
Array-Based Stack Push Operation

Assume that we have the following lines of code:

Stack<int> stack1; // Line 1

stack1.push(5); // Line 2

stack1.push(8); // Line 3

stack1.push(3); // Line 4

stack1.push(6); // Line 5

stack1.push(2); // Line 6

The following sequence of diagrams shows how the Stack object and its associated dynamic

storage changes as these lines are executed.

Figure 1: The new, empty Stack object stack1 created in Line 1 of the code above. The stk_array pointer is

nullptr, while stk_size and stk_capacity are both 0.

Figure 2: The Stack object following the execution of Line 2. Since stkSize == stk_capacity, the push()

method will call the reserve() method to allocate a new dynamic array. Since the current stk_capacity is 0, the

capacity requested for the new array will be 1. The contents of the existing array (if any) are copied to the new array (in
this case, there's nothing to copy). The stk_capacity is updated to the capacity of the new array. The existing array

is then deleted (in this case, there's nothing to delete) and the stk_array pointer is set to point to the new array.

Finally, the value to insert is stored in the array at subscript stkSize (subscript 0) and then the stk_size is

incremented to 1.

stk_array

stk_capacity

stk_size

X

0

0

stack1

stk_array

stk_capacity

stk_size

1

1

5

stack1

Figure 3: The Stack object following the execution of Line 3. Since stk_size == stk_capacity, the push()

method will call the reserve() method to allocate a new dynamic array. Since the current stk_capacity is not 0,

the capacity requested for the new array will be 2 (two times the current capacity of 1). The contents of the existing
array are copied to the new array. The stk_capacity is updated to the capacity of the new array. The existing array

is then deleted and the stk_array pointer is set to point to the new array. Finally, the value to insert is stored in the

array at subscript stk_size (subscript 1) and then the stk_size is incremented to 2.

Figure 4: The Stack object following the execution of Line 4. Since stk_size == stk_capacity, the push()

method will call the reserve() method to allocate a new dynamic array. Since the current stk_capacity is not 0,

the capacity requested for the new array will be 4 (two times the current capacity of 2). The contents of the existing
array are copied to the new array. The stk_capacity is updated to the capacity of the new array. The existing array

is then deleted and the stk_array pointer is set to point to the new array. Finally, the value to insert is stored in the

array at subscript stk_size (subscript 2) and then the stk_size is incremented to 3.

Figure 5: The Stack object following the execution of Line 5. Since stk_size != stk_capacity, the push()

method does not call the reserve() method. The value to insert is simply stored in the array at subscript stk_size

(subscript 3) and then the stk_size is incremented to 4.

stk_array

stk_capacity

stk_size

2

2

5 8

stack1

stk_array

stk_capacity

stk_size

4

3

5 8 3

stack1

stk_array

stk_capacity

stk_size

4

4

5 8 3 6

stack1

Figure 6: The Stack object following the execution of Line 6. Since stk_size == stk_capacity, the push()

method will call the reserve() method to allocate a new dynamic array. Since the current stk_capacity is not 0,

the capacity requested for the new array will be 8 (two times the current capacity of 4). The contents of the existing
array are copied to the new array. The stk_capacity is updated to the capacity of the new array. The existing array

is then deleted and the stk_array pointer is set to point to the new array. Finally, the value to insert is stored in the

array at subscript stk_size (subscript 4) and then the stk_size is incremented to 5.

Array-Based Stack Pop Operation

Assume that we then add the following lines of code after the code listed above:

stack1.pop(); // Line 7

stack1.pop(); // Line 8

stack1.pop(); // Line 9

The following sequence of diagrams shows how the Stack object and its associated dynamic

storage changes as these lines are executed.

Figure 7: The Stack object following the execution of Line 7. The stk_size is decremented to 4. That means that

element 3 (the value 6) is now the top item in the stack, and element 4 (the value 2) is outside the boundaries of the
stack. Effectively, it has been removed from the stack even though the value is technically still present in the array.

stk_array

stk_capacity

stk_size

8

5

5 8 3 6 2

stack1

stk_array

stk_capacity

stk_size

8

4

5 8 3 6 2

stack1

Figure 8: The Stack object following the execution of Line 8. The stk_size is decremented to 3. That means that

element 2 (the value 3) is now the top item in the stack, and element 3 (the value 6) is now outside the boundaries of
the stack.

Figure 9: The Stack object following the execution of Line 9. The stk_size is decremented to 2. That means that

element 1 (the value 8) is now the top item in the stack, and element 2 (the value 3) is now outside the boundaries of
the stack.

Note that the pop() method (or at least the version outlined in the notes) does not change the

stack capacity.

The reserve() Method

The following sequence of diagrams illustrate how the reserve() method works.

1. When push() is called and the stk_size is equal to the stk_capacity (i.e., the

dynamic array is full, the reserve() method is called to allocate additional space to
accommodate the new array element.

stk_array

stk_capacity

stk_size

8

3

5 8 3 2

stack1

6

stk_array

stk_capacity

stk_size

8

2

5 8 3 6 2

stack1

stk_array

stk_capacity

stk_size

2

2

5 8

stack1

2. A temporary pointer (temp_array) is declared and used to allocate a new array with the

requested capacity (in this case, a capacity of 4 has been requested).

3. The contents of the existing array (if any) are copied into the new array.

4. The stack capacity is updated to reflect the capacity of the new array.

5. The existing array is deleted.

stk_array

stk_capacity

stk_size

2

2

5 8

stack1

 temp_array

stk_array

stk_capacity

stk_size

2

2

5 8

stack1

5 8 temp_array

stk_array

stk_capacity

stk_size

4

2

5 8

stack1

5 8 temp_array

stk_array

stk_capacity

stk_size

4

2

5 8

stack1

5 8 temp_array

6. The address of the new array is copied into the pointer stk_array.

7. When the reserve() method ends, the temporary pointer temp_array ceases to exist

(since it's a local variable).

The result is that the reserve() method has effectively increased the size of the stack array,
providing enough room for the push() method to insert a new value.

stk_array

stk_capacity

stk_size

4

2

stack1

5 8 temp_array

stk_array

stk_capacity

stk_size

4

2

stack1

5 8 temp_array

stk_array

stk_capacity

stk_size

4

2

stack1

5 8

stk_array

stk_capacity

stk_size

4

2

5 8

stack1

8. The push() method can now insert the new value into the array at subscript stk_size

and then increment stk_size.

stk_array

stk_capacity

stk_size

4

3

5 8 3

stack1

