
CSCI 463 Assignment 7 – IPC

10 Points

Abstract

In this assignment, you will implement client and server applications that use a TCP stream socket to
communicate with each other.

1 Problem Description

Create client and server applications that use a TCP socket to execute a transaction by sending data from
the client to the server for processing and return a result that the client will display.

2 Files You Must Write

You will write two C++ programs suitable for execution on hopper.cs.niu.edu (and/or turing.cs.niu.edu.)

Your source files MUST be named exactly as shown below or they will fail to compile and you will receive
zero points for this assignment.

Create a directory named a7 and place within it the following files:

• client.cpp The client application is implemented in this file.

• server.cpp The server application is implemented in this file.

2.1 client.cpp

Implement a transactional TCP client program:

• Usage: client [-s server-ip] server-port

– server-ip: Specify the server’s IPv4 number in dotted-quad format. (By default, use 127.0.0.1)
Use inet_pton() to parse the IPv4 address as part to build the sockaddr_in of the server to
which to connect.

– server-port: The server port number to which the client must connect. Don’t forget to use
htons() on the integer port number from the command line!

• Read (possibly binary) input from stdin and send it to the server by copying it to the socket to send
it to the server. Since the input is binary you must not treat it like a null-terminated C string!

• After sending the input data, use the shutdown() system library call to let the server know that the
request phase of the transaction has completed.

• Read any response data from the server and copy it to stdout until the server closes the socket. Make
no assumptions as to the nature of the response data from the server and simply copy the raw bytes
to stdout.

Note: Unless there is an error, the only output that will be written to stdout by the client application will
be the response message bytes from the server.

If any command-line arguments are invalid then print appropriate error and/or Usage messages and terminate
the program in the traditional manner. (See https://en.wikipedia.org/wiki/Usage_message.)

Copyright © 2021, 2022 John Winans. All Rights Reserved
~/NIU/courses/463/2022-fa/assignments/a7/handout.tex

jwinans@niu.edu 2022-11-19 09:25:12 -0600 v2.1-106-ga3341c4c

Page 1 of 5

https://en.wikipedia.org/wiki/Usage_message

CSCI 463 Assignment 7 – IPC

Input

During the request phase of the transaction the client application will read binary input data from stdin

and send it to the server using a TCP socket connection until it encounters EOF on stdin.

The client must make no assumptions about the input data, its format, or where it will come from (keyboard,
redirected from a file,. . .)

During the response-phase of the transaction the client application will read data bytes from the server using
the TCP socket connection.

Output

The client application will write its transaction response data to stdout.

Any error messages must be written/printed to stderr by using std::cerr or by calling the standard library
perror() function.

Do not use printf() or fprintf() in this application.

Your program will be tested with a combination of the command-line arguments and will be diff’d against
the output from a reference implementation.

Here are some test-cases run with the reference implementation (assuming that the server application has
already been started and is listening on port 9965) submitting the test files that you already have from prior
assignments:

winans@hopper:~/a7$./client 9965 < ~/a5/sieve.bin | hexdump -C

00000000 53 75 6d 3a 20 36 32 37 32 38 20 4c 65 6e 3a 20 |Sum: 62728 Len: |

00000010 32 31 30 31 39 32 0a |210192.|

00000017

winans@hopper:~/a7$./client 9965 < ~/a5/torture5.bin | hexdump -C

00000000 53 75 6d 3a 20 32 31 34 34 32 20 4c 65 6e 3a 20 |Sum: 21442 Len: |

00000010 31 32 37 36 0a |1276.|

00000015

winans@hopper:~/a7$./client 9965 < ~/a3/testsx.in | hexdump -C

00000000 53 75 6d 3a 20 33 32 36 34 30 20 4c 65 6e 3a 20 |Sum: 32640 Len: |

00000010 32 35 36 0a |256.|

00000014

winans@hopper:~/a7$./client -s 127.9.9.9 200 < ~/a5/torture5.bin | hexdump -C

connecting stream socket: Connection refused

winans@hopper:~/a7$./client 5 < ~/a5/torture5.bin | hexdump -C

connecting stream socket: Connection refused

2.2 server.cpp

Implement a transactional TCP server program:

• Usage: server [-l listener-port]

– listener-port: The port number to which the server must listen. By default, the port number
should be zero (wildcard/ephemeral.) Don’t forget to use htons() on the integer port number
from the command line when building the sockaddr_in used by bind!

• Enter an infinite loop that will:

Copyright © 2021, 2022 John Winans. All Rights Reserved
~/NIU/courses/463/2022-fa/assignments/a7/handout.tex

jwinans@niu.edu 2022-11-19 09:25:12 -0600 v2.1-106-ga3341c4c

Page 2 of 5

CSCI 463 Assignment 7 – IPC

– accept() a connection from a client.

– Print an “Accepted connection” message displaying the IPv4 address and port of the peer client
socket. Use inet_ntop() to format the client’s IPv4 address from the sockaddr_in that is filled
in by accept().

Don’t forget to use ntohs() on the port number before printing it out!

– Read all the bytes sent from the client while adding them to a uint16_t variable to accumulate
the checksum of each byte that is received.

– When an EOF is encountered from the client socket, write the response message formatted like
this: Sum: 123 Len: 456\n. Note that the message from the server includes the carriage return
(shown as \n above) that the client will ultimately write to its stdout.

The server application must be serially reusable such that after a connection has been closed, regardless of
reason, the server will accept another TCP connection for another transaction.

Unless there is an error during initialization, the only way the server should terminate is if a user presses ^C
to kill the process from the command-line terminal from which it was started.

Input

The server application will read its input from the socket.

The individual bytes in the input byte-stream will be counted and summed. The byte count must be stored in
a uint32_t variable and the sum into a uint16_t. The individual bytes that are received by the server must
each be saved/treated as uint8_t in order for the compiler to properly zero-extend them while summing
them. This is necessary so that any overflows involved with the summing and/or counting will match that
of the reference implementation!

Observe that if one were to create a file containing exactly 256 bytes containing the values from 0x00 through
0xff then the unsigned decimal sum would be 128*255 = 32640. Consider creating such a test file (or use
the testsx.in file from Assignment 3) as a development/debugging test case.

Output

The server application will display the IP number and port that it is listening on on stdout.

The response message from the server must not include a trailing null-terminating character. (See the
hexdump -C client sample output above.)

Any error messages must be written/printed to stderr by using std::cerr or by calling the standard library
perror() function.

Do not use printf() or fprintf() in this application.

Your program will be tested with a combination of the command-line arguments and will be diff’d against
the output from a reference implementation.

Here are some example test-run cases:

winans@hopper:~$./server -l 9965

Socket has port #9965

Accepted connection from ’127.0.0.1’, port 38998

Ending connection

Accepted connection from ’127.0.0.1’, port 39002

Ending connection

Accepted connection from ’127.0.0.1’, port 39004

Copyright © 2021, 2022 John Winans. All Rights Reserved
~/NIU/courses/463/2022-fa/assignments/a7/handout.tex

jwinans@niu.edu 2022-11-19 09:25:12 -0600 v2.1-106-ga3341c4c

Page 3 of 5

CSCI 463 Assignment 7 – IPC

Ending connection

^C

winans@hopper:~$./server -l 6

binding stream socket: Permission denied

winans@hopper:~$

Note: Since the client uses an ephemeral port, the port numbers printed above that the client uses will vary.

3 How To Hand In Your Program

When you are ready to turn in your assignment, make sure that the only files in your a7 directory is/are
the source files defined and discussed above. Then, in the parent of your a7 directory, use the mailprog.463
command to send the contents of the files in your a7 project directory in the same manner as we have used
in the past.

4 Grading

The grade you receive on this programming assignment will be scored according to the syllabus and its
ability to compile and execute on the Computer Science Department’s computer.

It is your responsibility to test your program thoroughly.

When we grade your assignment, we will compile it on hopper.cs.niu.edu using these exact commands:

g++ -g -Wall -Werror -std=c++14 client.cpp -o client

g++ -g -Wall -Werror -std=c++14 server.cpp -o server

To receive full credit the hexdump -C output from your client app showing the length and checksum values
must exactly match that of the reference implementation. The examples above were executed using some of
the binary files from assignment 5.

5 Hints

• Watch the course lectures on IPC using TCP.

• You can read raw bytes into a character array buffer from stdin in a manner very much like you read
from a socket’s file-descriptor, like this:

char buf[2048];

ssize_t len = read(fileno(stdin), buf, sizeof(buf));

• You can write raw bytes to stdout from a character array buffer in a manner very much like you write
to a socket’s file-descriptor, like this:

ssize_t len = write(fileno(stdout), buf, buf_len);

Keep in mind that the number of bytes written may be less than the number requested in the buf_len

argument above.

• Implement and use a safe_write() function, as discussed in lecture, in both your client and server
applications.

Copyright © 2021, 2022 John Winans. All Rights Reserved
~/NIU/courses/463/2022-fa/assignments/a7/handout.tex

jwinans@niu.edu 2022-11-19 09:25:12 -0600 v2.1-106-ga3341c4c

Page 4 of 5

CSCI 463 Assignment 7 – IPC

• Don’t forget to ignore broken pipes in your server so that a rogue client won’t crash it. (See lecture
for details.)

• Note that one can format a printable string using a std::ostringstream (as seen in Assignments 4
and 5) and then extract a C string from it like this:

std::ostringstream os;

os << ...

std::string str = os.str();

const char *ch = str.c_str();

• Note that the method used to calculate a checksum for this assignment is not typical. If you search
the internet for calculating checksums, it is very unlikely that you will find one that you can cut &
paste into this this assignment. Implement your logic precisely as described in the server input section
above.

• Only one application can listen on any given port at one time. Plus, the operating system may require
that a period of time to pass after an application closes a port before it can use it again!

Therefore, you may encounter a situation where your server cannot bind to a particular address. Should
this happen, try using another port.

• Port numbers that are less than 1024 are reserved. You can not expect to bind to them. However, they
would make good test cases to verify that your error handing for bind failures is working properly.

For example:

winans@hopper:~$./server -l 5

binding stream socket: Permission denied

• You can see what ports are currently in use with the netstat command. The numbers following the
IPv4 numbers in the column labeled “Local Address” are the port numbers. For example, the first
line shows that something is listening for connections on port 9102. The second line shows something
listening on port 111. . . (At the time this was written, the process listening on port 9965 is the server
reference implementation.)

winans@hopper:~$ netstat -ant4

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 10.158.56.24:9102 0.0.0.0:* LISTEN

tcp 0 0 0.0.0.0:111 0.0.0.0:* LISTEN

tcp 0 0 0.0.0.0:44881 0.0.0.0:* LISTEN

tcp 0 0 0.0.0.0:9965 0.0.0.0:* LISTEN

tcp 0 0 0.0.0.0:661 0.0.0.0:* LISTEN

tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN

tcp 0 0 0.0.0.0:25 0.0.0.0:* LISTEN

tcp 0 0 0.0.0.0:2049 0.0.0.0:* LISTEN

tcp 0 0 0.0.0.0:900 0.0.0.0:* LISTEN

tcp 0 0 192.168.8.11:53556 192.168.8.1:636 ESTABLISHED

tcp 0 0 192.168.8.11:816 192.168.8.10:2049 ESTABLISHED

tcp 0 0 192.168.8.11:2049 192.168.8.10:790 ESTABLISHED

...

Keep in mind that willful and malicious interference with other applications running on University
servers may be considered grounds for academic disciplinary action. Play nice.

Copyright © 2021, 2022 John Winans. All Rights Reserved
~/NIU/courses/463/2022-fa/assignments/a7/handout.tex

jwinans@niu.edu 2022-11-19 09:25:12 -0600 v2.1-106-ga3341c4c

Page 5 of 5

	Problem Description
	Files You Must Write
	client.cpp
	Input
	Output

	server.cpp
	Input
	Output

	How To Hand In Your Program
	Grading
	Hints

