility are cornerstones of the scientific
process, necessary for avoiding dis-
semination of flawed results.

In light of our discouraging experi-
ences with sharing research artifacts,
we embarked on a study to examine
the extent to which computer systems
researchers share their code and data,
reporting the results here. We also
make recommendations as to how to
improve such sharing, for the good of
both repeatability and benefaction.

The study. Several hurdles must be
cleared to replicate computer systems
research. Correct versions of source
code, input data, operating systems,
compilers, and libraries must be avail-
able, and the code itself must build

and run to completion. Moreover, if
the research requires accurate mea-
surements of resource consumption,
the hardware platform must be rep-
licated. Here, we use the most liberal
definitions of repeatability: Do the
authors make the source code used to
create the results in their article avail-
able, and will it build? We will call this
“weak repeatability.”

Our study examined 601 papers
from ACM conferences and journals,
attempting to locate any source code
that backed up published results. We
examined the paper itself, performed
Web searches, examined popular
source-code repositories, and, when
all else failed, emailed the authors. We
also attempted to build the code but
did not go so far as trying to verify the
correctness of the published results.

Recommendations. Previous work on
repeatability describes the steps that
must be taken in order to produce re-
search that is truly repeatable11,12 or de-
scribes tools or websites that support
publication of repeatable research.4,6

Our recommendations are more mod-
est. We recognize that, as a discipline,
computer science is a long way away
from producing research that is al-
ways, and completely, repeatable. But,
in the interim, we can require authors
to conscientiously inform their peers
of their intent with respect to sharing
their research artifacts. This informa-
tion should be provided by the authors
when submitting their work for pub-
lication; this would allow reviewers to

Table 1. Notation used in Table 2 and the figure.

Notation Number of papers ...

HW excluded due to replication requiring special hardware

NC excluded due to results not being backed by code

EX excluded due to overlapping author lists

BC where the results are backed by code

Article where code was found in the paper itself

Web where code was found through a Web search

EM yes where the author provides code after receiving an email message

EM no where the author responds to an email message saying code cannot be provided

EM ø where the author does not respond to email requests within two months

OK ≤30 where code is available and we succeed in building the system in ≤30 minutes

OK >30 where code is available and we succeed in building the system in >30 minutes

OK Auth where code is available and we fail to build, and the author says the code
builds with reasonable effort

Fails where code is available and we fail to build, and the author says the code
may have problems building

http://reproducibility.cs.arizona.edu/v2/RepeatabilityTR.pdf

Excuses for not sharing
• Versioning
• Available Soon
• No Intention to Share
• Personnel Issues
• Lost Code
• Academic Tradeoffs
• Industrial Lab Tradeoffs
• Obsolete HW/SW
• Controlled Usage
• Privacy/Security
• Design Issues

4

[Collberg and Proebsting, 2015]
D. Koop, CSCI 640/490, Spring 2024

http://reproducibility.cs.arizona.edu/v2/RepeatabilityTR.pdf

Examining 'Reproducibility in Computer Science'
• Repeat the experiment in reproducibility!
• Differences from original
• Shows issues with trying

to classify experiments

5

[S. Krishnamurthi et al.]
D. Koop, CSCI 640/490, Spring 2024

Examining “Reproducibility in Computer Science”

1 What We Are Doing

Welcome to repo-repe-repro: the repository to repeat an experiment in
“reproducibility”!

A group led by Christian Collberg attempted to evaluate the buildability of artifacts
from research papers. Our goal is to allow the community to review and
reconstruct their findings. Note: We are not the original authors! If you have
questions about the original study, please contact them, not us!

We are grateful to Collberg, et al. for initiating this discussion and making all their
data available. This is a valuable service based on an enormous amount of manual
labor. Even if we end up disagreeing with their findings, we remain deeply
appreciative of their service to the community by highlighting these important
issues.

We do disagree with Collberg, et al.’s use of the term “reproducibility”. Many
people, including ourselves, associate it with an independent reconstruction of a
work. This paper, for instance, spells out the difference between repeatability and
reproducibility and provides interesting examples.

2 Progress

Purported Not Building;
Disputed; Not Checked

 6% ••••••

Purported Building; Disputed;
Not Checked

 2% ••

Conflicting Checks! 0%

Misclassified 1% •

Purported Not Building But
Found Building

 14% ••••••••••••••

Purported Building But Found
Not Building

 0%

Purported Not Building;
Confirmed

 0% •

Purported Building; Confirmed 0% •

All Others Purported Not 27% •••••••••••••••••••••••••••

http://cs.brown.edu/~sk/Memos/Examining-Reproducibility/

Reproducible Research
• Science is verified by replicating work independently
• Replication Issues:
- Requires many resources to replicate (Sloan Digital Sky Survey)
- Requires significant computing power (Climate Model Simulation)
- Requires too much time or very specific circumstances (Environment

Epidemiology)
• Reproducibility
- Replication of the analysis based on the collected data (not replicating the

data collection itself)
- Better if we have the actual code or available executables

6

[R. D. Peng]
D. Koop, CSCI 640/490, Spring 2024

Fig. 1.
The spectrum of reproducibility.

Peng Page 5

Science. Author manuscript; available in PMC 2012 December 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Reproducibility Spectrum

7

[R. D. Peng]
D. Koop, CSCI 640/490, Spring 2024

10 Rules for Reproducible Computational Research
• Rule 1: For Every Result, Keep Track of How It Was Produced
• Rule 2: Avoid Manual Data Manipulation Steps
• Rule 3: Archive the Exact Versions of All External Programs Used
• Rule 4: Version Control All Custom Scripts
• Rule 5: Record All Intermediate Results, When Possible in Standardized

Formats

8

[Sandve et al., 2013]
D. Koop, CSCI 640/490, Spring 2024

10 Rules for Reproducible Computational Research
• Rule 6: For Analyses That Include Randomness, Note Underlying Random

Seeds
• Rule 7: Always Store Raw Data behind Plots
• Rule 8: Generate Hierarchical Analysis Output, Allowing Layers of Increasing

Detail to Be Inspected
• Rule 9: Connect Textual Statements to Underlying Results
• Rule 10: Provide Public Access to Scripts, Runs, and Results

9

[Sandve et al., 2013]
D. Koop, CSCI 640/490, Spring 2024

Assignment 5
• Chicago Bike Sharing Data
- Spatial Analysis
- Temporal Analysis
- Graph Database (neo4j)

10D. Koop, CSCI 640/490, Spring 2024

http://faculty.cs.niu.edu/~dakoop/cs640-2024sp/assignment5.html

Final Exam
• Wednesday, May 8, 8:00-9:50pm, PM 252
• Similar format
• More comprehensive (questions from topics covered in Test 1 & 2)
• Will also have questions from graph/spatial/temporal data, provenance,

reproducibility, machine learning

11D. Koop, CSCI 640/490, Spring 2024

https://faculty.cs.niu.edu/~dakoop/cs640-2024sp/final.html

12

Improving Databases

D. Koop, CSCI 640/490, Spring 2024

LEARNED AND
SELF-DESIGNING
DATA STRUCTURES

5VTCVQU�+FTGQU���6KO�-TCUMC�

DATA

INDEX

[7,4,2,6,1,3,9,10,5,8]

ALGORITHMS
[1,2,3,4,5,6,7,8,9,10]

unor
dere

d

orde
red

Data structures are at the core of any data driven algorithm. In fact for any given problem, the design of the data structure defines the range of algorithms that may be
applied.

Algorithms rely on the order of data

14

[S. Idreos, 2019]
D. Koop, CSCI 640/490, Spring 2024

https://stratos.seas.harvard.edu/files/stratos/files/learnedselfdesignedsystemssigmod2019tutorialpart1.pdf

DATA

INDEX

ALGORITHMS

DATA SYSTEMS

Systems can be seen as a collection of many data structures and algorithms.

Data systems rely on algorithms

15

[S. Idreos, 2019]
D. Koop, CSCI 640/490, Spring 2024

https://stratos.seas.harvard.edu/files/stratos/files/learnedselfdesignedsystemssigmod2019tutorialpart1.pdf

2018

sp
ee

d COMPUTE

DATA MOVEMENT

register = this room

disk = Pluto
memory = nearby city

Jim Gray, Turing Award 1998

caches = this city

As time goes by, data structures become ever more critical for data driven applications.

Data structures define performance

16

[S. Idreos, 2019]
D. Koop, CSCI 640/490, Spring 2024

https://stratos.seas.harvard.edu/files/stratos/files/learnedselfdesignedsystemssigmod2019tutorialpart1.pdf

How do I make my data system run x times as fast?

How do I minimize my bill in the cloud?

How do I train my neural network x times faster?

How to accelerate statistics computation for data science/ML?

(sql,nosql,bigdata, …)

How do I extend the lifetime of my hardware?

Data structures are prevalent across many applications. Many data driven problems can in fact be seen as a data structure problem.

Database Questions

17

[S. Idreos, 2019]
D. Koop, CSCI 640/490, Spring 2024

https://stratos.seas.harvard.edu/files/stratos/files/learnedselfdesignedsystemssigmod2019tutorialpart1.pdf

Read
Update

Memory

@EDBT16

M
em
ory

Re
ad

Up
da
te
no perfect structure

amplification

Every data structure design is simply a point in the design space of possible solutions. There is no perfect design. Every design balances the fundamental tradeoffs of
Read, Update, and Memory amplification. For example, Read amplification is defined as the excess data an algorithm needs to read on top of the data it wants to read.
Typically a data structure would have some kind of metadata or navigation data that help locate the actual data, e.g., the internal nodes of a B-tree. Reading this
navigation data is an excess cost, adding to read amplification. Creating a data structure without any navigation data would suffer update or even more read
amplification. For example, we could choose to not have any structure in the data at all. Then every query would have to touch all the data. The other extreme would be
to sort all data which effectively provides an implicit structure. But then updates get expensive. Overall, there is no perfect design.

Tradeoffs in each structure

18

[S. Idreos, 2019]
D. Koop, CSCI 640/490, Spring 2024

https://stratos.seas.harvard.edu/files/stratos/files/learnedselfdesignedsystemssigmod2019tutorialpart1.pdf

NEW APPLICATIONS

existing systems need to change too

WORKLOAD HARDWARE

ADAPT

IMPROVE
WITHIN A BUDGET

WHAT WILL
BREAK MY
SYSTEM?

REASON

We increasingly need to think of new data structure designs, because applications and data change rapidly and because for data driven applications great performance
comes only after rethinking the storage layer as well.

New Applications Demand Change

19

[S. Idreos, 2019]
D. Koop, CSCI 640/490, Spring 2024

https://stratos.seas.harvard.edu/files/stratos/files/learnedselfdesignedsystemssigmod2019tutorialpart1.pdf

STORAGE LAYOUTS

INDEXING

INDEX RECOMENDATIONS

KNOB TUNING

OPTIMIZER

PLAN

H20, NODBCRACKING INDEX ADVISORS
DBA

GUY LOHMANMID-FLIGHT ReOpt

th
e “

tra
di

tio
na

l”
st

ac
k

(n
o M

L,
no

 sy
nth

es
is)

Many efforts in the field have been motivated by the vision of generating tailored systems for a specific scenario. In fact, even traditional databases are architected with
this vision in mind. A generic database system can optimize a plan on the fly to match the query needs, it can choose from different storage and indexing options, etc.
This is how generic database systems can be used in a wealth of applications! And then recent research has tried to push the boundaries of tailored designs be
rethinking parts of the stack of a database system.

"Traditional" Database Research

20

[S. Idreos, 2019]
D. Koop, CSCI 640/490, Spring 2024

https://stratos.seas.harvard.edu/files/stratos/files/learnedselfdesignedsystemssigmod2019tutorialpart1.pdf

without coding or
accessing the h/w

workload

h/w

layout
design

performance
algorithms

As a first step in this direction, we built an engine, which we call the Data Calculator and which takes as input the hardware, workload and layout of a data structure. It
then computes automatically the algorithms that this data structure design needs to optimally process the workload on this hardware and it also computes the
performance. That is, the response time that an actual implementation of this design would need to run this workload on this hardware. However, all this happens without
the user having to implement anything and without even needing access to the actual hardware. Given this engine we show that we can start thinking about game-
changing paradigms for system designs such as interactive design, self-designing systems, and fully automatic design for instance optimal systems.

Self-designing systems

21

[S. Idreos, 2019]
D. Koop, CSCI 640/490, Spring 2024

https://stratos.seas.harvard.edu/files/stratos/files/learnedselfdesignedsystemssigmod2019tutorialpart1.pdf

SageDB: a learned database system

T. Kraska, M. Alizadeh, A. Beutel, E. H. Chi, J. Ding, A. Kristo,
G. Leclerc, S. Madden, H. Mao, and V. Nathan

D. Koop, CSCI 640/490, Spring 2024

Fundamental
Building Blocks

Sorting

B-TreeHash-
Map

Scheduling

Join

Priority
Queue

Bloom
Filter

CachingRange
Filter

Learned Data Structures and Algorithms

23D. Koop, CSCI 640/490, Spring 2024

http://people.csail.mit.edu/kraska/pub/sigmod19tutorialpart2.pdf

Discussion
• Is this the future?
• What about comparison baselines?
• Lots of work being done in this area

24D. Koop, CSCI 640/490, Spring 2024

Figure 7: Performance and size tradeoffs for four different datasets. The black horizontal line represents the performance of binary
search (which has a size of zero). Extended plots with all techniques are available here: https://rm.cab/lis1

Figure 8: Performance of index structures built for strings
(stars) on our integer datasets.

Method Time Size

PGM 326.48 ns 14.0 MB
RS 266.58 ns 4.0 MB
RMI 180.90 ns 48.0 MB
BTree 482.11 ns 166.0 MB
IBTree 446.55 ns 9.0 MB
FAST 435.33 ns 102.0 MB
BS 741.69 ns 0.0 MB

CuckooMap 114.50 ns 1541.0 MB
RobinHash 93.69 ns 6144.0 MB

Table 2: The fastest variant of each index structure compared
against two hashing techniques on the amzn dataset.
two hashing techniques – a Cuckoo hash table [5] and a Robin-
hood hash table [2]. We found that a load factor of 0.99 and 0.25
(respectively) maximized lookup performance.

Table 2 lists the size and lookup performance of the best-
performing (and thus often largest) variant of each index structure
and both hashing techniques for a 32-bit version3 of the amzn
dataset (results similar for others). Unsurprisingly, both hashing
techniques offer superior point-lookup latency compared to tradi-
tional and learned index structures. This decreased latency comes at
the cost of a larger in-memory footprint. For example, CuckooMap
provides a 114ns lookup time compared to the 180ns provided by
the RMI, but CuckooMap uses over 1GB of memory, whereas the

3The SIMD Cuckoo implementation only supports 32-bit keys.

RMI uses only 48MB. When range lookups and memory footprint
are not concerns, hashing is a clear choice.

4.2.1 Larger datasets. Figure 9 shows the performance / size
tradeoff for each learned structure and a BTree for four different
data sizes of the amzn dataset, ranging from 200M to 800M. All
three learned structures are capable of scaling to larger dataset sizes,
with only a logarithmic slowdown (as expected from the final binary
search step). For example, consider an RMI that produces an average
search bound that spans 128 keys, requiring 7 steps of binary search.
If the dataset size doubles, an RMI of equal size is likely to return
bounds that are twice as large: search bounds that span 256 keys.
Such a bound requires only 8 total (1 additional) binary search
steps. Thus, learned index structures scale to larger datasets in much
the same way as BTrees. If larger datasets have more pronounced
patterns, learned index structures may provide better scaling.

4.2.2 32-bit datasets. Here, we scale down the amzn dataset
from 64 to 32 bits, and compare the performance of the three learned
index structures, BTrees, and FAST. The results are plotted in Fig-
ure 10. For learned structures, the performance on 32-bit data is
nearly identical to performance on 64-bit data. Our implementa-
tions of RS and RMI both transform query keys to 64-bit floats, so
this is not surprising. We attempted to perform computations on
32-bit keys using 32-bit floats, but found that the decreased precision
caused floating point errors. The PGM implementation uses 32-bit
computations for 32-bit inputs, achieving modest performance gains.

For both tree structures, the switch from 64-bit to 32-bit keys
allows twice as many keys to fit into a single cache line, improving
performance. For FAST, which makes heavy use of AVX-512 opera-
tions, doubling the number of keys per cache line essentially doubles
computational throughput as well, as each operator can work on 16
32-bit values simultaneously (as opposed to 8 64-bit values).

4.2.3 Search function. Normally, we use binary search to locate
the correct key within the search bound provided by the index. How-
ever, other search techniques can be used. Figure 11 evaluates using
binary, linear, and interpolation search for various index structures
on osm and amzn. We observed that binary search (first column)
was always faster than linear search (second column). This aligns
with prior work that showed binary search being effective until the
data size dropped below a very small threshold [28].

7

Benchmarking Learned Indexes

25

[R. Marcus et al., 2021]
D. Koop, CSCI 640/490, Spring 2024

https://api.zotero.org/users/3604318/publications/items/V6XRI8K5/file/view

Figure 1: Indexes must identify the points that fall in the green query rectangle. To do so, they scan the points in red. (a) K-d
tree guarantees equally-sized regions but is not optimized for the workload. (b) Flood is optimized using the workload but
its structure is not expressive enough to handle query skew, and cells are unequally sized on correlated data. (c) Tsunami is
optimized using the workload, is adaptive to query skew, andmaintains equally-sized cells within each region.

(3) We evaluate Tsunami against Flood, the original in-memory
learned multi-dimensional index, as well as a number of tra-
ditional non-learned indexes, on a variety of workloads over
real datasets. We show that Tsunami is up to 6⇥ and 11⇥ faster
than Flood and the fastest optimally-tuned non-learned index,
respectively. Tsunami is also adaptable to workload shift, and
scales across data size, query selectivity, and dimensionality.
In the remainder of this paper,wegive background (§2), present an

overview of Tsunami (§3), introduce its two core components—Grid
Tree (§4) andAugmentedGrid (§5), present experimental results (§6),
reviewrelatedwork (§7),propose futurework (§8), andconclude (§9).

2 BACKGROUND
Tsunami is an in-memory clustered multi-dimensional index for a
single table. Tsunami aims to increase the throughput performance
of analytics queries by decreasing the time needed to �lter records
based on range predicates. Tsunami supports queries such as:

SELECT SUM(R.X)

FROM MyTable

WHERE (a  R.Y  b) AND (c  R.Z  d)

where SUM(R.X) can be replaced by any aggregation. Records in a
d-dimensional table can be represented as points in d-dimensional
data space. For the rest of this paper,weuse the terms record andpoint
interchangeably. To place Tsunami in context, we �rst describe the k-
d tree as an example of a traditional non-learned multi-dimensional
index, and Flood, which originally proposed the idea of learned
in-memory multi-dimensional indexing.

2.1 K-d Tree: A Traditional Non-Learned Index
The k-d tree [4] is a binary space-partitioning tree that recursively
splits d-dimensional space based on the median value along each
dimension, until the number of points in each leaf region falls be-
low a threshold, called the page size. Fig. 1a shows a k-d tree over
2-dimensional data that has 8 leaf regions. The points within each
region are stored contiguously in physical storage (e.g., a column
store). By construction, the leaf regions have a roughly equal number
of points. To process a query (i.e., identify all points that match the
query’s�lter predicates), the k-d tree traverses the tree to�nd all leaf
regions that intersect the query’s �lter, then scans all points within
those regions to identify points that match the �lter predicates.

The k-d tree structure is constructed based on the data distribu-
tion but independently of the query workload. That is, regardless of
whether a region of the space is never queried orwhether queries are
more selective in some dimensions than others, the k-d tree would
still build an index over all data points with the same page size and
index overhead. While other traditional multi-dimensional indexes
split space in di�erentways [3, 27, 31, 47], they all share the property
that the index is constructed independent of the query workload.

2.2 Flood: A Learned Index
In contrast, Flood [30] does optimize its layout basedon theworkload
(see Fig. 1b). We �rst introduce how Flood works, then explain its
two key advantages over traditional indexes, then discuss two key
limitations it has.

Multi-Dimensional Indexing

26

[Ding et al., 2021]
D. Koop, CSCI 640/490, Spring 2024

https://arxiv.org/pdf/2006.13282.pdf

SQL
SQL
SQL

Parser

Q
u
e
ry

 O
p
ti
m

iz
e
r

Hint set 1

...

TCNN
Reward

Predictions

Execution Engine

ExperienceTraining

User provided

Query plan

External component

Bao

...

Hint set 2

Hint set 3

Figure 2: Bao system model

latency of the plan selected by Bao often greatly exceeds the addi-
tional optimization time. However, for very short running queries,
increased optimization time can be an issue, especially if the ap-
plication issues many such queries. Thus, Bao is ideally suited to
workloads that are tail-dominated (e.g., 80% of query processing
time is spent processing 20% of the queries) or contain many long-
running queries, although Bao’s architecture also allows users to
easily disable Bao for such short-running queries, or enable Bao
exclusively for problematic longer-running queries. Second, by us-
ing only a limited set of hints, Bao has a restricted action space,
and thus Bao is not always able to learn the best possible query
plan. Despite this restriction, in our experiments, Bao is still able to
signi�cantly outperform traditional optimizers while training and
adjusting to change orders-of-magnitudes faster than “unrestricted”
learned query optimizers, like Neo [51].

In summary, the key contributions of this paper are:
• We introduce Bao, a learned system for query optimization
that is capable of learning how to apply query hints on a
case-by-case basis.

• For the �rst time, we demonstrate a learned query optimiza-
tion system that outperforms both open source and com-
mercial systems in cost and latency, all while adapting to
changes in workload, data, and schema.

2 SYSTEM MODEL
On a high-level, Bao combines a tree convolution model [57], a
neural network operator that can recognize important patterns in
query plan trees [51], with Thompson sampling [74], a technique
for solving contextual multi-armed bandit problems. This unique
combination allows Bao to explore and exploit knowledge quickly.
The architecture of Bao is shown in Figure 2.
Generating = query plans: When a user submits a query, Bao
uses the underlying query optimizer to produce = query plans, one
for each set of hint. Many DBMSes [4–6] provide a wide range of
such hints. While some hints can be applied to a single relation or
predicate, Bao focuses only on query hints that are a boolean �ag
(e.g., disable loop join, force index usage). The sets of hints available
to Bao must be speci�ed upfront. Note that one set of hints could be
empty, that is, using the original optimizer without any restriction.
Estimating the run-time for each query plan:Afterwards, each
query plan is transformed into a vector tree (a tree where each node
is a feature vector). These vector trees are fed into Bao’s valuemodel,
a tree convolutional neural network [57], which predicts the quality
(e.g., execution time) of each plan. To reduce optimization time,
each of the = query plans can be generated and evaluated in parallel.

Selecting a query plan for execution: If we just wanted to exe-
cute the query plan with the best expected performance, we would
train a model in a standard supervised fashion and pick the query
plan with the best predicted performance. However, as our value
model might be wrong, we might not always pick the optimal plan,
and, as we never try alternative strategies, never learn when we are
wrong. To balance the exploration of new plans with the exploita-
tion of plans known to be fast, we use a technique called Thompson
sampling [74] (see Section 3). It is also possible to con�gure Bao
to explore a speci�c query o�ine and guarantee that only the best
plan is selected during query processing (see Section 4).

After a plan is selected by Bao, it is sent to a query execution
engine. Once the query execution is complete, the combination of
the selected query plan and the observed performance is added to
Bao’s experience. Periodically, this experience is used to retrain
the predictive model, creating a feedback loop. As a result, Bao’s
predictive model improves, and Bao more reliable picks the best set
of hints for each query.
Assumptions and Limitations Bao assumes that all hints result
in semantically equivalent query plans. Moreover, Bao always uses
the hints for the entire query plan: Bao cannot restrict features for
only a part of a query plan, e.g., to avoid a nested loop join between
table � and ⌫, while still allowing a nested loop for a join between
table ⇠ and ⇡ . While the Bao architecture, in principle, enables the
exploration of these sub-optimizations, such a �ne-grained action
space (the number of choices Bao has for each query) increases
optimization overhead signi�cantly. Letting = be the number of
hint sets and : be the number of relations in a query, by selecting
only a single hint set Bao has$ (=) choices per query. If Bao would
do these sub-optimizations, the size of the action space would be
$ (= ⇥ 2:) (= di�erent ways to join each subset of : relations, in the
case of a fully connected query graph). Since the size of the action
space is an important factor for determining the convergence time
of reinforcement learning algorithms [22], we opted for the smaller
action space in hopes of achieving quick convergence.

3 SELECTING QUERY HINTS
Here, we discuss Bao’s learning approach. We �rst de�ne Bao’s
optimization goal, and formalize it as a contextual multi-armed
bandit problem. Then, we apply Thompson sampling, a classical
technique used to solve such problems.

Bao models each hint set �(4C8 2 � in the family of hint sets �
as if it were its own query optimizer: a function mapping a query
@ 2 & to a query plan tree C 2) :

�(4C8 : & !)

This function is realized by passing the query & and the selected
hint set �(4C8 to the underlying query optimizer. We refer to �(4C8
as this function for convenience. We assume that each query plan
tree C 2) is composed of an arbitrary number of operators drawn
from a known �nite set (i.e., that the trees may be arbitrarily large
but all of the distinct operator types are known ahead of time).

Bao also assumes a user-de�ned performance metric % , which
determines the quality of a query plan by executing it. For example,
% may measure the execution time of a query plan, or may measure
the number of disk operations performed by the plan.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1277

Query Optimization

27

[R. Marcus et al., 2021]
D. Koop, CSCI 640/490, Spring 2024

https://api.zotero.org/users/3604318/publications/items/6IHZS47B/file/view

Reminders
• Final Exam Review Wednesday (come with questions!)
• Final Exam on Wednesday, May 8 from 8:00-9:50am

28D. Koop, CSCI 640/490, Spring 2024

