
Advanced Data Management (CSCI 640/490)

Provenance

Dr. David Koop

D. Koop, CSCI 640/490, Spring 2024

Sharing Data
• Required/encouraged by universities, funding agencies, publishers
• "Publications are arguments made by authors, and data are the evidence

used to support the arguments." [C. L. Borgman]
• Questions:
- How is data maintained? Who is responsible?
- What is the process for curating data?
- How long should data be kept?
- How should data collection and curation be acknowledged?

2D. Koop, CSCI 640/490, Spring 2024

Research Data Infrastructure Stakeholders
• Research Funding Agencies
• Individual Scientists and Scholars
- Data collection/analysis, managing teams/technology

• Academic Institutions
- Academic Leadership: Regulations, Governance, Financial Management
- Research Computing
- University Libraries: Maintain knowledge resources, provide access, steward
- Schools and Departments

3

[C. L. Borgman & P. E. Bourne]
D. Koop, CSCI 640/490, Spring 2024

https://escholarship.org/uc/item/4nf659d5#author

The DCC Curation
Lifecycle Model

Description and
Representation Information

Preservation Planning

Community Watch and
Participation

Curate and Preserve

Conceptualise

Create or Receive

Appraise and Select

Ingest

Preservation Action

Store

Access, Use and Reuse

Transform

Assign administrative, descriptive, technical, structural and preservation metadata, using appropriate standards, to ensure adequate description and control over the long-term. Collect and assign representation information required to understand
and render both the digital material and the associated metadata.

Plan for preservation throughout the curation lifecycle of digital material. This would include plans for management and administration of all curation lifecycle actions.

Maintain a watch on appropriate community activities, and participate in the development of shared standards, tools and suitable software.

Be aware of, and undertake management and administrative actions planned to promote curation and preservation throughout the curation lifecycle.

Conceive and plan the creation of data, including capture method and storage options.

Create data including administrative, descriptive, structural and technical metadata. Preservation metadata may also be added at the time of creation.
Receive data, in accordance with documented collecting policies, from data creators, other archives, repositories or data centres, and if required assign appropriate metadata.

Evaluate data and select for long-term curation and preservation. Adhere to documented guidance, policies or legal requirements.

Transfer data to an archive, repository, data centre or other custodian. Adhere to documented guidance, policies or legal requirements.

Undertake actions to ensure long-term preservation and retention of the authoritative nature of data. Preservation actions should ensure that data remains authentic, reliable and usable while maintaining its integrity. Actions include data cleaning,
validation, assigning preservation metadata, assigning representation information and ensuring acceptable data structures or file formats.

Store the data in a secure manner adhering to relevant standards.

Ensure that data is accessible to both designated users and reusers, on a day-to-day basis. This may be in the form of publicly available published information. Robust access controls and authentication procedures may be applicable.

Create new data from the original, for example
- By migration into a different format.
- By creating a subset, by selection or query, to create newly derived results, perhaps for publication.

www.dcc.ac.uk
info@dcc.ac.uk

The Curation Lifecycle
The DCC Curation Lifecycle Model provides a graphical high level overview of the stages required for successful curation and preservation of data from initial conceptualisation or receipt. The model can be used to plan activities within an organisation or consortium to
ensure that all necessary stages are undertaken, each in the correct sequence. The model enables granular functionality to be mapped against it; to define roles and responsibilities, and build a framework of standards and technologies to implement. It can help with
the process of identifying additional steps which may be required, or actions which are not required by certain situations or disciplines, and ensuring that processes and policies are adequately documented.

Data, any information in binary digital form, is at the centre of the Curation Lifecycle. This includes:

- Simple Digital Objects are discrete digital items; such as textual files, images or sound files, along with their related identifiers and metadata.
- Complex Digital Objects are discrete digital objects, made by combining a number of other digital objects, such as websites.

Structured collections of records or data stored in a computer system.

Full Lifecycle Actions

Sequential Actions

Data (Digital Objects or Databases)

Occasional Actions
Dispose

Reappraise

Migrate

Dispose of data, which has not been selected for long-term curation and preservation in accordance with documented policies, guidance or legal requirements. Typically data may be transferred to another archive, repository, data centre or
other custodian. In some instances data is destroyed. The data’s nature may, for legal reasons, necessitate secure destruction.

Return data which fails validation procedures for further appraisal and reselection.

Migrate data to a different format. This may be done to accord with the storage environment or to ensure the data’s immunity from hardware or software obsolescence.

Digital Objects

Databases

Data Curation Lifecycle

4

[DCC]
D. Koop, CSCI 640/490, Spring 2024

http://www.dcc.ac.uk/sites/default/files/documents/publications/DCCLifecycle.pdf

Sequential Actions in Data Curation
• Conceptualize: Plan creation of data—capture method and storage options.
• Create or Receive: Create/receive data and make sure metadata exists
• Appraise and Select: Evaluate data and select for long-term curation and

preservation
• Ingest: Transfer data to an archive, repository, data centre or other custodian
• Preservation Action: Data cleaning, validation (ensure that data remains

authentic, reliable and usable)
• Store: Store the data in a secure manner adhering to relevant standards
• Access, Use and Reuse: Make sure is accessible to users and reusers
• Transform: Create new data from the original (migrate formats, subsets, etc.)

5

[DCC]
D. Koop, CSCI 640/490, Spring 2024

http://www.dcc.ac.uk/sites/default/files/documents/publications/DCCLifecycle.pdf

FAIR Principles
• Findable: Metadata and data should be easy to find for both humans and

computers
• Accessible: Users need to know how data can be accessed, possibly

including authentication and authorization
• Interoperable: Can be integrated with other data, and can interoperate with

applications or workflows for analysis, storage, and processing
• Reusable: Optimize the reuse of data. Metadata and data should be well-

described so they can be replicated and/or combined in different settings

6

[GO FAIR]
D. Koop, CSCI 640/490, Spring 2024

https://www.go-fair.org/fair-principles/

Findable: DataCite Workflow

7

[DataCite]
D. Koop, CSCI 640/490, Spring 2024

1. Take a dataset 2. Describe it

Title

Authors

Year

Description

And others…

3. Assign a DOI

10.1234/exampledata

http://www.datacite.org

Accessible: DOI to Landing Page with Metadata

8

[M. Fenner et al., 2019]
D. Koop, CSCI 640/490, Spring 2024

https://www.nature.com/articles/s41597-019-0031-8

Interoperable: Standard vocabularies

9

[fairsharing.org]
D. Koop, CSCI 640/490, Spring 2024

http://fairsharing.org

Reusable: Licensing
• Citation of a dataset is expected as a scholarly norm, not by law
• CC0:
- "I hereby waive all copyright and related or neighboring rights together with

all associated claims and causes of action with respect to this work to the
extent possible under the law"

• CC BY: license, not a waiver as CC0
- "You must give appropriate credit, provide a link to the license, and indicate

if changes were made."
• Data Use Agreements (DUA): Used when data are restricted due to

proprietary or privacy concerns.

10

[M. Crosas]
D. Koop, CSCI 640/490, Spring 2024

https://scholar.harvard.edu/files/mercecrosas/files/fairdata-dataverse-mercecrosas.pdf

Reusable: Data Citation & Metrics

11

[H. Cousijn et al., 2019]
D. Koop, CSCI 640/490, Spring 2024

https://datascience.codata.org/articles/10.5334/dsj-2019-009/

Assignment 5
• Divvy Bikes Data
• Spatial, Graph, and Temporal Data Processing
• Use pandas, geopandas, neo4j, (modin for extra credit)

12D. Koop, CSCI 640/490, Spring 2024

https://faculty.cs.niu.edu/~dakoop/cs640-2024sp/assignment5.html

13

geopandas example

D. Koop, CSCI 640/490, Spring 2024

https://faculty.cs.niu.edu/~dakoop/cs640-2024sp/notebooks/lecture24.ipynb

14

Provenance

D. Koop, CSCI 640/490, Spring 2024

15

What actually happened in a
computational experiment?

D. Koop, CSCI 640/490, Spring 2024

Provenance in Art
Rembrandt van Rijn
Dutch, 1606 - 1669

Self-Portrait, 1659
oil on canvas

Andrew W. Mellon Collection

1937.1.72

Provenance

George, 3rd Duke of Montagu and 4th Earl of Cardigan [d. 1790], by 1767;[1] by inheritance to his daughter, Lady
Elizabeth, wife of Henry, 3rd Duke of Buccleuch of Montagu House, London; John Charles, 7th Duke of Buccleuch;
(P. & D. Colnaghi & Co., New York, 1928); (M. Knoedler & Co., New York); sold January 1929 to Andrew W. Mellon,
Pittsburgh and Washington, D.C.; deeded 28 December 1934 to The A.W. Mellon Educational and Charitable Trust,
Pittsburgh; gift 1937 to NGA.

[1] This early provenance is established by presence of a mezzotint after the portrait by R. Earlom (1743-1822),
dated 1767. See John Charrington, A Catalogue of the Mezzotints After, or Said to Be After, Rembrandt, Cambridge,
1923, no. 49.

Associated Names
• Buccleuch, Henry, 3rd Duke of

• Buccleuch, John Charles, 7th Duke of

• Colnaghi & Co., Ltd., P. & D.

• Knoedler & Company, M.

• Mellon, Andrew W.

• Mellon Educational and Charitable Trust, The A.W.

• Montagu, and 4th Earl of Cardigan, George, 3rd Duke of

16

[National Gallery of Art]
D. Koop, CSCI 640/490, Spring 2024

http://www.nga.gov/cgi-bin/tsearch?ownerid=22007
http://www.nga.gov/cgi-bin/tsearch?ownerid=22008
http://www.nga.gov/cgi-bin/tsearch?ownerid=703
http://www.nga.gov/cgi-bin/tsearch?ownerid=789
http://www.nga.gov/cgi-bin/tsearch?ownerid=8416
http://www.nga.gov/cgi-bin/tsearch?ownerid=427
http://www.nga.gov/cgi-bin/tsearch?ownerid=22006

Provenance in Art
Rembrandt van Rijn
Dutch, 1606 - 1669

Self-Portrait, 1659
oil on canvas

Andrew W. Mellon Collection

1937.1.72

Provenance

George, 3rd Duke of Montagu and 4th Earl of Cardigan [d. 1790], by 1767;[1] by inheritance to his daughter, Lady
Elizabeth, wife of Henry, 3rd Duke of Buccleuch of Montagu House, London; John Charles, 7th Duke of Buccleuch;
(P. & D. Colnaghi & Co., New York, 1928); (M. Knoedler & Co., New York); sold January 1929 to Andrew W. Mellon,
Pittsburgh and Washington, D.C.; deeded 28 December 1934 to The A.W. Mellon Educational and Charitable Trust,
Pittsburgh; gift 1937 to NGA.

[1] This early provenance is established by presence of a mezzotint after the portrait by R. Earlom (1743-1822),
dated 1767. See John Charrington, A Catalogue of the Mezzotints After, or Said to Be After, Rembrandt, Cambridge,
1923, no. 49.

Associated Names
• Buccleuch, Henry, 3rd Duke of

• Buccleuch, John Charles, 7th Duke of

• Colnaghi & Co., Ltd., P. & D.

• Knoedler & Company, M.

• Mellon, Andrew W.

• Mellon Educational and Charitable Trust, The A.W.

• Montagu, and 4th Earl of Cardigan, George, 3rd Duke of

16

[National Gallery of Art]
D. Koop, CSCI 640/490, Spring 2024

http://www.nga.gov/cgi-bin/tsearch?ownerid=22007
http://www.nga.gov/cgi-bin/tsearch?ownerid=22008
http://www.nga.gov/cgi-bin/tsearch?ownerid=703
http://www.nga.gov/cgi-bin/tsearch?ownerid=789
http://www.nga.gov/cgi-bin/tsearch?ownerid=8416
http://www.nga.gov/cgi-bin/tsearch?ownerid=427
http://www.nga.gov/cgi-bin/tsearch?ownerid=22006

Provenance in Science
• Provenance: the lineage of data, a

computation, or a visualization
• Provenance is as (or more) important as

the result!
• Old solution:
- Lab notebooks

• New problems:
- Large volumes of data
- Complex analyses
- Writing notes doesn’t scale

17

[DNA Recombination, Lederberg]
D. Koop, CSCI 640/490, Spring 2024

Provenance in Science
• Provenance: the lineage of data, a

computation, or a visualization
• Provenance is as (or more) important as

the result!
• Old solution:
- Lab notebooks

• New problems:
- Large volumes of data
- Complex analyses
- Writing notes doesn’t scale

17

[DNA Recombination, Lederberg]
D. Koop, CSCI 640/490, Spring 2024

Date

Annotations

Observed Data

Provenance in Computational Science

18D. Koop, CSCI 640/490, Spring 2024

Fig. 7: Using the blog to document processes: A visualization expert
created a series of blog posts to explain the problems found when gen-
erating the visualizations for CMOP.

ACKNOWLEDGMENTS

Our research has been funded by the National Science Foun-
dation (grants IIS-0905385, IIS-0746500, ATM-0835821, IIS-
0844546, CNS-0751152, IIS-0713637, OCE-0424602, IIS-0534628,
CNS-0514485, IIS-0513692, CNS-0524096, CCF-0401498, OISE-
0405402, CCF-0528201, CNS-0551724), the Department of En-
ergy SciDAC (VACET and SDM centers), and IBM Faculty Awards
(2005, 2006, 2007, and 2008). E. Santos is partially supported by a
CAPES/Fulbright fellowship.

REFERENCES

[1] L. Bavoil, S. Callahan, P. Crossno, J. Freire, C. Scheidegger, C. Silva, and
H. Vo. VisTrails: Enabling Interactive Multiple-View Visualizations. In
IEEE Visualization 2005, pages 135–142, 2005.

[2] S. P. Callahan, J. Freire, C. E. Scheidegger, C. T. Silva, and H. T. Vo.
Towards provenance-enabling paraview. pages 120–127, 2008.

[3] Chemical blogspace. http://cb.openmolecules.net/.
[4] NSF Center for Coastal Margin Observation and Prediction (CMOP).

http://www.stccmop.org.
[5] S. B. Davidson and J. Freire. Provenance and scientific workflows: chal-

lenges and opportunities. In Proceedings of SIGMOD, pages 1345–1350,
2008.

[6] R. T. Fielding. Architectural Styles and the Design of Network-based Soft-
ware Architectures. PhD thesis, University of California, Irvine, 2000.

[7] S. Fomel and J. Claerbout. Guest editors’ introduction: Reproducible
research. Computing in Science Engineering, 11(1):5 –7, jan.-feb. 2009.

Fig. 8: Visualizing a binary star system simulation. This
is an image that was generated by embedding a workflow di-
rectly in the text. The original workflow is available at
http://www.crowdlabs.org/vistrails/workflows/details/119/.

[8] J. Freire, D. Koop, E. Santos, and C. T. Silva. Provenance for computa-
tional tasks: A survey. Computing in Science & Engineering, 10(3):11–
21, May-June 2008.

[9] J. Freire, C. Silva, S. Callahan, E. Santos, C. Scheidegger, and H. Vo.
Managing rapidly-evolving scientific workflows. In International Prove-
nance and Annotation Workshop (IPAW), LNCS 4145, pages 10–18.
Springer Verlag, 2006.

[10] R. Hoffmann. A wiki for the life sciences where authorship matters. Na-
ture Genetics, 40(9):1047–1051, 2008.

[11] IBM. OpenDX. http://www.research.ibm.com/dx.
[12] Kitware. Paraview. http://www.paraview.org.
[13] Kitware. The visualization toolkit. http://www.vtk.org.
[14] Many Eyes Wikified. http://wikified.researchlabs.ibm.com.
[15] M. McKeon. Harnessing the Web Information Ecosystem with Wiki-

based Visualization Dashboards. IEEE Transactions on Visualization and
Computer Graphics, 15(6):1081–1088, 2009.

[16] A. R. Pico, T. Kelder, M. P. van Iersel, K. Hanspers, B. R. Conklin, and
C. Evelo. WikiPathways: Pathway editing for the people. PLoS Biology,
6(7), 2008.

[17] D. D. Roure, C. Goble, and R. Stevens. The design and realisation of
the virtual research environment for social sharing of workflows. Future
Generation Computer Systems, 25(5):561 – 567, 2009.

[18] E. Santos, L. Lins, J. Ahrens, J. Freire, and C. Silva. Vismashup: Stream-
lining the creation of custom visualization applications. IEEE Transac-
tions on Visualization and Computer Graphics, 15(6):1539–1546, 2009.

[19] Swivel. http://www.swivel.com.
[20] J. Tohline and E. Santos. Visualizing a Journal that Serves the Computa-

tional Sciences Community. Computing in Science & Engineering, 12(3),
2010. To appear.

[21] J. E. Tohline. Scientific Visualization: A Necessary Chore. Computing
in Science & Engineering, 9(6):76–81, 2007.

[22] C. Upson, J. Thomas Faulhaber, D. Kamins, D. H. Laidlaw, D. Schlegel,
J. Vroom, R. Gurwitz, and A. van Dam. The Application Visualiza-
tion System: A Computational Environment for Scientific Visualization.
IEEE Computer Graphics and Applications, 9(4):30–42, 1989.

[23] F. B. Viegas, M. Wattenberg, F. van Ham, J. Kriss, and M. McKeon.
ManyEyes: A site for visualization at internet scale. IEEE Transactions
on Visualization and Computer Graphics, 13(6):1121–1128, 2007.

[24] VisIt Visualization Tool. https://wci.llnl.gov/codes/visit.
[25] The VisTrails Project. http://www.vistrails.org.

DATA DATA

Data Management

Computation

Visualization

Publishing

Provenance

Evolution of Publication
• Publish paper
• Publish code
• Publish computational experiments/tests
• Publish provenance (what actually happens during your runs)

19D. Koop, CSCI 640/490, Spring 2024

Provenance-Rich Publication

20

[Freedman et al., 2012]
D. Koop, CSCI 640/490, Spring 2024

5

0 0.1 0.2 0.3 0.4 0.5
inverse system size 1/L

0 0

0.08 0.08

0.16 0.16

0.24 0.24

0.32 0.32

0.4 0.4

0.48 0.48

0.56 0.56

fi
n

it
e-

si
ze

 g
ap

 ∆

(L
)

/
J p

width W = 2
width W = 3

a) honeycomb

0 0.05 0.1 0.15 0.2 0.25
inverse system size 1/L

0 0

0.08 0.08

0.16 0.16

0.24 0.24

0.32 0.32

fi
n

it
e-

si
ze

 g
ap

 ∆

(L
)

/
J p

b) ladder

FIG. 4. (color online) Scaling of the finite-size gap �(L) (in units
of Jp) with linear system size for the Hermitian projector model
H

herm on two different lattice geometries: the honeycomb lattice
with L⇥W plaquettes (top panel) and 2-leg ladder systems of length
L (bottom panel).

↵

�

�

�

a b

cd

FIG. 5. Edge labeling for a plaquette of the ladder lattice.

The quasi-one dimensional geometry allows to numerically
diagonalize systems up to linear system size L = 13. The
finite-size gap of the Hermitian model Hherm is again found
to vanish in the thermodynamic limit, showing a linear de-
pendence on the inverse system size as shown in Fig. 4b). To
further demonstrate the fragility of these gapless ground states
against local perturbations we add a string tension18

Hpert = Jr

X

rungs r

�l(r),⌧ (13)

favoring the trivial label l(r) = 1 on each rung of the ladder.
We parameterize the couplings of the competing plaquette and

rung terms as

Jr = sin ✓ and Jp = cos ✓ ,

where ✓ = 0 corresponds to the unperturbed Hamiltonian.
The phase diagrams as a function of ✓ have been mapped out
for both the DFib model18 and the DYL model,4 respectively.

Directly probing the topological order in the DYL model
and its Hermitian counterpart we show the lifting of their re-
spective ground-state degeneracies in Figs. 6 and 7 when in-
cluding a string tension. We find a striking qualitative dif-
ference between these two models: For the DYL model the
lifting of the ground-state degeneracy is exponentially sup-
pressed with increasing system size – characteristic of a topo-
logical phase. For the Hermitian model, on the other hand, we
find a splitting of the ground-state degeneracy proportional to
JrL. The linear increase with both system size and coupling
can be easily understood by the different matrix elements of
the string tension term on a single rung for the two degener-
ate ground-states of the unperturbed model. Plotting the low-
energy spectrum in Fig. 7 clearly shows that the two-fold de-
generacy of the unperturbed Hermitian model arises from a
(fine-tuned) level crossing. Similar behavior is found in the
honeycomb lattice model (not shown).

Considering the model in a wider range of couplings, as
shown in Fig. 8, further striking differences between the non-
Hermitian DYL model and its Hermitian counterpart are re-
vealed: The DYL model exhibits two extended topological
phases around ✓ = 0 and ✓ = ⇡/2 (with two and four de-
generate ground states, respectively), which are separated by
a conformal critical point at precisely ✓c = ⇡/4 as discussed
extensively in Refs. 4 and 18. In contrast, the Hermitian model
Hherm exhibits no topological phase anywhere, and the inter-
mediate coupling ✓ = ⇡/4 does not stand out.

-0.1 -0.05 0 0.05 0.1
coupling parameter θ / π

0 0

1 1

2 2

3 3

g
ro

u
n
d
-s

ta
te

 d
eg

en
er

ac
ry

 s
p
li

tt
in

g

 (

E
1
-E

0
)

x
 1

0
0
0

L = 4
L = 6
L = 8
L = 10

non-Hermitian DYL model

FIG. 6. (color online) Ground-state degeneracy splitting of the non-
Hermitian doubled Yang-Lee model when perturbed by a string ten-
sion (✓ 6= 0).

Galois Conjugates of Topological Phases

M. H. Freedman,1 J. Gukelberger,2 M. B. Hastings,1 S. Trebst,1 M. Troyer,2 and Z. Wang1

1Microsoft Research, Station Q, University of California, Santa Barbara, CA 93106, USA
2Theoretische Physik, ETH Zurich, 8093 Zurich, Switzerland

(Dated: July 6, 2011)

Galois conjugation relates unitary conformal field theories (CFTs) and topological quantum field theories
(TQFTs) to their non-unitary counterparts. Here we investigate Galois conjugates of quantum double models,
such as the Levin-Wen model. While these Galois conjugated Hamiltonians are typically non-Hermitian, we find
that their ground state wave functions still obey a generalized version of the usual code property (local operators
do not act on the ground state manifold) and hence enjoy a generalized topological protection. The key question
addressed in this paper is whether such non-unitary topological phases can also appear as the ground states of
Hermitian Hamiltonians. Specific attempts at constructing Hermitian Hamiltonians with these ground states
lead to a loss of the code property and topological protection of the degenerate ground states. Beyond this we
rigorously prove that no local change of basis (IV.5) can transform the ground states of the Galois conjugated
doubled Fibonacci theory into the ground states of a topological model whose Hermitian Hamiltonian satisfies
Lieb-Robinson bounds. These include all gapped local or quasi-local Hamiltonians. A similar statement holds
for many other non-unitary TQFTs. One consequence is that the “Gaffnian” wave function cannot be the ground
state of a gapped fractional quantum Hall state.

PACS numbers: 05.30.Pr, 73.43.-f

I. INTRODUCTION

Galois conjugation, by definition, replaces a root of a poly-
nomial by another one with identical algebraic properties. For
example, i and �i are Galois conjugate (consider z2 + 1 = 0)
as are � = 1+

p
5

2 and � 1
� = 1�

p
5

2 (consider z2 � z� 1 = 0),
as well as 3

p
2, 3

p
2e2⇡i/3, and 3

p
2e�2⇡i/3 (consider z3 � 2 =

0). In physics Galois conjugation can be used to convert non-
unitary conformal field theories (CFTs) to unitary ones, and
vice versa. One famous example is the non-unitary Yang-Lee
CFT, which is Galois conjugate to the Fibonacci CFT (G2)1,
the even (or integer-spin) subset of su(2)3.

In statistical mechanics non-unitary conformal field theo-
ries have a venerable history.1,2 However, it has remained less
clear if there exist physical situations in which non-unitary
models can provide a useful description of the low energy
physics of a quantum mechanical system – after all, Galois
conjugation typically destroys the Hermitian property of the
Hamiltonian. Some non-Hermitian Hamiltonians, which sur-
prisingly have totally real spectrum, have been found to arise
in the study of PT -invariant one-particle systems3 and in
some Galois conjugate many-body systems4 and might be
seen to open the door a crack to the physical use of such
models. Another situation, which has recently attracted some
interest, is the question whether non-unitary models can de-
scribe 1D edge states of certain 2D bulk states (the edge holo-
graphic for the bulk). In particular, there is currently a discus-
sion on whether or not the “Gaffnian” wave function could be
the ground state for a gapped fractional quantum Hall (FQH)
state albeit with a non-unitary “Yang-Lee” CFT describing its
edge.5–7 We conclude that this is not possible, further restrict-
ing the possible scope of non-unitary models in quantum me-
chanics.

We reach this conclusion quite indirectly. Our main thrust
is the investigation of Galois conjugation in the simplest non-

Abelian Levin-Wen model.8 This model, which is also called
“DFib”, is a topological quantum field theory (TQFT) whose
states are string-nets on a surface labeled by either a triv-
ial or “Fibonacci” anyon. From this starting point, we give
a rigorous argument that the “Gaffnian” ground state cannot
be locally conjugated to the ground state of any topological
phase, within a Hermitian model satisfying Lieb-Robinson
(LR) bounds9 (which includes but is not limited to gapped
local and quasi-local Hamiltonians).

Lieb-Robinson bounds are a technical tool for local lattice
models. In relativistically invariant field theories, the speed of
light is a strict upper bound to the velocity of propagation. In
lattice theories, the LR bounds provide a similar upper bound
by a velocity called the LR velocity, but in contrast to the rel-
ativistic case there can be some exponentially small “leakage”
outside the light-cone in the lattice case. The Lieb-Robinson
bounds are a way of bounding the leakage outside the light-
cone. The LR velocity is set by microscopic details of the
Hamiltonian, such as the interaction strength and range. Com-
bining the LR bounds with the spectral gap enables us to prove
locality of various correlation and response functions. We will
call a Hamiltonian a Lieb-Robinson Hamiltonian if it satisfies
LR bounds.

We work primarily with a single example, but it should be
clear that the concept of Galois conjugation can be widely ap-
plied to TQFTs. The essential idea is to retain the particle
types and fusion rules of a unitary theory but when one comes
to writing down the algebraic form of the F -matrices (also
called 6j symbols), the entries are now Galois conjugated. A
slight complication, which is actually an asset, is that writing
an F -matrix requires a gauge choice and the most convenient
choice may differ before and after Galois conjugation.

Our method is not restricted to Galois conjugated DFibG

and its factors FibG and FibG , but can be generalized to in-
finitely many non-unitary TQFTs, showing that they will not
arise as low energy models for a gapped 2D quantum mechan-

ar
X

iv
:1

10
6.

32
67

v3
 [

co
nd

-m
at

.st
r-e

l]
 5

 Ju
l 2

01
1

Benefits of Provenance-Rich Publications
• Produce more knowledge–not just text
• Allow scientists to stand on the shoulders of giants (and their own)
• Science can move faster!
• Higher-quality publications
• Authors will be more careful
• Many eyes to check results
• Describe more of the discovery process: people only describe successes,

can we learn from mistakes?
• Expose users to different techniques and tools: expedite their training; and

potentially reduce their time to insight

21D. Koop, CSCI 640/490, Spring 2024

Provenance Definitions
• Dictionary: "the source or origin of an object; its history and pedigree; a

record of the ultimate derivation and passage of an item through its various
owners."

• Focus on causality—the sequence of steps that detail how a result was
generated and/or derivation—what data a result depended on

• Provenance itself is data, this list of steps along with metadata for each step:
when it occurred, who initiated it, notes about it

• Can be used to preserve information about an experiment and to answer
many questions

22D. Koop, CSCI 640/490, Spring 2024

Workflows
• Abstract computation
• Computational modules connected through

input and output ports
• Data flows along the connections

23D. Koop, CSCI 640/490, Spring 2024

vtkActor

VTKCell

vtkRenderer

vtkContourFilter

vtkStructuredPointsReader

vtkDataSetMapper

vtkCamera

DATA

IMAGE

������������

����������

��������������������������

��������������

�������������

�������������������

��������������

�������������

�������������������

��������������

�����������������

������������

��������������

�����������

�����������

��������������

���������

��������������

��������������

��������

����������

��������������

����

�������������� �������������������

����

�������������� �������������������

����

�������������� �������������������

����

�������������� �������������������

���� ����

�������������� �������������������

�������������� �������������������

����

�������������� �������������������

Provenance Graph

24

������������

����������

��������������������������

��������������

�������������

�������������������

��������������

�������������

�������������������

��������������

�����������������

������������

��������������

�����������

�����������

��������������

���������

��������������

��������������

��������

����������

��������������

����

�������������� �������������������

����

�������������� �������������������

����

�������������� �������������������

����

�������������� �������������������

���� ����

�������������� �������������������

�������������� �������������������

����

�������������� �������������������

D. Koop, CSCI 640/490, Spring 2024

Provenance Questions
• What process led to the output image?
• What input datasets contributed to the

output image?
• What workflows create an isosurface with

isovalue 57?
• Who create this data product?
• When was this data file created?
• Why was vtkCamera used?
• Why do two output images differ?

25D. Koop, CSCI 640/490, Spring 2024

vtkActor

VTKCell

vtkRenderer

vtkContourFilter

vtkStructuredPointsReader

vtkDataSetMapper

vtkCamera

DATA

IMAGE

Questions about Provenance	
• How does one capture provenance?
• How does one manage provenance for later use?
• How do we answer questions about our provenance?
• How do we use provenance for good?

26D. Koop, CSCI 640/490, Spring 2024

Provenance Management
• Provenance can be generated from tasks/programs/scripts/etc.
• Properties of provenance are related to the computational model
- a specific application with a graphical interface
- a script that automates the use of several command-line tools
- a scientific workflow that combines several tools

27D. Koop, CSCI 640/490, Spring 2024

Provenance & Causality
• Knowing what data/steps influenced other data/steps is important!
• Data dependencies: this output file depended on this input file
• Data-process dependencies: this output figure depended on these

processes
• Causality can often be represented as a graph where connections represent

dependencies

28D. Koop, CSCI 640/490, Spring 2024

User-defined provenance
• Goal: capture lots of provenance automatically based on what steps are

executed
• Problem: not everything can be captured automatically
• Annotations offer ability to keep notes about processes
• Users might also specify known causal links that cannot be automatically

determined (e.g. a step depends on three system files that were not specified
as inputs in the workflow)

29D. Koop, CSCI 640/490, Spring 2024

Provenance Management
• What is needed to capture, store, and use provenance?
1.Capture mechanism
2.Model for representing provenance
3.Tools to store, query, and analyze provenance

30D. Koop, CSCI 640/490, Spring 2024

Provenance Capture Mechanisms
• Workflow-based: Since workflow execution is controlled, keep track of all

the workflow modules, parameters, etc. as they are executed
• Process-based: Each process is required to write out its own provenance

information (not centralized like workflow-based)
• OS-based: The OS or filesystem is modified so that any activity it does it

monitored and the provenance subsystem organizes it
• Tradeoffs:
- Workflow- and process-based have better abstraction
- OS-based requires minimal user effort once installed and can capture

"hidden dependencies"

31D. Koop, CSCI 640/490, Spring 2024

Provenance Granularity
• How detailed should our provenance be?
- Coarse: "This program ran with inputs x, y, z and produced outputs a, b, c"
- Fine: "Input x was read into register 4, input y was read in register 5, add

operation was performed using registers 4 and 5, …"
• More queries are possible with fine-grained provenance, but…
- Storage concerns
- Performance concerns

• Abstraction can help here

32D. Koop, CSCI 640/490, Spring 2024

vtkActor

VTKCell

vtkRenderer

vtkContourFilter

vtkStructuredPointsReader

vtkDataSetMapper

vtkCamera

Abstraction: Script, Workflow, Abstract Workflow
data = vtk.vtkStructuredPointsReader()
data.SetFileName(../examples/data/head.120.vtk)

contour = vtk.vtkContourFilter()
contour.SetInput(data.GetOutput())
contour.SetValue(0, 67)

mapper = vtk.vtkPolyDataMapper()
mapper.SetInput(contour.GetOutput())
mapper.ScalarVisibilityOff()

actor = vtk.vtkActor()
actor.SetMapper(mapper)

cam = vtk.vtkCamera()
cam.SetViewUp(0,0,-1)
cam.SetPosition(745,-453,369)
cam.SetFocalPoint(135,135,150)
cam.ComputeViewPlaneNormal()

ren = vtk.vtkRenderer()
ren.AddActor(actor)
ren.SetActiveCamera(cam)
ren.ResetCamera()
renwin = vtk.vtkRenderWindow()
renwin.AddRenderer(ren)

style = vtk.vtkInteractorStyleTrackballCamera()
iren = vtk.vtkRenderWindowInteractor()
iren.SetRenderWindow(renwin)
iren.SetInteractorStyle(style)
iren.Initialize()
iren.Start()

33D. Koop, CSCI 640/490, Spring 2024

ViewUp (0,0,-1)

Position (745,-453,369)

FocalPoint (-135,135,150)

FileName .../head.120.vtk

Value (0,67)

vtkActor

VTKCell

vtkRenderer

vtkContourFilter

vtkStructuredPointsReader

vtkDataSetMapper

vtkCamera

Abstraction: Script, Workflow, Abstract Workflow
data = vtk.vtkStructuredPointsReader()
data.SetFileName(../examples/data/head.120.vtk)

contour = vtk.vtkContourFilter()
contour.SetInput(data.GetOutput())
contour.SetValue(0, 67)

mapper = vtk.vtkPolyDataMapper()
mapper.SetInput(contour.GetOutput())
mapper.ScalarVisibilityOff()

actor = vtk.vtkActor()
actor.SetMapper(mapper)

cam = vtk.vtkCamera()
cam.SetViewUp(0,0,-1)
cam.SetPosition(745,-453,369)
cam.SetFocalPoint(135,135,150)
cam.ComputeViewPlaneNormal()

ren = vtk.vtkRenderer()
ren.AddActor(actor)
ren.SetActiveCamera(cam)
ren.ResetCamera()
renwin = vtk.vtkRenderWindow()
renwin.AddRenderer(ren)

style = vtk.vtkInteractorStyleTrackballCamera()
iren = vtk.vtkRenderWindowInteractor()
iren.SetRenderWindow(renwin)
iren.SetInteractorStyle(style)
iren.Initialize()
iren.Start()

33D. Koop, CSCI 640/490, Spring 2024

ViewUp (0,0,-1)

Position (745,-453,369)

FocalPoint (-135,135,150)

FileName .../head.120.vtk

Value (0,67)

Read File

Extract
Isosurface

Render

Visualization

������������

����������

��������������������������

��������������

�������������

�������������������

��������������

�������������

�������������������

��������������

�����������������

������������

��������������

�����������

�����������

��������������

���������

��������������

��������������

��������

����������

��������������

����

�������������� �������������������

����

�������������� �������������������

����

�������������� �������������������

����

�������������� �������������������

���� ����

�������������� �������������������

�������������� �������������������

����

�������������� �������������������

Abstraction: Provenance Views

34

������������

����������

�����������

��������������

�������������

��������������������

��������������

��������

����������������������

��������������

����

�������������� �������������������

����

�������������� �������������������

����

�������������� �������������������

D. Koop, CSCI 640/490, Spring 2024

Abstract

Provenance Storage
• Keeping provenance for each data item means lots of repetition
• Nested data storage also induces repetition
• Coarse provenance is naturally more compact, but how to decide what (not)

to store?
• Repeated provenance is not uncommon:
- Repeating the same computation with a different parameter
- Creating a new computation that has a very similar structure to one that

was run two weeks ago
• Provenance compression/factorization techniques (e.g. [Chapman et al.,

2008], [Anand et al., 2009]) take advantage of that to reduce storage costs

35D. Koop, CSCI 640/490, Spring 2024

Provenance Storage Formats
• Files, relational databases, XML databases, RDF (linked data)
• Log files are good for preserving data but can be bad to query or analyze
• Relational databases are great for column-specific queries but can be bad for

dependency queries
• XML databases are more portable than relational databases but are usually

less efficient for queries
• RDF triples are better for dependencies and integrating domain-specific

knowledge but can be slower

36D. Koop, CSCI 640/490, Spring 2024

Layered Provenance
• As with relational databases, want to normalize provenance to minimize

redundant information
• Example: Don’t store workflow specification each time that workflow is

executed–store it once and reference it
• Also allow different layers for different aspects of provenance

37

[Freire et. al, 2008]
D. Koop, CSCI 640/490, Spring 2024

24 COMPUTING IN SCIENCE & ENGINEERING

proaches require processes to be wrapped—in the
former, so that the workflow engine can invoke
them, and in the latter, so that instrumentation
can capture and publish provenance information.

Because workflow systems have access to work-
flow definitions and control their execution, they
can capture both prospective and retrospective
provenance. OS- and process-based mechanisms
only capture retrospective provenance: they must
reconstruct causal relationships through prov-
enance queries. The ES3 system (http://eil.bren.
ucsb.edu), for example, monitors the interactions
between arbitrary applications and their environ-
ments (via arguments, file I/O, system, and calls),
and then uses this information to assemble a prov-
enance graph to describe what actually happened
during execution.6

In fact, by capturing provenance at the OS level,
we can record detailed information about all system
calls and files touched during a task’s execution.
This forms a superset of the information captured
in workflow- and process-based systems, whose
granularity is determined by the wrapping provid-
ed for individual processes. Consider, for example,
a command-line tool integrated in a workflow sys-
tem that creates and depends on temporary files not
explicitly defined in its wrapper. The causal depen-
dencies the workflow system captures won’t include
the temporary files, but we can capture these de-
pendencies at the OS level. However, because even
simple tasks can lead to a large number of low-level
calls, the amount of provenance that OS-based ap-
proaches record can be prohibitive, making it hard
to query and reason about the information.7

Provenance Models
Researchers have proposed several provenance
models in the literature.9,10,12 All these models
support some form of retrospective provenance,
and most of those that workflow systems use pro-
vide the means to capture prospective provenance.
Many of the models also support annotations.

Although these models differ in several ways,
including their use of structures and storage strat-
egies, they all share an essential type of informa-
tion: process and data dependencies. In fact, a
recent exercise to explore interoperability issues
among provenance models showed that it’s possible
to integrate information that conform to different
provenance models (http://twiki.ipaw.info/bin/
view/Challenge/SecondProvenanceChallenge).

Despite a base commonality, provenance mod-
els tend to vary according to domain and user
needs. Even though most models strive to store
general concepts, specific use cases often influ-
ence model design—for example, Taverna was de-
veloped to support the creation and management
of workflows in the bioinformatics domain, and
therefore provides an infrastructure that includes
support for ontologies available in this domain.
VisTrails was designed to support exploratory
tasks in which workflows are iteratively refined,
and thus uses a model that treats workflow speci-
fications as first-class data products and captures
the provenance of workflow evolution.

Because the provenance information a model
must represent varies both by type and specificity,
it’s advantageous to structure a model as a set of
layers to enable a normalized, configurable repre-
sentation. The ability to represent provenance at
different levels of abstraction also leads to simpler
queries and more intuitive results. Consider the
REDUX system,16 which uses the layered model
depicted in Figure 3. The first layer corresponds to
an abstract description of a workflow, in which each
module corresponds to a class of activities. This ab-
stract description is bound to specific services and
data sets defined in the second layer—for example,
in the workflow shown in Figure 1, the abstract
activity extract isosurface is bound to a call
to the vtkContourFilter—a specific implemen-
tation of isosurface extraction provided by VTK.
The third layer captures information about input
data and parameters supplied at runtime, and the
fourth layer captures operational details, such as
the workflow execution’s start and end time.

Structuring provenance information into mul-
tiple layers leads to a normalized representation
that avoids the storage of redundant information.
Some models, for example, store a workflow’s

��
�
������	����

�������������

��
�
�����������

�������������
�
��

�������

����
������
�
��

�������������

��
������������������

������������������

�����

��
�
������������

�������������

��
�
�����������

����
����

Figure 3. Layered provenance models. For REDUX, the first layer
corresponds to an abstract description, the second layer describes the
binding of specific services and data to the abstract description, the
third layer captures runtime inputs and parameters, and the final layer
captures operational data. Other models use layers in different ways.
The top-layer in VisTrails captures provenance of workflow evolution,
and Pegasus uses an additional layer to represent the workflow
execution plan over grid resources.

Provenance Models
• How provenance is represented (more abstract than the details of how it is

actually stored)
• PROV (W3C Standard) has different storage backends for provenance but all

of it conforms to the same model
• Model the objects involved and their relationships (e.g. activities,

dependencies)
• Interoperability is a concern
- Why? May use multiple tools/techniques to achieve a result, want to analyze

the entire provenance chain

38D. Koop, CSCI 640/490, Spring 2024

Prospective and Retrospective Provenance	
• Prospective provenance is what was specified/intended
- a workflow, script, list of steps

• Retrospective provenance is what actually happened
- actual data, actual parameters, errors that occurred, timestamps, machine

information
• Do not need prospective provenance to have retrospective provenance!
• Retrospective provenance is often the same type of information as

prospective plus more
• Could have multiple retrospective provenance traces for one prospective

provenance listing

39D. Koop, CSCI 640/490, Spring 2024

Prospective and Retrospective Provenance	
• Example: Baking a Cake
• Prospective Provenance (Recipe):
1. Gather ingredients (3/4 cup butter, 3/4 cocoa, 3/4 cup flour, ...)
2. Preheat oven to 350 degrees
3. Grease cake pan
4. Mix wet ingredients in large bowl
5. Mix dry ingredients in a separate bowl
6. Add dry mixture to wet mixture
7. Pour batter into cake pan
8. Put pan in the oven and bake for 30 minutes
9. Take cake out of oven and let it cool

40D. Koop, CSCI 640/490, Spring 2024

Prospective and Retrospective Provenance	
• Retrospective Provenance (What actually happened)
1. Went to store to buy butter
2. Gathered ingredients (3/4 cup butter, 3/4 cocoa, 1 cup flour, ...)
3. Greased cake pan
4. Preheated oven to 350 degrees
5. Mixed wet ingredients in large bowl
6. Mixed dry ingredients in a separate bowl
7. Added wet mixture to dry mixture
8. Poured batter into cake pan
9. Put pan in the oven and baked for 35 minutes
10.Took cake out of oven and let it cool for 10 minutes

41D. Koop, CSCI 640/490, Spring 2024

Provenance Model History
• Community organized provenance challenges (2006-2009)
• First Provenance Challenge assessed capabilities of systems
• Second Provenance Challenge examined interoperability
• Led to development of Open Provenance Model (OPM), (2007)
- Sought to establish interchange format for provenance

• Further work led to PROV W3C Recommendations (2013)
- Some confusion from name changes from OPM to PROV even though

concepts are similar
- Focus is on model not formats

42D. Koop, CSCI 640/490, Spring 2024

PROV: Three Key Classes

43

[Moreau et al., 2014]
D. Koop, CSCI 640/490, Spring 2024

An entity is a physical, digital, conceptual, or other kind
of thing with some fixed aspects; entities may be real or

imaginary.

An activity is something that occurs over a period of
time and acts upon or with entities; it may include
consuming, processing, transforming, modifying,

relocating, using, or generating entities.

An agent is something that bears some form of
responsibility for an activity taking place, for the

existence of an entity, or for another agent’s activity.

PROV: Three Views of Provenance

44

[Moreau et al., 2014]
D. Koop, CSCI 640/490, Spring 2024

PROV Edges: Derivation
• Derivation Edges:
- wasGeneratedBy: entity ⟶ activity
- used: activity ⟶ entity

- wasDerivedFrom: entity ⟶ entity

45

[PROV Model Primer, 2013]
D. Koop, CSCI 640/490, Spring 2024

PROV Example

46

[PROV Model Primer, 2013]
D. Koop, CSCI 640/490, Spring 2024

Querying Provenance
• Query methods are often tied to storage backend
• SQL, XQuery, Prolog, SPARQL, ...

47D. Koop, CSCI 640/490, Spring 2024

26 COMPUTING IN SCIENCE & ENGINEERING

ate views of provenance data would benefit OS- and
process-based provenance models as well.

The ability to query a computational task’s prov-
enance also enables knowledge reuse. By querying
a set of tasks and their provenance, users can not
only identify suitable tasks and reuse them, but
also compare and understand differences between
different tasks. Provenance information is often
associated with data products (such as images or
graphs), so this data helps users pose structured
queries over unstructured data as well.

A common feature across many approaches to
querying provenance is that their solutions are
closely tied to the storage models used. Hence, they
require users to write queries in languages such as
SQL,16 Prolog,20 and SPARQL.10,11 Although such
general languages are useful to those already famil-
iar with their syntax, they weren’t designed specifi-
cally for provenance, which means simple queries
can be awkward and complex to write. Figure 5
compares three representations of a single query in
the First Provenance Challenge that asked for tasks

using a specific module (Align Warp) with given
parameters executed on a Monday. The VisTrails
approach uses a language specifically designed to
query workflows and their provenance, whereas
REDUX and myGrid use native languages for
their storage choices. Because the VisTrails lan-
guage abstracts details about physical storage, it
leads to much more concise queries.

However, even queries that use a language
designed for provenance are likely to be too
complicated for many users because provenance
contains structural information represented as a
graph. Thus, text-based query interfaces effec-
tively require a subgraph query to be encoded as
text. The VisTrails query-by-example (QBE) in-
terface (see Figure 6) addresses this problem by
letting users quickly construct expressive que-
ries using the same familiar interface they use
to build workflow.21 The query’s results are also
displayed visually.

Some provenance models use Semantic Web
technology both to represent and query provenance

VisTrails

REDUX

MyGrid

SELECT Execution.ExecutableWorkflowId, Execution.ExecutionId, Event.EventId, ExecutableActivity.ExecutableActivityId
from Execution, Execution_Event, Event, ExecutableWorkflow_ExecutableActivity, ExecutableActivity,
 ExecutableActivity_Property_Value, Value, EventType as ET
where Execution.ExecutionId=Execution_Event.ExecutionId
and Execution_Event.EventId=Event.EventId
and ExecutableActivity.ExecutableActivityId=ExecutableActivity_Property_Value.ExecutableActivityId
and ExecutableActivity_Property_Value.ValueId=Value.ValueId and Value.Value=Cast('-m 12' as binary)
and ((CONVERT(DECIMAL, Event.Timestamp)+0)%7)=0 and Execution_Event.ExecutableWorkflow_ExecutableActivityId=
 ExecutableWorkflow_ExecutableActivity.ExecutableWorkflow_ExecutableActivityId
and ExecutableWorkflow_ExecutableActivity.ExecutableWorkflowId=Execution.ExecutableWorkflowId
and ExecutableWorkflow_ExecutableActivity.ExecutableActivityId=ExecutableActivity.ExecutableActivityId
and Event.EventTypeId=ET.EventTypeId and ET.EventTypeName='Activity Start';

wf{*}: x where x.module='AlignWarp' and x.parameter('model')='12'
 and (log{x}: y where y.dayOfWeek='Monday')

SELECT ?p
where (?p <http://www.mygrid.org.uk/provenance#startTime> ?time) and (?time > date)
using ns for <http://www.mygrid.org.uk/provenance#> xsd for <http://www.w3.org/2001/XMLSchema#>

SELECT ?p
where <urn:lsid:www.mygrid.org.uk:experimentinstance:HXQOVQA2ZI0>
(?p <http://www.mygrid.org.uk/provenance#runsProcess> ?processname .
?p <http://www.mygrid.org.uk/provenance#processInput> ?inputParameter .
?inputParameter <ont:model> <ontology:twelfthOrder>)
using ns for <http://www.mygrid.org.uk/provenance#> ont for <http://www.mygrid.org.uk/ontology#>

Figure 5. Provenance query implemented by three different systems. REDUX uses SQL, VisTrails uses a language specialized
for querying workflows and their provenance, and myGrid uses SPARQL.

Querying Provenance
• What process led to the output image?
• What input datasets contributed to the

output image?
• What workflows include resampling and

isosurfacing with isovalue 57?

• Graph traversal or graph patterns
- How do we write such queries?

48D. Koop, CSCI 640/490, Spring 2024

vtkActor

VTKCell

vtkRenderer

vtkContourFilter

vtkStructuredPointsReader

vtkDataSetMapper

vtkCamera

DATA

IMAGE

Querying Provenance by Example
• Provenance is represented as graphs: hard to specify queries using text!
• Querying workflows by example [Scheidegger et al., TVCG 2007; Beeri et al.,

VLDB 2006; Beeri et al. VLDB 2007]
- WYSIWYQ -- What You See Is What You Query
- Interface to create workflow is same as to query

49D. Koop, CSCI 640/490, Spring 2024

Stronger Links Between Provenance and Data
• Filenames are often the mode of

identification in data exploration
• We might also use URIs or access curated

data stores
- Always expected for exploratory tasks?
- What happens if offline?

• Solution:
- Managed store for data associated with

computations
- Improved data identification
- Automatic versioning

50

[Koop et. al, 2010]
D. Koop, CSCI 640/490, Spring 2024

<workflow_exec id="1">
 <m_exec id="5"

 name="vtkStructuredDataReader"
 package="edu.utah.sci.vistrails.vtk"

 version="5.6.0">
 <param id="2" name="SetFile"

 value="/MyData/05-12-sc2.dat"/>
 </m_exec>

 <m_exec id="6"
 name="vtkContourFilter"

 package="edu.utah.sci.vistrails.vtk"
 version="5.6.0">

 <param id="3" name="SetValue"
 value="[1, 57]"/>

 <param id="4" name="ComputeScalarsOn"
 value="True"/>

 </m_exec>

 ...

 <m_exec id="11"
 name="FileSink"

 package="edu.utah.sci.vistrails.basic"
 version="1.5">

 <param id="15" name="path"
 value="/home/a/results/23.out"/>

 </m_exec>

!
FILE NOT FOUND

!
FILE NOT FOUND

Provenance from Data

51

[Koop et. al, 2010]
D. Koop, CSCI 640/490, Spring 2024

newfilename.dat

HASH
CONTENTS

QUERY
FILE STORE

OBTAIN
FILE REFERENCE

12ab3-45ef2...

QUERY
PROVENANCE

OBTAIN
INPUT REFS

0ab678cd...

12ab3-45ef2...

QUERY
FILE STORE

12ab3-45ef2...

12ab3-45ef2...

OBTAIN
INPUT FILES input files

P

28 COMPUTING IN SCIENCE & ENGINEERING

infrastructures such as the TeraGrid.11 Although
Pegasus models prospective provenance using
OWL, it captures retrospective provenance by
using the Virtual Data System (VDS; a precursor
of Swift) and then stores it in a relational database.
Queries that span prospective and retrospective
provenance must combine two different query
languages: SPARQL and SQL.

REDUX extends the Windows Workflow
Foundation engine to transparently capture the
workflow execution trace. As discussed earlier,
it uses a layered provenance model to normalize
data and avoid redundancy. REDUX stores prov-
enance data (both prospective and retrospective)
in a relational database’s set of tables that can be
queried with SQL. The system can also return an
executable workflow as the result of a provenance
query (for example, a query that requests all the
steps used to derive a particular data product).

Swift (www.ci.uchicago.edu/swift) builds on
and includes technology previously distributed
as the GriPhyN VDS.23 The system combines
a scripting language (SwiftScript) with a power-
ful runtime system for the concise specification
and reliable execution of large, loosely coupled
computations. Swift specifies these computations
as scripts, which the runtime system translates
into an executable workflow. A launcher program
invokes the workflow’s tasks, monitors the exe-
cution process, and records provenance informa-
tion, including the executable name, arguments,
start time, duration, machine information, and
exit status. Similar to VDS, Swift captures the
relationships among data, programs, and com-

putations and uses this information for data and
program discovery as well as for workflow sched-
uling and optimization.

VisTrails is a workflow and provenance man-
agement system designed to support exploratory
computational tasks. An important goal of the
VisTrails project is to build intuitive interfaces
for users to query and reuse provenance infor-
mation. Besides its QBE interface (which is built
on top of its specialized provenance query lan-
guage), VisTrails provides a visual interface to
compare workflows side by side12 and a mecha-
nism for refining workflows by analogy—users
can modify workflows by example without hav-
ing to directly edit their definitions.21 VisTrails
internally represents prospective provenance as
Python objects that can be serialized into XML
and relations; it stores retrospective provenance
in a relational database.

OS-Based Systems
PASS (www.eecs.harvard.edu/syrah/pass) op-
erates at the level of a shared storage system: it
automatically records information about which
programs are executed, their inputs, and any new
files created as output. The capture mechanism
consists of a set of Linux kernel modules that
transparently record provenance—it doesn’t re-
quire any changes to computational tasks. PASS
also constructs a provenance graph stored as a set
of tables in Berkeley DB. Users can pose prov-
enance queries using nq, a proprietary tool that
supports recursive searches over the provenance
graph. As discussed earlier, the fine granularity

Table 1. Provenance-enabled systems.

System Capture mechanism Prospective provenance
Retrospective
provenance Workflow evolution Storage Query support

Available as open
source?

REDUX Workflow-based Relational Relational No Relational database management
system (RDBMS)

SQL No

Swift Workflow-based SwiftScript Relational No RDBMS SQL Yes

VisTrails Workflow-based XML and relational Relational Yes RDBMS and files Visual query by example, specialized
language

Yes

Karma Workflow- and
process-based

Business Process Execution
Language

XML No RDBMS Proprietary API Yes

Kepler Workflow-based MoML MoML variation Under development Files; RDBMS planned Under development Yes

Taverna Workflow-based Scufl RDF Under development RDBMS SPARQL Yes

Pegasus Workflow-based OWL Relational No RDBMS SPARQL for metadata and workflow;
SQL for execution log

Yes

PASS OS-based N/A Relational No Berkeley DB nq (proprietary query tool) No

ES3 OS-based N/A XML No XML database XQuery No

PASOA/PreServ Process-based N/A XML No Filesystem, Berkeley DB XQuery, Java query API Yes

Provenance-Enabled Systems

52

[Freire et. al, 2008]
D. Koop, CSCI 640/490, Spring 2024

28 COMPUTING IN SCIENCE & ENGINEERING

infrastructures such as the TeraGrid.11 Although
Pegasus models prospective provenance using
OWL, it captures retrospective provenance by
using the Virtual Data System (VDS; a precursor
of Swift) and then stores it in a relational database.
Queries that span prospective and retrospective
provenance must combine two different query
languages: SPARQL and SQL.

REDUX extends the Windows Workflow
Foundation engine to transparently capture the
workflow execution trace. As discussed earlier,
it uses a layered provenance model to normalize
data and avoid redundancy. REDUX stores prov-
enance data (both prospective and retrospective)
in a relational database’s set of tables that can be
queried with SQL. The system can also return an
executable workflow as the result of a provenance
query (for example, a query that requests all the
steps used to derive a particular data product).

Swift (www.ci.uchicago.edu/swift) builds on
and includes technology previously distributed
as the GriPhyN VDS.23 The system combines
a scripting language (SwiftScript) with a power-
ful runtime system for the concise specification
and reliable execution of large, loosely coupled
computations. Swift specifies these computations
as scripts, which the runtime system translates
into an executable workflow. A launcher program
invokes the workflow’s tasks, monitors the exe-
cution process, and records provenance informa-
tion, including the executable name, arguments,
start time, duration, machine information, and
exit status. Similar to VDS, Swift captures the
relationships among data, programs, and com-

putations and uses this information for data and
program discovery as well as for workflow sched-
uling and optimization.

VisTrails is a workflow and provenance man-
agement system designed to support exploratory
computational tasks. An important goal of the
VisTrails project is to build intuitive interfaces
for users to query and reuse provenance infor-
mation. Besides its QBE interface (which is built
on top of its specialized provenance query lan-
guage), VisTrails provides a visual interface to
compare workflows side by side12 and a mecha-
nism for refining workflows by analogy—users
can modify workflows by example without hav-
ing to directly edit their definitions.21 VisTrails
internally represents prospective provenance as
Python objects that can be serialized into XML
and relations; it stores retrospective provenance
in a relational database.

OS-Based Systems
PASS (www.eecs.harvard.edu/syrah/pass) op-
erates at the level of a shared storage system: it
automatically records information about which
programs are executed, their inputs, and any new
files created as output. The capture mechanism
consists of a set of Linux kernel modules that
transparently record provenance—it doesn’t re-
quire any changes to computational tasks. PASS
also constructs a provenance graph stored as a set
of tables in Berkeley DB. Users can pose prov-
enance queries using nq, a proprietary tool that
supports recursive searches over the provenance
graph. As discussed earlier, the fine granularity

Table 1. Provenance-enabled systems.

System Capture mechanism Prospective provenance
Retrospective
provenance Workflow evolution Storage Query support

Available as open
source?

REDUX Workflow-based Relational Relational No Relational database management
system (RDBMS)

SQL No

Swift Workflow-based SwiftScript Relational No RDBMS SQL Yes

VisTrails Workflow-based XML and relational Relational Yes RDBMS and files Visual query by example, specialized
language

Yes

Karma Workflow- and
process-based

Business Process Execution
Language

XML No RDBMS Proprietary API Yes

Kepler Workflow-based MoML MoML variation Under development Files; RDBMS planned Under development Yes

Taverna Workflow-based Scufl RDF Under development RDBMS SPARQL Yes

Pegasus Workflow-based OWL Relational No RDBMS SPARQL for metadata and workflow;
SQL for execution log

Yes

PASS OS-based N/A Relational No Berkeley DB nq (proprietary query tool) No

ES3 OS-based N/A XML No XML database XQuery No

PASOA/PreServ Process-based N/A XML No Filesystem, Berkeley DB XQuery, Java query API Yes

Provenance-Enabled Systems

53

MAY/JUNE 2008 29

of PASS’s capture mechanism often leads to very
large volumes of provenance information; another
limitation of this approach is that it’s restricted to
local filesystems. It can’t, for example, track files
in a grid environment.

ES3’s goal is to extract provenance information
from arbitrary applications by monitoring their in-
teractions with the execution environment.6 These
interactions are logged to the ES3 database, which
stores the information as provenance graphs, rep-
resented in XML. ES3 currently supports a Linux
plugin, which uses system call tracing to capture
provenance. As in PASS, ES3 requires no changes
to the underlying processes, but provenance cap-
ture is restricted to applications that run on ES3-
supported environments.

Process-Based Systems
The Provenance-Aware Service Oriented Ar-
chitecture (PASOA) project (www.pasoa.org)
developed a provenance architecture that relies
on individual services to record their own prov-
enance.5 The system doesn’t model the notion of a
workflow—rather, it captures assertions produced
by services that reflect the relationships between
the represented services and data. The system
must infer the complete provenance of a task or
data product by combining these assertions and
recursively following the relationships they repre-
sent. The PASOA architecture distinguishes the
notion of process documentation—that is, the prove-
nance recorded specifically about a process—from
the notion of a data item’s provenance, which is de-
rived from the process documentation. The PA-

SOA project developed an open source software
package called PreServ that lets developers inte-
grate process documentation recording into their
applications. PreServ also supports multiple back
end storage systems, including files and relational
databases; users can pose provenance queries by
using its Java-based query API or XQuery.

P rovenance management is a new area,
but it is advancing rapidly. Researchers
are actively pursuing several directions
in this area, including the ability to in-

tegrate provenance derived from different systems
and enhanced analytical and visualization mech-
anisms for exploring provenance information.
Provenance research is also enabling several new
applications, such as science collaboratories, which
have the potential to change the way people do sci-
ence—sharing provenance information at a large
scale exposes researchers to techniques and tools
to which they wouldn’t otherwise have access. By
exploring provenance information in a collabora-
tory, scientists can learn by example, expedite their
scientific work, and potentially reduce their time
to insight. The “wisdom of the crowds,” in the
context of scientific exploration, can avoid duplica-
tion and encourage continuous, documented, and
reproducible scientific progress.24

Acknowledgments
This work was partially supported by the US Nation-
al Science Foundation, the US Department of Energy,
and IBM faculty awards.

Table 1. Provenance-enabled systems.

System Capture mechanism Prospective provenance
Retrospective
provenance Workflow evolution Storage Query support

Available as open
source?

REDUX Workflow-based Relational Relational No Relational database management
system (RDBMS)

SQL No

Swift Workflow-based SwiftScript Relational No RDBMS SQL Yes

VisTrails Workflow-based XML and relational Relational Yes RDBMS and files Visual query by example, specialized
language

Yes

Karma Workflow- and
process-based

Business Process Execution
Language

XML No RDBMS Proprietary API Yes

Kepler Workflow-based MoML MoML variation Under development Files; RDBMS planned Under development Yes

Taverna Workflow-based Scufl RDF Under development RDBMS SPARQL Yes

Pegasus Workflow-based OWL Relational No RDBMS SPARQL for metadata and workflow;
SQL for execution log

Yes

PASS OS-based N/A Relational No Berkeley DB nq (proprietary query tool) No

ES3 OS-based N/A XML No XML database XQuery No

PASOA/PreServ Process-based N/A XML No Filesystem, Berkeley DB XQuery, Java query API Yes [Freire et. al, 2008]
D. Koop, CSCI 640/490, Spring 2024

28 COMPUTING IN SCIENCE & ENGINEERING

infrastructures such as the TeraGrid.11 Although
Pegasus models prospective provenance using
OWL, it captures retrospective provenance by
using the Virtual Data System (VDS; a precursor
of Swift) and then stores it in a relational database.
Queries that span prospective and retrospective
provenance must combine two different query
languages: SPARQL and SQL.

REDUX extends the Windows Workflow
Foundation engine to transparently capture the
workflow execution trace. As discussed earlier,
it uses a layered provenance model to normalize
data and avoid redundancy. REDUX stores prov-
enance data (both prospective and retrospective)
in a relational database’s set of tables that can be
queried with SQL. The system can also return an
executable workflow as the result of a provenance
query (for example, a query that requests all the
steps used to derive a particular data product).

Swift (www.ci.uchicago.edu/swift) builds on
and includes technology previously distributed
as the GriPhyN VDS.23 The system combines
a scripting language (SwiftScript) with a power-
ful runtime system for the concise specification
and reliable execution of large, loosely coupled
computations. Swift specifies these computations
as scripts, which the runtime system translates
into an executable workflow. A launcher program
invokes the workflow’s tasks, monitors the exe-
cution process, and records provenance informa-
tion, including the executable name, arguments,
start time, duration, machine information, and
exit status. Similar to VDS, Swift captures the
relationships among data, programs, and com-

putations and uses this information for data and
program discovery as well as for workflow sched-
uling and optimization.

VisTrails is a workflow and provenance man-
agement system designed to support exploratory
computational tasks. An important goal of the
VisTrails project is to build intuitive interfaces
for users to query and reuse provenance infor-
mation. Besides its QBE interface (which is built
on top of its specialized provenance query lan-
guage), VisTrails provides a visual interface to
compare workflows side by side12 and a mecha-
nism for refining workflows by analogy—users
can modify workflows by example without hav-
ing to directly edit their definitions.21 VisTrails
internally represents prospective provenance as
Python objects that can be serialized into XML
and relations; it stores retrospective provenance
in a relational database.

OS-Based Systems
PASS (www.eecs.harvard.edu/syrah/pass) op-
erates at the level of a shared storage system: it
automatically records information about which
programs are executed, their inputs, and any new
files created as output. The capture mechanism
consists of a set of Linux kernel modules that
transparently record provenance—it doesn’t re-
quire any changes to computational tasks. PASS
also constructs a provenance graph stored as a set
of tables in Berkeley DB. Users can pose prov-
enance queries using nq, a proprietary tool that
supports recursive searches over the provenance
graph. As discussed earlier, the fine granularity

Table 1. Provenance-enabled systems.

System Capture mechanism Prospective provenance
Retrospective
provenance Workflow evolution Storage Query support

Available as open
source?

REDUX Workflow-based Relational Relational No Relational database management
system (RDBMS)

SQL No

Swift Workflow-based SwiftScript Relational No RDBMS SQL Yes

VisTrails Workflow-based XML and relational Relational Yes RDBMS and files Visual query by example, specialized
language

Yes

Karma Workflow- and
process-based

Business Process Execution
Language

XML No RDBMS Proprietary API Yes

Kepler Workflow-based MoML MoML variation Under development Files; RDBMS planned Under development Yes

Taverna Workflow-based Scufl RDF Under development RDBMS SPARQL Yes

Pegasus Workflow-based OWL Relational No RDBMS SPARQL for metadata and workflow;
SQL for execution log

Yes

PASS OS-based N/A Relational No Berkeley DB nq (proprietary query tool) No

ES3 OS-based N/A XML No XML database XQuery No

PASOA/PreServ Process-based N/A XML No Filesystem, Berkeley DB XQuery, Java query API Yes

Provenance-Enabled Systems

53

MAY/JUNE 2008 29

of PASS’s capture mechanism often leads to very
large volumes of provenance information; another
limitation of this approach is that it’s restricted to
local filesystems. It can’t, for example, track files
in a grid environment.

ES3’s goal is to extract provenance information
from arbitrary applications by monitoring their in-
teractions with the execution environment.6 These
interactions are logged to the ES3 database, which
stores the information as provenance graphs, rep-
resented in XML. ES3 currently supports a Linux
plugin, which uses system call tracing to capture
provenance. As in PASS, ES3 requires no changes
to the underlying processes, but provenance cap-
ture is restricted to applications that run on ES3-
supported environments.

Process-Based Systems
The Provenance-Aware Service Oriented Ar-
chitecture (PASOA) project (www.pasoa.org)
developed a provenance architecture that relies
on individual services to record their own prov-
enance.5 The system doesn’t model the notion of a
workflow—rather, it captures assertions produced
by services that reflect the relationships between
the represented services and data. The system
must infer the complete provenance of a task or
data product by combining these assertions and
recursively following the relationships they repre-
sent. The PASOA architecture distinguishes the
notion of process documentation—that is, the prove-
nance recorded specifically about a process—from
the notion of a data item’s provenance, which is de-
rived from the process documentation. The PA-

SOA project developed an open source software
package called PreServ that lets developers inte-
grate process documentation recording into their
applications. PreServ also supports multiple back
end storage systems, including files and relational
databases; users can pose provenance queries by
using its Java-based query API or XQuery.

P rovenance management is a new area,
but it is advancing rapidly. Researchers
are actively pursuing several directions
in this area, including the ability to in-

tegrate provenance derived from different systems
and enhanced analytical and visualization mech-
anisms for exploring provenance information.
Provenance research is also enabling several new
applications, such as science collaboratories, which
have the potential to change the way people do sci-
ence—sharing provenance information at a large
scale exposes researchers to techniques and tools
to which they wouldn’t otherwise have access. By
exploring provenance information in a collabora-
tory, scientists can learn by example, expedite their
scientific work, and potentially reduce their time
to insight. The “wisdom of the crowds,” in the
context of scientific exploration, can avoid duplica-
tion and encourage continuous, documented, and
reproducible scientific progress.24

Acknowledgments
This work was partially supported by the US Nation-
al Science Foundation, the US Department of Energy,
and IBM faculty awards.

Table 1. Provenance-enabled systems.

System Capture mechanism Prospective provenance
Retrospective
provenance Workflow evolution Storage Query support

Available as open
source?

REDUX Workflow-based Relational Relational No Relational database management
system (RDBMS)

SQL No

Swift Workflow-based SwiftScript Relational No RDBMS SQL Yes

VisTrails Workflow-based XML and relational Relational Yes RDBMS and files Visual query by example, specialized
language

Yes

Karma Workflow- and
process-based

Business Process Execution
Language

XML No RDBMS Proprietary API Yes

Kepler Workflow-based MoML MoML variation Under development Files; RDBMS planned Under development Yes

Taverna Workflow-based Scufl RDF Under development RDBMS SPARQL Yes

Pegasus Workflow-based OWL Relational No RDBMS SPARQL for metadata and workflow;
SQL for execution log

Yes

PASS OS-based N/A Relational No Berkeley DB nq (proprietary query tool) No

ES3 OS-based N/A XML No XML database XQuery No

PASOA/PreServ Process-based N/A XML No Filesystem, Berkeley DB XQuery, Java query API Yes [Freire et. al, 2008]
D. Koop, CSCI 640/490, Spring 2024

