
Advanced Data Management (CSCI 640/490)

Graph Databases

Dr. David Koop

D. Koop, CSCI 640/490, Spring 2024

Time Series Data
• A row of data that consists of a timestamp, a value, optional tags

2

[A. Bader, 2017]
D. Koop, CSCI 640/490, Spring 2024

• A row of data that consists of a timestamp, a value, optional tags

2017-03-06University of Stuttgart - Andreas Bader - Survey and Comparison of Open Source Time Series Databases 2

What is a time series data?
Comparison of Open Source TSDBs

timestamp valuetags

Time Series Data
• Metrics: measurements at regular intervals
• Events: measurements that are not gathered at regular intervals

3

[InfluxDB]
D. Koop, CSCI 640/490, Spring 2024

https://www.influxdata.com/what-is-time-series-data/

Examples

4

[R. J. Hyndman]
D. Koop, CSCI 640/490, Spring 2024

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 19

US Treasury bill contracts

Day

pr
ic
e

0 20 40 60 80 100

85
86

87
88

89
90

91

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 16

Australian electricity production

Year

G
W
h

1980 1985 1990 1995

80
00

10
00
0

12
00
0

14
00
0

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 18

Sales of new one−family houses, USA

To
ta

l s
al

es

1975 1980 1985 1990 1995

30
40

50
60

70
80

90

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 20

Annual Canadian Lynx trappings

Time

N
um

be
r t

ra
pp

ed

1820 1840 1860 1880 1900 1920

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

https://robjhyndman.com/seminars/uwa/

Examples

4

[R. J. Hyndman]
D. Koop, CSCI 640/490, Spring 2024

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 19

US Treasury bill contracts

Day

pr
ic
e

0 20 40 60 80 100

85
86

87
88

89
90

91

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 16

Australian electricity production

Year

G
W
h

1980 1985 1990 1995

80
00

10
00
0

12
00
0

14
00
0

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 18

Sales of new one−family houses, USA

To
ta

l s
al

es

1975 1980 1985 1990 1995

30
40

50
60

70
80

90

Trend

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 20

Annual Canadian Lynx trappings

Time

N
um

be
r t

ra
pp

ed

1820 1840 1860 1880 1900 1920

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

https://robjhyndman.com/seminars/uwa/

Examples

4

[R. J. Hyndman]
D. Koop, CSCI 640/490, Spring 2024

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 19

US Treasury bill contracts

Day

pr
ic
e

0 20 40 60 80 100

85
86

87
88

89
90

91

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 16

Australian electricity production

Year

G
W
h

1980 1985 1990 1995

80
00

10
00
0

12
00
0

14
00
0

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 18

Sales of new one−family houses, USA

To
ta

l s
al

es

1975 1980 1985 1990 1995

30
40

50
60

70
80

90

Trend Trend +
Seasonality

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 20

Annual Canadian Lynx trappings

Time

N
um

be
r t

ra
pp

ed

1820 1840 1860 1880 1900 1920

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

https://robjhyndman.com/seminars/uwa/

Examples

4

[R. J. Hyndman]
D. Koop, CSCI 640/490, Spring 2024

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 19

US Treasury bill contracts

Day

pr
ic
e

0 20 40 60 80 100

85
86

87
88

89
90

91

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 16

Australian electricity production

Year

G
W
h

1980 1985 1990 1995

80
00

10
00
0

12
00
0

14
00
0

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 18

Sales of new one−family houses, USA

To
ta

l s
al

es

1975 1980 1985 1990 1995

30
40

50
60

70
80

90

Trend Trend +
Seasonality

Seasonality +
Cyclic

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 20

Annual Canadian Lynx trappings

Time

N
um

be
r t

ra
pp

ed

1820 1840 1860 1880 1900 1920

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

https://robjhyndman.com/seminars/uwa/

Examples

4

[R. J. Hyndman]
D. Koop, CSCI 640/490, Spring 2024

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 19

US Treasury bill contracts

Day

pr
ic
e

0 20 40 60 80 100

85
86

87
88

89
90

91

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 16

Australian electricity production

Year

G
W
h

1980 1985 1990 1995

80
00

10
00
0

12
00
0

14
00
0

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 18

Sales of new one−family houses, USA

To
ta

l s
al

es

1975 1980 1985 1990 1995

30
40

50
60

70
80

90

Trend Trend +
Seasonality

Seasonality +
Cyclic

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 20

Annual Canadian Lynx trappings

Time

N
um

be
r t

ra
pp

ed

1820 1840 1860 1880 1900 1920

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

Stationary

https://robjhyndman.com/seminars/uwa/

Pandas Support for Datetime
• pd.to_datetime:
- convenience method
- can convert an entire column to datetime

• Has a NaT to indicate a missing time value
• Stores in a numpy.datetime64 format
• pd.Timestamp: a wrapper for the datetime64 objects

5D. Koop, CSCI 640/490, Spring 2024

Resampling
• Could be
- downsample: higher frequency to lower frequency
- upsample: lower frequency to higher frequency
- neither: e.g. Wednesdays to Fridays

• resample method: e.g. ts.resample('M').mean()

6

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 640/490, Spring 2024

2000-01 -0.165893
2000-02 0.078606
2000-03 0.223811
2000-04 -0.063643
Freq: M, dtype: float64

resample is a flexible and high-performance method that can be used to process very
large time series. The examples in the following sections illustrate its semantics and
use. Table 11-5 summarizes some of its options.

Table 11-5. Resample method arguments
Argument Description
freq String or DateOffset indicating desired resampled frequency (e.g., ‘M', ’5min', or Second(15))
axis Axis to resample on; default axis=0
fill_method How to interpolate when upsampling, as in 'ffill' or 'bfill'; by default does no interpolation
closed In downsampling, which end of each interval is closed (inclusive), 'right' or 'left'
label In downsampling, how to label the aggregated result, with the 'right' or 'left' bin edge (e.g., the

9:30 to 9:35 five-minute interval could be labeled 9:30 or 9:35)
loffset Time adjustment to the bin labels, such as '-1s' / Second(-1) to shift the aggregate labels one

second earlier
limit When forward or backward filling, the maximum number of periods to fill
kind Aggregate to periods ('period') or timestamps ('timestamp'); defaults to the type of index the

time series has
convention When resampling periods, the convention ('start' or 'end') for converting the low-frequency period

to high frequency; defaults to 'end'

Downsampling
Aggregating data to a regular, lower frequency is a pretty normal time series task. The
data you’re aggregating doesn’t need to be fixed frequently; the desired frequency
defines bin edges that are used to slice the time series into pieces to aggregate. For
example, to convert to monthly, 'M' or 'BM', you need to chop up the data into one-
month intervals. Each interval is said to be half-open; a data point can only belong to
one interval, and the union of the intervals must make up the whole time frame.
There are a couple things to think about when using resample to downsample data:

• Which side of each interval is closed
• How to label each aggregated bin, either with the start of the interval or the end

To illustrate, let’s look at some one-minute data:
In [213]: rng = pd.date_range('2000-01-01', periods=12, freq='T')

In [214]: ts = pd.Series(np.arange(12), index=rng)

11.6 Resampling and Frequency Conversion | 349

Time Series Databases
• Most time series data is heavy inserts, few updates
• Also analysis tends to be on ordered data with trends, prediction, etc.
• Can also consider stream processing
• Focus on time series allows databases to specialize
• Examples:
- InfluxDB (noSQL)
- TimescaleDB (SQL-based)

7D. Koop, CSCI 640/490, Spring 2024

What is a Time Series Database?
• A DBMS is called TSDB if it can
- store a row of data that consists of timestamp, value, and optional tags
- store multiple rows of time series data grouped together
- can query for rows of data
- can contain a timestamp or a time range in a query

8

[A. Bader, 2017]
D. Koop, CSCI 640/490, Spring 2024

• A DBMS is called TSDB if it can
• store a row of data that consists of timestamp, value, and optional tags
• store multiple rows of time series data grouped together (e. g., in a time series)
• can query for rows of data
• can contain a timestamp or a time range in a query

2017-03-06University of Stuttgart - Andreas Bader - Survey and Comparison of Open Source Time Series Databases 3

What is a Time Series Database (TSDB)?
Comparison of Open Source TSDBs

„SELECT * FROM ul1“

“SELECT * FROM ul1 WHERE time >= '2016-07-12T12:10:00Z‘”

Gorilla: A Fast, Scalable, In-Memory Time Series Database

Tuomas Pelkonen Scott Franklin Justin Teller

Paul Cavallaro Qi Huang Justin Meza Kaushik Veeraraghavan

Facebook, Inc.

Menlo Park, CA

ABSTRACT
Large-scale internet services aim to remain highly available
and responsive in the presence of unexpected failures. Pro-
viding this service often requires monitoring and analyzing
tens of millions of measurements per second across a large
number of systems, and one particularly e↵ective solution
is to store and query such measurements in a time series
database (TSDB).

A key challenge in the design of TSDBs is how to strike
the right balance between e�ciency, scalability, and relia-
bility. In this paper we introduce Gorilla, Facebook’s in-
memory TSDB. Our insight is that users of monitoring sys-
tems do not place much emphasis on individual data points
but rather on aggregate analysis, and recent data points are
of much higher value than older points to quickly detect and
diagnose the root cause of an ongoing problem. Gorilla op-
timizes for remaining highly available for writes and reads,
even in the face of failures, at the expense of possibly drop-
ping small amounts of data on the write path. To improve
query e�ciency, we aggressively leverage compression tech-
niques such as delta-of-delta timestamps and XOR’d floating
point values to reduce Gorilla’s storage footprint by 10x.
This allows us to store Gorilla’s data in memory, reduc-
ing query latency by 73x and improving query throughput
by 14x when compared to a traditional database (HBase)-
backed time series data. This performance improvement has
unlocked new monitoring and debugging tools, such as time
series correlation search and more dense visualization tools.
Gorilla also gracefully handles failures from a single-node to
entire regions with little to no operational overhead.

1. INTRODUCTION
Large-scale internet services aim to remain highly-available

and responsive for their users even in the presence of unex-
pected failures. As these services have grown to support
a global audience, they have scaled beyond a few systems
running on hundreds of machines to thousands of individ-

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 12
Copyright 2015 VLDB Endowment 2150-8097/15/08.

Back-end
Services

Web Tier

FB Servers

Long term
storage
(HBase)

Gorilla

Ad-hoc visualizations and
dashboardsAlarms and

automatic
remediation

Time Series
Correlation

Figure 1: High level overview of the ODS monitor-
ing and alerting system, showing Gorilla as a write-
through cache of the most recent 26 hours of time
series data.

ual systems running on many thousands of machines, often
across multiple geo-replicated datacenters.

An important requirement to operating these large scale
services is to accurately monitor the health and performance
of the underlying system and quickly identify and diagnose
problems as they arise. Facebook uses a time series database
(TSDB) to store system measuring data points and provides
quick query functionalities on top. We next specify some of
the constraints that we need to satisy for monitoring and
operating Facebook and then describe Gorilla, our new in-
memory TSDB that can store tens of millions of datapoints
(e.g., CPU load, error rate, latency etc.) every second and
respond queries over this data within milliseconds.

Writes dominate. Our primary requirement for a TSDB
is that it should always be available to take writes. As
we have hundreds of systems exposing multiple data items,
the write rate might easily exceed tens of millions of data
points each second. In constrast, the read rate is usually
a couple orders of magnitude lower as it is primarily from
automated systems watching ’important’ time series, data

1816

Gorilla Motivation
• Large-scale internet services rely on lots of

services and machines
• Want to monitor the health of the systems
• Writes dominate
• Want to detect state transitions
• Must be highly available and fault tolerant

9

[Pelkonen et al., 2015]
D. Koop, CSCI 640/490, Spring 2024

Header:
March 24, 2015 02:00:00

Compressed data

March 24,
2015 02:01:02

Value:
12

Data stream

62 12

02:02:02 12

'10' : -2 '0'

64 14 64 9 1

02:03:02 24

Bit length

'0'

1

'11' : 11 : 1 :'1'

2 + 5 + 6 + 1

Previous Value

Value

XOR

12.0

24.0

-

0x4028000000000000

0x4038000000000000

0x0010000000000000

11 leading zeros, # of meaningful bits is 1

N-2 timestamp

N-1 timestamp

timestamp

02:00:00

02:01:02

02:02:02

-
Delta: 62

Delta: 60
Delta of deltas:

-2

a)

b) c)

Figure 2: Visualizing the entire compression algorithm. For this example, 48 bytes of values and time stamps
are compressed to just under 21 bytes/167 bits.

and e�cient scans of all data while maintaining constant
time lookup of individual time series.

The key specified in the monitoring data is used to uniquely
identify a time series. By sharding all monitoring data based
on these unique string keys, each time series dataset can be
mapped to a single Gorilla host. Thus, we can scale Go-
rilla by simply adding new hosts and tuning the sharding
function to map new time series data to the expanded set of
hosts. When Gorilla was launched to production 18 months
ago, our dataset of all time series data inserted in the past
26 hours fit into 1.3TB of RAM evenly distributed across 20
machines. Since then, we have had to double the size of the
clusters twice due to data growth, and are now running on
80 machines within each Gorilla cluster. This process was
simple due to the share-nothing architecture and focus on
horizontal scalability.

Gorilla tolerates single node failures, network cuts, and
entire datacenter failures by writing each time series value
to two hosts in separate geographic regions. On detecting a
failure, all read queries are failed over to the alternate region
ensuring that users do not experience any disruption.

4.1 Time series compression
In evaluating the feasibility of building an in-memory time

series database, we considered several existing compression
schemes to reduce the storage overhead. We identified tech-
niques that applied solely to integer data which didn’t meet
our requirement of storing double precision floating point
values. Other techniques operated on a complete dataset
but did not support compression over a stream of data as
was stored in Gorilla [7, 13]. We also identified lossy time se-
ries approximation techniques used in data mining to make
the problem set more easily fit within memory [15, 11], but

Gorilla is focused on keeping the full resolution representa-
tion of data.

Our work was inspired by a compression scheme for float-
ing point data derived in scientific computation. This scheme
leveraged XOR comparison with previous values to generate
a delta encoding [25, 17].

Gorilla compresses data points within a time series with
no additional compression used across time series. Each data
point is a pair of 64 bit values representing the time stamp
and value at that time. Timestamps and values are com-
pressed separately using information about previous values.
The overall compression scheme is visualized in Figure 2,
showing how time stamps and values are interleaved in the
compressed block.

Figure 2.a illustrates the time series data as a stream con-
sisting of pairs of measurements (values) and time stamps.
Gorilla compresses this data stream into blocks, partitioned
by time. After a simple header with an aligned time stamp
(starting at 2 am, in this example) and storing the first value
in a less compressed format, Figure 2.b shows that times-
tamps are compressed using delta-of-delta compression, de-
scribed in more detail in Section 4.1.1. As shown in Figure
2.b the time stamp delta of delta is �2. This is stored with
a two bit header (‘10’), and the value is stored in seven bits,
for a total size of just 9 bits. Figure 2.c shows floating-point
values are compressed using XOR compression, described in
more detail in Section 4.1.2. By XORing the floating point
value with the previous value, we find that there is only a
single meaningful bit in the XOR. This is then encoded with
a two bit header (‘11’), encoding that there are eleven lead-
ing zeros, a single meaningful bit, and the actual value (‘1’).
This is stored in fourteen total bits.

1819

Gorilla Compression

10

[Pelkonen et al., 2015]
D. Koop, CSCI 640/490, Spring 2024

Figure 10: When searching for the root cause for
a site-wide error rate increase, Gorilla’s time series
correlation found anomalous events that were corre-
lated in time, namely a drop in memory used when
copying a newly released binary.

6.2 Site wide error rate debugging
For an example of how Facebook uses time series data to

drive our monitoring, one can look at a recent issue that
was detected quickly and fixed due to monitoring data, first
described externally at SREcon15 [19].

A mysterious problem resulted in a spike in the site wide
error rate. This error rate was visible in Gorilla a few min-
utes after the error rate spike and raised an alert which noti-
fied the appropriate team a few minutes later [19]. Then, the
hard work began. As one set of engineers mitigated the is-
sue, others began the hunt for a root cause. Using tools built
on Gorilla, including a new time series correlation search
described in Section 5, they were able to find that the rou-
tine process of copying the release binary to Facebook’s web
servers caused an anomalous drop in memory used across
the site, as illustrated in Figure 10. The detection of the
problem, various debugging e↵orts and root cause analysis,
depended on time series analysis tools enabled by Gorilla’s
high performance query engine.

Since launching about 18 months ago, Gorilla has helped
Facebook engineers identify and debug several such produc-
tion issues. By reducing the 90th percentile Gorilla query
time to 10ms, Gorilla has also improved developer produc-
tivity. Further by serving 85% of all monitoring data from
Gorilla, very few queries must hit the HBase TSDB [26],
resulting in a lower load on the HBase cluster.

6.3 Lessons learned
Prioritize recent data over historical data. Go-

rilla occupies an interesting optimization and design niche.
While it must be very reliable, it does not require ACID data
guarantees. In fact, we have found that it is more important
for the most recent data to be available than any previous
data point. This led to interesting design trade-o↵s, such as
making a Gorilla host available for reads before older data
is read o↵ disk.

Read latency matters. The e�cient use of compression
and in-memory data structures has allowed for extremely
fast reads and resulted in a significant usage increase. While
ODS served 450 queries per second when Gorilla launched,
Gorilla soon overtook it and currently handles more than
5,000 steady state queries per second, peaking at one point

to 40,000 peak queries per second, as seen in Figure 9. Low
latency reads have encouraged our users to build advanced
data analysis tools on top of Gorilla as described in Section
5.

High availability trumps resource e�ciency. Fault
tolerance was an important design goal for Gorilla. It needed
to be able to withstand single host failures with no interrup-
tion in data availability. Additionally, the service must be
able to withstand disaster events that may impact an entire
region. For this reason, we keep two redundant copies of
data in memory despite the e�ciency hit.

We found that building a reliable, fault tolerant system
was the most time consuming part of the project. While
the team prototyped a high performance, compressed, in-
memory TSDB in a very short period of time, it took several
more months of hard work to make it fault tolerant. How-
ever, the advantages of fault tolerance were visible when the
system successfully survived both real and simulated fail-
ures [21]. We also benefited from a system that we can
safely restart, upgrade, and add new nodes to whenever we
need to. This has allowed us to scale Gorilla e↵ectively with
low operational overhead while providing a highly reliable
service to our customers.

7. FUTURE WORK
We wish to extend Gorilla in several ways. One e↵ort is to

add a second, larger data store between in-memory Gorilla
and HBase based on flash storage. This store has been built
to hold the compressed two hour chunks but for a longer
period than 26 hours. We have found that flash storage
allows us to store about two weeks of full resolution, Gorilla
compressed data. This will extend the amount of time full
resolution data is available to engineers to debug problems.
Preliminary performance results are included in Figure 8.

Before building Gorilla, ODS relied on the HBase backing
store to be a real-time data store: very shortly after data
was sent to ODS for storage, it needed to be available to read
operations placing a significant burden on HBase’s disk I/O.
Now that Gorilla is acting as a write-through cache for the
most recent data, we have at least a 26 hour window after
data is sent to ODS before they will be read from HBase.
We are exploiting this property by rewriting our write path
to wait longer before writing to HBase. This optimization
should be much more e�cient on HBase, but the e↵ort is
too new to report results.

8. CONCLUSION
Gorilla is a new in-memory times series database that we

have developed and deployed at Facebook. Gorilla functions
as a write through cache for the past 26 hours of monitor-
ing data gathered across all of Facebook’s systems. In this
paper, we have described a new compression scheme that
allows us to e�ciently store monitoring data comprising of
over 700 million points per minute. Further, Gorilla has al-
lowed us to reduce our production query latency by over 70x
when compared to our previous on-disk TSDB. Gorilla has
enabled new monitoring tools including alerts, automated
remediation and an online anomaly checker. Gorilla has
been in deployment for the past 18 months and has success-
fully doubled in size twice in this period without much oper-
ational e↵ort demonstrating the scalability of our solution.
We have also verified Gorilla’s fault tolerance capabilities via

1825

Enabling Gorilla Features
• Correlation Engine: "What happened

around the time my service broke?"
• Charting: Horizon charts to see

outliers and anomalies
• Aggregations: Rollups locally in

Gorilla every couple of hours

11

[Pelkonen et al., 2015]
D. Koop, CSCI 640/490, Spring 2024

Gorilla Lessons Learned
• Prioritize recent data over historical data
• Read latency matters
• High availability trumps resource efficiency
- Withstand single-node failures and "disaster events" that affect region
- "[B]uilding a reliable, fault tolerant system was the most time consuming

part of the project"
- "[K]eep two redundant copies of data in memory"

12

[Pelkonen et al., 2015]
D. Koop, CSCI 640/490, Spring 2024

Assignment 4
• Work on Data Integration and Data Fusion
• Integrate artist datasets from different institutions (Met, NGA, AIC, CMA)
- Integrate information based on ids and matching

• Record Matching:
- Which artists are the same?

• Data Fusion:
- Names
- Dates
- Nationalities

13D. Koop, CSCI 640/490, Spring 2024

http://faculty.cs.niu.edu/~dakoop/cs640-2024sp/assignment4.html

Test 2
• Next Monday… April 8
• Similar format, but more emphasis on topics we have covered including the

research papers

14D. Koop, CSCI 640/490, Spring 2024

http://faculty.cs.niu.edu/~dakoop/cs640-2024sp/test2.html

Graphs: Social Networks

15

[P. Butler, 2010]
D. Koop, CSCI 640/490, Spring 2024

What is a Graph?
• An abstract representation of a set of objects where some pairs are

connected by links.

16

[M. De Marzi, 2012]
 D. Koop, CSCI 640/490, Spring 2024

Object (Vertex, Node)

Link (Edge, Arc, Relationship)

https://www.slideshare.net/maxdemarzi/introduction-to-graph-databases-12735789

What is a Graph?
• In computing, a graph is an abstract data

structure that represents set objects and
their relationships as vertices and edges/
links, and supports a number of graph-
related operations

• Objects (nodes): {A,B,C,D}
• Relationships (edges):
{(D,B),(D,A),(B,C),(B,A),(C,A)}

• Operation: shortest path from D to A

17

[K. Salama, 2016]
D. Koop, CSCI 640/490, Spring 2024

A

B C

D

https://www.slideshare.net/KhalidSalama2/graph-analytics-67723066

Different Kinds of Graphs
• Undirected Graph

• Directed Graph

• Pseudo Graph

• Multi Graph

• Hyper Graph

18

[M. De Marzi, 2012]
D. Koop, CSCI 640/490, Spring 2024

Different Kinds of Graphs

• Undirected Graph

• Directed Graph

• Pseudo Graph

• Multi Graph

• Hyper Graph

https://www.slideshare.net/maxdemarzi/introduction-to-graph-databases-12735789

Graphs with Properties
• Each vertex or edge may have properties associated with it
• May include identifiers or classes

19

[neo4j]
D. Koop, CSCI 640/490, Spring 2024

Person

name = 'Tom Hanks'
born = 1956

Movie

title = 'Forrest Gump'
released = 1994

ACTED_IN
roles = ['Forrest']

Person

name = 'Robert Zemeckis'
born = 1951

DIRECTED

https://neo4j.com/docs/developer-manual/current/introduction/graphdb-concepts/

Types of Graph Operations
• Connectivity Operations:
- number of vertices/edges, in- and out-degrees of vertices
- histogram of degrees can be useful in comparing graphs

• Path Operations: cycles, reachability, shortest path, minimum spanning tree
• Community Operations: clusters (cohesion and separation)
• Centrality Operations: degree, vulnerability, PageRank
• Pattern Matching: subgraph isomorphism
- can use properties
- useful in fraud/threat detection, social network suggestions

20

[K. Salama, 2016]
D. Koop, CSCI 640/490, Spring 2024

https://www.slideshare.net/KhalidSalama2/graph-analytics-67723066

What is a Graph Database?
• A database with an explicit graph structure
• Each node knows its adjacent nodes
• As the number of nodes increases, the cost of a local step (or hop) remains

the same
• Plus an Index for lookups

21

[M. De Marzi, 2012]
D. Koop, CSCI 640/490, Spring 2024

https://www.slideshare.net/maxdemarzi/introduction-to-graph-databases-12735789

RDBMS

Living in a NOSQL World

Co
m

pl
ex

ity

BigTable
Clones

Size

Key-Value
Store

Document
Databases

Graph
Databases

90% of
Use Cases

Relational
Databases

How do Graph Databases Compare?

22

[M. De Marzi, 2012]
D. Koop, CSCI 640/490, Spring 2024

https://www.slideshare.net/maxdemarzi/introduction-to-graph-databases-12735789

Compared to Relational Databases

Optimized for aggregation Optimized for connections

Graph Databases Compared to Relational Databases

23

[M. De Marzi, 2012]
D. Koop, CSCI 640/490, Spring 2024

https://www.slideshare.net/maxdemarzi/introduction-to-graph-databases-12735789

Compared to Key Value Stores

Optimized for simple look-ups Optimized for traversing connected data

Graph Databases Compared to Key-Value Stores

24

[M. De Marzi, 2012]
D. Koop, CSCI 640/490, Spring 2024

https://www.slideshare.net/maxdemarzi/introduction-to-graph-databases-12735789

Compared to Key Value Stores

Optimized for “trees” of data Optimized for seeing the forest and the
trees, and the branches, and the trunks

Graph Databases Compared to Document Stores

25

[M. De Marzi, 2012]
D. Koop, CSCI 640/490, Spring 2024

https://www.slideshare.net/maxdemarzi/introduction-to-graph-databases-12735789

The Ubiquity of Large Graphs and Surprising
Challenges of Graph Processing

S. Sahu, A. Mhedhbi, S. Salihoglu, J. Lin, and M. T. Özsu

D. Koop, CSCI 640/490, Spring 2024

https://docs.google.com/presentation/d/1CoAiwlswAaXmL2DzdSP_2MZsMby5k_VcyixHLqlPf9M/edit#slide=id.g2c0cf8bb47_0_0
https://docs.google.com/presentation/d/1CoAiwlswAaXmL2DzdSP_2MZsMby5k_VcyixHLqlPf9M/edit#slide=id.g2c0cf8bb47_0_0

The Future is Big Graphs

S. Sakr et al

CACM

D. Koop, CSCI 640/490, Spring 2024

https://cacm.acm.org/magazines/2021/9/255040-the-future-is-big-graphs/fulltext

Insights for the Future of Graph Processing
• Graphs are ubiquitous abstractions enabling reusable computing tools for

graph processing with applications in every domain.
• Diverse workloads, standard models and languages, algebraic frameworks,

and suitable and reproducible performance metrics will be at the core of
graph processing ecosystems in the next decade.

28

[S. Sakr et al.]
D. Koop, CSCI 640/490, Spring 2024

https://cacm.acm.org/magazines/2021/9/255040-the-future-is-big-graphs/fulltext

Pipeline for Graph Processing

29

[S. Sakr et al.]
D. Koop, CSCI 640/490, Spring 2024

https://cacm.acm.org/magazines/2021/9/255040-the-future-is-big-graphs/fulltext

Graph Databases

D. Lembo and R. Rosati

D. Koop, CSCI 640/490, Spring 2024

http://www.dis.uniroma1.it/~rosati/dmds-1516/graph-databases.pdf

Why Graph Database Models?
• Graphs has been long ago recognized as one of the most simple, natural and

intuitive knowledge representation systems
• Graph data structures allow for a natural modeling when data has graph

structure
• Queries can address direct and explicitly this graph structure
• Implementation-wise, graph databases may provide special graph storage

structures, and take advantage of efficient graph algorithms available for
implementing specific graph operations over the data

31

[R. Angles and C. Gutierrez, 2017]

D. Koop, CSCI 640/490, Spring 2024

NAME LASTNAME

Ana

Julia

James

David

Mary

George

Deville

Deville

Deville

Jones

Stone

Jones

PERSON PARENT

George

Ana

Julia

James

James

Mary

Mary

Julia

Julia

David

David

Julia

Julia Jones

Ana StoneGeorge Jones

parentparent

parent parentparentparent

Mary DevilleDavid Deville

James Deville

Figure 1: Example of a genealogy expressed in the relational model (i.e. as
tables on the left) and a diagram of its scheme on the right.

of node, by allowing nesting graphs inside nodes. As drawbacks, both mod-
els use complex data structures which make it less intuitive their use and
implementation.

Regarding simplicity, one of the most popularized models is the semistruc-
tured model, which use the most simple version of a graph, namely a tree,
the most common and intuitive way or organizing our data (e.g. directories)
Finally, the most common models are slightly enhanced version of the plain
graphs. One of them, the RDF model, gives a light typing to nodes, and
considers edges as nodes, giving uniformity to the information objects in the
model. The other, the property graph model, allows to adds properties to
edges and nodes.

Next, we will present these models and show a paradigmatic example of
each. We will use the genealogy toy example modeled as tables and a simple
schema in Figure 1.

3.1 The basics: Labeled graphs

The most basic data structure for graph database models is a directed graph
with nodes and edges labeled by some vocabulary. A good example is Gram
[37], a graph data model motivated by hypertext querying.

A schema in Gram is a directed labeled multigraph, where each node
is labeled with a symbol called a type, which has associated a domain of
values. In the same way, each edge has assigned a label representing a
relation between types (see example in Figure 2). A feature of Gram is the
use of regular expressions for explicit definition of paths called walks. An
alternating sequence of nodes and edges represent a walk, which combined
with other walks conforms other special objects called hyperwalks.

For querying the model (particularly path-like queries), an algebraic lan-
guage based on regular expressions is proposed. For this purpose a hyper-

8

Relational Model

32

[R. Angles and C. Gutierrez, 2017]

D. Koop, CSCI 640/490, Spring 2024

Basic Labeled Model (Gram)
• Directed graph with nodes and edges labeled by some vocabulary
• Gram is a directed labeled multigraph
- Each node is labeled with a symbol called a type
- Each edge has assigned a label representing a relation between types

33

[R. Angles and C. Gutierrez, 2017]

D. Koop, CSCI 640/490, Spring 2024

Schema Instance

PERSON_4

PERSON_5

PERSON_6

Jones

George

PERSON_3

Julia

PERSON_1 PERSON_2

Ana

Stone

name

lastname

lastnamelastname

lastname

parent parent

parent

James

Deville

David

Mary
name

name

lastname

lastname
PERSON

parent

NAME LASTNAME

name lastname name

name

parent
parent

name

parent

Figure 2: Gram. At the schema level we use generalized names for definition
of entities and relations. At the instance level, we create instance labels (e.g.
PERSON 1) to represent entities, and use the edges (defined in the schema)
to express relations between data and entities.

walk algebra is defined, which presents unary operations (projection, selec-
tion, renaming) and binary operations (join, concatenation, set operations),
all closed under the set of hyperwalks.

3.2 Complex relations: The Hypergraph model

The notion of hypergraph is a generalization of graphs where the notion of
edge is extended to hyperedge, which relates an arbitrary set of nodes [45].
Hypergraphs allow the definition of complex objects (using undirected hy-
peredges), functional dependencies (using directed hyperedges), object-ID
and (multiple) structural inheritance.

A good representative case is GROOVY (Graphically Represented Object-
Oriented data model with Values [105]), an object-oriented data model which
is formalized using hypergraphs. An example of hypergraph schema and in-
stance is presented in Figure 3.

The model defines a set of structures for an object data model: value
schemas, objects over value schemas, value functional dependencies, object
schemas, objects over object schemas and class schemas. The model shows
that these structures can be defined in terms of hypergraphs.

Groovy also includes a hypergraph manipulation language (HML) for
querying and updating hypergraphs. It has two operators for querying hy-
pergraphs by identifier or by value, and eight operators for manipulation
(insertion and deletion) of hypergraphs and hyperedges.

9

Hypergraph Model (Groovy)
• Notion of edge is extended to hyperedge, which relates an arbitrary set of

nodes
• Hypergraphs allow the definition of complex objects (undirected), functional

dependencies (directed), object-ID and (multiple) structural inheritance

34

[R. Angles and C. Gutierrez, 2017]

D. Koop, CSCI 640/490, Spring 2024

Ana

PERSON

NAME LASTNAME

PARENTS

CHILD−PARENT

PERSON

2

PARENTS

LASTNAMENAME

James Deville

PERSON

4

PARENTS

LASTNAMENAME DevilleMary

PERSON

6

PARENTS

VAL(3)

Stone

Schema

CHILD−PARENT

Instance

NAME LASTNAME

George

PARENTS

1

PERSON

Jones

NAME LASTNAME

VAL(2)VAL(1)

PARENTS

3

PERSON

JonesJulia

NAME LASTNAME

VAL(4)VAL(3)

PARENTS

5

PERSON

David Deville

NAME LASTNAME

VAL(4)

Figure 3: GROOVY. At the schema level (left), we model an object
PERSON as an hypergraph that relates the attributes NAME, LAST-
NAME and PARENTS. Note the value functional dependency (VDF)
NAME,LASTNAME ! PARENTS logically represented by the directed
hyperedge ({NAME,LASTNAME} {PARENTS}). This VFD asserts that
NAME and LASTNAME uniquely determine the set of PARENTS.

3.3 Nested graphs: The Hypernode model

A hypernode is a directed graph whose nodes can themselves be graphs
(or hypernodes), allowing nesting of graphs. Hypernodes can be used to
represent simple (flat) and complex objects (hierarchical, composite, and
cyclic) as well as mappings and records. A key feature is its inherent ability
to encapsulate information.

The hypernode model which we will use as example was introduced by
Levene and Poulovassilis [104]. They defined the model and a declarative
logic-based language structured as a sequence of instructions (hypernode
programs), used for querying and updating hypernodes. A more elaborated
version [123] includes the notion of schema and type checking, introduced
via the idea of types (primitive and complex), that are also represented
by nested graphs (See an example in Figure 4). It also includes a rule-
based query language called Hyperlog, which can support both querying and
browsing with derivations as well as database updates, and is intractable
in the general case. A third version of the model [102] discusses a set of
constraints (entity, referential and semantic) over hypernode databases. In
addition it presents another query and update language called HNQL, which
use compounded statements to produce HNQL programs.

10

Hypernode Model
• Hypernode is a directed graph whose nodes can themselves be graphs (or

hypernodes), allowing nesting of graphs
• Encapsulates information

35

[R. Angles and C. Gutierrez, 2017]

D. Koop, CSCI 640/490, Spring 2024

PERSON
Name

Lastname

Parent

Julia

Jones

PERSON_3

Parent

Name

Lastname

Parent

James

Deville

PERSON_4

String

Name

Lastname

Parent

Mary

Deville

PERSON_6
Lastname

Name

Lastname

Parent

David

Deville

PERSON_5

Name

Name

Lastname

Parent

George

Jones

PERSON_1

Instance

Name

Lastname

Parent

Ana

Stone

PERSON_2

Schema

PERSON

Figure 4: Hypernode Model. The schema (left) defines a person as a complex
object with the properties name and lastname of type string, and parent of
type person (recursively defined). The instance (on the right) shows the
relations in the genealogy among di↵erent instances of person.

Summarizing, the main features of the Hypernode model are: a nested
graph structure which is simple and formal; the ability to model arbitrary
complex objects in a straightforward manner; underlying data structure of
an object-oriented data model; enhancement of the usability of a complex
objects database system via a graph-based user interface.

3.4 Trees: The Semistructured model (JSON, OEM, XML)

The semistructured model was designed to describe data together with its
schema in one place, also called “self-describing” data. Technically they are
trees, the most simple version of a graph, but could describe, via references,
general graphs.

The semistructured model was designed to overcome the limitation of
both, structured data (fixed schema and format, precise rules) and unstruc-
tured data (loose schema, no format, little predictability). The early moti-
vations were the modeling of documents (whose structure can be viewed as
trees), data on the Web and data integration at Web scale [50, 33].

Among its advantages are the simple way to integrate new data, to model
incomplete data, and the flexibility to query it without prior knowledge
of schema. The drawbacks are mainly in the area of optimization, which
becomes much harder as the structure of the data is not necessarily known
in advance.

An early proposal in this direction was the data model OEM [74, 120]
which proposed an extremely simple and elegant model of objects with iden-
tifiers and “links” to other objects , with a simple syntax (see Figure 5) which

11

Semistructured (Tree) Model: (OEM Graph)
• "Self-describing" data like JSON and XML
• OEM uses pointers to data in the tree

36

[R. Angles and C. Gutierrez, 2017]

D. Koop, CSCI 640/490, Spring 2024

&pp

&p4 &p5 &p6&p3

OEM Graph

perso
n

pe
rs

on

pers
on person

person

person

parent parentparent

OEM Syntax

&p1 &p2

na
m

e

na
m

e

na
m

e

na
m

e

na
m

e

lastnam
e

parentparent

parent

person : &p2 { name : "Ana" ,

lastname : "Jones" }

lastname : "Stone" }

lastname : "Jones" ,

person : &p3 { name : "Julia" ,

parent : &p1 ,

parent : &p2 }

person : &p4 { name : "James" ,

lastname : "Deville" }

person : &p5 { name = "David",

lastname : "Deville" ,

parent : &p3 ,

parent : &p4 }

person : &p6 { name = "Mary" ,

lastname : "Deville" ,

parent : &p4 } }

parent : &p3 ,

"George" "Julia"

{ person : &p1 { name : "George" ,

"Deville""Mary""Ana" "Stone"

lastn
am

e

lastn
am

e

lastn
am

e
"Jones" "James" "Deville"

lastn
am

e

"David" "Deville"

lastn
am

e

na
m

e

"Jones"

Figure 5: Object Exchange Model (OEM). Schema and instance are mixed.
The data is modeled beginning in a root node &pp, with children person
nodes, each of them identified by an Object-ID (e.g. &p2). These nodes have
children that contain data (name and lastname) or references to other nodes
(parent). Referencing permits to establish relations between distinct hierar-
chical levels. Note the tree structure obtained if one forgets the pointers to
OIDs, a characteristic of semistructured data.

today we can recognize in JSON.
The most popular and elaborated version of the semi-structured model

is the XML model. It comprises a rich and flexible data structure [?], a
suite of highly refined and standardized query and transformation languages
(XPath, XQuery, XSLT)1 and several other features, that have much to
teach graph query language designers.

3.5 Uniform graphs: The RDF model

The Resource Description Framework (RDF) [96] is a recommendation of the
W3C designed originally to represent metadata. One of the main advantages
(features) of the RDF model is its ability to interconnect resources in an
extensible way using graph-like structure for data.

One of the main advantages of RDF is its dual nature. In fact, there
are two possible reading of the model. From a knowledge representation

1 XPath Language www.w3.org/TR/xpath/
XQuery Language www.w3.org/TR/xquery/
XSLT Transformations www.w3.org/TR/xslt20/

12

RDF (Triple) Model
• Interconnect resources in an extensible way using graph-like structure for data
• Schema and instance are mixed together
• SPARQL to query
• Semantic web

37

[R. Angles and C. Gutierrez, 2017]

D. Koop, CSCI 640/490, Spring 2024
Figure 6: RDF data model. Note that schema and instance are mixed
together. The edges labeled type disconnect the instance from the schema.
The instance is built by the subgraphs obtained by instantiating the nodes of
the schema, and establishing the corresponding parent edges between these
subgraphs.

perspective, an atomic RDF expression is triple consisting of a subject (the
resource being described), a predicate (the property) and an object (the
property value). Each triple represents a logical statement of a relationship
between the subject and the object, and one could enhance this basic logic by
adding rules and ontologies over it (e.g. RDFS and OWL) A general RDF
expression is a set of such triples called an RDF Graph (see example in
Figure 6), which can be intuitively considered as a semantic network. From
the second perspective, the RDF model is the most general representation
of a graph, where edges are also considered nodes. In this sense, formally
is not a traditional graph [84]. This allows to self-references, reification
(i.e. making statements over statements), and essentially be self-contained.
The drawback of all this niceties are the complexity that come with this
generalization, particularly for e�cient implementation.

SPARQL [124] is the standard query language for RDF. It is able to
express complex graph patterns by means of a collection of triple patterns
whose solutions can be combined and restricted by using several operators

13

Property Graph Model (Cypher in neo4j)
• Directed, labelled, attributed multigraph
• Properties are key/value pairs that represent metadata for nodes and edges

38

[R. Angles and C. Gutierrez, 2017]

D. Koop, CSCI 640/490, Spring 2024
Figure 7: Property graph data model. The main characteristic of this model
is the occurrence of properties in nodes and edges. Each property is repre-
sented as a pair property-name = “property-value”.

(i.e. AND, UNION, OPTIONAL, and FILTER). The latest version of the
language, SPARQL 1.1 [71], includes explicit operators to express negation of
graph patterns, arbitrary length path matching (i.e. reachability), aggregate
operators (e.g. COUNT), subqueries, and query federation.

3.6 Nodes, edges and properties: The Property graph model

A property graph is a directed, labelled, attributed multigraph. That is,
a graph where the edges are directed, both nodes and edges are labeled
and can have any number of properties (or attributes), and there can be
multiple edges between any two vertices [128]. Properties are key/value
pairs that represent metadata for nodes and edges. In practice, each vertex
of a property graph has an identifier (unique within the graph) and zero
or more labels. Node labels could be associated to node typing in order to
provide schema-based restrictions. Additionally, each (directed) edge has a
unique identifier and one or more labels. An example of property graph is
shown in Figure 7.

Property graphs are used extensively in computing as they are more
expressive2 than the simplified mathematical objects studied in theory. In
fact, the property graph model can express other types of graph models by
simply abandoning or adding particular bits and pieces [128].

There is no standard query language for property graphs although some
proposals are available. Blueprints [11] was one of the first libraries created

2Note that the expressiveness of a model is defined by ease of use, not by the limits of
what can be modeled.

14

Types of Graph Queries
• Adjacency queries (neighbors or neighborhoods)
• Pattern matching queries (related to graph mining)
- Graph patterns with structural extension or restrictions
- Complex graph patterns
- Semantic matching
- Inexact matching
- Approximate matching

• Reachability queries (connectivity)

39

[R. Angles and C. Gutierrez, 2017]

D. Koop, CSCI 640/490, Spring 2024

Types of Graph Queries (continued)
• Analytical queries
- Summarization queries
- Complex analytical queries (PageRank, characteristic path length,

connected components, community detection, clustering coefficient)

40

[R. Angles and C. Gutierrez, 2017]

D. Koop, CSCI 640/490, Spring 2024

Graph Structures

41

[S. Sakr et al.]
D. Koop, CSCI 640/490, Spring 2024

https://cacm.acm.org/magazines/2021/9/255040-the-future-is-big-graphs/fulltext

Figure 8: Evolution of graph query languages: G [63], G+ [64], Graphlog
[61], HPQL [104], THQL [141], GRE [142], Gram [37], Hyperlog [123],
HNQL [103], PORL [72], SLQL [52], HQL [137], PRPQ [107], GraphQL
[85], SPARQL [124], RLV [132], Cypher [14], ECRPQ [43], PDQL [41], GX-
Path [106], SPARQL 1.1 [71] and RQ [127].

For the sake of space we will not present a complete review of graph query
languages. Instead we describe some of the languages we consider relevant
and useful to show the developments in the area. Moreover, we restrict
our review to “pure” GQLs, that is those languages specifically designed to
work with graph data models. Figure 8 presents this subset of languages in
chronological order.

As we mentioned before, Cruz et al. [63] proposed the query language
G. This language introduced the notion of graphical query as a set of query
graphs. A query graph (pattern) is a labeled directed multigraph in which
the node labels may be either variables or constants, and the edge labels
can be regular expressions combining variables and constants. The result
of a graphical query Q with respect to a graph database G is the union of
all query graphs of Q which match subgraphs of G. For instance, Figure
9 presents a example of graphical query containing two query graphs, Q1

and Q2. This query finds the first and last cities visited in all round trips
from Toronto (“Tor”), in which the first and last flights are with Air Canada
(“AC”) and all other flights (if any) are with the same airline. Note that the
last condition is expressed by the edge labeled with regular expression w+.
Thanks to the inclusion of regular expressions, G is able to express recursive
queries more general than transitive closure. However, the evaluation of
queries in G is of high computational complexity due to its semantics based
on simple paths.

G evolved into a more powerful language called G+ [64]. The notion
of graphical query proposed by G is extended in G+ to define a summary

21

Graph Query Languages

42

[R. Angles and C. Gutierrez, 2017]

D. Koop, CSCI 640/490, Spring 2024

Cypher
• Implemented by neo4j system
• Expresses reachability queries via path expressions

- p = (a)-[:knows*]->(b): nodes from a to b following knows edges
• START x=node:person(name="John")
MATCH (x)-[:friend]->(y)
RETURN y.name

43

[R. Angles and C. Gutierrez, 2017]

D. Koop, CSCI 640/490, Spring 2024

SPARQL (RDF)
• Uses SELECT-FROM-WHERE pattern like SQL
• SELECT ?N
FROM <http://example.org/data.rdf>
WHERE { ?X rdf:type voc:Person . ?X voc:name ?N }

44

[R. Angles and C. Gutierrez, 2017]

D. Koop, CSCI 640/490, Spring 2024

Comparing Graph Database Systems: Features

45

[R. Angles, 2012]

D. Koop, CSCI 640/490, Spring 2024

modify the schema of the database by adding, changing, or
deleting its objects; the Data Manipulation Language, which
allows to insert, delete and update data in the database; and
the Query Language, which allows to retrieve data by using
a query expression. Data operation and manipulation features
are summarized in Table II.

In comparison with the traditional approach in databases,
where high-level languages for data operation and manipu-
lation are provided, the most common mechanism in graph
databases is the use of APIs. It means several advantages:
standard vocabulary (for functions and procedures), easy de-
velopment of applications, and an unlimited power for query-
ing data. However, it also brings serious problems: lower level
of abstraction (for the general user), programming language
restrictions, implementation-dependent efficiency, and decid-
ability problems.

An important feature, not included in Table I, is the support
to import and export data in different data formats. Although
there exists some data formats for encoding graphs (e.g,
GraphML and TGV) none of them has been selected as
the standard one. This issue is particularly relevant for data
exchange and sharing.

TABLE I
DATA STORING FEATURES

Graph Main External Backend Indexes
Database memory memory Storage

AllegroGraph • • •
DEX • • •

Filament • •
G-Store •

HyperGraphDB • • • •
InfiniteGraph • •

Neo4j • • •
Sones • •

vertexDB • •

TABLE II
OPERATION AND MANIPULATION FEATURES

Data Data Query API GUI
Graph Definition Manipulat. Language

Database Language Language
AllegroGraph • • • • •

DEX •
Filament •
G-Store • • •

HyperGraphDB •
InfiniteGraph •

Neo4j •
Sones • • • • •

vertexDB •

A. Graph data structures
The data structures refer to the types of entities or objects

that can be used to model data. In the case of graph databases,
the data structure is naturally defined around the notions of
graphs, nodes and edges (see Table III).

We consider four graph data structures: simple graphs,
hypergraphs, nested graphs and attributed graphs. The basic
structure is a simple flat graph defined as a set of nodes
(or vertices) connected by edges (i.e., a binary relation over
the set of nodes). An Hypergraph extends this notion by
allowing an edge to relate an arbitrary set of nodes (called
an hyperedge). A nested graph is a graph whose nodes can
be themselves graphs (called hypernodes). Attributed graphs
are graphs where nodes and edges can contain attributes for
describing their properties [32]. Additionally, over the above
types of graphs, we consider directed or undirected edges,
labeled or unlabeled nodes/edges, and attributed nodes/edges
(i.e., edges between edges are possible).

Note that most graph databases are based on simple graphs
or attributed graphs. Only two support hypergraphs and no
one nested graphs. We can remark that hypergraphs and
attributed graphs can be modeled by nested graphs. In contrast,
the multilevel nesting provided by nested graphs cannot be
modeled by any of the other structures [2].

In comparison with past graph database models, the in-
clusion of attributes for nodes and edges is a particular
feature in current proposals. The introduction of attributes is
oriented to improve the speed of retrieval for the data directly
related to a given node. This feature shows the influence of
implementation issues in the selection and definition of the
data structures (and consequently of the data model).

TABLE III
GRAPH DATA STRUCTURES

Graphs Nodes Edges

Graph Database Si
m

pl
e

gr
ap

hs

H
yp

er
gr

ap
hs

N
es

te
d

gr
ap

hs

A
ttr

ib
ut

ed
gr

ap
hs

N
od

e
la

be
le

d

N
od

e
at

tri
bu

tio
n

D
ire

ct
ed

Ed
ge

la
be

le
d

Ed
ge

at
tri

bu
tio

n

AllegroGraph • • • •
DEX • • • • • •

Filament • • • •
G-Store • • • •

HyperGraphDB • • • •
InfiniteGraph • • • • • •

Neo4j • • • • • •
Sones • • • • • • •

vertexDB • • • •

The expressive power for data modeling can be analyzed by
comparing the support for representing entities, properties and
relations at both instance and schema levels. This evaluation
is shown in Table IV.

At the schema level we found that models support the defini-
tion of node, attribute and relation types. We also evaluate the
support for several nodes and relations at the instance level: an
object node, identified by an object-ID, represents an instance
of a node type; a value node represents an entity identified
by a primitive value (i.e., its name); a complex node can
represent an special complex entity, for example a tuple or a

modify the schema of the database by adding, changing, or
deleting its objects; the Data Manipulation Language, which
allows to insert, delete and update data in the database; and
the Query Language, which allows to retrieve data by using
a query expression. Data operation and manipulation features
are summarized in Table II.

In comparison with the traditional approach in databases,
where high-level languages for data operation and manipu-
lation are provided, the most common mechanism in graph
databases is the use of APIs. It means several advantages:
standard vocabulary (for functions and procedures), easy de-
velopment of applications, and an unlimited power for query-
ing data. However, it also brings serious problems: lower level
of abstraction (for the general user), programming language
restrictions, implementation-dependent efficiency, and decid-
ability problems.

An important feature, not included in Table I, is the support
to import and export data in different data formats. Although
there exists some data formats for encoding graphs (e.g,
GraphML and TGV) none of them has been selected as
the standard one. This issue is particularly relevant for data
exchange and sharing.

TABLE I
DATA STORING FEATURES

Graph Main External Backend Indexes
Database memory memory Storage

AllegroGraph • • •
DEX • • •

Filament • •
G-Store •

HyperGraphDB • • • •
InfiniteGraph • •

Neo4j • • •
Sones • •

vertexDB • •

TABLE II
OPERATION AND MANIPULATION FEATURES

Data Data Query API GUI
Graph Definition Manipulat. Language

Database Language Language
AllegroGraph • • • • •

DEX •
Filament •
G-Store • • •

HyperGraphDB •
InfiniteGraph •

Neo4j •
Sones • • • • •

vertexDB •

A. Graph data structures
The data structures refer to the types of entities or objects

that can be used to model data. In the case of graph databases,
the data structure is naturally defined around the notions of
graphs, nodes and edges (see Table III).

We consider four graph data structures: simple graphs,
hypergraphs, nested graphs and attributed graphs. The basic
structure is a simple flat graph defined as a set of nodes
(or vertices) connected by edges (i.e., a binary relation over
the set of nodes). An Hypergraph extends this notion by
allowing an edge to relate an arbitrary set of nodes (called
an hyperedge). A nested graph is a graph whose nodes can
be themselves graphs (called hypernodes). Attributed graphs
are graphs where nodes and edges can contain attributes for
describing their properties [32]. Additionally, over the above
types of graphs, we consider directed or undirected edges,
labeled or unlabeled nodes/edges, and attributed nodes/edges
(i.e., edges between edges are possible).

Note that most graph databases are based on simple graphs
or attributed graphs. Only two support hypergraphs and no
one nested graphs. We can remark that hypergraphs and
attributed graphs can be modeled by nested graphs. In contrast,
the multilevel nesting provided by nested graphs cannot be
modeled by any of the other structures [2].

In comparison with past graph database models, the in-
clusion of attributes for nodes and edges is a particular
feature in current proposals. The introduction of attributes is
oriented to improve the speed of retrieval for the data directly
related to a given node. This feature shows the influence of
implementation issues in the selection and definition of the
data structures (and consequently of the data model).

TABLE III
GRAPH DATA STRUCTURES

Graphs Nodes Edges

Graph Database Si
m

pl
e

gr
ap

hs

H
yp

er
gr

ap
hs

N
es

te
d

gr
ap

hs

A
ttr

ib
ut

ed
gr

ap
hs

N
od

e
la

be
le

d

N
od

e
at

tri
bu

tio
n

D
ire

ct
ed

Ed
ge

la
be

le
d

Ed
ge

at
tri

bu
tio

n

AllegroGraph • • • •
DEX • • • • • •

Filament • • • •
G-Store • • • •

HyperGraphDB • • • •
InfiniteGraph • • • • • •

Neo4j • • • • • •
Sones • • • • • • •

vertexDB • • • •

The expressive power for data modeling can be analyzed by
comparing the support for representing entities, properties and
relations at both instance and schema levels. This evaluation
is shown in Table IV.

At the schema level we found that models support the defini-
tion of node, attribute and relation types. We also evaluate the
support for several nodes and relations at the instance level: an
object node, identified by an object-ID, represents an instance
of a node type; a value node represents an entity identified
by a primitive value (i.e., its name); a complex node can
represent an special complex entity, for example a tuple or a

Data Storage Operations/Manipulation

Comparing Graph Database Systems: Representation

46

[R. Angles, 2012]

D. Koop, CSCI 640/490, Spring 2024

modify the schema of the database by adding, changing, or
deleting its objects; the Data Manipulation Language, which
allows to insert, delete and update data in the database; and
the Query Language, which allows to retrieve data by using
a query expression. Data operation and manipulation features
are summarized in Table II.

In comparison with the traditional approach in databases,
where high-level languages for data operation and manipu-
lation are provided, the most common mechanism in graph
databases is the use of APIs. It means several advantages:
standard vocabulary (for functions and procedures), easy de-
velopment of applications, and an unlimited power for query-
ing data. However, it also brings serious problems: lower level
of abstraction (for the general user), programming language
restrictions, implementation-dependent efficiency, and decid-
ability problems.

An important feature, not included in Table I, is the support
to import and export data in different data formats. Although
there exists some data formats for encoding graphs (e.g,
GraphML and TGV) none of them has been selected as
the standard one. This issue is particularly relevant for data
exchange and sharing.

TABLE I
DATA STORING FEATURES

Graph Main External Backend Indexes
Database memory memory Storage

AllegroGraph • • •
DEX • • •

Filament • •
G-Store •

HyperGraphDB • • • •
InfiniteGraph • •

Neo4j • • •
Sones • •

vertexDB • •

TABLE II
OPERATION AND MANIPULATION FEATURES

Data Data Query API GUI
Graph Definition Manipulat. Language

Database Language Language
AllegroGraph • • • • •

DEX •
Filament •
G-Store • • •

HyperGraphDB •
InfiniteGraph •

Neo4j •
Sones • • • • •

vertexDB •

A. Graph data structures
The data structures refer to the types of entities or objects

that can be used to model data. In the case of graph databases,
the data structure is naturally defined around the notions of
graphs, nodes and edges (see Table III).

We consider four graph data structures: simple graphs,
hypergraphs, nested graphs and attributed graphs. The basic
structure is a simple flat graph defined as a set of nodes
(or vertices) connected by edges (i.e., a binary relation over
the set of nodes). An Hypergraph extends this notion by
allowing an edge to relate an arbitrary set of nodes (called
an hyperedge). A nested graph is a graph whose nodes can
be themselves graphs (called hypernodes). Attributed graphs
are graphs where nodes and edges can contain attributes for
describing their properties [32]. Additionally, over the above
types of graphs, we consider directed or undirected edges,
labeled or unlabeled nodes/edges, and attributed nodes/edges
(i.e., edges between edges are possible).

Note that most graph databases are based on simple graphs
or attributed graphs. Only two support hypergraphs and no
one nested graphs. We can remark that hypergraphs and
attributed graphs can be modeled by nested graphs. In contrast,
the multilevel nesting provided by nested graphs cannot be
modeled by any of the other structures [2].

In comparison with past graph database models, the in-
clusion of attributes for nodes and edges is a particular
feature in current proposals. The introduction of attributes is
oriented to improve the speed of retrieval for the data directly
related to a given node. This feature shows the influence of
implementation issues in the selection and definition of the
data structures (and consequently of the data model).

TABLE III
GRAPH DATA STRUCTURES

Graphs Nodes Edges

Graph Database Si
m

pl
e

gr
ap

hs

H
yp

er
gr

ap
hs

N
es

te
d

gr
ap

hs

A
ttr

ib
ut

ed
gr

ap
hs

N
od

e
la

be
le

d

N
od

e
at

tri
bu

tio
n

D
ire

ct
ed

Ed
ge

la
be

le
d

Ed
ge

at
tri

bu
tio

n

AllegroGraph • • • •
DEX • • • • • •

Filament • • • •
G-Store • • • •

HyperGraphDB • • • •
InfiniteGraph • • • • • •

Neo4j • • • • • •
Sones • • • • • • •

vertexDB • • • •

The expressive power for data modeling can be analyzed by
comparing the support for representing entities, properties and
relations at both instance and schema levels. This evaluation
is shown in Table IV.

At the schema level we found that models support the defini-
tion of node, attribute and relation types. We also evaluate the
support for several nodes and relations at the instance level: an
object node, identified by an object-ID, represents an instance
of a node type; a value node represents an entity identified
by a primitive value (i.e., its name); a complex node can
represent an special complex entity, for example a tuple or a

set; an object relation, identified by a relation-ID, is an instance
of a relation type; a simple relation represents a node-edge-
node instance; a complex relation is a relation with special
semantics, for example grouping, derivation, and inheritance.

Value nodes and simple relations are supported by all the
models. The reason is that both conform the most basic and
simple model for representing graph data. The inclusion of
object-oriented concepts (e.g., IDs for objects) for representing
entities and relations reflects the use of APIs as the favorite
high-level interface for the database. Note that this issue is not
new in graph databases. In fact, it was naturally introduced by
the so called graph object-oriented data models [2].

Finally, the use of objects (for both nodes and relations)
is different of using values. For example, an object node
represents an entity identified by an object-ID, but it does
not represent the value-name of the entity. In this case, it is
necessary to introduce an explicit property or relation “name”
in order to specify the name of the entity. The same applies for
relations. This issue generates an unnatural form of modeling
graph data.

TABLE IV
REPRESENTATION OF ENTITIES AND RELATIONS

Schema Instance

Graph Database N
od

e
ty

pe
s

Pr
op

er
ty

ty
pe

s

R
el

at
io

n
ty

pe
s

O
bj

ec
tn

od
es

Va
lu

e
no

de
s

C
om

pl
ex

no
de

s

O
bj

ec
tr

el
at

io
ns

Si
m

pl
e

re
la

tio
ns

C
om

pl
ex

re
la

tio
ns

AllegroGraph • •
DEX • • • • • •

Filament • •
G-Store • •

HyperGraphDB • • • • •
InfiniteGraph • • • • • •

Neo4j • • • •
Sones • • •

vertexDB • •

B. Query languages

A query language is a collection of operators or inference
rules that can be applied to any valid instance of the database,
this with the objective of manipulating and querying data in
any combination desired [2]. As is shown in Table III, query
languages are not frequent in current graph databases. In fact,
there is not proposal for a standard one.

AllegroGraph supports SPARQL, the standard query lan-
guage for RDF. SPARQL is based on graph pattern matching
but is not oriented to querying the graph structure of RDF
data. Neo4j is developing Cypher, a query language for
property graphs. G-Store and Sones include SQL-based query
languages with special instructions for querying graphs. To the
best of our knowledge, there is not a formal definition of the
semantics for the above query languages, making a systematic
study of their complexity and expressive power difficult.

Data retrieval is the main objective in current graph
databases. AllegroGraph supports reasoning via its Prolog
implementation. Data analysis is supported in terms of special
functions (e.g., shortest path) for querying graph properties.

The lack of a standard query language is a disadvantage
of current graph databases. Recall that in mature databases
the operation of the database is performed via standard and
well-defined database languages. Instead, the focus in current
graph databases is to provide APIs for popular programming
languages. Hence, the selection is hardly determined by the
programmer skills or by application requirements.

TABLE V
COMPARISON OF QUERY FACILITIES (• INDICATES SUPPORT, AND �

PARTIAL SUPPORT)

Type Use

Graph Database Q
ue

ry
La

ng
.

A
PI

G
ra

ph
ic

al
Q

.L
.

R
et

rie
va

l

R
ea

so
ni

ng

A
na

ly
si

s

AllegroGraph � • • • • •
DEX • • •

Filament • •
G-Store • •

HyperGraphDB • •
InfiniteGraph • •

Neo4j � • •
Sones • • • •

vertexDB • •

C. Integrity constraints

Integrity constraints are general statements and rules that
define the set of consistent database states, or changes of state,
or both [2]. Table VI shows that integrity constraints are poorly
studied in graph databases. In fact, there are not important
variations of the notions studied in the past.

We consider several integrity constraints: types checking,
to test the consistency of an instance with respect to the
definitions in the schema; node/edge identity, to verify that
an entity or relation can be identified by either a value (e.g.,
name or ID) or the values of its attributes (e.g., neighborhood
identification); referential integrity, to test that only existing
entities are referenced; cardinality checking, to verify unique-
ness of properties or relations; functional dependency, to test
that an element in the graph determines the value of another;
and graph pattern constraints, to verify an structural restriction
(e.g., path constraints).

The support for evolving schemas is a characteristic of graph
databases that is commonly used to justify the lack of integrity
constraints. We aim that is not a valid argument assuming that
data consistency in a database is equal or even more important
than a flexible schema. Moreover, an evolving schema can be
supported by allowing flexible structures in the schema (as in
semi-structure data models). For example, the definition of a

Graph Data Structures Entites & Relations

Comparing Graph Database Systems: Queries

47

[R. Angles, 2012]

D. Koop, CSCI 640/490, Spring 2024

set; an object relation, identified by a relation-ID, is an instance
of a relation type; a simple relation represents a node-edge-
node instance; a complex relation is a relation with special
semantics, for example grouping, derivation, and inheritance.

Value nodes and simple relations are supported by all the
models. The reason is that both conform the most basic and
simple model for representing graph data. The inclusion of
object-oriented concepts (e.g., IDs for objects) for representing
entities and relations reflects the use of APIs as the favorite
high-level interface for the database. Note that this issue is not
new in graph databases. In fact, it was naturally introduced by
the so called graph object-oriented data models [2].

Finally, the use of objects (for both nodes and relations)
is different of using values. For example, an object node
represents an entity identified by an object-ID, but it does
not represent the value-name of the entity. In this case, it is
necessary to introduce an explicit property or relation “name”
in order to specify the name of the entity. The same applies for
relations. This issue generates an unnatural form of modeling
graph data.

TABLE IV
REPRESENTATION OF ENTITIES AND RELATIONS

Schema Instance

Graph Database N
od

e
ty

pe
s

Pr
op

er
ty

ty
pe

s

R
el

at
io

n
ty

pe
s

O
bj

ec
tn

od
es

Va
lu

e
no

de
s

C
om

pl
ex

no
de

s

O
bj

ec
tr

el
at

io
ns

Si
m

pl
e

re
la

tio
ns

C
om

pl
ex

re
la

tio
ns

AllegroGraph • •
DEX • • • • • •

Filament • •
G-Store • •

HyperGraphDB • • • • •
InfiniteGraph • • • • • •

Neo4j • • • •
Sones • • •

vertexDB • •

B. Query languages

A query language is a collection of operators or inference
rules that can be applied to any valid instance of the database,
this with the objective of manipulating and querying data in
any combination desired [2]. As is shown in Table III, query
languages are not frequent in current graph databases. In fact,
there is not proposal for a standard one.

AllegroGraph supports SPARQL, the standard query lan-
guage for RDF. SPARQL is based on graph pattern matching
but is not oriented to querying the graph structure of RDF
data. Neo4j is developing Cypher, a query language for
property graphs. G-Store and Sones include SQL-based query
languages with special instructions for querying graphs. To the
best of our knowledge, there is not a formal definition of the
semantics for the above query languages, making a systematic
study of their complexity and expressive power difficult.

Data retrieval is the main objective in current graph
databases. AllegroGraph supports reasoning via its Prolog
implementation. Data analysis is supported in terms of special
functions (e.g., shortest path) for querying graph properties.

The lack of a standard query language is a disadvantage
of current graph databases. Recall that in mature databases
the operation of the database is performed via standard and
well-defined database languages. Instead, the focus in current
graph databases is to provide APIs for popular programming
languages. Hence, the selection is hardly determined by the
programmer skills or by application requirements.

TABLE V
COMPARISON OF QUERY FACILITIES (• INDICATES SUPPORT, AND �

PARTIAL SUPPORT)

Type Use

Graph Database Q
ue

ry
La

ng
.

A
PI

G
ra

ph
ic

al
Q

.L
.

R
et

rie
va

l

R
ea

so
ni

ng

A
na

ly
si

s

AllegroGraph � • • • • •
DEX • • •

Filament • •
G-Store • •

HyperGraphDB • •
InfiniteGraph • •

Neo4j � • •
Sones • • • •

vertexDB • •

C. Integrity constraints

Integrity constraints are general statements and rules that
define the set of consistent database states, or changes of state,
or both [2]. Table VI shows that integrity constraints are poorly
studied in graph databases. In fact, there are not important
variations of the notions studied in the past.

We consider several integrity constraints: types checking,
to test the consistency of an instance with respect to the
definitions in the schema; node/edge identity, to verify that
an entity or relation can be identified by either a value (e.g.,
name or ID) or the values of its attributes (e.g., neighborhood
identification); referential integrity, to test that only existing
entities are referenced; cardinality checking, to verify unique-
ness of properties or relations; functional dependency, to test
that an element in the graph determines the value of another;
and graph pattern constraints, to verify an structural restriction
(e.g., path constraints).

The support for evolving schemas is a characteristic of graph
databases that is commonly used to justify the lack of integrity
constraints. We aim that is not a valid argument assuming that
data consistency in a database is equal or even more important
than a flexible schema. Moreover, an evolving schema can be
supported by allowing flexible structures in the schema (as in
semi-structure data models). For example, the definition of a

TABLE VII
CURRENT GRAPH DATABASES AND THEIR SUPPORT FOR ESSENTIAL

GRAPH QUERIES

Adjacency Reachability

Graph Database N
od

e/
ed

ge
ad

ja
ce

nc
y

k-
ne

ig
hb

or
ho

od

Fi
xe

d-
le

ng
th

pa
th

s

R
eg

ul
ar

si
m

pl
e

pa
th

s

Sh
or

te
st

pa
th

Pa
tte

rn
m

at
ch

in
g

Su
m

m
ar

iz
at

io
n

Allegro • • •
DEX • • • • •

Filament • • •
G-Store • • • • •

HyperGraph • •
Infinite • • • • •
Neo4j • • • • •
Sones • •

vertexDB • • • •

TABLE VIII
PAST GRAPH QUERY LANGUAGES AND THEIR SUPPORT FOR ESSENTIAL

GRAPH QUERIES (• INDICATES SUPPORT, AND � PARTIAL SUPPORT)

Graph Database N
od

e/
ed

ge
ad

ja
ce

nc
y

Fi
xe

d-
le

ng
th

pa
th

s

R
eg

ul
ar

si
m

pl
e

pa
th

s

D
eg

re
e

of
a

no
de

D
is

ta
nc

e
be

tw
ee

n
no

de
s

D
ia

m
et

er

G � • •
G+ • • • • • •

GraphLog • • • • • •
Gram • • •

GraphDB � • •
Lorel • • •
F-G � • •

manipulating and querying the data) and notions of integrity
constraints (for preserving the consistency of the database).

As future work we plan to develop an empirical evaluation
of current graph databases; this oriented to make a quantita-
tive and qualitative analysis of their support for storing and
querying graph data.

ACKNOWLEDGMENT

This work was supported by the Chilean Fondecyt Project
No. 11100364.

REFERENCES

[1] “NOSQL Databases,” http://nosql-database.org/.
[2] R. Angles and C. Gutierrez, “Survey of graph database models,” ACM

Computing Surveys (CSUR), vol. 40, no. 1, pp. 1–39, 2008.
[3] A. Nayak. and I. Stojmenovic, Handbook of Applied Algorithms: Solving

Scientific, Engineering, and Practical Problems. Wiley-IEEE Press,
2008, ch. Graph Theoretic Models in Chemistry and Molecular Biology,
pp. 85–113.

[4] B. A. Eckman and P. G. Brown, “Graph data management for molecular
and cell biology,” IBM Journal of Research and Development, vol. 50,
no. 6, pp. 545–560, 2006.

[5] A. Schenker, H. Bunke, M. Last, and A. Kandel, Graph-Theoretic
Techniques for Web Content Mining, ser. Series in Machine Perception
and Artificial Intelligence. World Scientific, 2005, vol. 62.

[6] J. Hayes and C. Gutierrez, “Bipartite Graphs as Intermediate Model for
RDF,” in Proceedings of the 3th International Semantic Web Conference
(ISWC), ser. LNCS, no. 3298. Springer-Verlag, Nov 2004, pp. 47–61.

[7] A. Silberschatz, H. F. Korth, and S. Sudarshan, “Data Models,” ACM
Computing Surveys, vol. 28, no. 1, pp. 105–108, 1996.

[8] E. F. Codd, “Data Models in Database Management,” in Proceedings
of the 1980 Workshop on Data abstraction, Databases and Conceptual
Modeling. ACM Press, 1980, pp. 112–114.

[9] P. Urbón, “Nosql graph database matrix,”
http://nosql.mypopescu.com/post/619181345/nosql-graph-database-
matrix, May 2010.

[10] “Short overview on the emerging world of graph databases,”
http://www.graph-database.org/overview.html.

[11] D. Dominguez-Sal, P. Urbón-Bayes, A. Giménez-Vañó, S. Gómez-
Villamor, N. Martı́nez-Bazán, and J. L. Larriba-Pey, “Survey of graph
database performance on the hpc scalable graph analysis benchmark,”
in Proc. of the 2010 international conference on Web-age information
management (WAIM). Springer-Verlag, 2010, pp. 37–48.

[12] “AllegroGraph,” http://www.franz.com/agraph/allegrograph/.
[13] N. Martı́nez-Bazan, V. Muntés-Mulero, S. Gómez-Villamor, J. Nin, M.-

A. Sánchez-Martı́nez, and J.-L. Larriba-Pey, “DEX: High-Performance
Exploration on Large Graphs for Information Retrieval,” in Proceedings
of the 16th Conference on Information and Knowledge Management
(CIKM). ACM, 2007, pp. 573–582.

[14] “DEX,” http://www.sparsity-technologies.com/dex.
[15] “HyperGraphDB,” http://www.hypergraphdb.org/.
[16] B. Iordanov, “Hypergraphdb: a generalized graph database,” in Pro-

ceedings of the 2010 international conference on Web-age information
management (WAIM). Springer-Verlag, 2010, pp. 25–36.

[17] “Infinitegraph,” http://infinitegraph.com/.
[18] “Neo4j,” http://neo4j.org/.
[19] “Sones GraphDB,” http://www.sones.com/.
[20] “Filament,” http://filament.sourceforge.net/.
[21] “G-Store,” http://g-store.sourceforge.net/.
[22] “redis graph: Graph database for python,”

https://github.com/amix/redis graph.
[23] “vertexdb,” http://www.dekorte.com/projects/opensource/vertexdb/.
[24] “Cloudgraph,” http://www.cloudgraph.com/.
[25] “Horton,” http://research.microsoft.com/en-us/projects/ldg.
[26] “Trinity,” http://research.microsoft.com/en-us/projects/trinity/.
[27] “Orientdb,” http://www.orientechnologies.com/.
[28] “Giraph,” https://github.com/aching/Giraph.
[29] “Angrapa - the graph package,” http://wiki.apache.org/hama/GraphPackage.
[30] “Goldenorb,” http://www.goldenorbos.org/.
[31] “Phoebus,” https://github.com/xslogic/phoebus.
[32] H. Ehrig, U. Prange, and G. Taentzer, “Fundamental theory for typed

attributed graph transformation,” in Proc. of the 2nd Int. Conference on
Graph Transformation (ICGT), ser. LNCS, no. 3256. Springer, 2004,
pp. 162–177.

[33] M. Yannakakis, “Graph-Theoretic Methods in Database Theory,” in
Proceedings of the 9th Symposium on Principles of Database Systems
(PODS). ACM Press, 1990, pp. 230–242.

[34] D. Shasha, J. T. L. Wang, and R. Giugno, “Algorithmics and Ap-
plications of Tree and Graph Searching,” in Proceedings of the 21th
Symposium on Principles of Database Systems (PODS). ACM Press,
2002, pp. 39–52.

[35] R. Angles and C. Gutierrez, “Querying RDF Data from a Graph
Database Perspective,” in Proceedings of the 2nd European Semantic
Web Conference (ESWC), ser. LNCS, no. 3532, 2005, pp. 346–360.

[36] L. Kowalik, “Adjacency queries in dynamic sparse graphs,” Information
Processing Letters, vol. 102, pp. 191–195, May 2007.

[37] A. N. Papadopoulos and Y. Manolopoulos, Nearest Neighbor Search -
A Database Perspective, ser. Series in Computer Science. Springer,
2005.

[38] T. Seidl and H. peter Kriegel, “A 3d molecular surface representation
supporting neighborhood queries,” in Proc. of the 3rd Conference on
Intelligent Systems for Molecular Biology (ISMB). Springer, 1995, pp.
240–258.

Query Support Types of Queries

The (sorry) State of Graph Database Systems

Peter Boncz

Keynote, EDBT-ICDT 2022

D. Koop, CSCI 640/490, Spring 2024

https://www.youtube.com/watch?v=aDoorU4X6Jk

