
CSCI 340
Analysis of Algorithms

Jon Lehuta

August 22, 2019



Analysis of Algorithms - Outline

Analysis of Algorithms

Introduction

Big O notation

Examples

2/35



Analysis of Algorithms Introduction

Time and space

Analyzing an algorithm means:

• developing a formula for predicting how fast an algorithm is, based
on the size of the input (time complexity), and/or

• developing a formula for predicting how much memory an algorithm
requires, based on the size of the input (space complexity)

Usually time is our biggest concern

• We can buy more storage, but if a deadline is missed, it’s a big deal.

3/35



Analysis of Algorithms Introduction

How long to execute?
𝑛 𝑡(𝑛) 𝑡(log2 𝑛) 𝑡(𝑛 log2 𝑛) 𝑡(𝑛2) 𝑡(2𝑛)
10 0.01𝜇𝑠 0.003𝜇𝑠 0.033𝜇𝑠 0.1𝜇𝑠 1𝜇𝑠
20 0.02𝜇𝑠 0.004𝜇𝑠 0.086𝜇𝑠 0.4𝜇𝑠 1𝑚𝑠
30 0.03𝜇𝑠 0.005𝜇𝑠 0.147 𝜇𝑠 0.9𝜇𝑠 1𝑠
40 0.04𝜇𝑠 0.005𝜇𝑠 0.213𝜇𝑠 1.6𝜇𝑠 18.3min
50 0.05𝜇𝑠 0.006𝜇𝑠 0.282𝜇𝑠 2.5𝜇𝑠 13 days
100 0.10𝜇𝑠 0.007 𝜇𝑠 0.664𝜇𝑠 10𝜇𝑠 4 × 1013 years

1, 000 1.00𝜇𝑠 0.010𝜇𝑠 9 .9 66𝜇𝑠 1𝑚𝑠
10, 000 10𝜇𝑠 0.013𝜇𝑠 130𝜇𝑠 100𝑚𝑠
100, 000 0.10𝑚𝑠 0.017 𝜇𝑠 1.67 𝑚𝑠 10𝑠

1, 000, 000 1𝑚𝑠 0.020𝜇𝑠 19 .9 3𝑚𝑠 16.7min
10, 000, 000 0.01𝑠 0.023𝜇𝑠 0.23𝑠 1.16 days

𝑛 is a number of items to process, and 𝑡 (𝑥) is how much time it would take
to process them all with an algorithm of complexity 𝑥, using a computer
that does 1 billion operations per second. 4/35



Analysis of Algorithms Introduction

Graph: 𝑛 up to 8

Notice that the 2𝑛 is already taking way more time at 𝑛 = 8. It only gets worse.

5/35



Analysis of Algorithms Introduction

Graph: 𝑛 up to 20

2𝑛 is not shown because it dwarfs all the others. Notice that 𝑛2 is already starting
to do the same.

6/35



Analysis of Algorithms Introduction

Graph: 𝑛 up to 100

𝑛2 has been removed from graph for the same reason. Notice that 𝑛 is growing
much faster than the others.

7/35



Analysis of Algorithms Introduction

Graph: 𝑛 up to 1000

As 𝑛 increases, the difference between 𝑛 and 𝑛 log 𝑛 grows.

8/35



Analysis of Algorithms Introduction

Graph: 𝑛 up to 10000

𝑛 log 𝑛 is taking way more time than log 𝑛 now.

9/35



Analysis of Algorithms Introduction

Graph: 𝑛 up to 100000

At this point, log 𝑛 is basically free compared to 𝑛 log 𝑛

10/35



Analysis of Algorithms Introduction

Graph: 𝑛 up to 1000000

The time continues to go up for both, but we don’t even notice log 𝑛 anymore.

11/35



Analysis of Algorithms Introduction

What does size of the input mean?

• If we are searching an array, the “size” of the input would be the
number of elements in the array

• If we are merging two arrays, the “size” could be the total number of
elements in both arrays

• If we are computing the 𝑛th Fibonacci number, or the 𝑛th factorial,
the “size” is the number we are given, 𝑛.

We choose the “size” to be a parameter that has an effect on the time (or
space) required. There doesn’t always have to be just one answer,
sometimes there are multiple parameters that matter, and we might want
to look at the efficiencies of each of them separately.

12/35



Analysis of Algorithms Introduction

Exact values

It is sometimes possible, in assembly language, to compute exact time and
space requirements

• We can know exactly how many bytes and how many cycles each
machine instruction requires.

• For a problem with a predictable sequence of steps (Fibonacci,
factorial), we can determine how many instructions of each type are
required

However, often the exact sequence of steps cannot be known in advance

• The steps required to sort an array depend on the contents of some
data structure provided at runtime (which we cannot know in
advance)

13/35



Analysis of Algorithms Introduction

Higher-level languages

In a higher-level language, we have far less knowledge about exactly how
long each operation will take.

• Which finishes faster, x < 10 or x <= 9?
• We don’t know exactly what the compiler does with this
• The compiler almost certainly optimizes the test anyway (replacing the
slower version with the faster one)

Because of this, higher-level languages do not generally allow for an exact
analysis

• Our timing analyses will use major simplifications
• Nevertheless, we can get some very useful results

14/35



Analysis of Algorithms Introduction

Average, best, and worst cases

Usually we would like to find the average time to perform an algorithm

However,

• Sometimes the “average” isn’t well defined
• Example : Sorting an “average” array

• Time typically depends on how out of order the array is
• How out of order is the “average” unsorted array?

• Sometimes finding the average is too difficult

Often we have to be satisfied with finding the worst case (longest)

• Sometimes this is even what we want (i.e., for time-critical
operations)

The best (fastest) case is seldom of interest

15/35



Analysis of Algorithms Introduction

Constant time

Constant time means there is some constant 𝑘 such that this operation
always takes 𝑘 units of time.

A statement takes constant time if:

• It does not include a loop
• It does not include calling a method whose time is unknown or is not
a constant

If a statement involves a choice (if or switch) between several operations,
each of which takes constant time, we consider the statement to take
constant time

• This is consistent with worst-case analysis

16/35



Analysis of Algorithms Introduction

Example
Consider the following algorithm. (Assume that all variables are properly
declared.)

//////////////////////////////////////////////////// Line // Ops //
cout << "Enter two numbers"; // 1 // 1 //
cin >> num1 >> num2; // 2 // 2 //
if(num1 >= num2) // 3 // 1 //

max = num1; // 4 // 1 //
else // 5 // ­ //

max = num2; // 6 // 1 //
cout << "The maximum number is: " << max << endl; // 7 // 3 //
///////////////////////////////////////////////////////////////////

Either Line 4 or Line 6 executes. Each is 1 operation. Therefore, the total
number of operations executed is 1 + 2 + 1 + 1 + 3 = 8. In this algorithm,
the number of operations executed is constant.

17/35



Analysis of Algorithms Introduction

Linear time

We may not be able to predict to the nanosecond how long a program will
take, but do know some things about timing:

for(i=0, j=1; i<n; i++) {
j = j * i; }

This loop takes time 𝑘𝑛 + 𝑐 , for some constants 𝑘 and 𝑐

𝑘 How long it takes to go through the loop once (the time for
j = j * i, plus loop overhead)

𝑛 The number of times through the loop (we can use this as
the “size” of the problem)

𝑐 The time it takes to initialize the loop

The total time 𝑘𝑛 + 𝑐 is linear in 𝑛

18/35



Analysis of Algorithms Introduction

Example
//////////////////////////////////////////////////// Line // Ops //
sum = 0; // 1 // 1 //
num = 10; // 2 // 1 //
while(num != ­1) // 3 // 1 //
{ // 4 // ­ //

sum = sum + num; // 5 // 2 //
num = num ­ 1; // 6 // 2 //

} // 7 // ­ //
cout << sum; // 8 // 1 //
///////////////////////////////////////////////////////////////////

If we were to change num to match our 𝑛, then the while loop executes 𝑛
times:
• The loop body is 4 operations, and it happens 𝑛 times.
• The loop check is 1 operation, and it happens 𝑛 + 1 times.
• There are 4 operations done outside the loop.

4𝑛 + 𝑛 + 1 + 4 = 5𝑛 + 5 operations 19/35



Analysis of Algorithms Introduction

Example, Cont.

𝑛 5𝑛 + 5
10 55
100 505

1, 000 5, 005
10, 000 50, 005

For very large values of 𝑛, the 5𝑛 term dominates term and the 5 term
becomes negligible.

20/35



Analysis of Algorithms Introduction

Constant time is (usually) better than linear time

Suppose we have two algorithms to solve a task:

• Algorithm A takes 5000 time units
• Algorithm B takes 100𝑛 time units

Which is better?

• Clearly, algorithm B is better if our problem size is small, 𝑛 < 50
• Algorithm A is better for larger problems, with 𝑛 > 50
• B is better on small problems that are quick anyway.
• A is better for large problems, where it will matter more.

We usually care most about very large problems

• But not always!

21/35



Analysis of Algorithms Introduction

What about the constants?

An added constant, 𝑓 (𝑛) + 𝑐 , becomes less and less important as 𝑛 gets
larger, assuming the degree of 𝑓 (𝑛) is greater than 0 (i.e., not constant in
𝑛).
A constant multiplier, 𝑘 ⋅ 𝑓 (𝑛), does not get less important, but…

• Improving 𝑘 gives a linear speedup (cutting 𝑘 in half cuts the time
required in half)

• Improving 𝑘 is usually accomplished by careful code optimization,
not by better algorithms

• We are not that concerned with only linear speedups.

Bottom line: Forget the constants.

22/35



Analysis of Algorithms Introduction

Simplifying the formulae

Throwing out the constants is one of two simplifications we do in analysis
of algorithms

• By throwing out constants, we simplify 12𝑛2 + 35 to just 𝑛2

Our timing formula is a polynomial, and may have terms of various orders
(constant, linear, quadratic, cubic, etc.)

• We usually discard all but the highest-order term
• We simplify 𝑛2 + 3𝑛 + 5 to just 𝑛2

23/35



Analysis of Algorithms Big O notation

Big O notation

When we have a polynomial that describes the time requirements of an
algorithm, we simplify it by:

• Throwing out all but the highest-order term
• Throwing out any constant factors

If an algorithm takes 12𝑛3 + 4𝑛2 + 8𝑛 + 35 time, we simplify this formula
to just 𝑛3

We say the algorithm requires 𝛰(𝑛3) time

• We call this Big O notation

24/35



Analysis of Algorithms Big O notation

Can we justify Big O notation?
Big O notation is a huge simplification; can we justify it?

• It only makes sense for large problem sizes
• For sufficiently large problem sizes, the highest-order term
overwhelms all the rest anyway.

Consider 𝑅 = 𝑥2 + 3𝑥 + 5 as 𝑥 varies:

𝑥 𝑥2 3𝑥 5 𝑅 = 𝑥2 + 3𝑥 + 5
0 0 0 5 5
10 100 30 5 135
100 10, 000 300 5 10, 305

1, 000 1, 000, 000 3, 000 5 1, 003, 005
10, 000 100, 000, 000 30, 000 5 100, 030, 005
100, 000 10, 000, 000, 000 300, 000 5 10, 000, 300, 005

25/35



Analysis of Algorithms Big O notation

Graph 1 <= 𝑛 <= 10

𝑦 = 𝑛2 + 3𝑛 + 5, for 𝑛 = 1..10

26/35



Analysis of Algorithms Big O notation

Graph 1 <= 𝑛 <= 20

𝑦 = 𝑛2 + 3𝑛 + 5, for 𝑛 = 1..20

27/35



Analysis of Algorithms Big O notation

Common time complexities

Big-O Name

𝛰(1) constant time
𝛰(log 𝑛) logarithmic time
𝛰(𝑛) linear time
𝛰(𝑛 log 𝑛) log linear time
𝛰(𝑛2) quadratic time
𝛰(𝑛3) cubic time
𝛰(𝑛𝑘) polynomial time
𝛰(2𝑛) exponential time

These are ordered from best (at the top) to worst, for large 𝑛. (𝑛 → ∞)

28/35



Analysis of Algorithms Big O notation

NP-complete problem
Hard problem:
• Most problems discussed are efficient (poly time)
• An interesting set of hard problems: NP-complete.

Why interesting:
• Not known whether efficient algorithms exist for them.
• If exist for one, then exist for all.
• A small change may cause big change.

Why important:
• Arise surprisingly often in real world.
• Not waste time on trying to find an efficient algorithm to get best
solution, instead find approximate or near-optimal solution.

Example: Traveling-salesman problem: Given a list of cities and the
distances between each pair of cities, what is the shortest possible route
that visits each city exactly once and returns to the origin city?

29/35



Analysis of Algorithms Examples

Example 1

Find the running time, worst time, complexity, or Big-O analysis for the
following code

for(i=0; i<n; i++) // loop 1
for(j=0; j<n; j++) // loop 2

cin >> A[i][j]; // single operation takes k units of time

Loop 1 iterates over its body 𝑛 times, which includes loop 2. Loop 2
iterates over its body of a single operation that takes 𝑘 time to complete.

𝑛(𝑛(𝑘)) = 𝑘𝑛2 → 𝛰(𝑛2)

30/35



Analysis of Algorithms Examples

Example 2

for(i = 0; i <= n; i++)
for(j = 0; j <= i; j++)

A[i][j] = 0;

• First time through, inner loop does 1 iteration, then 2, then 3, etc. up
to 𝑛. This is a simple arithmetic series, and:

𝑘
𝑛
∑
𝑖=1

𝑖 = 𝑘𝑛(𝑛 − 1)
2 → 𝛰(𝑛2)

31/35



Analysis of Algorithms Examples

Example 3
for(i = 0; i < n; i++) // loop 1
{

for(j = 0; j < n; j++) // loop 2
A[i][j] = j*2;

for(k = 0; k <2* n; j++) // loop 3
A[i][k] = k*3;

}

• Loop 1 surrounds both of the other loops, and does 𝑛 iterations of its
body.

• Loop 2 does 𝑛 iterations with 1 operation each time.
• Loop 3 does 2𝑛 iterations with 1 operation each time.

𝑛(𝑛 + 2𝑛) = 𝑛(3𝑛) = 3𝑛2 → 𝛰(𝑛2)

32/35



Analysis of Algorithms Examples

Example 4
for(i = 0; i < n; i++) // Loop 1
{

for(j = 0; j < n; j++) // Loop 2
A[i][j]= i * j;

for (k = 0; k < 2*n; k++) // Loop 3
for (m = 0; m < 2*n; m++) // Loop 4

sum = sum + 1;
}

• Loop 1 contains all of the others and does 𝑛 iterations of its body.
• Loop 2 does 𝑛 iterations with 1 operation each time.
• Loop 3 does 2𝑛 iterations of its body, which contains loop 4.
• Loop 4 does 2𝑛 iterations with 1 operation each time.

𝑛(𝑛 + 2𝑛(2𝑛(1))) = 𝑛(𝑛 + 4𝑛2) = 4𝑛3 + 𝑛2 → 𝛰(𝑛3)
33/35



Analysis of Algorithms Examples

Example 5
int i, j, tofind, A[100], n = 100; // 1 assignment operation
for(j = 0; j < n; j++) // Loop 1

A[j] = j * 2;
i = 0; // 1 assignment operation
cin >> tofind; // 1 input operation
while(A[i]!=tofind && i<n) i++; // Loop 2
if(i >= n) cout << "not found"; // constant in n, both
else cout << "found"; // branches same length

• There are 4 operations outside of the loop.
• Loop 1 iterates 𝑛 times over its 1 operation body.
• Loop 2 iterates up to 𝑛 times over its 1 operation body.

4 + 𝑛 + 𝑛 (worst case) = 4 + 2𝑛 → 𝛰(𝑛)
4 + 𝑛 + 1 (best case) = 5 + 𝑛 → 𝛰(𝑛)

34/35



Analysis of Algorithms Examples

For more information

http://bigocheatsheet.com/

35/35

http://bigocheatsheet.com/

	Analysis of Algorithms
	Introduction
	Big O notation
	Examples


