CSCI 480 Spring, 2020
Assignment 3 -- Microshell Simulation
(100 points)

In this assignment, you will implement a microshell in C/C++.

You will need to use several system calls under Linux including

fork(), dup(), waitpid() and execvp().
The name of the executable file should be "Assign3".
Your shell does the following:

--- Print a prompt "480shell:" and wait for input.

--- Read the input typed after the prompt.

--- Execute the command typed in after the prompt and print a new
 prompt.

--- The shell understands the commands "quit" and "q" as the special

 commands to exit.
--- The shell understands the command "about" which tells it to
 print a line saying something like "The 480shell is the work of

 Your Name, 2020.".
--- The shell understands a special symbol "<+", by which you can

 redirect standard input to read from a file. This symbol should
 be followed by one string, the name of a file.

 Please note that the standard Unix/Linux symbol for this is "<",

 which is different from what our microshell would understand.
--- The shell understands a special symbol ">+", by which you can

 redirect standard output to write to a file. This symbol should

 be followed by one string, the name of a file.

 Please note that the standard Unix/Linux symbol for this is ">",

 which is different from what our microshell would understand.
If you find more than one string after "<+" or ">+", this is an

Error and you should print an error message.

Please notice that we are redirecting input and output only from a file. No pipe is involved.

Input File
A text file is needed to produce the sample output. The file name is

"ourfile". Create a file containing 6 lines:
Computer Science Department

NIU

DeKalb

Illinois

USA

North America
Sample Output
turing%>Assign3
480shell:about

The 480shell is the work of Your Name, 2020.

480shell:sort <+ ourfile
Computer Science Department

DeKalb

Illinois

NIU

North America
USA

480shell:quit

turing%>Assign3
480shell:man cat >+ catdoc abc

Error! An extra filename was found.
480shell:ls >+ lsout
480shell:cat lsout

ourfile 480sh lsout
480shell:q

turing%>

Background Knowledge

1. You will need to use several system calls for process management
 such as fork(), exec() and dup(). You may need to read the Linux

 manual page to understand their usage.
 You will use fork() to create child processes and use dup() or
 dup2() to set up the redirection.

2. You may need strtok() to parse the command line for you. Read the

 manual page to understand this function. You can use other ways

 to parse the line too. (See below.)
3. When you use execvp(), you need to build an array of pointers to

 the arguments. The last element of the array should be
 (char *) NULL.
4. The parent process needs to call waitpid() to wait for the

 completion of the command.

Tackle the problem step by step:

--- Make sure that your shell is taking inputs correctly.
--- Next test the execution of commands without any I/O redirection
 involved.
--- Now you can go ahead and solve the I/O redirection problem.

--

Programming Hints

How do I find the library for a system call?

Check the manual page. For example: Do "man strtok". In the

synopsis, you will see:

 #include <strings.h>

If you are interested in the exact contents of the header file, you

can go to /usr/include and do "more strings.h".

How do I structure the program?
1. Read the input line.

2. Parse the input line into substrings.

3. If none of the substrings is "<+" or ">+", then

 A. The first argument to pass to execvp() will be the first
 substring.

 B. Create an array of the remaining substrings (if any) to

 pass as the second argument to pass to execvp().

 C. Use fork() to create a child process.

 D. In the parent, wait for the child to terminate.

 E. In the child, use execvp().

4. Else (we do have redirection)

 A. The first argument to pass to execvp() will be the first

 substring.

 B. Create an array of the remaining substrings before the

 redirection symbol (if any) to pass as the second argument to

 pass to execvp().

 C. Use fork() to create a child process.

 D. In the parent, wait for the child to terminate.

 E. In the child, open the file used in redirection

 appropriately for input or output.

 F. In the child, use close() and dup() to attach the file

 to standard input or standard output.

 G. In the child, use execvp().

After all this, of course, we reprint the prompt.

How do I parse the input string?

One approach is to use strtok() which can help you parse the

commands you get from input. There are other ways such as using

c++ string functions. If you choose to use strtok(), the syntax is

like:

 char *strtok(char *s1, const char *s2);

The following is extracted from the Unix manual page. See the manual for the full description:

It can be used to break the string pointed to by s1 into a sequence of tokens, each of which is delimited by one or more characters from the string pointed to by s2.

 The first call (with pointer s1 specified) returns a pointer to the first character of the first token, subsequent calls (which must be made with the first argument being a null pointer) will work through the string s1 immediately following that token. In this way subsequent calls will work through the string s1 until no tokens remain. When no token remains in s1, a null pointer is returned.

Example:

 Suppose string is "abcd efgh <+ ijk". Here "efgh" is a command-line parameter for the command "abcd" and "ijk" is the name of a file.
 number = 0;

 command[0] = strtok(string, " ");

 while((ptr = strtok(NULL, " ")) != NULL)

 {

 number++;

 command[number] = ptr;

 }

 Then:

command[0] = "abcd"

command[1] = "efgh"

command[2] = "<+"

command[3] = "ijk"

Another way to do this (in C++) is to use the istringstream class:

--- Create an instance of istringstream (I shall call it ISS)

--- Read the input line into ISS
--- Use the input operator to read the space-delimited substrings
from ISS, as in "ISS >> command[number]".

In any case, bear in mind that a command can have more than one command-line parameter.
How do I do error handling?

You need to check the return value of a system call. If the return value of -1 indicates an error, you should have code that handles it. The simplest way to handle is to print out some error message and then exit the program with a negative value.

Requirements

The program should:

--- work according to the specifications
--- be comprehensible and well documented
--- check the return value of the system calls and have proper error

 handling

Submission

Submission requirement is the same as in the 1st assignment. Note that the directory must be called: "z1234567_A3_dir", all in

lowercase. Important steps are repeated below:

You will submit a compressed file through Blackboard under

"Assignments" as usual.

The compressed file contains your source code and a Makefile. It

should be named as "your-zid_A3.tar" and must be created

following the procedure described below:

1.
Put all your source code files (NO OBJECT or EXECUTABLE FILES) and your Makefile in a directory called "your-zid_A3_dir".

Example: z1234567_A3_dir. Note: 'z' must be in lower case.

In your Makefile, you need to make sure your compilation produces

the executable file called "your-zid_A3". For a student with

z1234567 as her zid, the executable would be z1234567_A3.

2.
In the parent directory of your-zid_A3_dir, compress this

whole subdirectory by the following command:
 tar -cvf your-zid_A3.tar your-zid_A3_dir

Example:

tar -cvf z1234567_A3.tar z1234567_A3_dir

"your-zid_A3.tar" is now the compressed file containing the

whole subdirectory of your files. You can then transfer (e.g. using a

secure ftp client) the tar file from turing to a computer on which you can open a web browser for your final submission to the

Blackboard system.
