
GDB Debugger Reference

Compiling with Debugging Symbols

Pass the -g flag to your compiler:

z1234567@turing:~/csci241/Assign1$ g++ -Wall –std=c++11 -g -o assign1 assign1.cpp

Note: If you have a larger program with several files, each must be compiled with the -g flag, and it must also be set when you link.

If you have written a makefile, you can easily add the -g flag to the list of compiler variables:

PROGRAM: assign1
PROGRAMMER: Ima Coder
LOGON ID: z1234567
DATE DUE: 9/14/2027

Compiler variables
CXX = g++
CXXFLAGS = -Wall -std=c++11 –g

Rule to link object code files to create executable file
assign1: assign1.o
 $(CXX) $(CXXFLAGS) -o assign1 assign1.o
...

Setting Your Default Editor

It’s very handy to be able to edit your source files from within the gdb debugger using the edit command. To enable this capability,
you must specify a value for the shell environment variable EDITOR.

Change to your home directory and open the file .bash_profile in a text editor. Add the following line to the end of the file:

export EDITOR="/usr/bin/nano"

Note that you can specify a different pathname if you want a different editor such as Vim ("/usr/bin/vim") or Emacs
("/usr/bin/emacs").

Save the file and exit.

Then, either log out and log back in, or type the command

source .bash_profile

Starting the Debugger

Start the debugger with your executable program name as the first argument. For example, if the name of the executable file is
assign1, then you need to type:

gdb assign1

Here’s an example of what you’ll typically see when the debugger starts:

z1234567@turing:~/csci241/Assign1$ gdb assign1
GNU gdb (Debian 7.7.1+dfsg-5) 7.7.1
Copyright (C) 2014 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-linux-gnu".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from assign1...done.
(gdb)

You can now type debugger commands at the gdb prompt. Some of the most commonly used gdb commands are listed on the next
two pages. This list is not exhaustive, and there are many other commands and options available.

Command Description Examples
Getting help
help Get a list of classes of debugger commands. help
help class-name Get a list of all commands in the specified command class. help breakpoints
help command Get documentation for a specific command within a class. help break
Setting command-line arguments and redirection
set args arg1 arg2 … Specify command-line arguments. You may also use this command to

redirect input or output for the program.
set args in.txt 20
set args in.txt > out.txt

set args Cancel previous command-line arguments and redirection. set args
Executing the program
run Run the program you are debugging. The program will run until it

terminates or it hits a breakpoint.
run

continue Continue executing program being debugged after it has hit a
breakpoint. Execution will continue until termination or the next
breakpoint. This command may be abbreviated as c.

c

finish Continue executing until the current function returns. finish
next Execute next program statement, stepping over subroutine calls. This

command may be abbreviated as n.
n

next n Step over next n program statements. next 3
n 4

step Execute next program statement, stepping into subroutine calls. This
command may be abbreviated as s.

s

step n Step into next n program statements. step 2
kill Kill execution of program being debugged. kill
Breakpoints
break n Set a breakpoint on line n of the current source file. The command

tbreak can be used instead to set a temporary breakpoint that will
only be triggered once.

break 51

break filename:n Set a breakpoint on line n of the specified source file. break other.cpp:32
break function-name Set a breakpoint at the beginning of the specified function. break buildArray
break function-name<type> Set a breakpoint at the beginning of the specified template function. break compare<int>
break class-name::function-name Set a breakpoint at the beginning of the specified C++ member

function.
break Date::print

break class-name<type>::function-name Set a breakpoint at the beginning of the specified C++ template
member function.

break Stack<int>::push

info breakpoints Show status of breakpoints. Can optionally be followed by a list of
specific breakpoint numbers; defaults to all breakpoints

info breakpoints
info breakpoints 1 3

disable breakpoints n1 n2 … Disable specified breakpoint numbers. Defaults to all. May be
abbreviated as disable.

disable 3

enable breakpoints n1 n2 … Enable specified breakpoint numbers. Defaults to all. May be
abbreviated as enable.

enable 2 3

delete breakpoints n1 n2 … Delete specified breakpoint numbers. Defaults to all. May be
abbreviated as delete.

delete 1

Command Description Examples
Watchpoints
watch expression A watchpoint stops execution of your program whenever the value of

the specified expression changes. A watchpoint is a specific type of
breakpoint and can be enabled, disabled, or deleted using the same
commands.

watch playerName

watch –location expression Evaluates expression and watches the memory location to which it
refers. -location may be abbreviated as -l.

watch -l ptrName

info watchpoints Show status of watchpoints only. Can optionally be followed by a list of
specific watchpoint numbers; defaults to all watchpoints

info watchpoints
info watchpoints 1 3

Examining and modifying variables
whatis expression Print the data type of the specified expression. whatis num
print expression Print the current value of the specified expression or variable name.

Can be abbreviated as p.
print num
p providerArray[3]

set var variable = expression Set the specified variable to the specified expression. set var x = 3
display expression Get a list of classes of debugger commands. help
info display Lists expressions to display when program stops, with code numbers. info display
disable display n1 n2 … Disable specified display expression code numbers. Defaults to all. disable 3
enable display n1 n2 … Enable specified display expression code numbers. Defaults to all. enable 2 3
undisplay n1 n2 … Cancel the specified display expression code numbers. Defaults to all. undisplay 1
info locals Prints values of local variables in the current stack frame. info locals
Listing source code
list List ten more lines after or around previous listing. list
list n List ten lines around the specified line. Line number arguments may

be preceded by a filename.
list 51
list Provider.cpp:20

list function List ten lines around the specified function. list buildArray
list class-name::function-name List ten lines around the specified C++ member function. list Provider::print
list + List the ten lines after the previous listing. list +
list - List the ten lines before the previous listing. list -
list x,y List the specified range of line numbers. list 10,35
Program stack
backtrace Print backtrace of all program stack frames. May be abbreviated as

bt.
bt

backtrace full Print backtrace of all program stack frames, including local variables. bt full
Other commands
make Run the make program using the rest of the line as arguments. make

make clean
file executable-filename Use executable-filename as program to be debugged. file assign1
edit Edit a source or header file. edit
edit filename:n Edit at the specified line number in the specified file. edit Date.cpp:10
edit function Edit at the beginning of the specified function. May be optionally

preceded by a filename.
edit buildArray
edit sorts.cpp:compare

edit class-name::function-name Edit at the beginning of the specified C++ member function. edit Provider::print
quit Exit the debugger. May be abbreviated q. quit

How to Debug Using gdb

The backtrace command can give you an immediate sense of the sequence of method calls that resulted in your runtime error. That
should help you to localize the last statement that executed before your program abnormally terminated. Unfortunately, the last
statement executed by your program is not necessarily the one with a bug. Mistakes earlier in the program may not manifest
immediately, particularly when it comes to a runtime error like a segmentation fault. It’s also entirely possible to fix one runtime error
only to reveal another one.

Usually, you will need to create at least one breakpoint in order to do anything useful. If you suspect that a particular function is causing
your runtime error, place a breakpoint on that function. Alternatively, use the list command to list your source code and place a
breakpoint on a specific line number. If you have no idea where the error is happening, start by putting a breakpoint on one of the first
lines inside your main() function.

Use run to make the program run until it hits your first breakpoint. Remember that the lines displayed in gdb as the program is
executing represent the next statement to be executed. Advance line-by-line through the program code using the next or step
commands or continue running it until your next breakpoint by using the continue command. As you step through the program, you
can examine the values of variables using the print and display commands or info locals.

To find the bug that is causing your runtime error, you need to know what the values of your variables should be at any given point in
the program as well as what the values actually are. Using good test data can make this much easier!

