Advanced Data Management (CSCI 680/490)

Machine Learning in Databases

Dr. David Koop

Checking Computational Results in Systems

D. Koop, CSCI 680/490, Spring 2022

Northern Illinois University

NIU

Repeatability Results

Figure 11: Study result. Blue numbers represent papers that were excluded from consideration, green numbers papers that are weakly repeatable, red numbers papers that are non-weakly repeatable, and orange numbers represent papers that were excluded (due to our restriction of sending at most one email to each author).

OK ^{≤30} OK [≤] 130 64	>30 OK ^{Auth} 23	
	Notation	Number of papers
\mathcal{J}	HW	excluded due to replication requiring special hardware
Build fails 9	NC	excluded due to results not being backed by code
	EX	excluded due to overlapping author lists
	BC	where the results are backed by code
	Article	where code was found in the paper itself
	Web	where code was found through a Web search
	EM yes	where the author provides code after receiving an email message
	EM ^{no}	where the author responds to an email message saying code cannot be provided
	EMø	where the author does not respond to email requests within two months
	OK ^{≤30}	where code is available and we succeed in building the system in \leq 30 minutes
	OK >30	where code is available and we succeed in building the system in >30 minutes
	OK ^{Auth}	where code is available and we fail to build, and the author says the code builds with reasonable effort
\mathbf{M}^{\emptyset} $\mathbf{E}\mathbf{M}^{\mathrm{no}}$ 30 146	Fails	where code is available and we fail to build, and the author says the code may have problems building

Excuses for not sharing

- Versioning
- Available Soon
- No Intention to Share
- Personnel Issues
- Lost Code
- Academic Tradeoffs
- Industrial Lab Tradeoffs
- Obsolete HW/SW
- Controlled Usage
- Privacy/Security
- Design Issues

D. Koop, CSCI 680/490, Spring 2022

Northern Illinois University

Examining 'Reproducibility in Computer Science'

- Repeat the experiment in reproducibility!
- Differences from original
- Shows issues with trying to classify experiments

F	ի	1	r
	Γ)	1

All Others Purported Not 27%

- ported Not Building; 6% ••••• sputed; Not Checked
- Purported Building; Disputed; 2% •• Not Checked
 - Conflicting Checks! 0%
 - Misclassified 1% •
 - Purported Not Building But 14% ••••••••• Found Building
- Purported Building But Found 0% Not Building
 - Purported Not Building; 0% Confirmed
- Purported Building; Confirmed 0% •

Reproducible Research

- Science is verified by replicating work independently
- Replication Issues:
 - Requires many resources to replicate (Sloan Digital Sky Survey) - Requires significant computing power (Climate Model Simulation) - Requires too much time or very specific circumstances (Environment

 - Epidemiology)
- Reproducibility
 - Replication of the analysis based on the collected data (not replicating the data collection itself)
 - Better if we have the actual code or available executables _

Reproducibility Spectrum

D. Koop, CSCI 680/490, Spring 2022

7

10 Rules for Reproducible Computational Research

- Rule 1: For Every Result, Keep Track of How It Was Produced
- Rule 2: Avoid Manual Data Manipulation Steps
- Rule 3: Archive the Exact Versions of All External Programs Used
- Rule 4: Version Control All Custom Scripts
- Rule 5: Record All Intermediate Results, When Possible in Standardized Formats

10 Rules for Reproducible Computational Research

- Rule 6: For Analyses That Include Randomness, Note Underlying Random Seeds
- Rule 7: Always Store Raw Data behind Plots
- Rule 8: Generate Hierarchical Analysis Output, Allowing Layers of Increasing Detail to Be Inspected
- Rule 9: Connect Textual Statements to Underlying Results • Rule 10: Provide Public Access to Scripts, Runs, and Results

(Database) Reproducibility Research Topics

- Design and Management of Experiment Repositories
- Querying and Searching Experiments
- Mining Experiments

Notebook Reproducibility

- Use notebooks from Github (~1 million) - Unambiguous cell order? 81.99%
- Study notebook dependencies
 - Dependencies Available? 13.72%
 - Dependencies Install? 5.03%
- Study notebook executability
 - Execute: 24.11% of unambiguous cell order
 - Matched results: 4.03%

Dataflow Notebooks: Resolve Notebook Ambiguities

										1							
In [d51f8eab]:	<pre>import pandas as pd df = pd.read_csv('guardian-top100-female-2019.csv')</pre>							In [over30]:	<pre>df = df\$full[df\$full.Age >= 31]</pre>								
df:	N	ame F	Rank	Position	Age o	n 1 Dec 2	019 1	Nationality		df:		Name	Rank	Position	Age	Nationality	_
	0 Sam	Kerr	1	Forward			26	Australia			2 1	Megan Rapinoe	3	Midfielder	34	USA	
	99 Luc	Imila	100	Forward			25	Brazil			96	Cláudia Neto	97	Midfielder	31	Portugal	
	100 rows × 5 columns								19 rows × 5 columns								
In [full]:	df = d	<pre>df = df.rename(columns={'Age on 1 Dec 2019': 'Age'})</pre>							In [under25]: df:	<pre>df = df\$full[df\$full.Age <= 24]</pre>							
df.	N	Name Bank Position Age Nationality								Name	Rank	Position	Age I	Nationality			
ur.	0 Sam	Kerr	1	Forward	26	Australi	<u>,</u> а				3 /	Ada Hegerberg	4	Forward	24	Norway	
			•														
	 99 Luc	lmila	100	 Forward	25	Braz	il				98	Lena Oberdorf	99	Midfielder	17	Germany	
	100 rows >	5 colur	mns		20	2:42					25 rov	ws × 5 columns					

Final Exam

- Monday, May 9, 4:00-5:50pm, PM 153
- Similar format
- More comprehensive (questions from topics covered in Test 1 & 2)
- Will also have questions from graph/spatial/temporal data, provenance, reproducibility, machine learning

Improving Databases

LEARNED AND **SELF-DESIGNING** DATA STRUCTURES Data Systems and AI Lab Stratos Idreos & Tim Kraska

Algorithms rely on the order of data

D. Koop, CSCI 680/490, Spring 2022

ALGORITHMS

[7,4,2,6,1,3,9,10,5,8]

Data systems rely on algorithms

DATA SYSTEMS ALGORITHMS

D. Koop, CSCI 680/490, Spring 2022

17

Data structures define performance

D. Koop, CSCI 680/490, Spring 2022

register = this room caches = this city memory = nearby city disk = Pluto

Jim Gray, Turing Award 1998

18

Database Questions

How do I make my **data system** run x times as fast?

How do I extend the **lifetime** of my hardware?

How to accelerate **statistics** computation for data science/ML?

D. Koop, CSCI 680/490, Spring 2022

How do I minimize my **bill** in the **cloud**?

How do I train my **neural network** x times faster?

Tradeoffs in each structure

New Applications Demand Change

existing systems need to change too

"Traditional" Database Research

Self-designing systems

D. Koop, CSCI 680/490, Spring 2022

without coding or accessing the h/w

algorithms

performance

SageDB: a learned database system

G. Leclerc, S. Madden, H. Mao, and V. Nathan

D. Koop, CSCI 680/490, Spring 2022

T. Kraska, M. Alizadeh, A. Beutel, E. H. Chi, J. Ding, A. Kristo,

Learned Data Structures and Algorithms

Discussion

- Is this the future?
- What about comparison baselines?
- Lots of work being done in this area

Benchmarking Learned Indexes

D. Koop, CSCI 680/490, Spring 2022

[<u>R. Marcus et al.</u>, 2021]

Multi-Dimensional Indexing

Query Optimization

Reminders

- Final Exam Review Wednesday (come with questions!)
- Final Exam on Monday, May 9 from 4-5:50pm

