
CSCI 463 Assignment 6 – C++ Multithreading

10 Points

Abstract

In this assignment, you will implement a C++ multithreaded application that will sum the elements
of a 2-dimensional matrix using either static or dynamic load balancing. Dynamic load balancing will
demonstrate the use of a mutex lock in the critical section of code that selects the next row (work) for
each thread to process. Static load balancing will demonstrate that when a workload only contains items
requiring uniform time to process, some advance planning can, in the best of cases, eliminate the need
to create critical sections of code in the first place (thus simplifying a solution.)

1 Problem Description

Sum the contents of a 2D matrix in a multithreaded application that uses static or dynamic load balancing
based on a command-line argument.

2 Files You Must Write

You will write a C++ program suitable for execution on hopper.cs.niu.edu (or turing.cs.niu.edu.)

Your source file MUST be named exactly as shown below or it will fail to compile and you will receive zero
points for this assignment.

Create a directory named a6 and place within it the following file:

• reduce.cpp Your entire application is implemented in this file.

2.1 reduce.cpp

• To keep this assignment simple, create these (and only these) global variables for use by the threads
in the application:

1 constexpr int rows = 1000; ///< the number of rows in the work matrix

2 constexpr int cols = 100; ///< the number of cols in the work matrix

3

4 std::mutex stdout_lock; ///< for serializing access to stdout

5

6 std::mutex counter_lock; ///< for dynamic balancing only

7 volatile int counter = rows; ///< for dynamic balancing only

8

9 std::vector <int > tcount; ///< count of rows summed for each thread

10 std::vector <uint64_t > sum; ///< the calculated sum from each thread

11

12 int work[rows][cols]; ///< the matrix to be summed

• void sum_static(int tid, int num_threads)

Implement the logic needed to sum the rows of the matrix using static load balancing to determine
which rows will be processed by each thread.

Use the thread ID (passed in from main()) to determine the first row for each thread and then advance
the row number by num_threads to determine the next row to process.

Copyright © 2021 John Winans. All Rights Reserved
/home3/projects/niu/NIU/courses/463/2022-fa/assignments/a6/handout.tex

jwinans@niu.edu 2022-08-18 14:53:29 -0500 v2.1-dirty

Page 1 of 4

CSCI 463 Assignment 6 – C++ Multithreading

• void sum_dynamic(int tid)

Implement the logic needed to sum the rows of the matrix using dynamic load balancing to determine
which rows will be processed by each thread.

Each thread must use a mutex lock to access the global (and volatile) counter variable in the critical
section to determine the next row to process. Do not hold the lock for any more of the thread logic
than is absolutely necessary!

• int main(int argc, char **argv)

Provide a main() function so that it accepts the command-line parameters (and reflect them in a
proper Usage statement) as discussed below. See the on-line manual for getopt(3) for details on how
to use it to parse command-line arguments.

The command-line arguments you must provide are:

– [-d] Use dynamic load-balancing. (By default, use static load balancing.)

– [-t num] Specifies the number of threads to use. (By default, start two threads.) Use:

std::thread::hardware_concurrency()

to determine the number of cores in the system. DO NOT start more threads than the system
has cores!

If any command-line arguments are invalid then print appropriate error and/or Usage messages and
terminate the program in the traditional manner. (See https://en.wikipedia.org/wiki/Usage_

message.)

3 Input

This program has no input.

Initialize the data in the global work matrix using the rand() function from the standard C library. See
rand(3) for more information.

Note that rand() will always generate the same values, in the same order, if it is seeded to the same initial
value. (Note that it is possible that rand() could work differently on different systems. The numbers shown
below are those you will see when running on hopper.)

Seed your random number generator like this:

srand(0x1234);

You must initialize work matrix in the same order as the reference key to get the same output! Specifically,
you must initialize your matrix from left to right, top-down, starting from the top. That is, set all the
columns for row 0, then row 1,. . .

4 Output

Your program will be tested with a combination of the command-line arguments and will be diff’d against
the output from a reference implementation.

Note that due to the varying load on the machine, your threads may start and complete in a different order
than the reference output below. Your dynamic load balancing may differ in the number of rows summed by
each thread between runs of your program as shown below. However, the sums of your static threads and
the gross sum value in all cases must match the reference output to be considered correct.

Copyright © 2021 John Winans. All Rights Reserved
/home3/projects/niu/NIU/courses/463/2022-fa/assignments/a6/handout.tex

jwinans@niu.edu 2022-08-18 14:53:29 -0500 v2.1-dirty

Page 2 of 4

https://en.wikipedia.org/wiki/Usage_message
https://en.wikipedia.org/wiki/Usage_message

CSCI 463 Assignment 6 – C++ Multithreading

1 winans@hopper :~$./ reduce

2 8 concurrent threads supported.

3 Thread 0 starting

4 Thread 1 starting

5 Thread 1 ending tcount =500 sum =53670497890830

6 Thread 0 ending tcount =500 sum =53678649666216

7 main() exiting , total_work =1000 gross_sum =107349147557046

8 winans@hopper :~$./ reduce -d

9 8 concurrent threads supported.

10 Thread 0 starting

11 Thread 1 starting

12 Thread 1 ending tcount =528 sum =56512359755886

13 Thread 0 ending tcount =472 sum =50836787801160

14 main() exiting , total_work =1000 gross_sum =107349147557046

15 winans@hopper :~$./ reduce -d

16 8 concurrent threads supported.

17 Thread 0 starting

18 Thread 1 starting

19 Thread 1 ending tcount =545 sum =58565707641474

20 Thread 0 ending tcount =455 sum =48783439915572

21 main() exiting , total_work =1000 gross_sum =107349147557046

22 winans@hopper :~$./ reduce -d -t942

23 8 concurrent threads supported.

24 Thread 0 starting

25 Thread 1 starting

26 Thread 2 starting

27 Thread 3 starting

28 Thread 5 starting

29 Thread 7 starting

30 Thread 4 starting

31 Thread 6 starting

32 Thread 4 ending tcount =88 sum =9457033734061

33 Thread 1 ending tcount =175 sum =18832858281021

34 Thread 6 ending tcount =54 sum =5779547738442

35 Thread 2 ending tcount =125 sum =13292384416291

36 Thread 0 ending tcount =224 sum =24120680043779

37 Thread 3 ending tcount =109 sum =11701029247359

38 Thread 7 ending tcount =110 sum =11811841106533

39 Thread 5 ending tcount =115 sum =12353772989560

40 main() exiting , total_work =1000 gross_sum =107349147557046

41 winans@hopper :~$./ reduce -t3

42 8 concurrent threads supported.

43 Thread 0 starting

44 Thread 1 starting

45 Thread 2 starting

46 Thread 1 ending tcount =333 sum =35774388649170

47 Thread 0 ending tcount =334 sum =35960930241047

48 Thread 2 ending tcount =333 sum =35613828666829

49 main() exiting , total_work =1000 gross_sum =107349147557046

5 How To Hand In Your Program

When you are ready to turn in your assignment, make sure that the only files in your a6 directory is/are
the source files defined and discussed above. Then, in the parent of your a6 directory, use the mailprog.463
command to send the contents of the files in your a6 project directory in the same manner as we have used
in the past.

6 Grading

The grade you receive on this programming assignment will be scored according to the syllabus and its
ability to compile and execute on the Computer Science Department’s computer.

Copyright © 2021 John Winans. All Rights Reserved
/home3/projects/niu/NIU/courses/463/2022-fa/assignments/a6/handout.tex

jwinans@niu.edu 2022-08-18 14:53:29 -0500 v2.1-dirty

Page 3 of 4

CSCI 463 Assignment 6 – C++ Multithreading

It is your responsibility to test your program thoroughly.

When we grade your assignment, we will compile it on hopper.cs.niu.edu using these exact commands:

g++ -g -ansi -pedantic -Wall -Werror -std=c++14 reduce.cpp -pthread -o reduce

Copyright © 2021 John Winans. All Rights Reserved
/home3/projects/niu/NIU/courses/463/2022-fa/assignments/a6/handout.tex

jwinans@niu.edu 2022-08-18 14:53:29 -0500 v2.1-dirty

Page 4 of 4

	Problem Description
	Files You Must Write
	reduce.cpp

	Input
	Output
	How To Hand In Your Program
	Grading

