CSCI 480 Autumn, 2020
Assignment 1 -- System Functions
(100 points)

This assignment involves using LINUX system functions such as fork(), getpid(), getppid(), sleep(), wait() and system().

Write a program on the turing system using C or C++. Your executable file should be named Assign1. It should do the following:

1. Print a message identifying the process as the original process
 and providing its PID and its parent's PID.

2. Call fork() after printing a message saying you are about to do

 so.

3. If fork() fails, print an error message ("The first fork failed.")
 and exit with a status of -1.

4. If fork() succeeds, we now have two processes: parent and child.

 In the child process:

 (a) Print a message identifying it as the child and providing its

 PID and its parent's PID.

 (b) Call fork() a second time after printing a message saying you

 are about to do so.
 (c) If fork() fails, print an error message ("The second fork
 failed.") and exit as above.

 (d) If fork() succeeds, we now have three processes: one parent,
 one child and one grandchild.

 In the grandchild process:

 (i) Print a message identifying it as the grandchild and
 providing its PID and its parent's PID.

 (ii) Call the sleep() function to sleep for 3 seconds.
 (iii) Print a message saying the grandchild should now be an

 orphan and providing its PID and its parent's PID.
 (iv) Use system() to execute the "ps" command after printing
 a message saying it is about to do so

 (vi) Print a message saying it is about to exit.

 (vii) Exit with a status of 0.

 In the child process (after the second fork):

 (i) Print a message identifying it as the child and
 providing its PID and its parent's PID.

 (ii) Call the sleep() function to sleep for 2 seconds.

 (iii) Print a message saying it is about to exit.

 (iv) Exit with a status of 0.

 In the parent process:
 (a) Print a message identifying it as the parent and providing
 its PID and its parent's PID.

 (b) Call the sleep() function to sleep for 2 seconds.

 (c) Print a message saying it is about to call ps and that the
 child should appear as a zombie.

 (d) Use system() to execute the "ps" command.

 (e) Call the sleep function to sleep for 3 seconds.
 (f) Use wait(0) to wait for the child to terminate.

 (g) Print a message saying that having waited on the child, it is

 to call ps again.

 (h) Use system() to execute the "ps" command.

 (h) Print a message saying it is about to terminate.

 (i) Exit with a status of 0.

5. The overall program should return a value of 0.

Notes:
The messages printed by different processes may appear in various orders depending on timing and the order does not have to match the sample output.

Print your output without buffering. The simplest way to do this is to use stderr instead of stdout. (In C++, these are cerr and cout, respectively.) If you are using C, you may be able to use the line "setbuf(stdout, NULL);" at the beginning of the program to get unbuffered output with stdout. (There is probably some similar way
to do the same with C++.)
You may want to read about any or all of these functions: getpid(), getppid(), wait(),system(), setbuf(), exit(), etc. You may want to read about the LINUX command ps.
You may want to look at the fork() example on the course web site.
Your program should use reasonable variable names and should be appropriately indented and well documented. You can find style guidelines on the web sites of the CSCI 240 and 241 courses.
You should have a makefile. The name of the executable file should be "Assign1".
When you are done, you need to submit your work on Blackboard. You should create a tar file containing the two files involved: the program file and the makefile. To do this, you need the "tar" utility.

Do the following (replacing "Znumber" with your own Z-ID):
 (a) Create a subdirectory named Znumber_A1_dir.

 (b) Copy the two files into it.

 (c) In the parent directory of Znumber_A1_dir, use this command:

 tar -cvf Znumber_A1.tar Znumber_A1_dir

Use an FTP progam to retrieve the tar file and then submit it on Blackboard. The TA will move it to turing, extract the files and run your makefile, as in:

 tar -xvf Znumber_A1.tar

 cd Znumber_A1_dir

 make

 Assign1
If your makefile does not run or your program does not compile and run, you will receive no credit.
Sample Output:
The precise order of lines and the id numbers may vary.
Notice that we have a zombie process and an orphan process.
I am the original process. My PID is 25412 and my parent's PID is 24937

Now we have the first fork.

I am the parent. My PID is 25412 and my parent's PID is 24937

I am the child. My PID is 25413 and my parent's PID is 25412

Now we have the second fork.

I am the child. My PID is 25413 and my parent's PID is 25412

I am the grandchild. My PID is 25414 and my parent's PID is 25413

I am the parent, about to call ps. The child should appear as a zombie.

I am the child, about to exit.

 PID TTY TIME CMD

24937 pts/1 00:00:00 bash

25412 pts/1 00:00:00 Assign1

25413 pts/1 00:00:00 Assign1 <defunct>

25414 pts/1 00:00:00 Assign1

25417 pts/1 00:00:00 sh

25418 pts/1 00:00:00 ps

I am the grandchild. I should now be an orphan.

My PID is 25414 and my parent's PID is 1

I will now call ps.

 PID TTY TIME CMD

24937 pts/1 00:00:00 bash

25412 pts/1 00:00:00 Assign1

25413 pts/1 00:00:00 Assign1 <defunct>

25414 pts/1 00:00:00 Assign1

25419 pts/1 00:00:00 sh

25420 pts/1 00:00:00 ps

I am the parent, having waited on the child, about to call ps again.

I am the grandchild, about to exit.

 PID TTY TIME CMD

24937 pts/1 00:00:00 bash

25412 pts/1 00:00:00 Assign1

25421 pts/1 00:00:00 sh

25422 pts/1 00:00:00 ps

I am the parent, about to exit.
