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"Duplicate Detection" has many Duplicates
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The record linkage process
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http://users.cecs.anu.edu.au/~Peter.Christen/publications/christen2019csic-tutorial-slides.pdf


Record Linkage Techniques
• Deterministic matching 
- Rule-based matching (complex to build and maintain)  

• Probabilistic record linkage [Fellegi and Sunter, 1969] 
- Use available attributes for linking (often personal information, like names, 

addresses, dates of birth, etc.) 
- Calculate match weights for attributes  

• “Computer science” approaches  
- Based on machine learning, data mining, database, or information retrieval 

techniques  
- Supervised classification: Requires training data (true matches)  
- Unsupervised: Clustering, collective, and graph based
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Data Fusion
• Problem: Given a duplicate, create a single object representation while 

resolving conflicting data values. 
• Difficulties: 
- Null values: Subsumption and complementation 
- Contradictions in data values 
- Uncertainty & truth: Discover the true value and model uncertainty in this 

process 
- Metadata: Preferences, recency,  correctness 
- Lineage: Keep original values and their origin 
- Implementation in DBMS: SQL, extended SQL, UDFs, etc.
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Conflict Resolution Strategies
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Naive Voting Works
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Naive Voting Only Works if Data Sources are Independent
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2. With only a snapshot it is hard to 
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3. A copier can also provide or verify some data by 
itself, so it is inappropriate to ignore all of its data.

1. Sharing common data does 
not in itself imply copying.

2. With only a snapshot it is hard to 
decide which source is a copier.
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Ideas
• If two sources share a lot of false values, they are more likely to be 

dependent. 
• S1 is more likely to copy from S2, if the accuracy of the common data is 

highly different from the accuracy of S1.
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The Motivating Example
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Accuracy S1 S2 S3 S4 S5

Round 1 .52 .42 .53 .53 .53
Round 2 .63 .46 .55 .55 .55
Round 3 .71 .52 .53 .53 .37
Round 4 .79 .57 .48 .48 .31

… … … … … …
Round 11 .97 .61 .40 .40 .21

Value
Confidence

Carey Halevy
UCI AT&T BEA Google UW

Round 1 1.61 1.61 2.0 2.1 2.0
Round 2 1.68 1.3 2.12 2.74 2.12
Round 3 2.12 1.47 2.24 3.59 2.24
Round 4 2.51 1.68 2.14 4.01 2.14

… … … … … …
Round 11 4.73 2.08 1.47 6.67 1.47

http://www.lunadong.com/talks/depenDetection.pptx


Assignment 4
• Data Integration & Data Fusion 
• Out soon
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Paper Critique
• Read What’s Really New with NewSQL? 
• Submit critique before class on Wednesday, March 20 
• Discussion ideas: 
- What are the advantages or disadvantages of NewSQL vs NoSQL? 
- Are they really different from standard RDBMS? 
- Which category of NewSQL databases is most exciting?

23D. Koop, CSCI 640/490, Spring 2024

https://db.cs.cmu.edu/papers/2016/pavlo-newsql-sigmodrec2016.pdf
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NoSQL
The era of one-size-fits-all database systems is over

 Specialized data systems

Database Architecture
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NoSQL Databases

Scalability Impedance Mismatch

?

ID
Customer

Line Item 1: …
Line Item2: …

Orders
Line Items

CustomersPayment

 Two main motivations:

User-generated data,
Request load

Payment: Credit Card, …

NoSQL Motivation
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144 Introduction

Fig. 1.1 Main components of a DBMS.

a well-understood point of reference for new extensions and revolutions
in database systems that may arise in the future. As a result, we focus
on relational database systems throughout this paper.

At heart, a typical RDBMS has five main components, as illustrated
in Figure 1.1. As an introduction to each of these components and the
way they fit together, we step through the life of a query in a database
system. This also serves as an overview of the remaining sections of the
paper.

Consider a simple but typical database interaction at an airport, in
which a gate agent clicks on a form to request the passenger list for a
flight. This button click results in a single-query transaction that works
roughly as follows:

1. The personal computer at the airport gate (the “client”) calls
an API that in turn communicates over a network to estab-
lish a connection with the Client Communications Manager
of a DBMS (top of Figure 1.1). In some cases, this connection

Relational Database Architecture

29

[Hellerstein et al., Architecture of a Database System]
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http://db.cs.berkeley.edu/papers/fntdb07-architecture.pdf


Relational Databases: One size fits all?
• Lots of work goes into relational database development: 
- B-trees 
- Cost-based query optimizers 
- ACID (Atomicity, Consistency, Isolation, Durability)  

• Vendors largely stuck with this model from the 1980s through 2000s 
• Having different systems leads to business problems: 
- cost problem 
- compatibility problem 
- sales problem 
- marketing problem

30
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ACID Transactions
• Make sure that transactions are processed reliably 
• Atomicity: leave the database as is if some part of the transaction fails (e.g. 

don't add/remove only part of the data) using rollbacks 
• Consistency: database moves from one valid state to another 
• Isolation: concurrent execution matches serial execution 
• Durability: endure hardware failures, make sure changes hit disk

31D. Koop, CSCI 640/490, Spring 2024
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How to Scale Relational Databases?
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NoSQL Paradigm Shift
Shared Nothing Architectures

Shared Memory
e.g. "Oracle 11g"

Shared Disk
e.g. "Oracle RAC"

Shared Nothing
e.g. "NoSQL"

Shift towards higher distribution & less coordination:

Shared Nothing Architecture
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Figure 3: Representation of Tile Rendering Server
instances (virtual or physical machines), where each
instance contains a Tra�cDB data store shared
across several application processes.

potentially become the system’s bottleneck. Therefore, no
central process is utilised to translate the application queries
into database-specific queries; instead, the application pro-
cesses are directly “connected” to the shared memory data
store.

4.1 Shared Memory Storage
Tra�cDB was designed for fast read access; directly ac-

cessing the memory location of stored objects is crucial for
the performance of applications, such as the Route Plan-
ning Service. Therefore, data must be stored in a region
of RAM that can be shared and e�ciently accessed by sev-
eral di↵erent application processes. POSIX [13] provides a
standardised API that allows processes to communicate by
sharing a region of memory. Figure 4 shows the interaction
between the shared memory region that stores the data and
the application processes using it. The daemon is a back-
ground process responsible for managing the shared memory
region, which includes creating, updating and deleting the
entire data store. Being the core of Tra�cDB, the daemon
is connected to an external service that injects new tra�c
content. It is the only process allowed to update the data
store.

Figure 4: Representation of the shared-memory
data store updated by the daemon process and ac-
cessed by application processes.

In the further discussion, the word “lock” is not used in
the traditional sense, rather it will be used to mean two
things: attaching shared memory segments into process vir-
tual address space and increasing the kernel’s internal counter
of attached processes. The latter is preventing the kernel
from destroying shared memory until it is closed (detached).
With a producer – consumer approach (deamon – appli-

cation process respectively), when a consumer performs a
set of queries, the data store must be locked for reading,
so updates (done by producer) must wait until all the op-
erations are performed in order to gain write access. This
prevents the data from being modified whilst reading is in
progress and creating possible inconsistencies, but limiting
concurrent access to the data store by the application pro-
cesses and the daemon. This is not to mention that possible
starvation and performance degradation could occur due to
lock contention, because the update process can take a few
seconds and during this time no consumer cannot access the
database.
To solve the above mentioned problem, Tra�cDB was

designed to take advantage of the double bu↵ering scheme
widely used on rendering graphics [12]. Moreover, Tra�cDB
utilises the Linux kernel’s Shared Memory Object Manage-
ment for automatic management of the objects lifetime. The
daemon allocates a main segment in shared memory referred
to as the header. The singleton header contains meta-data,
such as the capacity and size of internal data structures, and
any static tra�c information that is known not to change
(e.g. street geometry). Exluding information regarding the
active object, only data appending inside header is allowed.
There is also another Shared Memory Object – the Tra�c
Object (object for short). The object contains the actual
tra�c conditions for a given moment. It contains all the
dynamic content, everything that may change periodically
as the real-time tra�c conditions change. Having separate
shared memory objects to store the dynamic content, al-
lows one object to be constantly available for the application
processes to read and another for the daemon process to up-
date. Both, header and objects are allocated to the full size
upon creation of shared memory, thus eliminating memory
fragmentation or a need for memory reallocation and copy-
ing.

4.1.1 Daemon

When the daemon starts for the first time the database
does not exist. The daemon will create the header segment
and allocate its internal data structures; loading any static
data according to the database settings. If the header al-
ready exists, it attaches to it. Then the daemon enters an
internal loop, waiting for tra�c data updates. Whenever
new tra�c data is available, a new Tra�c Object is created
and the database is updated. Since only the daemon has ac-
cess to this newly created object, it can write data without
need for synchronisation mechanisms. The same applies to
the header. Since new static information is appended and
required only by the newly created object, updates can hap-
pen directly. Moreover, setting proper access rights (write
for daemon, read-only for others ), prevents application pro-
cesses from writing to shared memory. Additional perfor-
mance enhancements could also be achieved by using shared
memory with huge pages support (SHM HUGETLB) en-
abled [21]. Once the update stage is completed the daemon
updates the active object field in the header meta-data with

1369

TrafficDB: Shared-Memory Data Store
• Traffic-aware route planning 
• Want up-to-date data for all 
• Thousands of requests per second 
- High-Frequency Reads 
- Low-Frequency Writes 

• "Data must be stored in a region of 
RAM that can be shared and 
efficiently accessed by several 
different application processes"

34
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3.2 Shared-Nothing 167

threads) across the processors, and the shared data structures continue
to be accessible to all. All three models run well on these systems and
support the execution of multiple, independent SQL requests in paral-
lel. The main challenge is to modify the query execution layers to take
advantage of the ability to parallelize a single query across multiple
CPUs; we defer this to Section 5.

3.2 Shared-Nothing

A shared-nothing parallel system (Figure 3.2) is made up of a cluster
of independent machines that communicate over a high-speed network
interconnect or, increasingly frequently, over commodity networking
components. There is no way for a given system to directly access the
memory or disk of another system.

Shared-nothing systems provide no hardware sharing abstractions,
leaving coordination of the various machines entirely in the hands of the
DBMS. The most common technique employed by DBMSs to support
these clusters is to run their standard process model on each machine,
or node, in the cluster. Each node is capable of accepting client SQL

Fig. 3.2 Shared-nothing architecture.

Parallel DB Architecture: Shared Nothing

35
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Sharding
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Stonebraker: The End of an Architectural Era
• "RDBMSs were designed for the business data processing market, which is 

their sweet spot" 
• "They can be beaten handily in most any other market of significant enough 

size to warrant the investment in a specialized engine" 
• Changes in markets (science), necessary features (scalability), and 

technology (amount of memory) 
• RDBMS Overhead: Logging, Latching, and Locking 
• Relational model is not necessarily the answer 
• SQL is not necessarily the answer
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OLTP vs. OLAP
• Online Transactional Processing (OLTP) often used in business applications, 

data entry and retrieval transactions 
• OLTP Examples: 
- Add customer's shopping cart to the database of orders 
- Find me all information about John Hammond's death 

• OLTP is focused on the day-to-day operations while Online Analytical 
Processing (OLAP) is focused on analyzing that data for trends, etc. 

• OLAP Examples: 
- Find the average amount spent by each customer 
- Find which year had the most movies with scientists dying
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www.percona.com

Typical Table

id scientist death_by movie_name

1 Reinhardt Crew The Black Hole

2 Tyrell Roy Batty Blade Runner

3 Hammond Dinosaur Jurassic Park

4 Soong Lore Star Trek: TNG

5 Morbius The machine Forbidden Planet

6 Dyson SWAT Terminator 2: Judgment Day

Primary Key

Row

Row Stores
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Row stores can waste IO

6 15 on_hold 247 122 9 72 76 5 66

select sum(metric) as the_sum from fact

247

1. Storage engine gets a whole row from the table

2. SQL interface extracts only requested portion, adds it to “the_sum”

3. IF all rows scanned, send results to client, else GOTO 1

Inefficiency in Row Stores for OLAP
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Simple column store on disk

Genre

Comedy
Horror
Horror
Drama
Comedy
Drama

id

1
2
3
4
5
6

Title

Mrs. Doubtfire
Jaws
The Fly
Steel Magnolias
The Birdcage
Erin Brokovitch

Person

Robin Williams
Roy Scheider
Jeff Goldblum
Dolly Parton
Nathan Lane
Julia Roberts

row id = 1

row id = 6

Each column has a file or segment on disk

Column Stores
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Horizontal Partitioning vs. Vertical Partitioning
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Horizontal Partitioning vs. Vertical Partitioning
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Highly Available Storage (SAN, 
RAID, etc.)

Highly available network
(Infiniband, Fabric Path, etc.)

Specialized DB hardware
(Oracle Exadata, etc.)

Commercial DBMS

NoSQL Paradigm Shift
Open Source & Commodity Hardware

Commodity drives (standard
HDDs, JBOD)

Commodity network
(Ethernet, etc.)

Commodity hardware

Open-Source DBMS

NoSQL Paradigm Shift
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Problems with Relational Databases
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 Two common criteria:

NoSQL System Classification

Data
Model

Consistency/Availability
Trade-Off

AP: Available & Partition 
Tolerant

CP: Consistent &  
Partition Tolerant

Graph
CA: Not Partition 
Tolerant 

Document

Wide-Column

Key-Value

NoSQL Classification Criteria
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 Data model: (key) -> value
 Interface: CRUD (Create, Read, Update, Delete)

 Examples: Amazon Dynamo (AP), Riak (AP), Redis (CP)

Key-Value Stores

{23, 76, 233, 11}users:2:friends

[234, 3466, 86,55]users:2:inbox

Theme → "dark", cookies → "false"users:2:settings

Value: 
An opaque blob

Key

Key-Value Stores
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Key-Value Stores
• Always use primary-key access 
• Operations: 
- Get/put value for key 
- Delete key
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 Data model: (rowkey, column, timestamp) -> value
 Interface: CRUD, Scan

 Examples: Cassandra (AP), Google BigTable (CP), 
HBase (CP)

Wide-Column Stores

com.cnn.www crawled: …
content : "<html>…"content : "<html>…"content : "<html>…" title : "CNN"

Row Key Column
Versions (timestamped)

Wide-Column Stores
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Column Stores
• Instead of having rows grouped/sharded, we group columns 
• …or families of columns 
• Put similar columns together
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 Data model: (collection, key) -> document
 Interface: CRUD, Querys, Map-Reduce

 Examples: CouchDB (AP), RethinkDB (CP), MongoDB 
(CP)

Document Stores

order-12338 {
order-id: 23,
customer: { name : "Felix Gessert", age : 25 }
line-items : [ {product-name : "x", …} , …]

}

ID/Key JSON Document

Document Stores
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Document Stores
• Documents are the main entity 
- Self-describing 
- Hierarchical 
- Do not have to be the same 

• Could be XML, JSON, etc. 
• Key-value stores where values are 

"examinable" 
• Can have query language and 

indices overlaid
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 Data model: G = (V, E): Graph-Property Modell
 Interface: Traversal algorithms, querys, transactions

 Examples: Neo4j (CA), InfiniteGraph (CA), OrientDB
(CA)

Graph Databases

company: 
Apple
value:

300Mrd

name: 
John Doe

WORKS_FOR
since: 1999
salary: 140K

Nodes

Edges

Properties

Graph Databases
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Graph Databases
• Focus on entities and relationships 
• Edges may have properties 
• Relational databases required a set 

traversal 
• Traversals in Graph DBs are faster
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 Two common criteria:

NoSQL System Classification

Data
Model

Consistency/Availability
Trade-Off

AP: Available & Partition 
Tolerant

CP: Consistent &  
Partition Tolerant

Graph
CA: Not Partition 
Tolerant 

Document

Wide-Column

Key-Value

NoSQL Classification Criteria
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CAP Theorem
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CAP Theorem
• Consistency: every read would get you the most recent write 
• Availability: every node (if not failed) always executes queries 
• Partition tolerance: system continues to work even if nodes are down 
• Theorem (Brewer): It is impossible for a distributed data store to 

simultaneously provide more than two of Consistency, Availability, and 
Partition Tolerance
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 Problem: when a network partition occurs, either
consistency or availability have to be given up

CAP-Theorem: simplified proof

Replication Value = V0

N2

Value = V1

N1

Response before
successful replication
 Availability

Block response until
ACK arrives
 Consistency

Network partition

CAP Theorem "Proof"
• If there is a network partition, one of consistency or availability will not be 

possible
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Functional Techniques Non-Functional

Scan Queries

ACID Transactions

Conditional or Atomic Writes

Joins

Sorting

Filter Queries

Full-text Search

Aggregation and Analytics

Sharding

Replication

Logging
Update-in-Place
Caching
In-Memory Storage
Append-Only Storage

Storage Management

Query Processing

Elasticity

Consistency

Read Latency

Write Throughput

Read Availability

Write Availability

Durability

Write Latency

Write Scalability

Read Scalability

Data Scalability

Global Secondary Indexing
Local Secondary Indexing
Query Planning
Analytics Framework
Materialized Views

Commit/Consensus Protocol
Synchronous
Asynchronous
Primary Copy
Update Anywhere

Range-Sharding
Hash-Sharding
Entity-Group Sharding
Consistent Hashing
Shared-Disk

NoSQL Techniques
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Distributing Data
• Aggregate-oriented databases 
• Sharding (horizontal partitioning): Sharding distributes different data across 

multiple servers, so each server acts as the single source for a subset of data 
• Replication: Replication copies data across multiple servers, so each bit of 

data can be found in multiple places. Replication comes in two forms, 
- Source-replica replication makes one node the authoritative copy that 

handles writes, replica synchronizes with the source and may handle reads. 
- Peer-to-peer replication allows writes to any node; the nodes coordinate to 

synchronize their copies of the data.
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Sharding
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Sharding Approaches
• Hash-based Sharding 
- Hash of data values (e.g. key) determines partition (shard) 
- Pro: Even distribution, Con: No data locality
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Sharding Approaches
• Range-based Sharding 
- Assigns ranges defined over fields (shard keys) to partitions 
- Pro: Enables Range Scans & Sorting, Con: Repartitioning/balancing req'd 
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Sharding Approaches
• Entity-Group Sharding 
- Explicit data co-location for single-node-transactions 
- Pro: Enables ACID Transactions, Con: Partitioning not easily changable
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Replication
• Store N copies of each data item 
• Consistency model: synchronous vs. asynchronous 
• Coordination: Multiple Primary, Primary/Replica
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 Stores N copies of each data item

 Consistency model: synchronous vs asynchronous
 Coordination: Multi-Master, Master-Slave

Replication
Read Scalability + Failure Tolerance

DB Node

DB Node

DB Node
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Replication: When
• Asynchronous (lazy) 
- Writes are acknowledged immdediately 
- Performed through log shipping or update propagation 
- Pro: Fast writes, no coordination needed 
- Con: Replica data potentially stale (inconsistent)  

• Synchronous (eager)  
- The node accepting writes synchronously propagates  

updates/transactions before acknowledging 
- Pro: Consistent 
- Con: needs a commit protocol (more roundtrips), unavailable under certain 

network partitions
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Replication: Where
• Primary-Replica (Primary Copy) 
- Only a dedicated primary is allowed to accept writes, replicas are  

read-replicas 
- Pro: reads from the primary are consistent  
- Con: primary is a bottleneck and SPOF 

• Multi-Primary (Update anywhere) 
- The server node accepting the writes synchronously  

propagates the update or transaction before acknowledging 
- Pro: fast and highly-available 
- Con: either needs coordination protocols (e.g. Paxos) or is inconsistent
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Consistency Levels

Writes 
Follow Reads

Read Your 
Writes

Monotonic
Reads

Monotonic
Writes

Bounded 
Staleness

Lineari-
zability

PRAM

Causal
Consistency

Bailis, Peter, et al. "Highly available transactions: Virtues and 
limitations." Proceedings of the VLDB Endowment 7.3 (2013): 181-192.

Viotti, Paolo, and Marko Vukolić. "Consistency in Non-
Transactional Distributed Storage Systems." arXiv (2015).

Consistency Levels
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Next Class's Paper Critique
• Read What’s Really New with NewSQL? 
• Submit critique before class on Wednesday, March 20 
• Discussion ideas: 
- What are the advantages or disadvantages of NewSQL vs NoSQL? 
- Are they really different from standard RDBMS? 
- Which category of NewSQL databases is most exciting?
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