
Facilitating Dependency Exploration in Computational
Notebooks

Colin Brown
colinjbrown@niu.edu

Northern Illinois University
Dekalb, Illinois, USA

Hamed Alhoori
alhoori@niu.edu

Northern Illinois University
Dekalb, Illinois, USA

David Koop
dakoop@niu.edu

Northern Illinois University
Dekalb, Illinois, USA

ABSTRACT
Computational notebooks promote exploration by structuring code,
output, and explanatory text, into cells. The input code and rich
outputs help users iteratively investigate ideas as they explore or
analyze data. The links between these cells–how the cells depend
on each other–are important in understanding how analyses have
been developed and how the results can be reproduced. Specifi-
cally, a code cell that uses a particular identifier depends on the
cell where that identifier is defined or mutated. Because notebooks
promote fluid editing where cells can be moved and run in any
order, cell dependencies are not always clear or easy to follow. We
examine different tools that seek to address this problem by extend-
ing Jupyter notebooks and evaluate how well they support users
in accomplishing tasks that require understanding dependencies.
We also evaluate visualization techniques that provide views of the
dependencies to help users navigate cell dependencies.

CCS CONCEPTS
• Human-centered computing → Interactive systems and
tools.

KEYWORDS
Computational notebooks, output-driven analysis, cell dependen-
cies, notebook visualization

ACM Reference Format:
Colin Brown, Hamed Alhoori, and David Koop. 2023. Facilitating Depen-
dency Exploration in Computational Notebooks. InWorkshop on Human-In-
the-Loop Data Analytics (HILDA ’23), June 18, 2023, Seattle, WA, USA. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3597465.3605222

1 INTRODUCTION
Computational notebooks have become important components of
computational science, providing a scratchpad for efficient, per-
sisted analysis. Notebooks weave text, code, and outputs in a single
document, with outputs immediately following the code that gen-
erates them. While notebooks can be used for quick analyses, they
also provide important documentation of past investigations, help-
ing authors and collaborators see exactly how an analysis was
completed. Furthermore, notebooks are also being used in pub-
lished results (e.g., [22, 34]). As notebooks are used for reflection
and inspection, it becomes important that users can understand

HILDA ’23, June 18, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in Workshop
on Human-In-the-Loop Data Analytics (HILDA ’23), June 18, 2023, Seattle, WA, USA,
https://doi.org/10.1145/3597465.3605222.

their past work and share it with others. Thus, we wish to minimize
barriers to understanding and reuse.

In current notebooks, the freedom to write code often overlaps
with the burden of later understanding it. While breaking code into
smaller snippets interspersed with outputs and text makes finding
components of a computation easier, the challenge is connecting
the pieces together. All variables in a notebook are, by default,
global, and thus a variable from one cell can be referenced by any
expression in another cell. This extends to position; a reference in
a cell above the cell where a variable is defined is allowed, though
articles on best practices advise against this [27, 30]. These variables
and their references implicitly define dependencies between the
cells, but those references may be ambiguous.

Adding more structure to the cells, then, can potentially provide
better experiences for users and readers alike. In dataflow note-
books, we let users explicitly indicate those variables they will use
elsewhere while still providing a means to disambiguate multiple
definitions. To address the ambiguity this introduces, we automati-
cally track and persist the cells each reference is associated with
and allow users to designate a particular “version” of the variable
when a previous version is desired. This can be augmented with
new operations–for example, one that reruns cells as variables were
originally referenced and another that uses the current variable
values. Because we persist the exact references, we can determinis-
tically reproduce the computations as they were originally rerun.

While outputs help users search and locate, they still need to
understand the entirety of the notebook, both as an overview of
the work and as they work on specific tasks. This is especially
important for readers who did not themselves create the notebook.
With well-defined dependencies, we can build a dependency graph
or other aids like a minimap [26] of cells and variables to facilitate
overall understanding and navigation. At the same time, when a
user is working in a particular cell, such visualizations highlight
the specific connections to and from that cell. Note that users can
shift between the visualization and the notebook, balancing the
linear structure of the notebook with the non-linear explorations
that occur.

The objective of our work is to evaluate approaches that extend
the Jupyter Notebook framework [12, 18] to clarify or eliminate am-
biguity in cell dependencies. In addition, we examine visualization
techniques that assist users in understanding references between
cells and navigating the notebook.

2 DEFINITIONS
A computational notebook is a sequence of code and text blocks
called cells (see Fig. 1). Generally, a user executes individual code
cells one at a time, going back to edit and re-execute cells as desired.
This is in contrast to scripts where all code is executed at once. In

https://orcid.org/0000-0002-2214-2726
https://orcid.org/0000-0002-4733-6586
https://orcid.org/0000-0002-4422-6162
https://doi.org/10.1145/3597465.3605222
https://doi.org/10.1145/3597465.3605222

HILDA ’23, June 18, 2023, Seattle, WA, USA Brown et al.

Figure 1: In a Dataflow Notebook, cells can have multiple
named outputs, and referencing an output in another cell
creates a dependency between the two cells.

addition, new cells may be later inserted between existing, already-
computed cells, so it is possible that the semantics of a variable
change. There exists a variety of different computational notebook
environments [1, 11, 18, 25, 26, 35, 36, 43], all of which use text and
code cells with computational results shown inline. Generally, these
environments mimic paper notebooks that document a scientist’s
work and include text, computations, and visualizations. When
archived, they provide a record of analysis and any discoveries as
the notebooks persist both input code and the results.

While notebooks are being used to document analyses and store
source code, their utility depends on the ability to repeat the execu-
tions and reproduce results. A notebook is repeatable if the original
authors, who usually have access to the original environments and
data, can successfully re-execute it. That same notebook is repro-
ducible if others can do the same, given access to the documented
resources or sufficient configuration information. Repeatability is,
then, a more constrained form of reproducibility. As with source
code, notebook reproducibility may be complicated by incompati-
ble libraries or updates to data sources, but it is also complicated
by the execution order of the cells [28]. While notebooks allows
users to position cells in a linear, top-down order, the execution
order defines the order that the cells were executed in. In addition,
a notebook’s execution order may have some cells unexecuted and
others executed multiple times.

The dependencies between cells are important aids in helping
users determine a potentially unknown execution order. If one cell
defines a variable 𝑥 and no other cell defines that variable, any cell
that references 𝑥 needs to be executed after the defining cell. The
second cell is dependent on the first. When a variable is assigned
to a value more than once in different cells, we have a potential
ambiguity for any other references because those references could
be to either of the assignments. We can extend the notion of depen-
dency via transitivity; given a cell 𝑐 , any cell that must be executed
before 𝑐 is an upstream dependency, and any cell that requires 𝑐 to
be executed first is a downstream dependency. Together, these form
a directed dependency graph [10] connecting cells, and this graph is
acyclic if we duplicate nodes for cells that are executed more than
once. Immediate dependencies are directly related. When a cell is
modified and executed, each downstream dependency is stale until
it is re-executed.

In this paper, we will focus on one of the most popular compu-
tational notebook environments, Jupyter, and focus on notebooks
written in Python [12, 18]. In that environment, cells are identified
with a numeric identifier that is incrementally assigned when the
cell is executed. However, executing a cell after it has been executed

once overwrites the identifier with the latest count. When the note-
book is reopened in a new session, the counter resets, meaning the
numeric identifiers are not reliable.

3 RELATEDWORK
3.1 Issues in Notebook Environments
There have been a number of papers and talks that have highlighted
issues with current notebook environments (e.g. [8, 13]) spanning
many facets including environment issues [27], versioning [17], and
reuse [40]. One key issue is understanding the dependencies and ex-
ecution order in notebooks as variables are referenced across cells.
This increases the mental load on the user to remember what each
variable represents and currently stores [38]. In program compre-
hension [39], users often refer back to the original assignments to
remind themselves of this information [15]. In notebooks, users cre-
ate cells to output the variable values and often don’t use variables
more than once [41].

3.2 Improving Notebook Environments
Work on addressing issues in notebook environments includes help-
ing users understand and navigate the existing structure [14, 24, 31]
as well as modifying the execution semantics or structure [21, 32,
33, 37]. Nodebook enforces a linear order for cells [33] while Ob-
servable [26] and ReactivePy [37] embrace a reactive execution
where any cell change triggers all dependent cells to also execute.
This reactive style works well for code that executes quickly but
can be problematic for larger workflows where users might prefer
to make multiple edits before triggering a re-execution. Dataflow
Notebooks change execution semantics so that a dataflow depen-
dencies [9] between cells are tracked and upstream dependencies
are re-executed when necessary, using persistent identifiers to refer
to variables [21]. IPyflow [32] uses program slicing to determine
dependencies between cells, highlighting those cells that need to be
re-executed. Vizier offers improvements to provenance and version-
ing which allow for the tracking of dependency information [5].

3.3 Visualizing Notebooks
Other solutions that help users understand notebooks rely on visual
representations. Some simplify notebooks by summarizing content.
NBSearch [23] displays a list of ranked notebook cells linked to
search queries, arranging them based on search results. In con-
trast, ToonNote [16] aims to provide a visually pleasing overview
of notebooks, drawing inspiration from the idea of literate visual-
ization [44], which was influenced by Knuth [19]. Others, however,
rely on external tools [7] in order to present a view into the note-
book according to a pre-existing format.

To understand dependencies, a common representation involves
constructing the dependency graph which can be visualized using
a node-link diagram [2, 10]. In general source code, dependency
graphs can span the entire codebase [4] or address changes over
time [6]. However, dependency graphs can become large and hinder
understanding [29]. Dependency graphs for notebooks are derived
from variable references between cells, adding a layer on top of
standard variable dependencies. Albireo cites the non-linear nature
of notebook execution as a reason to use a directed layout based on
similarities [42]. Observable’s minimap [26] eschews full topology

Facilitating Dependency Exploration in Computational Notebooks HILDA ’23, June 18, 2023, Seattle, WA, USA

and uses whiskers to communicate whether cells contribute to or
depend on other cells (directly or indirectly). It also allows a user
to interactively select a single cell to see links to immediate inputs
and references and uses the left or right position to show any cells
that indirectly contribute to or depend on the selected cell.

4 DETERMINISTIC DEPENDENCIES DEFINE
EXECUTION

With the rich outputs inlined in notebooks, users can connect in-
sights to the code in a cell that generated the output, but the problem
of ambiguous dependencies makes it difficult to connect that cell
to the code in the rest of the notebook that also contributed to
the results. When variables are assigned throughout code, the de-
pendencies between those variables can be difficult to follow. In
notebooks, this is compounded by the fact that the dependencies
span across cells. Because cells can be executed individually and
may be inconsistent with each other, it is difficult to determine the
execution order in order to ensure that the variables are properly
defined. When references are ambiguous, this is impossible.

Dataflow Notebooks (DFNBs) make important changes to both
help users locate variable definitions and ensure that dependencies
are not ambiguous. First, each cell is assigned a unique, persistent
identifier so that any re-execution does not break references to
cells. Second, we build on the existing convention that a cell’s
outputs are listed in the last line of the cell. This is consistent
with IPython’s display rule that only the last expression should
be displayed. In addition, through simultaneous assignment, cells
may have multiple named outputs (see Fig. 1). Third, the cell is
wrapped in a closure so that any local variables do not leak into
other cells; it is not possible to refer to variables local to the cell in
other cells. However, references to the exposed variables are now
also references to intermediate outputs; instead of storing results
in global variables that may or may not be shown, the data passed
between cells is now always visible. Finally, we allow users to
reuse variable names to mitigate variable recall issues and provide
mechanisms to unambiguously refer to outputs with the same name.

Instead of using the mutable Jupyter cell numbers, DFNBs use a
persistent identifier that Jupyter assigns to a cell when it is created.
This identifier is unique and does not change when the cell is edited
or executed. Thus, one can fix bugs or update a computation with-
out worrying about any references to that cell becoming stale, as
happens with traditional notebooks. These identifiers also persist
across sessions. While the unique cell identifiers are useful inter-
nally, the random hexadecimal representations assigned by Jupyter
are meaningless to users, so we allow users to add a meaningful
tag to the cell to identify it.

If we restrict output names to be unique across the entire note-
book, this forces the user to remember more variable names that
will likely be less meaningful. Instead, we allow variables to be
reassigned and output in different cells and use cell identifiers and
tags to connect an output to a particular cell. If we define x in two
cells, a73bd0 and 9fe143, we can refer to a output as x$a73bd0.
Better, if that cell has a tag (e.g. calcSpeed), we can refer to it using
the tag as x$calcSpeed.

We do not require users to use cell identifiers unless they wish
to reference an "older version" and resist appending cell identifiers

unless the reference is ambiguous. By default, an untagged variable
references the output that was generated most recently, which
is often the one a user recalls and wishes to reference. However,
the notebook will always persist the references because if another
version of a variable is created, we need to disambiguate all existing
references. We can also add operations to enable re-executions that
update cells to reference the latest variable definitions or mutations.

These changes allow the system to build a directed graph of
dependencies based on the non-ambiguous references between
cells. By disallowing cycles in the graph, we can allow the user to
execute any cell, and the system will recursively evaluate upstream
cells to ensure that the execution is consistent. Thus, for a notebook
where every cell is deterministic and has been executed (to define
dependencies), we can ensure that another user executing any cell
in the notebook will receive the same result. This assumes that
cell executions are side-effect free, and while closures help, this
will not totally eliminate reproducibility issues. However, the same
side-effect issues exist in the standard Jupyter environment so we
are reducing the difficulty of reproducing notebooks.

5 NOTEBOOK VISUALIZATIONS
By disambiguating variable references, users can follow local de-
pendencies in the notebook, but these do not provide an overview
of the full structure of the notebook. By aggregating individual
dependencies into a directed graph, we can create a visualization
that can be used as such a map. We have applied two visualization
techniques to Dataflow Notebooks: a node-link diagram that con-
nects variables with edges, and a minimap visualization introduced
by Observable [26]. While the node-link diagram is more familiar,
the minimap provides a more compact representation that aligns
with the vertical layout of the notebook (see Fig. 2). Since both
visualizations have components tied to cells, users can navigate
from the visualization to the notebook (or vice versa) by selecting
those elements.

Since we disallow cycles in the dependencies in the notebook,
the graph of those dependencies is directed and acyclic (a DAG).
Because each dependency ties an output to its use in the code of
another cell, we can construct edges between cells or between an
output and a cell. Like Albireo [42], we use output-to-cell con-
nections as they allow more specificity about the variables used
and potentially highlight those that are unused. Thus, each cell is
mapped to a node, but each of those nodes contains the specific vari-
ables (see Fig. 2e). Edges go from these inner nodes to the outer cell
nodes. The layout of the DAG allows users to distinguish connected
components that likely pair with sections of a notebook.

Unlike the node-link diagram, whose positions do not map to
cell positions in the notebook, the minimap is constructed of nodes
whose order matches the order of the notebook. Each cell is mapped
to evenly-spaced vertical rows that each contain a circle and text
with a snippet of code from the notebook. Each circle may have
whiskers that extend to the left or right and indicate the presence of
upstream or downstream dependencies, respectively. This overview
helps users identify cells that are unconnected and those cells that
are starting points in executions, often variable assignments. The
initial overview shows nothing about any specific dependencies
(see Fig. 2b).

HILDA ’23, June 18, 2023, Seattle, WA, USA Brown et al.

[f6539e]:

a: 3

[dc5916]:

b: 6

[c7d497]:

c: 9

[bad8a9]:

9

[cc1903]:

I'm done

a = 3

b = a + 3

c = a + b

print(c)

print("I'm done")

(a) Notebook

a = 3
b = a + 3
c = a + b
print(c)
print("I'm Done")

(b) Minimap (Unselected)

a = 3
b = a + 3
c = a + b
print(c)
print("I'm Done")

(c) Minimap (𝑎 Selected)

a = 3
b = a + 3
c = a + b
print(c)
print("I'm Done")

(d) Minimap (𝑏 Selected)

f6539e

dc5916

c7d497

bad8a9
a

b

c

(e) Directed Acyclic Graph

Figure 2: Both the minimap and directed acyclic graph visualizations can serve as overviews for understanding and navigating
global structure and local dependencies of a notebook (a). With no selection (b), each minimap node shows the presence of
dependencies (either upstream or downstream) via whiskers, but upon selection (c), (the cell containing b is selected) nodes are
moved to indicate the relationship (or lack of) to the selection, and lines show immediate dependencies. Multiple views exist in
the minimap for each individual variable that is reflected via selection as can be seen in (c) and (d).

However, the minimap is interactive so if the user selects a cell,
the minimap updates to show all upstream and downstream de-
pendencies for that cell by positioning them to the left and right,
respectively. In addition, the immediate dependencies are connected
with lines, helping users trace inputs back and follow the path of
computation. Additionally, dependencies that are non-direct links
to cells are highlighted in a grey color (see Fig. 2c) to indicate that
there is still a dependence that exists among cells (e.g. 𝑐 depends
on 𝑏 but the cell that prints 𝑐 only directly depends on 𝑐). When
selecting a new variable, the dependencies update to the selected
variable (see Figs. 2c and 2d). In addition, as cells are edited and
executed, the visualizations update to reflect the underlying depen-
dency structure of the notebook.

6 EVALUATION
We conducted a user study to both understand the advantages and
disadvantages of Dataflow Notebooks compared to other available
techniques, and evaluate the utility of the visualization techniques.
Because systems have addressed different issues, we have focused
on tasks involving dependencies. The two-part study (a) compares
performance on real-world tasks across systems; and (b) investi-
gates whether the interactive visualization techniques improve the
understanding of dependencies. In (a), we use data analysis scenar-
ios where users must run and update existing notebooks. In (b), we
compare two techniques, directed graph diagrams and minimap
visualizations, to see if they improve performance in understanding
connections between cells.

6.1 Tools
In the first part of the study, we used four tools: Jupyter Note-
book [12, 18], Nodebook [33], ReactivePy [37], and Dataflow Note-
book (Sec. 4). While some of these systems were created as proto-
types and are not fully featured, we have found that they work well
enough to accomplish the tasks we were interested in. Nodebook

is an extension to Jupyter Notebook that restricts a user from run-
ning cells in a top-down manner so that a notebook will produce
the expected results when running all cells [33]. It uses hashes of
environments to determine that cells are out of order, and requires
a user to move the cells to a correct order to execute the notebook.
ReactivePy is an IPython kernel that automatically updates other
cells that depend on a variable changed in one cell. During our user
study we allowed ReactivePy to load a cached execution state so
that the reactivity was being tested; Dataflow Notebooks allows for
a previous stale execution.

In the second part of the study, we used our own implementations
of the directed acyclic graph and minimap visualizations (see Sec. 5).

6.2 Tasks
Part 1: Real-World Re-computation. We tested two common tasks

users face when using computational notebooks:(1) opening a saved
notebook and re-executing that notebook, and (2) modifying the
notebook (i.e., by changing a variable’s value) and updating the rest
of the notebook to obtain the new results. We structured the tasks
so that cells could not be (re-)executed in top-down order, which
meant participants had to figure out how to move or execute cells
in a non-linear order. When modifying the notebook, they also had
to make sure all cells were properly re-executed. In the standard
Jupyter Notebook environment, all of these tasks must be manually
completed by the participant, but other environments provide tools
or enforce restrictions that help users.

All tasks used a portion of a previously written notebook that
analyzed Kickstarter data. Participants only needed to execute and
modify a single cell of these notebooks to complete the following
two-part tasks:

• Compute the average success rate of Kickstarter categories
using a given threshold, and then change that threshold and
compute the new success rate.

Facilitating Dependency Exploration in Computational Notebooks HILDA ’23, June 18, 2023, Seattle, WA, USA

• Compute the average amount pledged for a project, and then
change the dataset filename and compute a new average
amount.

• Compute the percentage of Kickstarter projects that are not
US-based, and then change the excluded countries to include
Great Britain and Canada and compute the new percentage.

• Compute the accuracy of a classifier over the dataset, and the
change the dataset filename and compute a new accuracy.

Participants used used a different notebook tool for each task, and
while the tasks shared the same dataset, they were self-contained.
We hypothesized that all of the tools being testedwill have improved
performance compared to Jupyter Notebook.

Part 2: Dependency Visualizations. We tested whether the DAG or
minimap visualizations aid users in understanding relationships be-
tween variables and cells. Here, we created notebooks by randomly
assigning simple variables to either a literal or a simple arithmetic
expression involving other variables; the order of these variable
assignments is randomized. We asked participants two types of
questions: (1) Does variable b depend on a? and (2) Select the vari-
ables that need to be recomputed when variable a is modified. The
variable names (a and b) are randomized, and a simplified version
of an example notebook is shown in Fig. 2a. Participants were given
a static view of either the notebook, DAG, or minimap depending
on the task. Each notebook/visualization contained fifteen cells and
fifteen distinct variables; no variables were redefined or mutated.
We used a pilot study to determine the number of variables for this
task and found completion time increased at an extra linear rate.
We hypothesized that users will be faster and more accurate using
the visualizations.

6.3 Study Design
We randomly divided participants into three groups. In the first
part, all participants completed their first task using the standard
Jupyter Notebook environment, and then continued with the other
tools in an assigned order depending on their group. In the second
part, all participants again completed their first questions using
the standard Jupyter Notebook environment, and then uses the
minimap or DAG in a randomly assigned order.

Participants accessed the study through a web-based application
that integrated tutorial pages, videos, and Jupyter environments.
Participants had to read documentation and watch tutorial videos
for each tool. In addition, there was a help panel for the current
tool that was accessible at all times. In addition, an anonymous
email form was provided if a participant got stuck on a task so
that feedback could be provided. Participants completed surveys
about their expertise, demographic information, and impressions
of the tools. Timings and answers for each task were recorded.
Participants were asked to score each tool being evaluated on a
5-point Likert scale after the completion of each task.

We advertised the study to undergraduate and graduate students
in the Northern Illinois University Computer Science Department
and recruited 33 participants. However, eleven of these results
were dropped to low quality data, including responses taking too
much time or implausible answers to tasks. Of the remaining 22
participants, 16 were male, 5 female, and 1 non-binary. There were
17 participants between 18 and 25 years old and 5 between 26 and

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Ra

te
s

Time to Complete Satisfaction Levels Task Accuracy Average (T + A)

Jupyter Notebook Nodebook Dataflow Notebook Reactivepy

Figure 3: While accuracies were mostly within the margin
of error, timings were significantly better in the reactive
frameworks Dataflow Notebook and Reactivepy. Nodebook
likely suffered because users found the enforced top-down
ordering more difficult to understand.

35. All participants had some level of experience using Jupyter
notebooks and/or Python, and 13 said they were familiar with the
notion of tracking variable dependencies.

6.4 Results
For the first task, we found that there was a significant difference in
the amount of time it took to complete a reproducibility task when
comparing most of the frameworks. For the second task, however,
we did not reach a conclusive result about the relative performance
of the minimap and directed acyclic graph diagrams, and need fur-
ther analysis. We also report a combined measure that averages
normalized time and accuracy measures to attempt to characterize
frameworks that supported high-quality, efficient results. This al-
lowed us to balance results where a participant rushed through a
task without considering how accurate their answers would be.

Re-computation. In the re-computation tasks, we saw a signifi-
cant difference computed via pairwise t-tests (𝑝 < 0.05) between
all frameworks except for Reactivepy when compared to Dataflow
Notebooks. The t-tests were calculated using the average (time +
accuracy) values but also showed differences when looking at just
accuracy. Differences in accuracy largely fell within the margin of
error as seen in Fig. 3 with only a few participants having difficul-
ties obtaining correct results. All timing values represented in Fig. 3
are scaled using the maximum participant taken time (23 minutes).
The fastest task completion time was 41 seconds. Our results are
complicated by the varying skill levels. Based on the reported val-
ues, we found participants fell victim to known pitfalls where they
relied on previous results without re-executing previously executed
cells. Nodebook, in particular, had longer completion times because
(a) participants had to move cells in the notebook to obtain the
proper order before execution, and (b) it incurred overhead doing
environment hashing. Using Dataflow Notebooks and Reactivepy,
participants achieved faster times with similar accuracy compared
to Jupyter Notebook. This would suggest that reactive notebook
frameworks offer advantages in dealing with cell dependencies.

HILDA ’23, June 18, 2023, Seattle, WA, USA Brown et al.

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Ra

te
s

Time to Complete Satisfaction Levels Task Accuracy Average (T + A)

Minimap Directed Acyclic Graph

Figure 4: Comparing the time, accuracy, and satisfaction be-
tween theminimap and directed acyclic graph (DAG). Several
of the users who completed tasks using the DAG faster were
also more inaccurate.

Dependency Analysis. Fig. 4 shows that there isn’t a significant
difference between DAGs and the minimap in either accuracy or
time to complete. (Due to differences in how the Jupyter Notebook
task was set up, were unable to compare either technique to a
baseline.) The timing data was scaled by the maximum participant
completion time (23.5 minutes), and the fastest task completion was
41 seconds. Participants were generally more confident using the
DAG as they took less time to complete their answers, but this was
offset by their poor accuracy on this task as many participants who
finished quickly also performed poorly. By combining completion
time and accuracy measures into a single measure, we found that
the minimap achieved more consistent results.

Feedback. During the study, participants could provide feedback
through a contact form, and some of the submitted feedback high-
lighted interesting issues. One user thought that Nodebook was
not working correctly because they did not understand that cells
needed to be reordered in order to complete the notebook execu-
tion. We knowmany notebook files are distributed with cells whose
executions are not in positional order [27], and we believe many
users do not reorder cells to fix this. Other feedback concerned the
horizontal layout of the directed acyclic graph and how this did
not fit the participant’s screen well. This problem was exacerbated
by the side-by-side layout of the study, and highlighted how the
minimap uses much less screen real estate than the DAG.

Skill Level. When controlling for skill level of the participants,
there was no significant difference between participants who self-
assessed as having lower proficiency in Python or limited experi-
ence working with Jupyter. However, these users were slower to
complete tasks overall and represented many of the outliers seen
in Fig. 3.

7 DISCUSSION
In general, our results indicate that reactive frameworks help users
in reproducing notebook outputs. Even when users are guided

through the process of reproducing results in notebook, there is
still confusion when notebooks do not execute as expected and
time lost spent trying to re-execute others’ results. We found that
accuracies in Jupyter Notebook were the lowest despite this being
a common platform for sharing analyses and results. Perhaps when
a notebook editor is also the notebook creator, personal knowledge
helps guide changes. However, tools to trace and visualize depen-
dencies through the notebook should aid users in understanding
unfamiliar notebooks.

One potential threat to validity is the length of the study and how
that affected participants’ results, especially in the second part of the
study. Initial trials with expert users with experience with directed
acyclic graphs indicated that 15 variables was reasonable, but such
static analysis is likely a more difficult task for less inexperienced
users. Some participants took more than an hour to complete the
study, and this may have contributed to mental strain or fatigue. In
the future, we want to better understand the fatigue involved with
manually doing static dependency analysis.

While our results for dependency visualization in notebooks
were inconclusive, we believe the number of tools using DAGs for
variable dependencies as well as the development of new techniques
like minimap, points to their utility. The minimap seems to solve a
key challenge in scalability as it can handle large numbers of cells
and dependencies by leveraging interaction to hide dependency
links unless a user selects a node that is an endpoint.

The DAG, in contrast, provides a global overview, but edge cross-
ings often make understanding the relationships in large graphs
very hard [3, 20]. We believe there is additional work that can be
done in enhancing both visualization techniques with respect to
dependency-related tasks by clustering related cells.

8 CONCLUSION & FUTURE DIRECTIONS
The development of frameworks and visualizations to help users
to understand dependencies is an important step forward in im-
proving notebook reproducibility. Initial results show promise that
the changes in notebook extensions like Dataflow Notebook can
aid users in understanding the dependencies between cells while
simplifying execution. We also believe that visualizations like DAGs
and minimaps aid users in navigating these dependencies. More
work should be done to understanding when these visualizations
work best and why they may perform poorly. We plan to expand
our user study to more complex notebooks with more varied de-
pendency graphs that more closely resemble real-world notebooks,
and better control for differences in skill sets of participants. We
also plan to investigate methods to make these new frameworks
backward compatible with standard notebooks as this should help
aid adoption.

9 ACKNOWLEDGEMENT
This work is supported in part by NSF Grant No. 2022443.

Facilitating Dependency Exploration in Computational Notebooks HILDA ’23, June 18, 2023, Seattle, WA, USA

REFERENCES
[1] Apache Software Foundation. 2022. Apache Zeppelin. http://zeppelin.apache.org.
[2] F. Balmas. 2002. Using Dependence Graphs as a Support to Document Programs.

In Proceedings. Second IEEE International Workshop on Source Code Analysis and
Manipulation. IEEE Comput. Soc, Montreal, Que., Canada, 145–154. https://doi.
org/10.1109/SCAM.2002.1134114

[3] Chris Bennett, Jody Ryall, Leo Spalteholz, and Amy Gooch. 2007. The aesthet-
ics of graph visualization. In Computational aesthetics in graphics, visualiza-
tion, and imaging, Douglas W. Cunningham, Gary Meyer, and Laszlo Neumann
(Eds.). The Eurographics Association. https://doi.org/10.2312/COMPAESTH/
COMPAESTH07/057-064 ISSN: 1816-0859.

[4] Krzysztof Borowski, Bartosz Balis, and Tomasz Orzechowski. 2022. Graph Buddy
— an interactive code dependency browsing and visualization tool. In 2022 Work-
ing Conference on Software Visualization (VISSOFT). IEEE, Limassol, Cyprus, 152–
156. https://doi.org/10.1109/VISSOFT55257.2022.00023

[5] Mike Brachmann,William Spoth, Oliver Kennedy, Boris Glavic, HeikoMueller, So-
nia Castelo, Carlos Bautista, and Juliana Freire. 2020. Your notebook is not crumby
enough, REPLace it. In 10th Conference on Innovative Data Systems Research,
CIDR 2020, Amsterdam, The Netherlands, January 12-15, 2020, Online Proceedings.
www.cidrdb.org. http://cidrdb.org/cidr2020/papers/p13-brachmann-cidr20.pdf

[6] Michael Burch, Christoph Müller, Guido Reina, Hansjoerg Schmauder, Miriam
Greis, and Daniel Weiskopf. 2012. Visualizing dynamic call graphs. In Vision,
modeling and visualization, Michael Goesele, Thorsten Grosch, Holger Theisel,
Klaus Toennies, and Bernhard Preim (Eds.). The Eurographics Association. https:
//doi.org/10.2312/PE/VMV/VMV12/207-214

[7] Lucas AMC Carvalho, Regina Wang, Yolanda Gil, and Daniel Garijo. 2017. NiW:
Converting Notebooks into Workflows to Capture Dataflow and Provenance.. In
K-CAP Workshops. 12–16.

[8] Souti Chattopadhyay, Ishita Prasad, Austin Z. Henley, Anita Sarma, and Titus
Barik. 2020. What’s Wrong with Computational Notebooks? Pain Points, Needs,
and Design Opportunities. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems. ACM, Honolulu HI USA, 1–12. https://doi.org/10.
1145/3313831.3376729

[9] J. B. Dennis. 1980. Data Flow Supercomputers. Computer 13, 11 (Nov. 1980),
48–56. https://doi.org/10.1109/MC.1980.1653418

[10] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The program
dependence graph and its use in optimization. ACM Transactions on Programming
Languages and Systems 9, 3 (July 1987), 319–349. https://doi.org/10.1145/24039.
24041

[11] Google. 2022. Collab. https://colab.research.google.com.
[12] Brian E. Granger and Fernando Perez. 2021. Jupyter: Thinking and Storytelling

With Code and Data. Computing in Science & Engineering 23, 2 (March 2021),
7–14. https://doi.org/10.1109/MCSE.2021.3059263

[13] Joel Grus. 2018. I Don’t Like Notebooks. https://www.oreilly.com/library/view/
jupytercon-new-york/9781492025818/video322524.html.

[14] Andrew Head, Fred Hohman, Titus Barik, Steven M. Drucker, and Robert DeLine.
2019. Managing Messes in Computational Notebooks. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems. ACM, Glasgow Scotland
Uk, 1–12. https://doi.org/10.1145/3290605.3300500

[15] Derek Jones. 2004. Memory for a Short Sequence of Assignment Statements. CVu
16, 6 (2004), 1–15.

[16] DaYe Kang, Tony Ho, Nicolai Marquardt, Bilge Mutlu, and Andrea Bianchi.
2021. ToonNote: Improving Communication in Computational Notebooks
Using Interactive Data Comics. In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Associa-
tion for Computing Machinery, New York, NY, USA, Article 727, 14 pages.
https://doi.org/10.1145/3411764.3445434

[17] Mary Beth Kery, Marissa Radensky, Mahima Arya, Bonnie E. John, and Brad A.
Myers. 2018. The Story in the Notebook: Exploratory Data Science Using a
Literate Programming Tool. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems. ACM, Montreal QC Canada, 1–11. https://doi.
org/10.1145/3173574.3173748

[18] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason
Grout, Sylvain Corlay, Paul Ivanov, Damián Avila, Safia Abdalla, and Carol
Willing. 2016. Jupyter Notebooks – a publishing format for reproducible com-
putational workflows. In Positioning and Power in Academic Publishing: Players,
Agents and Agendas, F. Loizides and B. Schmidt (Eds.). IOS Press, Amsterdam,
NL, 87 – 90.

[19] D. E. Knuth. 1984. Literate Programming. Comput. J. 27, 2 (Feb. 1984), 97–111.
https://doi.org/10.1093/comjnl/27.2.97

[20] Stephen G. Kobourov, Sergey Pupyrev, and Bahador Saket. 2014. Are Crossings
Important for Drawing Large Graphs?. In Graph Drawing, Christian Duncan
and Antonios Symvonis (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
234–245.

[21] David Koop and Jay Patel. 2017. Dataflow Notebooks: Encoding and Tracking
Dependencies of Cells. In Proceedings of the 9th USENIX Conference on Theory

and Practice of Provenance. USENIX Association, USA, 1.
[22] Laser Interferometer Gravitational-Wave Observatory (LIGO). 2016. Signal Pro-

cessing with GW150914 Open Data. https://losc.ligo.org/s/events/GW150914/
GW150914_tutorial.html.

[23] Xingjun Li, Yuanxin Wang, Hong Wang, Yang Wang, and Jian Zhao. 2021. NB-
Search: Semantic Search and Visual Exploration of Computational Notebooks. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
ACM, Yokohama Japan, 1–14. https://doi.org/10.1145/3411764.3445048

[24] Stephen Macke, Hongpu Gong, Doris Jung-Lin Lee, Andrew Head, Doris Xin, and
Aditya Parameswaran. 2021. Fine-grained lineage for safer notebook interactions.
Proceedings of the VLDB Endowment 14, 6 (2021), 1093–1101.

[25] Stephen North, Carlos Scheidegger, Simon Urbanek, and Gordon Woodhull. 2015.
Collaborative visual analysis with RCloud. In 2015 IEEE Conference on Visual
Analytics Science and Technology (VAST). IEEE, USA, 25–32. https://doi.org/10.
1109/VAST.2015.7347627

[26] ObservableHQ. 2022. Observable. https://observablehq.com.
[27] Joao Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana Freire.

2019. A Large-Scale Study About Quality and Reproducibility of Jupyter Note-
books. In 2019 IEEE/ACM 16th International Conference on Mining Software Repos-
itories (MSR). IEEE, Montreal, QC, Canada, 507–517. https://doi.org/10.1109/
MSR.2019.00077

[28] João Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana Freire.
2021. Understanding and Improving the Quality and Reproducibility of Jupyter
Notebooks. Empirical Software Engineering 26, 4 (July 2021), 65. https://doi.org/
10.1007/s10664-021-09961-9

[29] Martin Pinzger, Katja Grafenhain, Patrick Knab, and Harald C. Gall. 2008. A
Tool for Visual Understanding of Source Code Dependencies. In 2008 16th IEEE
International Conference on Program Comprehension. IEEE, Amsterdam, 254–259.
https://doi.org/10.1109/ICPC.2008.23

[30] Adam Rule, Amanda Birmingham, Cristal Zuniga, Ilkay Altintas, Shih-Cheng
Huang, Rob Knight, Niema Moshiri, Mai H. Nguyen, Sara Brin Rosenthal, Fer-
nando Pérez, and Peter W. Rose. 2019. Ten Simple Rules for Writing and Sharing
Computational Analyses in Jupyter Notebooks. PLOS Computational Biology 15,
7 (July 2019), e1007007. https://doi.org/10.1371/journal.pcbi.1007007

[31] Adam Rule, Ian Drosos, Aurélien Tabard, and James D. Hollan. 2018. Aiding
Collaborative Reuse of Computational Notebooks with Annotated Cell Folding.
Proceedings of the ACM on Human-Computer Interaction 2, CSCW (Nov. 2018),
1–12. https://doi.org/10.1145/3274419

[32] Shreya Shankar, Stephen Macke, Andrew Chasins, Andrew Head, and Aditya
Parameswaran. 2022. Bolt-on, Compact, and Rapid Program Slicing for Notebooks.
Proceedings of the VLDB Endowment 15, 13 (2022), 4038–4047.

[33] StichFix. 2018. Nodebook. https://github.com/stitchfix/nodebook.
[34] Richard H. Styron and Eric A. Hetland. 2014. Estimated likelihood of ob-

serving a large earthquake on a continental low-angle normal fault and im-
plications for low-angle normal fault activity. Geophysical Research Letters
41, 7 (2014), 2342–2350. https://doi.org/10.1002/2014GL059335 Notebook
version: https://github.com/cossatot/lanf_earthquake_likelihood/blob/master/
notebooks/lanf_manuscript_notebook.ipynb.

[35] The Sage Developers. 2022. SageMath, the Sage Mathematics Software System.
The Sage Developers. https://www.sagemath.org DOI 10.5281/zenodo.6259615.

[36] Two Sigma Open Source. 2022. BeakerX. http://beakerx.com.
[37] California Polytechnic State University. 2019. Reactivepy. https://github.com/

jupytercalpoly/reactivepy.
[38] A. Von Mayrhauser and A.M. Vans. 1993. From code understanding needs to

reverse engineering tool capabilities. In Proceedings of 6th International Workshop
on Computer-Aided Software Engineering. IEEE Comput. Soc. Press, Singapore,
230–239. https://doi.org/10.1109/CASE.1993.634824

[39] A. Von Mayrhauser and A.M. Vans. 1995. Program comprehension during
software maintenance and evolution. Computer 28, 8 (Aug. 1995), 44–55.
https://doi.org/10.1109/2.402076

[40] JiaweiWang, Tzu-yang Kuo, Li Li, and Andreas Zeller. 2020. Assessing and Restor-
ing Reproducibility of Jupyter Notebooks. In Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering. ACM, Virtual Event
Australia, 138–149. https://doi.org/10.1145/3324884.3416585

[41] Jiawei Wang, Li Li, and Andreas Zeller. 2020. Better Code, Better Sharing: On
the Need of Analyzing Jupyter Notebooks. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering: New Ideas and Emerging Results.
ACM, Seoul South Korea, 53–56. https://doi.org/10.1145/3377816.3381724

[42] John Wenskovitch, Jian Zhao, Scott Carter, Matthew Cooper, and Chris North.
2019. Albireo: An Interactive Tool for Visually Summarizing Computational
Notebook Structure. In 2019 IEEE Visualization in Data Science (VDS). IEEE,
Vancouver, BC, Canada, 1–10. https://doi.org/10.1109/VDS48975.2019.8973385

[43] Wolfram Research, Inc. 2022. Mathematica. https://www.wolfram.com/
mathematica/.

[44] Jo Wood, Alexander Kachkaev, and Jason Dykes. 2018. Design exposition with
literate visualization. IEEE transactions on visualization and computer graphics
25, 1 (2018), 759–768.

http://zeppelin.apache.org
https://doi.org/10.1109/SCAM.2002.1134114
https://doi.org/10.1109/SCAM.2002.1134114
https://doi.org/10.2312/COMPAESTH/COMPAESTH07/057-064
https://doi.org/10.2312/COMPAESTH/COMPAESTH07/057-064
https://doi.org/10.1109/VISSOFT55257.2022.00023
http://cidrdb.org/cidr2020/papers/p13-brachmann-cidr20.pdf
https://doi.org/10.2312/PE/VMV/VMV12/207-214
https://doi.org/10.2312/PE/VMV/VMV12/207-214
https://doi.org/10.1145/3313831.3376729
https://doi.org/10.1145/3313831.3376729
https://doi.org/10.1109/MC.1980.1653418
https://doi.org/10.1145/24039.24041
https://doi.org/10.1145/24039.24041
https://colab.research.google.com
https://doi.org/10.1109/MCSE.2021.3059263
https://www.oreilly.com/library/view/jupytercon-new-york/9781492025818/video322524.html
https://www.oreilly.com/library/view/jupytercon-new-york/9781492025818/video322524.html
https://doi.org/10.1145/3290605.3300500
https://doi.org/10.1145/3411764.3445434
https://doi.org/10.1145/3173574.3173748
https://doi.org/10.1145/3173574.3173748
https://doi.org/10.1093/comjnl/27.2.97
https://losc.ligo.org/s/events/GW150914/GW150914_tutorial.html
https://losc.ligo.org/s/events/GW150914/GW150914_tutorial.html
https://doi.org/10.1145/3411764.3445048
https://doi.org/10.1109/VAST.2015.7347627
https://doi.org/10.1109/VAST.2015.7347627
https://observablehq.com
https://doi.org/10.1109/MSR.2019.00077
https://doi.org/10.1109/MSR.2019.00077
https://doi.org/10.1007/s10664-021-09961-9
https://doi.org/10.1007/s10664-021-09961-9
https://doi.org/10.1109/ICPC.2008.23
https://doi.org/10.1371/journal.pcbi.1007007
https://doi.org/10.1145/3274419
https://github.com/stitchfix/nodebook
https://doi.org/10.1002/2014GL059335
https://github.com/cossatot/lanf_earthquake_likelihood/blob/master/notebooks/lanf_manuscript_notebook.ipynb
https://github.com/cossatot/lanf_earthquake_likelihood/blob/master/notebooks/lanf_manuscript_notebook.ipynb
https://www.sagemath.org
http://beakerx.com
https://github.com/jupytercalpoly/reactivepy
https://github.com/jupytercalpoly/reactivepy
https://doi.org/10.1109/CASE.1993.634824
https://doi.org/10.1109/2.402076
https://doi.org/10.1145/3324884.3416585
https://doi.org/10.1145/3377816.3381724
https://doi.org/10.1109/VDS48975.2019.8973385
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/

	Abstract
	1 Introduction
	2 Definitions
	3 Related Work
	3.1 Issues in Notebook Environments
	3.2 Improving Notebook Environments
	3.3 Visualizing Notebooks

	4 Deterministic Dependencies Define Execution
	5 Notebook Visualizations
	6 Evaluation
	6.1 Tools
	6.2 Tasks
	6.3 Study Design
	6.4 Results

	7 Discussion
	8 Conclusion & Future Directions
	9 Acknowledgement
	References

