CSCI 480 Spring, 2020
Assignment 2 -- Process Communication
(100 points)

This assignment involves using the LINUX system function pipe() as well as fork().

We will have three processes which communicate with each other using pipes. The three processes will be parent, child and grandchild.

Their communication will run in a ring like this:

 Pipe A Pipe B

 <-- Parent <---------- Child <---------- Grandchild <----
 | |
 --------------->------------->-------------->------------
 Pipe C
Each process will read a number (in character format) from a pipe, convert it to an integer, do a bit of arithmetic, convert the result to character format (a string) and write it into the other pipe for the next process to read.

Write a program on the turing system using C or C++ to implement this.
The following description assumes that the strings involved are C-style strings (character arrays ending in \0). It should also be possible to do this using the C++ string class. If you wish to do so, see the notes below.

Main program
1. Declare three pipe variables (which I will call Pipe A, Pipe B and

 Pipe C). Each is an array of two integers.

2. Call the pipe() function once for each pipe variable.

3. If any use of pipe() fails (returning -1), print an error
 message (such as "pipe #1 error") and exit with a status of -5.

4. Call the fork() function twice to create the three processes:
 once in the parent and then again in the child. Do not create

 more than 3 processes.
 If fork() fails (returning -1), print an error message (such as

 "fork #2 error") and exit with a status of -5.

5. At this point we have three processes, parent, child and

 grandchild. Each of these should call a function to do the rest

 of its work. We can call these PWork() for the parent, CWork()

 for the child and GWork() for the grandchild.
 Before calling its function, each process should close the ends of
 the pipes it will not use. (The parent reads from Pipe A and
 writes to Pipe C so it should close the write end of Pipe A and
 the read end of Pipe C, and both ends of Pipe B.)

 After that, and before calling its function, each process should

 print a message identifying itself and stating that it is ready to

 proceed.

 When the functions end, the processes should close the remaining

 ends of the pipes and then exit with a status of 0. (The child

 should use wait() to wait until the grandchild terminates, and the

 parent should do the same for the child.)

6. Return a value of 0. (This is not really needed as we are using

 exit(), but it's a good habit.)

What do the functions do?

1. Declare two char arrays, Buffer and Value, each of size at least
 15 (i.e., larger than we actually expect to use). Initialize Value to
 "1". Also declare a long integer M with the initial value 1.
 In PWork() (but not in the other two), start by writing Value to
 the appropriate pipe as a string. Print a message announcing this
 is the parent and providing the value of Value. (This is the
 principal difference between PWork() and the others: it starts
 the processing.)
2. In a loop, while M is between -999999999 and +999999999 (that is,
 nine 9s), do the following:

 (a) Read one byte at a time from the appropriate pipe and store
 them in Value, building a string. Stop when you find '\0'.

 (b) Make sure Value ends properly as a string with '\0'.

 (c) Convert the string Value to a long integer value in M.

 (d) Compute a new value of M:

 (i) In the parent, compute M = 200 - 3 * M.
 (ii) In the child, compute M = 7 * M - 6.

 (iii) In the grandchild, compute 30 - 4 * M.
 (e) Convert M to a string in Buffer.

 (f) Write Buffer to the appropriate pipe. Print a message
 identifying who is printing (parent, child or grandchild) and
 providing the value of Value.

Option to use the C++ string class
If you prefer to use the C++ string class, you will need to make a few changes to the functions:

--- The variables Buffer and Value should be declared as strings.

--- When you write a string to the pipe, the other process must be
 able to identify the end of the transmission. Therefore, use
 some character such as '@' as a delimiter.

--- When a process reads a string from the pipe, it should read one

 byte at a time until it finds the delimiter. Do not print the

 delimiter or use it in converting a string to an integer.

Notes

You should decide for yourself what arguments you need to pass to these functions.
As the three functions are so similar, you may be able to improve

the design by making the overlapping part into a separate function.
You may want to read up on read() and write() and how to convert a

string to a long integer.

Notice that what we write into a pipe (and later read from it) is a

string with a delimiter at the end. Do not write an integer.
Please print your output without buffering. As in Assignment 1, there are several ways way to do this.
Your program should use reasonable variable names and should be appropriately indented and well documented. You can find style guidelines on the web sites of the CSCI 240 and 241 courses.

You should have a makefile. The name of the executable file should be "Assign2".

When you are done, you need to submit your work on Blackboard. As in Assignment 1, you should create a tar file containing the two files involved: the program file and the makefile. To do this, you need the "tar" utility.

Do the following (replacing "Znumber" with your own Z-ID):
 (a) Create a subdirectory named Znumber_A2_dir.

 (b) Copy the three files into it.

 (c) In the parent directory of Znumber_A2_dir, use this command:

 tar -cvf Znumber_A2.tar Znumber_A2_dir

Use an FTP program to retrieve the tar file and then submit it on Blackboard. The TA will move it to turing, extract the files and run your makefile, as in:

 tar -xvf Znumber_A2.tar

 cd Znumber_A2_dir

 make

 Assign2
If your makefile does not run (on the turing system) or your program does not compile and run (on the turing system), you will receive no credit.

Sample Output
This is an example of the output. If you run your program several

times, it is possible that some of the lines may appear in a different order. Depending on how you write your loops, you may or may not find that the last couple of numbers are more than 9 digits long,

The parent process is ready to proceed.

Parent: Value = 1

The child process is ready to proceed.

The grandchild process is ready to proceed.

Grandchild: Value = 26

Child: Value = 176

Parent: Value = -328

Grandchild: Value = 1342

Child: Value = 9388

Parent: Value = -27964

Grandchild: Value = 111886

Child: Value = 783196

Parent: Value = -2349388

Grandchild: Value = 9397582

Child: Value = 65783068

Parent: Value = -197349004

Grandchild: Value = 789396046

Child: Value = 5525772316

Parent: Value = -16577316748
