
Advanced Data Management (CSCI 640/490)

Databases

Dr. David Koop

D. Koop, CSCI 640/490, Spring 2024

Exercise
• Given variables x and y, print the long division answer of x divided by y with

the remainder.
• Examples:

- x = 11, y = 4 should print "2R3"
- x = 15, y = 2 should print "7R1"

2D. Koop, CSCI 640/490, Spring 2024

Exercise
• Suppose I want to write Python code to print the numbers from 1 to 100.

What errors do you see?

// print the numbers from 1 to 100
int counter = 1
while counter < 100 {
 print counter
 counter++
}

3D. Koop, CSCI 640/490, Spring 2024

Exercise
• Suppose a = ['a', 'b', 'c', 'd'] and b = (1, 2, 3)
• What happens with?

- a[0]
- a[1:2]
- b[:-2]
- b.append(4)
- a.extend(b)
- a.pop(0)
- b[0] = "100"
- b + (4,)

4D. Koop, CSCI 640/490, Spring 2024

Exercise
• Suppose a = ['a', 'b', 'c', 'd'] and b = (1, 2, 3)
• What happens with?

- a[0] # 'a'
- a[1:2] # ['b']
- b[:-2] # (1,)
- b.append(4) # error
- a.extend(b) # ['a', 'b', 'c', 'd', 1, 2, 3]
- a.pop(0) # 'a' with side effect a becomes ['b', 'c', 'd']
- b[0] = "100" # error
- b + (4,) # (1,2,3,4)

5D. Koop, CSCI 640/490, Spring 2024

Example: Counting Letters
• Write code that takes a string s and creates a dictionary with that counts

how often each letter appears in s
• count_letters("Mississippi") →
 {'s': 4, 'i': 4, 'p': 2', 'M': 1}

6D. Koop, CSCI 640/490, Spring 2024

Python Containers
• Container: store more than one value
• Mutable versus immutable: Can we update the container?
- Yes → mutable
- No → immutable
- Lists are mutable, tuples are immutable

• Lists and tuples may contain values of different types:
• List: [1,"abc",12.34]
• Tuple: (1, "abc", 12.34)
• You can also put functions in containers!
• len function: number of items: len(l)

7D. Koop, CSCI 640/490, Spring 2024

Indexing and Slicing
• Strings and collections are the same
• Indexing:
- Where do we start counting?
- Use brackets [] to retrieve one value
- Can use negative values (count from the end)

• Slicing:
- Use brackets plus a colon to retrieve multiple values:

[<start>:<end>]
- Returns a new list (b = a[:])
- Don't need to specify the beginning or end

8D. Koop, CSCI 640/490, Spring 2024

Dictionaries
• One of the most useful features of Python
• Also known as associative arrays
• Exist in other languages but a core feature in Python
• Associate a key with a value
• When I want to find a value, I give the dictionary a key, and it returns the value
• Example: InspectionID (key) → InspectionRecord (value)
• Keys must be immutable (technically, hashable):
- Normal types like numbers, strings are fine
- Tuples work, but lists do not (TypeError: unhashable type: 'list')

• There is only one value per key!

9D. Koop, CSCI 640/490, Spring 2024

Sets
• Sets are like dictionaries but without any values:
• s = {'MA', 'RI', 'CT', 'NH'}; t = {'MA', 'NY', 'NH'}

• {} is an empty dictionary, set() is an empty set
• Adding values: s.add('ME')
• Removing values: s.discard('CT')
• Exists: "CT" in s
• Union: s | t => {'MA', 'RI', 'CT', 'NH', 'NY'}
• Intersection: s & t => {'MA', 'NH'}
• Exclusive-or (xor): s ^ t => {'RI', 'CT', 'NY'}
• Difference: s - t => {'RI', 'CT'}

10D. Koop, CSCI 640/490, Spring 2024

Assignment 1
• Due Monday
• Using Python for data analysis on MoMA data
• Use basic python for now to work on language knowledge
• Use Anaconda or a hosted Python environment
• Turn .ipynb file in via Blackboard

11D. Koop, CSCI 640/490, Spring 2024

https://faculty.cs.niu.edu/~dakoop/cs640-2024sp/assignment1.html

Nesting Containers
• Can have lists inside of lists, tuples inside of tuples, dictionaries inside of

dictionaries
• Can also have dictionaries inside of lists, tuples inside of dictionaries, …
• d = {"Brady": [(2015, 4770, 36), (2014, 4109, 33)],
 "Luck": [(2015, 1881, 15), (2014, 4761, 40)],
 …
 }

• JavaScript Object Notation (JSON) looks very similar for literal values; Python
allows variables in these types of structures

12D. Koop, CSCI 640/490, Spring 2024

Nesting Code
• Can have loops inside of loops, if statements inside of if statements
• Careful with variable names:
• l = {0: 0, 1: 3, 4: 5, 9: 12}
for i in range(100):
 square = i ** 2
 max_val = l[square]
 for i in range(max_val):
 print(i)

• Strange behavior, likely unintended, but Python won't complain!

13D. Koop, CSCI 640/490, Spring 2024

None
• Like null in other languages, used as a placeholder when no value exists
• The value returned from a function that doesn't return a value

def f(name):
 print("Hello,", name)
v = f("Patricia") # v will have the value None

• Also used when you need to create a new list or dictionary:
def add_letters(s, d=None):
 if d is None:
 d = {}
 d.update(count_letters(s))

• Looks like d={} would make more sense, but that causes issues
• None serves as a sentinel value in add_letters

14D. Koop, CSCI 640/490, Spring 2024

is and ==
• == does a normal equality comparison
• is checks to see if the object is the exact same object
• Common style to write statements like if d is None: …
• Weird behavior:

- a = 4 - 3
a is 1 # True

- a = 10 ** 3
a is 1000 # False

- a = 10 ** 3
a == 1000 # True

• Generally, avoid is unless writing is None

15D. Koop, CSCI 640/490, Spring 2024

is and ==
• == does a normal equality comparison
• is checks to see if the object is the exact same object
• Common style to write statements like if d is None: …
• Weird behavior:

- a = 4 - 3
a is 1 # True

- a = 10 ** 3
a is 1000 # False

- a = 10 ** 3
a == 1000 # True

• Generally, avoid is unless writing is None

15D. Koop, CSCI 640/490, Spring 2024

Python caches common integer objects

Objects
• d = dict() # construct an empty dictionary object

• l = list() # construct an empty list object

• s = set() # construct an empty set object

• s = set([1,2,3,4]) # construct a set with 4 numbers
• Calling methods:

- l.append('abc')

- d.update({'a': 'b'})

- s.add(3)

• The method is tied to the object preceding the dot (e.g. append modifies l to
add 'abc')

16D. Koop, CSCI 640/490, Spring 2024

Python Modules
• Python module: a file containing definitions and statements
• Import statement: like Java, get a module that isn't a Python builtin

import collections
d = collections.defaultdict(list)
d[3].append(1)

• import <name> as <shorter-name>
import collections as c

• from <module> import <name> : don't need to refer to the module
from collections import defaultdict
d = defaultdict(list)
d[3].append(1)

17D. Koop, CSCI 640/490, Spring 2024

Other Collections
• collections.defaultdict: specify a default value for any item in the

dictionary (instead of KeyError)
• collections.OrderedDict: keep entries ordered according to when the

key was inserted
- dict objects are ordered in Python 3.7 but OrderedDict has some other

features (equality comparison, reversed)
• collections.Counter: counts hashable objects, has a most_common

method

18D. Koop, CSCI 640/490, Spring 2024

Example: Counting Letters
• Write code that takes a string s and creates a dictionary with that counts

how often each letter appears in s
• count_letters("Mississippi") →
 {'s': 4, 'i': 4, 'p': 2', …}

19D. Koop, CSCI 640/490, Spring 2024

Solution using Counter
• Use an existing library made to count occurrences
from collections import Counter
Counter("Mississippi")

• produces
Counter({'M': 1, 'i': 4, 's': 4, 'p': 2})

• Improve: convert to lowercase first

20D. Koop, CSCI 640/490, Spring 2024

Iterators
• Remember range, values, keys, items?
• They return iterators: objects that traverse containers
• Given iterator it, next(it) gives the next element
• StopIteration exception if there isn't another element
• Generally, we don't worry about this as the for loop handles everything

automatically…but you cannot index or slice an iterator
• d.values()[0] will not work!
• If you need to index or slice, construct a list from an iterator
• list(d.values())[0] or list(range(100))[-1]
• In general, this is slower code so we try to avoid creating lists

21D. Koop, CSCI 640/490, Spring 2024

List Comprehensions
• Shorthand for transformative or filtering for loops
• squares = []
for i in range(10):
 squares.append(i**2)

• squares = [i**2 for i in range(10)]

• Filtering:
• squares = []
for i in range(10):
 if i % 3 != 1:
 squares.append(i ** 2)

• squares = [i**2 for i in range(10) if i % 3 != 1]

• if clause follows the for clause

22D. Koop, CSCI 640/490, Spring 2024

Dictionary Comprehensions
• Similar idea, but allow dictionary construction
• Could use lists:

- names = dict([(k, v) for k,v in … if …])

• Native comprehension:
- names = {"Al": ["Smith", "Brown"], "Beth":["Jones"]}
first_counts ={k: len(v) for k,v in names.items()}

• Could do this with a for loop as well

23D. Koop, CSCI 640/490, Spring 2024

Exceptions
• errors but potentially something that can be addressed
• try-except-else-finally:

- except clause runs if exactly the error(s) you wish to address happen
- else clause will run if no exceptions are encountered
- finally always runs (even if the program is about to crash)

• Can have multiple except clauses
• can also raise exceptions using the raise keyword
• (and define your own)

24D. Koop, CSCI 640/490, Spring 2024

Classes
• class ClassName:
 …

• Everything in the class should be indented until the declaration ends
• self: this in Java or C++ is self in Python
• Every instance method has self as its first parameter
• Instance variables are defined in methods (usually constructor)
• __init__: the constructor, should initialize instance variables
• def __init__(self):
 self.a = 12
 self.b = 'abc'

• def __init__(self, a, b):
 self.a = a
 self.b = b

25D. Koop, CSCI 640/490, Spring 2024

Class Example
• class Rectangle:
 def __init__(self, x, y, w, h):
 self.x = x
 self.y = y
 self.w = w
 self.h = h

 def set_corner(self, x, y):
 self.x = x
 self.y = y

 def set_width(self, w): self.w = w

 def set_height(self, h): self.h = h

 def area(self):
 return self.w * self.h

26D. Koop, CSCI 640/490, Spring 2024

27

Databases

D. Koop, CSCI 640/490, Spring 2024

Database
• Basically, just structured data/information stored on a computer
• Very generic, doesn't specify specific way that data is stored
• Can be single-file (or in-memory) or much more complex
• Methods to:
- add, update, and remove data
- query the data

28D. Koop, CSCI 640/490, Spring 2024

Using Databases
• Suppose we just use a single file or a set of files to store data
• Now, we write programs to use that data
• What are the potential issues?

29D. Koop, CSCI 640/490, Spring 2024

Using Databases
• Suppose we just use a single file or a set of files to store data
• Now, we write programs to use that data
• What are the potential issues?
- Duplicated work
- Changes to data layout (schema) require changes to programs
- New operations required more code
- Multiple users/programs accessing same data?
- Security

30D. Koop, CSCI 640/490, Spring 2024

Database Management System (DBMS)
• Software to manage databases
• Instead of each program writing its own methods to manage data,

abstract data management to the DBMS
• Provide levels of abstraction
- Physical: storage
- Logical: structure (records, columns, etc.)
- View: queries and application-support

• Goal: general-purpose
- Specify structure of the data (schema)
- Provide query capabilities

31D. Koop, CSCI 640/490, Spring 2024

Query Processing
• Parsing and translation
• Optimization
• Evaluation

32

[A. Silberschatz et al.]
D. Koop, CSCI 640/490, Spring 2024

https://www.db-book.com/db6/slide-dir/

Types of Databases
• Many kinds of databases, based on usage
• Amount of data being managed
- embedded databases: small, application-specific (e.g. SQLite, BerkeleyDB)
- data warehousing: vast quantities of data (e.g. Oracle)

• Type/frequency of operations being performed
- OLTP: Online Transaction Processing (e.g. online shopping)
- OLAP: Online Analytical Processing (e.g. sales analysis)

33

[D. Pinkston]
D. Koop, CSCI 640/490, Spring 2024

http://users.cms.caltech.edu/~donnie/cs121/CS121Lec01.pdf

Data Models
• Databases must represent:
- the data itself (typically structured in some way)
- associations between different data values
- optionally, constraints on data values

• What kind of data/associations can be represented?
• The data model specifies:
- what data can be stored (and sometimes how it is stored)
- associations between different data values
- what constraints can be enforced
- how to access and manipulate the data

34

[D. Pinkston]
D. Koop, CSCI 640/490, Spring 2024

http://users.cms.caltech.edu/~donnie/cs121/CS121Lec01.pdf

Different Data Models
• Relational model
• Entity-Relationship data model (mainly for database design)
• Object-based data models (Object-oriented and Object-relational)
• Semistructured data model (XML)
• Other older models:
- Network model
- Hierarchical model

35

[A. Silberschatz et al.]
D. Koop, CSCI 640/490, Spring 2024

https://www.db-book.com/db6/slide-dir/

Relational Model History
• Invented by Edgar F. Codd in early 1970s
• Focus was data independence
- Previous data models required physical-level design and implementation
- Changes to a database schema were very costly to applications that

accessed the database
• IBM, Oracle were first implementers of relational model (1977)
- Usage spread very rapidly through software industry
- SQL was a particularly powerful innovation

36

[D. Pinkston]
D. Koop, CSCI 640/490, Spring 2024

http://users.cms.caltech.edu/~donnie/cs121/CS121Lec01.pdf

Relations

¨ Relations are basically tables of data
¤ Each row represents a record in the relation

¨ A relational database is
a set of relations
¤ Each relation has a unique

name in the database

¨ Each row in the table specifies a relationship between
the values in that row
¤ The account ID “A-307”, branch name “Seattle”, and

balance “275” are all related to each other

acct_id branch_name balance
A-301
A-307
A-318
…

New York
Seattle
Los Angeles
…

350
275
550
…

The account relation

18

Relations
• Relations are basically tables of data
- Each row represents a tuple in the relation

• A relational database is an unordered set of
relations

- Each relation has a unique name in the
database

• Each row in the table specifies a relationship
between the values in that row

- The account ID “A-307”, branch name
“Seattle”, and balance “275” are all related
to each other

37

[D. Pinkston]
D. Koop, CSCI 640/490, Spring 2024

http://users.cms.caltech.edu/~donnie/cs121/CS121Lec01.pdf

Relations

¨ Relations are basically tables of data
¤ Each row represents a record in the relation

¨ A relational database is
a set of relations
¤ Each relation has a unique

name in the database

¨ Each row in the table specifies a relationship between
the values in that row
¤ The account ID “A-307”, branch name “Seattle”, and

balance “275” are all related to each other

acct_id branch_name balance
A-301
A-307
A-318
…

New York
Seattle
Los Angeles
…

350
275
550
…

The account relation

18

Relations and Attributes
• Each relation has some number of attributes
- Sometimes called “columns”

• Each attribute has a domain
- Set of valid values for the attribute (+ null)
- Values are usually atomic

• The account relation has 3 attributes
- Domain of balance is the set of

nonnegative integers
- Domain of branch_name is the set of all

valid branch names in the bank

38

[D. Pinkston]
D. Koop, CSCI 640/490, Spring 2024

http://users.cms.caltech.edu/~donnie/cs121/CS121Lec01.pdf

Database Schema
• Database schema: the logical

structure of the database.
• Database instance: a snapshot of the

data at a given instant in time.
• Example Schema

- instructor
(ID, name, dept_name, salary)

39

[A. Silberschatz et al.]
D. Koop, CSCI 640/490, Spring 2024

https://www.db-book.com/db6/slide-dir/

