CSCI 480 Spring, 2020
Assignment 4 -- Virtual Memory
(100 points)

In this assignment, we are simulating virtual memory on a very small hypothetical computer and looking at page replacement algorithms.
We are assuming:

--- that we have a process for which the address space is 5000 bytes long

--- that the page size is 200 bytes

--- that the process is allowed to use up to 15 frames, numbered 101-105, 201-

 205 and 301-305, in that order
We will maintain a page table. For each page, we list the number of the frame or -1 to indicate that this page is not in a frame. For each page we also need to have a "modified bit" = 0 if the frame contents have not been modified and = 1 if they have been modified. How large is the table? It should have
5000/200 = 25 entries.

As we process logical addresses, we will sometimes have a page fault. We may need to write a page out to the disk, and we will need to read a page in from the disk. (Your program does not have to do such disk I/O, but we need to bear in mind what would actually be happening in a real virtual memory system.) Print messages for either of these events, such as:

"Write page 17 from frame 6 to the disk"

or

"Read page 23 from the disk into frame 6".

We will also periodically print the contents of the page table (all 25 entries). You can print in 3 columns, as in:
 Page Number Frame Number Modified?

 0 101 No

 1 203 Yes

 2 -1

where the -1 indicates that page 3 is not at present in a frame (in which

case "Modified" is irrelevant.

--

Input File

Each line in the input file contains two items. One is a logical address, that is, an integer in the range 0 to 4999, and the other is one letter.

For instance, we might have:
2004 R

3126 W

Here 'R' indicates that this address is used for input only, and 'W' indicates

that this address is used for both input and output. If you find 'W', you will need to set a "modified" bit.
You can find the file on the web site.

These addresses are not by any means all the addresses our simulated process might use. Don't worry about that.

--

What to do

Write a program called Assign4 on the turing system to do all this.

The program should accept two command-line argument. The first is 'F' or 'L', where 'F' means that the First-In-First-Out page replacement algorithm should be used and 'L' means that the Least-Recently-Used algorithm should be used,
and the second is 'P' or 'D', where 'P' indicates that we will use pre-paging and 'D' indicates that we will use demand paging. This we might have

"Assign4 F D", for instance.

You may want to consult the course notes about these algorithms. For each of them, you may need a data structure: a queue for First-In-First-Out and a stack for Least-Recently-Used.

If we are using demand paging, you will also have to keep track of which frames are presently in use. (After a while, they should all be in use.)
You will need a struct or class to represent one entry in the page table.

It will need to store a frame number and a "modified" bit. The "modified" bit can be a boolean.
You should have a constant named something like HOWOFTEN with the value 5 to indicate how often to reprint the page table. That is, after each 5 logical addresses processed, reprint the table. You may want to experiment with other values of HOWOFTEN as you develop the program.

For each logical address, compute the page number and look in the page table.

If the page is in a frame and the address is to be used for both input and

output, set the modified bit for this page. If the page is not in a frame, we have a page fault. Using the appropriate algorithm, find a frame to reuse.
If the modified bit is set, print a message saying that a page is being written out to the disk, providing the page number. Next, print a message saying that a page is being read in from the disk, providing the page and frame numbers, and reset the modified bit for this page.
Count the input lines. After every 10 lines, print the contents of the page table. As you develop the program, you may want to reprint the table more often, but in the version you turn in, use 10.
Count the page faults. At the end of the run, print a message stating how many page faults occurred.

--
Comments

Copy the input file into your own directory.

Your program should be appropriately indented and well documented. You can find style guidelines on the web site of the CSCI 241 course.
You may need to invent functions for various purposes. Be sure to document them.

You may use the standard template libraries if you wish. There are classes
for queues and stacks.
As you work on this, you may find it useful to print out a great deal more information as you go along. If you do so, please ensure that the extra information is not printed by your final executable file.
You should have a makefile. The name of the executable file should be "Assign4".

When you are done, you need to submit your work on Blackboard. As in the other assignments, you should create a tar file containing the files involved. To do this, you need the "tar" utility.

Do the following (replacing "Znumber" with your own Z-ID):

(a) Create a subdirectory named Znumber_A4_dir.

(b) Copy the files into it (source code files, headers, input file and makefile).

(c) In the parent directory of Znumber_A4_dir, use this command:

 tar -cvf Znumber_A4.tar Znumber_A4_dir

Use an FTP program to retrieve the tar file and then submit it on Blackboard. The TA will move it to turing, extract the files and run your makefile, as in:

 tar -xvf Znumber_A4.tar

 cd Znumber_A4_dir

 make

 Assign4

If your makefile does not run (on the turing system) or your program does not compile and run (on the turing system), you will receive no credit.

2

