
CSCI 463 Assignment 3 – Memory Simulator

20 Points

Abstract

In this assignment, you will write a C++ program to simulate a computer system memory. This
is the first of a multi-part assignment concluding with a simple computing machine capable of
executing real programs compiled with g++. The purpose is to gain an understanding of a
machine, its instruction set and how its features are used by realistic programs written in
C/C++.

1 Problem Description

To simulate a computer system’s memory, create a class to represent a memory whose size is defined
at run-time via command-line argument.

Your memory class will include utility member functions to load it by reading a binary file, print
its contents with a hex dump, a method to determine if a given address is legal, and methods that
allow a caller to read or write 8, 16 and 32-bit values from (or to) any legal address.

Your program will accept parameters from the command line, read data from a file and print all
of its non-error output to standard out (aka stdout) via std::cout and usage or file loading error
messages to standard error (aka stderr) via std::cerr. (No other output may be printed to stderr.
Note that check_illegal() warnings are neither simulator nor user errors and therefore they must
be written to stdout.)

2 Files You Must Write

You will write a C++ program suitable for execution on hopper.cs.niu.edu (or turing.cs.niu.edu.)

Your source files MUST be named exactly as shown below or they will fail to compile and you will
receive zero points for this assignment.

Create a project directory for this assignment and place within it the source files defined below.

main.cpp Your main() and usage() function definitions will go here.

hex.h The declarations of your hex formatting class will go here.

hex.cpp The definitions of your hex class member functions will go here.

memory.h The definition of your memory class will go here.

memory.cpp The memory class member function definitions will go here.

2.1 main.cpp

You will be provided the code for a suitable main() function for this assignment.

Copyright © 2020,2021,2022 John Winans. All Rights Reserved
/home3/projects/niu/NIU/courses/463/2022-fa/assignments/a3/handout.tex

jwinans@niu.edu 2022-08-18 14:53:29 -0500 v2.1-dirty

Page 1 of 9

CSCI 463 Assignment 3 – Memory Simulator

Do not alter the code it as its output must match the reference key or else your output will be
graded as wrong.

You must add Doxygen comments where appropriate.

The provided usage() function prints an appropriate “Usage” error message and “Pattern” to
stderr and terminates the program in the traditional manner as discussed here:

https://en.wikipedia.org/wiki/Usage_message

usage() Function

1 static void usage ()

2 {

3 cerr << "Usage: rv32i [-m hex -mem -size] infile" << endl;

4 cerr << " -m specify memory size (default = 0x100)" << endl;

5 exit (1);

6 }

main() Function

1 int main(int argc , char **argv)

2 {

3 uint32_t memory_limit = 0x100; // default memory size is 0x100

4
5 int opt;

6 while ((opt = getopt(argc , argv , "m:")) != -1)

7 {

8 switch(opt)

9 {

10 case ’m’:

11 {

12 std:: istringstream iss(optarg);

13 iss >> std::hex >> memory_limit;

14 }

15 break;

16 default:

17 usage ();

18 }

19 }

20
21 if (optind >= argc)

22 usage (); // missing filename

23
24 memory mem(memory_limit);

25 mem.dump ();

26
27 if (!mem.load_file(argv[optind]))

28 usage ();

29
30 mem.dump ();

31
32 cout << mem.get_size () << endl;

33 cout << hex:: to_hex32(mem.get8 (0)) << endl;

34 cout << hex:: to_hex32(mem.get16 (0)) << endl;

35 cout << hex:: to_hex32(mem.get32 (0)) << endl;

36 cout << hex:: to_hex0x32(mem.get8 (0)) << endl;

37 cout << hex:: to_hex0x32(mem.get16 (0)) << endl;

38 cout << hex:: to_hex0x32(mem.get32 (0)) << endl;

Copyright © 2020,2021,2022 John Winans. All Rights Reserved
/home3/projects/niu/NIU/courses/463/2022-fa/assignments/a3/handout.tex

jwinans@niu.edu 2022-08-18 14:53:29 -0500 v2.1-dirty

Page 2 of 9

https://en.wikipedia.org/wiki/Usage_message

CSCI 463 Assignment 3 – Memory Simulator

39 cout << hex:: to_hex8(mem.get8 (0)) << endl;

40 cout << hex:: to_hex8(mem.get16 (0)) << endl;

41 cout << hex:: to_hex8(mem.get32 (0)) << endl;

42 cout << hex:: to_hex0x32(mem.get32 (0x1000)) << endl;

43
44 mem.set8(0x10 , 0x12);

45 mem.set16(0x14 , 0x1234);

46 mem.set32(0x18 , 0x87654321);

47
48 cout << hex:: to_hex0x32(mem.get8_sx (0x0f)) << endl;

49 cout << hex:: to_hex0x32(mem.get8_sx (0x7f)) << endl;

50 cout << hex:: to_hex0x32(mem.get8_sx (0x80)) << endl;

51 cout << hex:: to_hex0x32(mem.get8_sx (0xe3)) << endl;

52 cout << hex:: to_hex0x32(mem.get16_sx (0xe0)) << endl;

53 cout << hex:: to_hex0x32(mem.get32_sx (0xe0)) << endl;

54
55 mem.dump ();

56 return 0;

57 }

2.2 hex.h and hex.cpp

These files will contain a class with some utility functions for formatting numbers as hex strings
for printing.

Your hex.h file must contain the following class plus header guards and appropriate Doxygen
comments:

hex.h

1 class hex

2 {

3 public:

4 static std:: string to_hex8(uint8_t i);

5 static std:: string to_hex32(uint32_t i);

6 static std:: string to_hex0x32(uint32_t i);

7 };

Your hex.cpp file must contain the implementation of the three method functions.

An observation: This class is to be used for simplifying the application. Your code must use it
to format a hex value any time it needs to do so. Therefore the std::hex I/O manipulator must
never appear in any file other than hex.cpp (and in main() when reading the command-line args.)

• std::string to_hex8(uint8_t i);

This function must return a std::string with exactly 2 hex digits representing the 8 bits of
the i argument.

The following code snipit is one way to format an 8-bit integer into a 2-character hex string
with a leading zero:

std::string hex::to_hex8(uint8_t i)

{

std::ostringstream os;

os << std::hex << std::setfill(’0’) << std::setw(2) << static_cast<uint16_t>(i);

return os.str();

}

Copyright © 2020,2021,2022 John Winans. All Rights Reserved
/home3/projects/niu/NIU/courses/463/2022-fa/assignments/a3/handout.tex

jwinans@niu.edu 2022-08-18 14:53:29 -0500 v2.1-dirty

Page 3 of 9

CSCI 463 Assignment 3 – Memory Simulator

Note that the static_cast is necessary here to prevent the insertion operator (<<) from
treating the 8-bit integer as a character and printing it incorrectly. (The printing of other
integer sizes does not have this problem and therefore can be printed without such a cast.)

• std::string to_hex32(uint32_t i);

This function must return a std::string with 8 hex digits representing the 32 bits of the i

argument.

• std::string to_hex0x32(uint32_t i);

This function must return a std::string beginning with 0x, followed by the 8 hex digits
representing the 32 bits of the i argument. It must be implemented by creating a string by
concatenating a 0x to the output of to_hex32() like this:

return std::string("0x")+to_hex32(i);

2.3 memory.h and memory.cpp

Your memory.h file must include the following class definition plus header guards and appropriate
Doxygen comments.

Note that failure to implement this design accurately will cause significant problems with future
assignments that you will implement by extending this one!

class memory

1 class memory : public hex

2 {

3 public:

4 memory(uint32_t s);

5 ~memory ();

6
7 bool check_illegal(uint32_t addr) const;

8 uint32_t get_size () const;

9 uint8_t get8(uint32_t addr) const;

10 uint16_t get16(uint32_t addr) const;

11 uint32_t get32(uint32_t addr) const;

12
13 int32_t get8_sx(uint32_t addr) const;

14 int32_t get16_sx(uint32_t addr) const;

15 int32_t get32_sx(uint32_t addr) const;

16
17 void set8(uint32_t addr , uint8_t val);

18 void set16(uint32_t addr , uint16_t val);

19 void set32(uint32_t addr , uint32_t val);

20
21 void dump() const;

22
23 bool load_file(const std:: string &fname);

24
25 private:

26 std::vector <uint8_t > mem;

27 };

You should feel free to inline any methods where you think it is appropriate.

Copyright © 2020,2021,2022 John Winans. All Rights Reserved
/home3/projects/niu/NIU/courses/463/2022-fa/assignments/a3/handout.tex

jwinans@niu.edu 2022-08-18 14:53:29 -0500 v2.1-dirty

Page 4 of 9

CSCI 463 Assignment 3 – Memory Simulator

• memory(uint32_t siz);

Allocate siz bytes in the mem vector and initialize every byte/element to 0xa5.

Implement the following rounding logic (before allocating the siz elements) to make the job
of formatting and aligning your last line of output in your dump() method much, much easier:

siz = (siz+15)&0xfffffff0; // round the length up, mod-16

Note that initializing the mem vector can then be done immediately after rounding up siz by
calling the resize(count, value) method on the mem vector. See: std::vector::resize.

• ~memory();

In the destructor clean up anything necessary.

• bool check_illegal(uint32_t i) const;

Return true if the given address i does not represent an element that is present in the mem

vector. (ie. Is there actually a byte at the given address or not?)

If the given address is not within the range of valid addresses of the simulated memory then
print a warning message to stdout formatted as shown below:

WARNING: Address out of range: 0x00001000

and return true.

Obviously, formatting this warning message will involve using your hex::to_hex0x32() func-
tion.

• uint32_t get_size() const;

Return the (rounded up) number of bytes in the simulated memory.

• uint8_t get8(uint32_t addr) const;

Check to see if the given addr is in your mem by calling check_illegal(). If addr is in
the valid range then return the value of the byte from your simulated memory at the given
address. If addr is not in the valid range then return zero to the caller.

Note that this is the only code that will ever read values from the mem vector.

• uint16_t get16(uint32_t addr) const;

This function must call your get8() function twice to get two bytes and then combine them
in little-endian1 order to create a 16-bit return value. Because you are using your get8()

function, the job of validating the addresses of the two bytes will be taken care of there. Do
not redundantly check the validity in this function.

• uint32_t get32(uint32_t addr) const;

This function must call get16() function twice and combine the results in little-endian order
similar to the implementation of get16().

1See RVALP and/or Wikipedia for a discussion of little-endian order.

Copyright © 2020,2021,2022 John Winans. All Rights Reserved
/home3/projects/niu/NIU/courses/463/2022-fa/assignments/a3/handout.tex

jwinans@niu.edu 2022-08-18 14:53:29 -0500 v2.1-dirty

Page 5 of 9

https://en.cppreference.com/w/cpp/container/vector/resize
https://github.com/johnwinans/rvalp
https://en.wikipedia.org/wiki/Endianness

CSCI 463 Assignment 3 – Memory Simulator

• int32_t get8_sx(uint32_t addr) const;

This function will call get8() and then return the sign-extended value of the byte as a 32-bit
signed integer.

• int32_t get16_sx(uint32_t addr) const;

This function will call get16() and then return the sign-extended value of the 16-bit value
as a 32-bit signed integer.

• int32_t get32_sx(uint32_t addr) const;

This function will call get32() and then return the value as a 32-bit signed integer.

Hint: Do it like this: return get32(addr);

• void set8(uint32_t addr, uint8_t val);

This function will call check_illegal() to verify the addr argument is valid. If addr is valid
then set the byte in the simulated memory at that address to the given val. If addr is not
valid then discard the data and return to the caller.

Note that this, and the constructor, are the only code that will ever write values into the mem

vector.

• void set16(uint32_t addr, uint16_t val);

This function will call set8() twice to store the given val in little-endian order into the
simulated memory starting at the address given in the addr argument.

• void set32(uint32_t addr, uint32_t val);

This function will call set16() twice to store the given val in little-endian order into the
simulated memory starting at the address given in the addr argument.

• void dump() const;

Dump the entire contents of your simulated memory in hex with the corresponding ASCII2

characters on the right exactly, space-for-space in the format shown in the output section
below.

In order to format the ASCII part of the dump lines, fetch a byte from the memory and then
use isprint(3) to determine if you are to show an ASCII character or a dot (.) when the
byte does not have a valid printable value:

uint8_t ch = get8(i);

ch = isprint(ch) ? ch : ’.’;

This code fragment will leave the character to be printed in the ASCII portion of the dump
in the ch variable. The isprint() function is a standard C library function you can read
about in the on line manual or google it.

• bool load_file(const std::string &fname);

Open the file named fname in binary mode and read its contents into your simulated memory.
You may open a file in binary mode like this:

2See RVALP and/or Wikipedia for a discussion of the ASCII character set.

Copyright © 2020,2021,2022 John Winans. All Rights Reserved
/home3/projects/niu/NIU/courses/463/2022-fa/assignments/a3/handout.tex

jwinans@niu.edu 2022-08-18 14:53:29 -0500 v2.1-dirty

Page 6 of 9

https://github.com/johnwinans/rvalp
https://en.wikipedia.org/wiki/ASCII

CSCI 463 Assignment 3 – Memory Simulator

std::ifstream infile(fname, std::ios::in|std::ios::binary);

If the file can not be opened, then print a suitable message to stderr including the name of
the file and return false:

Can’t open file ’testdata’ for reading.

You must make certain that the file can fit into your memory! One simple way to do that is
to read the file one byte at-a-time and check the byte address before you write to it by calling
check_illegal(). If the address is valid, keep going. If the address is not valid, then print
the following message to stderr, close the file, and return false:

Program too big.

If the file loads OK then close the file and return true.

In order to read the file contents with the extraction operator (>>), you will want to set
noskipws before reading from it like this:3

uint8_t i;

infile >> std::noskipws;

for (uint32_t addr = 0; infile >> i; ++addr)

{

...

}

• std::vector<uint8_t> mem;

A vector of bytes representing the simulated memory. Initialize it with the given size in your
constructor.

The element at mem[0] represents the byte in the simulated memory at address zero. The
element at mem[1] represents the byte in the simulated memory at address one and so on.

The legal memory addresses are those that have elements present in the mem vector.

3 Input

Your program will accept an optional memory-size argument and a filename on the command line
as shown in the main() code snipit above.

The Usage statement for this application is:

memsim [-m hex-mem-size] filename

The optional -m argument is a hex number representing the amount of memory to simulate. When
not present, the default size must be 0x100.

The last argument is the name of a file to load into the simulated memory.

Some test files may be provided for you. It is your responsibility to create your own test files as
you see fit to verify the proper operation of your code.

It should go without saying that you should try loading files with sizes that are less than, exactly
equal to, and greater than the number of simulated memory bytes.

3See https://en.cppreference.com/w/cpp/io/manip/skipws for more information.

Copyright © 2020,2021,2022 John Winans. All Rights Reserved
/home3/projects/niu/NIU/courses/463/2022-fa/assignments/a3/handout.tex

jwinans@niu.edu 2022-08-18 14:53:29 -0500 v2.1-dirty

Page 7 of 9

https://en.cppreference.com/w/cpp/io/manip/skipws

CSCI 463 Assignment 3 – Memory Simulator

4 Output

Your program’s output will be a dump of the simulated memory after it has been constructed then
again after it has been loaded. Then and some lines of output from the test calls to the setX(),
getX() and to_hexX() functions and another dump to know that the setX() functions are working
properly.

For example if your program is executed like this with a file that contains “hello world 1 2 3 4” on
a line by itself then:

./memsim -m 2e hello.in

will display the following output:

Sample Run

1 00000000: a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 *................*

2 00000010: a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 *................*

3 00000020: a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 *................*

4 00000000: 68 65 6c 6c 6f 20 77 6f 72 6c 64 20 31 20 32 20 *hello world 1 2 *

5 00000010: 33 20 34 0a a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 *3 4.............*

6 00000020: a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 *................*

7 48

8 00000068

9 00006568

10 6c6c6568

11 0x00000068

12 0x00006568

13 0x6c6c6568

14 68

15 68

16 68

17 WARNING: Address out of range: 0x00001000

18 WARNING: Address out of range: 0x00001001

19 WARNING: Address out of range: 0x00001002

20 WARNING: Address out of range: 0x00001003

21 0x00000000

22 0x00000020

23 WARNING: Address out of range: 0x0000007f

24 0x00000000

25 WARNING: Address out of range: 0x00000080

26 0x00000000

27 WARNING: Address out of range: 0x000000e3

28 0x00000000

29 WARNING: Address out of range: 0x000000e0

30 WARNING: Address out of range: 0x000000e1

31 0x00000000

32 WARNING: Address out of range: 0x000000e0

33 WARNING: Address out of range: 0x000000e1

34 WARNING: Address out of range: 0x000000e2

35 WARNING: Address out of range: 0x000000e3

36 0x00000000

37 00000000: 68 65 6c 6c 6f 20 77 6f 72 6c 64 20 31 20 32 20 *hello world 1 2 *

38 00000010: 12 20 34 0a 34 12 a5 a5 21 43 65 87 a5 a5 a5 a5 *. 4.4...! Ce*

39 00000020: a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 *................*

Note that if you create a test file on Windows, then the byte whose value is 0x0a (the newline

Copyright © 2020,2021,2022 John Winans. All Rights Reserved
/home3/projects/niu/NIU/courses/463/2022-fa/assignments/a3/handout.tex

jwinans@niu.edu 2022-08-18 14:53:29 -0500 v2.1-dirty

Page 8 of 9

CSCI 463 Assignment 3 – Memory Simulator

character) might be different than shown above.4

Other examples may available on the course web site.

5 How To Hand In Your Program

When you are ready to turn in your assignment, make sure that the only files in your project
directory is/are the source files defined and discussed above. Then, in the parent of your project
directory, use the mailprog.463 command to send the contents of the files in your project directory
to your TA. For example, if your project directory is called memsim then run mailprog like this:

mailprog.463 memsim

6 Grading

The grade you receive on this programming assignment will scored according to the syllabus and
its ability to compile and execute on the Computer Science Department’s computer.

It is your responsibility to create your own test data files suitable for testing your program thoroughly.

When we grade your assignment, we will compile it on hopper.cs.niu.edu using these exact
commands:

Compiling Your Assignment

1 g++ -g -ansi -pedantic -Wall -Werror -Wextra -std=c++14 -c -o main.o main.cpp

2 g++ -g -ansi -pedantic -Wall -Werror -Wextra -std=c++14 -c -o memory.o memory.cpp

3 g++ -g -ansi -pedantic -Wall -Werror -Wextra -std=c++14 -c -o hex.o hex.cpp

4 g++ -g -ansi -pedantic -Wall -Werror -Wextra -std=c++14 -o memsim main.o memory.o hex.o

Your program will then be run multiple times using different memory sizes and test data files and
the output compared against a reference implementation of this assignment.

4Text files created on DOS/Windows machines have different line endings than files created on Unix/Linux. DOS
uses carriage return and line feed (“\r\n”) as a line ending, while Unix uses just a line feed (“\n”).

Copyright © 2020,2021,2022 John Winans. All Rights Reserved
/home3/projects/niu/NIU/courses/463/2022-fa/assignments/a3/handout.tex

jwinans@niu.edu 2022-08-18 14:53:29 -0500 v2.1-dirty

Page 9 of 9

	Problem Description
	Files You Must Write
	main.cpp
	hex.h and hex.cpp
	memory.h and memory.cpp

	Input
	Output
	How To Hand In Your Program
	Grading

