
Advanced Data Management (CSCI 490/680)

Provenance & Reproducibility

Dr. David Koop

D. Koop, CSCI 680/490, Spring 2022

Sales Data and 180-Day Rolling Window

2D. Koop, CSCI 680/490, Spring 2022

Provenance in Science
• Provenance: the lineage of data, a

computation, or a visualization
• Provenance is as (or more) important as

the result!
• Old solution:
- Lab notebooks

• New problems:
- Large volumes of data
- Complex analyses
- Writing notes doesn’t scale

3

[DNA Recombination, Lederberg]
D. Koop, CSCI 680/490, Spring 2022

Provenance in Science
• Provenance: the lineage of data, a

computation, or a visualization
• Provenance is as (or more) important as

the result!
• Old solution:
- Lab notebooks

• New problems:
- Large volumes of data
- Complex analyses
- Writing notes doesn’t scale

3

[DNA Recombination, Lederberg]
D. Koop, CSCI 680/490, Spring 2022

Date

Annotations

Observed Data

Provenance in Computational Science

4D. Koop, CSCI 680/490, Spring 2022

Fig. 7: Using the blog to document processes: A visualization expert
created a series of blog posts to explain the problems found when gen-
erating the visualizations for CMOP.

ACKNOWLEDGMENTS

Our research has been funded by the National Science Foun-
dation (grants IIS-0905385, IIS-0746500, ATM-0835821, IIS-
0844546, CNS-0751152, IIS-0713637, OCE-0424602, IIS-0534628,
CNS-0514485, IIS-0513692, CNS-0524096, CCF-0401498, OISE-
0405402, CCF-0528201, CNS-0551724), the Department of En-
ergy SciDAC (VACET and SDM centers), and IBM Faculty Awards
(2005, 2006, 2007, and 2008). E. Santos is partially supported by a
CAPES/Fulbright fellowship.

REFERENCES

[1] L. Bavoil, S. Callahan, P. Crossno, J. Freire, C. Scheidegger, C. Silva, and
H. Vo. VisTrails: Enabling Interactive Multiple-View Visualizations. In
IEEE Visualization 2005, pages 135–142, 2005.

[2] S. P. Callahan, J. Freire, C. E. Scheidegger, C. T. Silva, and H. T. Vo.
Towards provenance-enabling paraview. pages 120–127, 2008.

[3] Chemical blogspace. http://cb.openmolecules.net/.
[4] NSF Center for Coastal Margin Observation and Prediction (CMOP).

http://www.stccmop.org.
[5] S. B. Davidson and J. Freire. Provenance and scientific workflows: chal-

lenges and opportunities. In Proceedings of SIGMOD, pages 1345–1350,
2008.

[6] R. T. Fielding. Architectural Styles and the Design of Network-based Soft-
ware Architectures. PhD thesis, University of California, Irvine, 2000.

[7] S. Fomel and J. Claerbout. Guest editors’ introduction: Reproducible
research. Computing in Science Engineering, 11(1):5 –7, jan.-feb. 2009.

Fig. 8: Visualizing a binary star system simulation. This
is an image that was generated by embedding a workflow di-
rectly in the text. The original workflow is available at
http://www.crowdlabs.org/vistrails/workflows/details/119/.

[8] J. Freire, D. Koop, E. Santos, and C. T. Silva. Provenance for computa-
tional tasks: A survey. Computing in Science & Engineering, 10(3):11–
21, May-June 2008.

[9] J. Freire, C. Silva, S. Callahan, E. Santos, C. Scheidegger, and H. Vo.
Managing rapidly-evolving scientific workflows. In International Prove-
nance and Annotation Workshop (IPAW), LNCS 4145, pages 10–18.
Springer Verlag, 2006.

[10] R. Hoffmann. A wiki for the life sciences where authorship matters. Na-
ture Genetics, 40(9):1047–1051, 2008.

[11] IBM. OpenDX. http://www.research.ibm.com/dx.
[12] Kitware. Paraview. http://www.paraview.org.
[13] Kitware. The visualization toolkit. http://www.vtk.org.
[14] Many Eyes Wikified. http://wikified.researchlabs.ibm.com.
[15] M. McKeon. Harnessing the Web Information Ecosystem with Wiki-

based Visualization Dashboards. IEEE Transactions on Visualization and
Computer Graphics, 15(6):1081–1088, 2009.

[16] A. R. Pico, T. Kelder, M. P. van Iersel, K. Hanspers, B. R. Conklin, and
C. Evelo. WikiPathways: Pathway editing for the people. PLoS Biology,
6(7), 2008.

[17] D. D. Roure, C. Goble, and R. Stevens. The design and realisation of
the virtual research environment for social sharing of workflows. Future
Generation Computer Systems, 25(5):561 – 567, 2009.

[18] E. Santos, L. Lins, J. Ahrens, J. Freire, and C. Silva. Vismashup: Stream-
lining the creation of custom visualization applications. IEEE Transac-
tions on Visualization and Computer Graphics, 15(6):1539–1546, 2009.

[19] Swivel. http://www.swivel.com.
[20] J. Tohline and E. Santos. Visualizing a Journal that Serves the Computa-

tional Sciences Community. Computing in Science & Engineering, 12(3),
2010. To appear.

[21] J. E. Tohline. Scientific Visualization: A Necessary Chore. Computing
in Science & Engineering, 9(6):76–81, 2007.

[22] C. Upson, J. Thomas Faulhaber, D. Kamins, D. H. Laidlaw, D. Schlegel,
J. Vroom, R. Gurwitz, and A. van Dam. The Application Visualiza-
tion System: A Computational Environment for Scientific Visualization.
IEEE Computer Graphics and Applications, 9(4):30–42, 1989.

[23] F. B. Viegas, M. Wattenberg, F. van Ham, J. Kriss, and M. McKeon.
ManyEyes: A site for visualization at internet scale. IEEE Transactions
on Visualization and Computer Graphics, 13(6):1121–1128, 2007.

[24] VisIt Visualization Tool. https://wci.llnl.gov/codes/visit.
[25] The VisTrails Project. http://www.vistrails.org.

DATA DATA

Data Management

Computation

Visualization

Publishing

Provenance

Provenance Questions
• What process led to the output image?
• What input datasets contributed to the

output image?
• What workflows create an isosurface with

isovalue 57?
• Who create this data product?
• When was this data file created?
• Why was vtkCamera used?
• Why do two output images differ?

5D. Koop, CSCI 680/490, Spring 2022

vtkActor

VTKCell

vtkRenderer

vtkContourFilter

vtkStructuredPointsReader

vtkDataSetMapper

vtkCamera

DATA

IMAGE

Provenance & Causality
• Knowing what data/steps influenced other data/steps is important!
• Data dependencies: this output file depended on this input file
• Data-process dependencies: this output figure depended on these

processes
• Causality can often be represented as a graph where connections represent

dependencies

6D. Koop, CSCI 680/490, Spring 2022

Provenance Capture Mechanisms
• Workflow-based: Since workflow execution is controlled, keep track of all

the workflow modules, parameters, etc. as they are executed
• Process-based: Each process is required to write out its own provenance

information (not centralized like workflow-based)
• OS-based: The OS or filesystem is modified so that any activity it does it

monitored and the provenance subsystem organizes it
• Tradeoffs:
- Workflow- and process-based have better abstraction
- OS-based requires minimal user effort once installed and can capture

"hidden dependencies"

7D. Koop, CSCI 680/490, Spring 2022

vtkActor

VTKCell

vtkRenderer

vtkContourFilter

vtkStructuredPointsReader

vtkDataSetMapper

vtkCamera

Abstraction: Script, Workflow, Abstract Workflow
data = vtk.vtkStructuredPointsReader()
data.SetFileName(../examples/data/head.120.vtk)

contour = vtk.vtkContourFilter()
contour.SetInput(data.GetOutput())
contour.SetValue(0, 67)

mapper = vtk.vtkPolyDataMapper()
mapper.SetInput(contour.GetOutput())
mapper.ScalarVisibilityOff()

actor = vtk.vtkActor()
actor.SetMapper(mapper)

cam = vtk.vtkCamera()
cam.SetViewUp(0,0,-1)
cam.SetPosition(745,-453,369)
cam.SetFocalPoint(135,135,150)
cam.ComputeViewPlaneNormal()

ren = vtk.vtkRenderer()
ren.AddActor(actor)
ren.SetActiveCamera(cam)
ren.ResetCamera()
renwin = vtk.vtkRenderWindow()
renwin.AddRenderer(ren)

style = vtk.vtkInteractorStyleTrackballCamera()
iren = vtk.vtkRenderWindowInteractor()
iren.SetRenderWindow(renwin)
iren.SetInteractorStyle(style)
iren.Initialize()
iren.Start()

8D. Koop, CSCI 680/490, Spring 2022

ViewUp (0,0,-1)
Position (745,-453,369)

FocalPoint (-135,135,150)

FileName .../head.120.vtk

Value (0,67)

vtkActor

VTKCell

vtkRenderer

vtkContourFilter

vtkStructuredPointsReader

vtkDataSetMapper

vtkCamera

Abstraction: Script, Workflow, Abstract Workflow
data = vtk.vtkStructuredPointsReader()
data.SetFileName(../examples/data/head.120.vtk)

contour = vtk.vtkContourFilter()
contour.SetInput(data.GetOutput())
contour.SetValue(0, 67)

mapper = vtk.vtkPolyDataMapper()
mapper.SetInput(contour.GetOutput())
mapper.ScalarVisibilityOff()

actor = vtk.vtkActor()
actor.SetMapper(mapper)

cam = vtk.vtkCamera()
cam.SetViewUp(0,0,-1)
cam.SetPosition(745,-453,369)
cam.SetFocalPoint(135,135,150)
cam.ComputeViewPlaneNormal()

ren = vtk.vtkRenderer()
ren.AddActor(actor)
ren.SetActiveCamera(cam)
ren.ResetCamera()
renwin = vtk.vtkRenderWindow()
renwin.AddRenderer(ren)

style = vtk.vtkInteractorStyleTrackballCamera()
iren = vtk.vtkRenderWindowInteractor()
iren.SetRenderWindow(renwin)
iren.SetInteractorStyle(style)
iren.Initialize()
iren.Start()

8D. Koop, CSCI 680/490, Spring 2022

ViewUp (0,0,-1)
Position (745,-453,369)

FocalPoint (-135,135,150)

FileName .../head.120.vtk

Value (0,67)

Read File

Extract
Isosurface

Render

Visualization

��������	�
�

�������
��

��������������������������

�����������	
�

����
�
������

�������������	�
���

�����������	
�

�������������

�������������������

�����������	
�

����������������

������������

�����������	
�

����������

�����������

�����������	
�

�������
�

��������������

�����������	
�

��������

��������

�����������	
�

���	

������������� �������������������

���	

������������� �������������������

���	

������������� �������������������

���	

������������� �������������������

���	 ���	

������������� �������������������

������������� �������������������

���	

������������� �������������������

Abstraction: Provenance Views

9

��������	�
�

�������
��

�������	�
�

�����������	
�

����
�
������

�����������
�
������

�����������	
�

��������

�����������
��
�������

�����������	
�

���	

������������� �������������������

���	

������������� �������������������

���	

������������� �������������������

D. Koop, CSCI 680/490, Spring 2022

Abstract

Assignment 5
• Chicago Bike Sharing Data
- Spatial Analysis
- Temporal Analysis
- Graph Database (neo4j)

10D. Koop, CSCI 680/490, Spring 2022

http://faculty.cs.niu.edu/~dakoop/cs680-2022sp/assignment5.html

Provenance Storage
• Keeping provenance for each data item means lots of repetition
• Nested data storage also induces repetition
• Coarse provenance is naturally more compact, but how to decide what (not)

to store?
• Repeated provenance is not uncommon:
- Repeating the same computation with a different parameter
- Creating a new computation that has a very similar structure to one that

was run two weeks ago
• Provenance compression/factorization techniques (e.g. [Chapman et al.,

2008], [Anand et al., 2009]) take advantage of that to reduce storage costs

11D. Koop, CSCI 680/490, Spring 2022

Provenance Storage Formats
• Files, relational databases, XML databases, RDF (linked data)
• Log files are good for preserving data but can be bad to query or analyze
• Relational databases are great for column-specific queries but can be bad for

dependency queries
• XML databases are more portable than relational databases but are usually

less efficient for queries
• RDF triples are better for dependencies and integrating domain-specific

knowledge but can be slower

12D. Koop, CSCI 680/490, Spring 2022

Layered Provenance
• As with relational databases, want to normalize provenance to minimize

redundant information
• Example: Don’t store workflow specification each time that workflow is

executed–store it once and reference it
• Also allow different layers for different aspects of provenance

13

[Freire et. al, 2008]
D. Koop, CSCI 680/490, Spring 2022

24 COMPUTING IN SCIENCE & ENGINEERING

proaches require processes to be wrapped—in the
former, so that the work!ow engine can invoke
them, and in the latter, so that instrumentation
can capture and publish provenance information.

Because work!ow systems have access to work-
!ow de"nitions and control their execution, they
can capture both prospective and retrospective
provenance. OS- and process-based mechanisms
only capture retrospective provenance: they must
reconstruct causal relationships through prov-
enance queries. The ES3 system (http://eil.bren.
ucsb.edu), for example, monitors the interactions
between arbitrary applications and their environ-
ments (via arguments, "le I/O, system, and calls),
and then uses this information to assemble a prov-
enance graph to describe what actually happened
during execution.6

In fact, by capturing provenance at the OS level,
we can record detailed information about all system
calls and "les touched during a task’s execution.
This forms a superset of the information captured
in work!ow- and process-based systems, whose
granularity is determined by the wrapping provid-
ed for individual processes. Consider, for example,
a command-line tool integrated in a work!ow sys-
tem that creates and depends on temporary "les not
explicitly de"ned in its wrapper. The causal depen-
dencies the work!ow system captures won’t include
the temporary "les, but we can capture these de-
pendencies at the OS level. However, because even
simple tasks can lead to a large number of low-level
calls, the amount of provenance that OS-based ap-
proaches record can be prohibitive, making it hard
to query and reason about the information.7

Provenance Models
Researchers have proposed several provenance
models in the literature.9,10,12 All these models
support some form of retrospective provenance,
and most of those that work!ow systems use pro-
vide the means to capture prospective provenance.
Many of the models also support annotations.

Although these models differ in several ways,
including their use of structures and storage strat-
egies, they all share an essential type of informa-
tion: process and data dependencies. In fact, a
recent exercise to explore interoperability issues
among provenance models showed that it’s possible
to integrate information that conform to different
provenance models (http://twiki.ipaw.info/bin/
view/Challenge/SecondProvenanceChallenge).

Despite a base commonality, provenance mod-
els tend to vary according to domain and user
needs. Even though most models strive to store
general concepts, speci"c use cases often in!u-
ence model design—for example, Taverna was de-
veloped to support the creation and management
of work!ows in the bioinformatics domain, and
therefore provides an infrastructure that includes
support for ontologies available in this domain.
VisTrails was designed to support exploratory
tasks in which work!ows are iteratively re"ned,
and thus uses a model that treats work!ow speci-
"cations as "rst-class data products and captures
the provenance of work!ow evolution.

Because the provenance information a model
must represent varies both by type and speci"city,
it’s advantageous to structure a model as a set of
layers to enable a normalized, con"gurable repre-
sentation. The ability to represent provenance at
different levels of abstraction also leads to simpler
queries and more intuitive results. Consider the
REDUX system,16 which uses the layered model
depicted in Figure 3. The "rst layer corresponds to
an abstract description of a work!ow, in which each
module corresponds to a class of activities. This ab-
stract description is bound to speci"c services and
data sets de"ned in the second layer—for example,
in the work!ow shown in Figure 1, the abstract
activity extract isosurface is bound to a call
to the vtkContourFilter—a speci"c implemen-
tation of isosurface extraction provided by VTK.
The third layer captures information about input
data and parameters supplied at runtime, and the
fourth layer captures operational details, such as
the work!ow execution’s start and end time.

Structuring provenance information into mul-
tiple layers leads to a normalized representation
that avoids the storage of redundant information.
Some models, for example, store a work!ow’s

��
�
������	����

�������������

��
�
�����������

�������������
�
��

�������

����
������
�
��

�������������

��
������������������

������������������

�����

��
�
������������

�������������

��
�
�����������

����
����

Figure 3. Layered provenance models. For REDUX, the !rst layer
corresponds to an abstract description, the second layer describes the
binding of speci!c services and data to the abstract description, the
third layer captures runtime inputs and parameters, and the !nal layer
captures operational data. Other models use layers in different ways.
The top-layer in VisTrails captures provenance of work"ow evolution,
and Pegasus uses an additional layer to represent the work"ow
execution plan over grid resources.

Provenance Models
• How provenance is represented (more abstract than the details of how it is

actually stored)
• PROV (W3C Standard) has different storage backends for provenance but all

of it conforms to the same model
• Model the objects involved and their relationships (e.g. activities,

dependencies)
• Interoperability is a concern
- Why? May use multiple tools/techniques to achieve a result, want to analyze

the entire provenance chain

14D. Koop, CSCI 680/490, Spring 2022

Prospective and Retrospective Provenance	
• Prospective provenance is what was specified/intended
- a workflow, script, list of steps

• Retrospective provenance is what actually happened
- actual data, actual parameters, errors that occurred, timestamps, machine

information
• Do not need prospective provenance to have retrospective provenance!
• Retrospective provenance is often the same type of information as

prospective plus more
• Could have multiple retrospective provenance traces for one prospective

provenance listing

15D. Koop, CSCI 680/490, Spring 2022

Prospective and Retrospective Provenance	
• Example: Baking a Cake
• Prospective Provenance (Recipe):
1. Gather ingredients (3/4 cup butter, 3/4 cocoa, 3/4 cup flour, ...)
2. Preheat oven to 350 degrees
3. Grease cake pan
4. Mix wet ingredients in large bowl
5. Mix dry ingredients in a separate bowl
6. Add dry mixture to wet mixture
7. Pour batter into cake pan
8. Put pan in the oven and bake for 30 minutes
9. Take cake out of oven and let it cool

16D. Koop, CSCI 680/490, Spring 2022

Prospective and Retrospective Provenance	
• Retrospective Provenance (What actually happened)
1. Went to store to buy butter
2. Gathered ingredients (3/4 cup butter, 3/4 cocoa, 1 cup flour, ...)
3. Greased cake pan
4. Preheated oven to 350 degrees
5. Mixed wet ingredients in large bowl
6. Mixed dry ingredients in a separate bowl
7. Added wet mixture to dry mixture
8. Poured batter into cake pan
9. Put pan in the oven and baked for 35 minutes
10.Took cake out of oven and let it cool for 10 minutes

17D. Koop, CSCI 680/490, Spring 2022

Provenance Model History
• Community organized provenance challenges (2006-2009)
• First Provenance Challenge assessed capabilities of systems
• Second Provenance Challenge examined interoperability
• Led to development of Open Provenance Model (OPM), (2007)
- Sought to establish interchange format for provenance

• Further work led to PROV W3C Recommendations (2013)
- Some confusion from name changes from OPM to PROV even though

concepts are similar
- Focus is on model not formats

18D. Koop, CSCI 680/490, Spring 2022

PROV: Three Key Classes

19

[Moreau et al., 2014]
D. Koop, CSCI 680/490, Spring 2022

An entity is a physical, digital, conceptual, or other kind
of thing with some fixed aspects; entities may be real or
imaginary.

An activity is something that occurs over a period of
time and acts upon or with entities; it may include
consuming, processing, transforming, modifying,
relocating, using, or generating entities.

An agent is something that bears some form of
responsibility for an activity taking place, for the
existence of an entity, or for another agent’s activity.

PROV: Three Views of Provenance

20

[Moreau et al., 2014]
D. Koop, CSCI 680/490, Spring 2022

PROV Edges: Derivation
• Derivation Edges:
- wasGeneratedBy: entity ⟶ activity
- used: activity ⟶ entity

- wasDerivedFrom: entity ⟶ entity

21

[PROV Model Primer, 2013]
D. Koop, CSCI 680/490, Spring 2022

PROV Example

22

[PROV Model Primer, 2013]
D. Koop, CSCI 680/490, Spring 2022

Querying Provenance
• Query methods are often tied to storage backend
• SQL, XQuery, Prolog, SPARQL, ...

23D. Koop, CSCI 680/490, Spring 2022

26 COMPUTING IN SCIENCE & ENGINEERING

ate views of provenance data would bene!t OS- and
process-based provenance models as well.

The ability to query a computational task’s prov-
enance also enables knowledge reuse. By querying
a set of tasks and their provenance, users can not
only identify suitable tasks and reuse them, but
also compare and understand differences between
different tasks. Provenance information is often
associated with data products (such as images or
graphs), so this data helps users pose structured
queries over unstructured data as well.

A common feature across many approaches to
querying provenance is that their solutions are
closely tied to the storage models used. Hence, they
require users to write queries in languages such as
SQL,16 Prolog,20 and SPARQL.10,11 Although such
general languages are useful to those already famil-
iar with their syntax, they weren’t designed speci!-
cally for provenance, which means simple queries
can be awkward and complex to write. Figure 5
compares three representations of a single query in
the First Provenance Challenge that asked for tasks

using a speci!c module (Align Warp) with given
parameters executed on a Monday. The VisTrails
approach uses a language speci!cally designed to
query work"ows and their provenance, whereas
REDUX and myGrid use native languages for
their storage choices. Because the VisTrails lan-
guage abstracts details about physical storage, it
leads to much more concise queries.

However, even queries that use a language
designed for provenance are likely to be too
complicated for many users because provenance
contains structural information represented as a
graph. Thus, text-based query interfaces effec-
tively require a subgraph query to be encoded as
text. The VisTrails query-by-example (QBE) in-
terface (see Figure 6) addresses this problem by
letting users quickly construct expressive que-
ries using the same familiar interface they use
to build work"ow.21 The query’s results are also
displayed visually.

Some provenance models use Semantic Web
technology both to represent and query provenance

VisTrails

REDUX

MyGrid

SELECT Execution.ExecutableWork!owId, Execution.ExecutionId, Event.EventId, ExecutableActivity.ExecutableActivityId
from Execution, Execution_Event, Event, ExecutableWork!ow_ExecutableActivity, ExecutableActivity,
 ExecutableActivity_Property_Value, Value, EventType as ET
where Execution.ExecutionId=Execution_Event.ExecutionId
and Execution_Event.EventId=Event.EventId
and ExecutableActivity.ExecutableActivityId=ExecutableActivity_Property_Value.ExecutableActivityId
and ExecutableActivity_Property_Value.ValueId=Value.ValueId and Value.Value=Cast('-m 12' as binary)
and ((CONVERT(DECIMAL, Event.Timestamp)+0)%7)=0 and Execution_Event.ExecutableWork!ow_ExecutableActivityId=
 ExecutableWork!ow_ExecutableActivity.ExecutableWork!ow_ExecutableActivityId
and ExecutableWork!ow_ExecutableActivity.ExecutableWork!owId=Execution.ExecutableWork!owId
and ExecutableWork!ow_ExecutableActivity.ExecutableActivityId=ExecutableActivity.ExecutableActivityId
and Event.EventTypeId=ET.EventTypeId and ET.EventTypeName='Activity Start';

wf{*}: x where x.module='AlignWarp' and x.parameter('model')='12'
 and (log{x}: y where y.dayOfWeek='Monday')

SELECT ?p
where (?p <http://www.mygrid.org.uk/provenance#startTime> ?time) and (?time > date)
using ns for <http://www.mygrid.org.uk/provenance#> xsd for <http://www.w3.org/2001/XMLSchema#>

SELECT ?p
where <urn:lsid:www.mygrid.org.uk:experimentinstance:HXQOVQA2ZI0>
(?p <http://www.mygrid.org.uk/provenance#runsProcess> ?processname .
?p <http://www.mygrid.org.uk/provenance#processInput> ?inputParameter .
?inputParameter <ont:model> <ontology:twelfthOrder>)
using ns for <http://www.mygrid.org.uk/provenance#> ont for <http://www.mygrid.org.uk/ontology#>

Figure 5. Provenance query implemented by three different systems. REDUX uses SQL, VisTrails uses a language specialized
for querying work!ows and their provenance, and myGrid uses SPARQL.

Querying Provenance
• What process led to the output image?
• What input datasets contributed to the

output image?
• What workflows include resampling and

isosurfacing with isovalue 57?

• Graph traversal or graph patterns
- How do we write such queries?

24D. Koop, CSCI 680/490, Spring 2022

vtkActor

VTKCell

vtkRenderer

vtkContourFilter

vtkStructuredPointsReader

vtkDataSetMapper

vtkCamera

DATA

IMAGE

Querying Provenance by Example
• Provenance is represented as graphs: hard to specify queries using text!
• Querying workflows by example [Scheidegger et al., TVCG 2007; Beeri et al.,

VLDB 2006; Beeri et al. VLDB 2007]
- WYSIWYQ -- What You See Is What You Query
- Interface to create workflow is same as to query

25D. Koop, CSCI 680/490, Spring 2022

Stronger Links Between Provenance and Data
• Filenames are often the mode of

identification in data exploration
• We might also use URIs or access curated

data stores
- Always expected for exploratory tasks?
- What happens if offline?

• Solution:
- Managed store for data associated with

computations
- Improved data identification
- Automatic versioning

26

[Koop et. al, 2010]
D. Koop, CSCI 680/490, Spring 2022

<workflow_exec id="1">
 <m_exec id="5"
 name="vtkStructuredDataReader"
 package="edu.utah.sci.vistrails.vtk"
 version="5.6.0">
 <param id="2" name="SetFile"
 value="/MyData/05-12-sc2.dat"/>
 </m_exec>
 <m_exec id="6"
 name="vtkContourFilter"
 package="edu.utah.sci.vistrails.vtk"
 version="5.6.0">
 <param id="3" name="SetValue"
 value="[1, 57]"/>
 <param id="4" name="ComputeScalarsOn"
 value="True"/>
 </m_exec>

 ...

 <m_exec id="11"
 name="FileSink"
 package="edu.utah.sci.vistrails.basic"
 version="1.5">
 <param id="15" name="path"
 value="/home/a/results/23.out"/>
 </m_exec>

!
FILE NOT FOUND

!
FILE NOT FOUND

Provenance from Data

27

[Koop et. al, 2010]
D. Koop, CSCI 680/490, Spring 2022

newfilename.dat

HASH
CONTENTS

QUERY
FILE STORE

OBTAIN
FILE REFERENCE

12ab3-45ef2...

QUERY
PROVENANCE

OBTAIN
INPUT REFS

0ab678cd...

12ab3-45ef2...

QUERY
FILE STORE

12ab3-45ef2...

12ab3-45ef2...

OBTAIN
INPUT FILES input files

P

28 COMPUTING IN SCIENCE & ENGINEERING

infrastructures such as the TeraGrid.11 Although
Pegasus models prospective provenance using
OWL, it captures retrospective provenance by
using the Virtual Data System (VDS; a precursor
of Swift) and then stores it in a relational database.
Queries that span prospective and retrospective
provenance must combine two different query
languages: SPARQL and SQL.

REDUX extends the Windows Work!ow
Foundation engine to transparently capture the
work!ow execution trace. As discussed earlier,
it uses a layered provenance model to normalize
data and avoid redundancy. REDUX stores prov-
enance data (both prospective and retrospective)
in a relational database’s set of tables that can be
queried with SQL. The system can also return an
executable work!ow as the result of a provenance
query (for example, a query that requests all the
steps used to derive a particular data product).

Swift (www.ci.uchicago.edu/swift) builds on
and includes technology previously distributed
as the GriPhyN VDS.23 The system combines
a scripting language (SwiftScript) with a power-
ful runtime system for the concise speci"cation
and reliable execution of large, loosely coupled
computations. Swift speci"es these computations
as scripts, which the runtime system translates
into an executable work!ow. A launcher program
invokes the work!ow’s tasks, monitors the exe-
cution process, and records provenance informa-
tion, including the executable name, arguments,
start time, duration, machine information, and
exit status. Similar to VDS, Swift captures the
relationships among data, programs, and com-

putations and uses this information for data and
program discovery as well as for work!ow sched-
uling and optimization.

VisTrails is a work!ow and provenance man-
agement system designed to support exploratory
computational tasks. An important goal of the
VisTrails project is to build intuitive interfaces
for users to query and reuse provenance infor-
mation. Besides its QBE interface (which is built
on top of its specialized provenance query lan-
guage), VisTrails provides a visual interface to
compare work!ows side by side12 and a mecha-
nism for re"ning work!ows by analogy—users
can modify work!ows by example without hav-
ing to directly edit their de"nitions.21 VisTrails
internally represents prospective provenance as
Python objects that can be serialized into XML
and relations; it stores retrospective provenance
in a relational database.

OS-Based Systems
PASS (www.eecs.harvard.edu/syrah/pass) op-
erates at the level of a shared storage system: it
automatically records information about which
programs are executed, their inputs, and any new
"les created as output. The capture mechanism
consists of a set of Linux kernel modules that
transparently record provenance—it doesn’t re-
quire any changes to computational tasks. PASS
also constructs a provenance graph stored as a set
of tables in Berkeley DB. Users can pose prov-
enance queries using nq, a proprietary tool that
supports recursive searches over the provenance
graph. As discussed earlier, the "ne granularity

Table 1. Provenance-enabled systems.

System Capture mechanism Prospective provenance
Retrospective
provenance Work!ow evolution Storage Query support

Available as open
source?

REDUX Work!ow-based Relational Relational No Relational database management
system (RDBMS)

SQL No

Swift Work!ow-based SwiftScript Relational No RDBMS SQL Yes

VisTrails Work!ow-based XML and relational Relational Yes RDBMS and "les Visual query by example, specialized
language

Yes

Karma Work!ow- and
process-based

Business Process Execution
Language

XML No RDBMS Proprietary API Yes

Kepler Work!ow-based MoML MoML variation Under development Files; RDBMS planned Under development Yes

Taverna Work!ow-based Scu! RDF Under development RDBMS SPARQL Yes

Pegasus Work!ow-based OWL Relational No RDBMS SPARQL for metadata and work!ow;
SQL for execution log

Yes

PASS OS-based N/A Relational No Berkeley DB nq (proprietary query tool) No

ES3 OS-based N/A XML No XML database XQuery No

PASOA/PreServ Process-based N/A XML No Filesystem, Berkeley DB XQuery, Java query API Yes

Provenance-Enabled Systems

28

[Freire et. al, 2008]
D. Koop, CSCI 680/490, Spring 2022

28 COMPUTING IN SCIENCE & ENGINEERING

infrastructures such as the TeraGrid.11 Although
Pegasus models prospective provenance using
OWL, it captures retrospective provenance by
using the Virtual Data System (VDS; a precursor
of Swift) and then stores it in a relational database.
Queries that span prospective and retrospective
provenance must combine two different query
languages: SPARQL and SQL.

REDUX extends the Windows Work!ow
Foundation engine to transparently capture the
work!ow execution trace. As discussed earlier,
it uses a layered provenance model to normalize
data and avoid redundancy. REDUX stores prov-
enance data (both prospective and retrospective)
in a relational database’s set of tables that can be
queried with SQL. The system can also return an
executable work!ow as the result of a provenance
query (for example, a query that requests all the
steps used to derive a particular data product).

Swift (www.ci.uchicago.edu/swift) builds on
and includes technology previously distributed
as the GriPhyN VDS.23 The system combines
a scripting language (SwiftScript) with a power-
ful runtime system for the concise speci"cation
and reliable execution of large, loosely coupled
computations. Swift speci"es these computations
as scripts, which the runtime system translates
into an executable work!ow. A launcher program
invokes the work!ow’s tasks, monitors the exe-
cution process, and records provenance informa-
tion, including the executable name, arguments,
start time, duration, machine information, and
exit status. Similar to VDS, Swift captures the
relationships among data, programs, and com-

putations and uses this information for data and
program discovery as well as for work!ow sched-
uling and optimization.

VisTrails is a work!ow and provenance man-
agement system designed to support exploratory
computational tasks. An important goal of the
VisTrails project is to build intuitive interfaces
for users to query and reuse provenance infor-
mation. Besides its QBE interface (which is built
on top of its specialized provenance query lan-
guage), VisTrails provides a visual interface to
compare work!ows side by side12 and a mecha-
nism for re"ning work!ows by analogy—users
can modify work!ows by example without hav-
ing to directly edit their de"nitions.21 VisTrails
internally represents prospective provenance as
Python objects that can be serialized into XML
and relations; it stores retrospective provenance
in a relational database.

OS-Based Systems
PASS (www.eecs.harvard.edu/syrah/pass) op-
erates at the level of a shared storage system: it
automatically records information about which
programs are executed, their inputs, and any new
"les created as output. The capture mechanism
consists of a set of Linux kernel modules that
transparently record provenance—it doesn’t re-
quire any changes to computational tasks. PASS
also constructs a provenance graph stored as a set
of tables in Berkeley DB. Users can pose prov-
enance queries using nq, a proprietary tool that
supports recursive searches over the provenance
graph. As discussed earlier, the "ne granularity

Table 1. Provenance-enabled systems.

System Capture mechanism Prospective provenance
Retrospective
provenance Work!ow evolution Storage Query support

Available as open
source?

REDUX Work!ow-based Relational Relational No Relational database management
system (RDBMS)

SQL No

Swift Work!ow-based SwiftScript Relational No RDBMS SQL Yes

VisTrails Work!ow-based XML and relational Relational Yes RDBMS and "les Visual query by example, specialized
language

Yes

Karma Work!ow- and
process-based

Business Process Execution
Language

XML No RDBMS Proprietary API Yes

Kepler Work!ow-based MoML MoML variation Under development Files; RDBMS planned Under development Yes

Taverna Work!ow-based Scu! RDF Under development RDBMS SPARQL Yes

Pegasus Work!ow-based OWL Relational No RDBMS SPARQL for metadata and work!ow;
SQL for execution log

Yes

PASS OS-based N/A Relational No Berkeley DB nq (proprietary query tool) No

ES3 OS-based N/A XML No XML database XQuery No

PASOA/PreServ Process-based N/A XML No Filesystem, Berkeley DB XQuery, Java query API Yes

Provenance-Enabled Systems

29

MAY/JUNE 2008 29

of PASS’s capture mechanism often leads to very
large volumes of provenance information; another
limitation of this approach is that it’s restricted to
local !lesystems. It can’t, for example, track !les
in a grid environment.

ES3’s goal is to extract provenance information
from arbitrary applications by monitoring their in-
teractions with the execution environment.6 These
interactions are logged to the ES3 database, which
stores the information as provenance graphs, rep-
resented in XML. ES3 currently supports a Linux
plugin, which uses system call tracing to capture
provenance. As in PASS, ES3 requires no changes
to the underlying processes, but provenance cap-
ture is restricted to applications that run on ES3-
supported environments.

Process-Based Systems
The Provenance-Aware Service Oriented Ar-
chitecture (PASOA) project (www.pasoa.org)
developed a provenance architecture that relies
on individual services to record their own prov-
enance.5 The system doesn’t model the notion of a
work"ow—rather, it captures assertions produced
by services that re"ect the relationships between
the represented services and data. The system
must infer the complete provenance of a task or
data product by combining these assertions and
recursively following the relationships they repre-
sent. The PASOA architecture distinguishes the
notion of process documentation—that is, the prove-
nance recorded speci!cally about a process—from
the notion of a data item’s provenance, which is de-
rived from the process documentation. The PA-

SOA project developed an open source software
package called PreServ that lets developers inte-
grate process documentation recording into their
applications. PreServ also supports multiple back
end storage systems, including !les and relational
databases; users can pose provenance queries by
using its Java-based query API or XQuery.

P rovenance management is a new area,
but it is advancing rapidly. Researchers
are actively pursuing several directions
in this area, including the ability to in-

tegrate provenance derived from different systems
and enhanced analytical and visualization mech-
anisms for exploring provenance information.
Provenance research is also enabling several new
applications, such as science collaboratories, which
have the potential to change the way people do sci-
ence—sharing provenance information at a large
scale exposes researchers to techniques and tools
to which they wouldn’t otherwise have access. By
exploring provenance information in a collabora-
tory, scientists can learn by example, expedite their
scienti!c work, and potentially reduce their time
to insight. The “wisdom of the crowds,” in the
context of scienti!c exploration, can avoid duplica-
tion and encourage continuous, documented, and
reproducible scienti!c progress.24

Acknowledgments
This work was partially supported by the US Nation-
al Science Foundation, the US Department of Energy,
and IBM faculty awards.

Table 1. Provenance-enabled systems.

System Capture mechanism Prospective provenance
Retrospective
provenance Work!ow evolution Storage Query support

Available as open
source?

REDUX Work!ow-based Relational Relational No Relational database management
system (RDBMS)

SQL No

Swift Work!ow-based SwiftScript Relational No RDBMS SQL Yes

VisTrails Work!ow-based XML and relational Relational Yes RDBMS and "les Visual query by example, specialized
language

Yes

Karma Work!ow- and
process-based

Business Process Execution
Language

XML No RDBMS Proprietary API Yes

Kepler Work!ow-based MoML MoML variation Under development Files; RDBMS planned Under development Yes

Taverna Work!ow-based Scu! RDF Under development RDBMS SPARQL Yes

Pegasus Work!ow-based OWL Relational No RDBMS SPARQL for metadata and work!ow;
SQL for execution log

Yes

PASS OS-based N/A Relational No Berkeley DB nq (proprietary query tool) No

ES3 OS-based N/A XML No XML database XQuery No

PASOA/PreServ Process-based N/A XML No Filesystem, Berkeley DB XQuery, Java query API Yes [Freire et. al, 2008]
D. Koop, CSCI 680/490, Spring 2022

28 COMPUTING IN SCIENCE & ENGINEERING

infrastructures such as the TeraGrid.11 Although
Pegasus models prospective provenance using
OWL, it captures retrospective provenance by
using the Virtual Data System (VDS; a precursor
of Swift) and then stores it in a relational database.
Queries that span prospective and retrospective
provenance must combine two different query
languages: SPARQL and SQL.

REDUX extends the Windows Work!ow
Foundation engine to transparently capture the
work!ow execution trace. As discussed earlier,
it uses a layered provenance model to normalize
data and avoid redundancy. REDUX stores prov-
enance data (both prospective and retrospective)
in a relational database’s set of tables that can be
queried with SQL. The system can also return an
executable work!ow as the result of a provenance
query (for example, a query that requests all the
steps used to derive a particular data product).

Swift (www.ci.uchicago.edu/swift) builds on
and includes technology previously distributed
as the GriPhyN VDS.23 The system combines
a scripting language (SwiftScript) with a power-
ful runtime system for the concise speci"cation
and reliable execution of large, loosely coupled
computations. Swift speci"es these computations
as scripts, which the runtime system translates
into an executable work!ow. A launcher program
invokes the work!ow’s tasks, monitors the exe-
cution process, and records provenance informa-
tion, including the executable name, arguments,
start time, duration, machine information, and
exit status. Similar to VDS, Swift captures the
relationships among data, programs, and com-

putations and uses this information for data and
program discovery as well as for work!ow sched-
uling and optimization.

VisTrails is a work!ow and provenance man-
agement system designed to support exploratory
computational tasks. An important goal of the
VisTrails project is to build intuitive interfaces
for users to query and reuse provenance infor-
mation. Besides its QBE interface (which is built
on top of its specialized provenance query lan-
guage), VisTrails provides a visual interface to
compare work!ows side by side12 and a mecha-
nism for re"ning work!ows by analogy—users
can modify work!ows by example without hav-
ing to directly edit their de"nitions.21 VisTrails
internally represents prospective provenance as
Python objects that can be serialized into XML
and relations; it stores retrospective provenance
in a relational database.

OS-Based Systems
PASS (www.eecs.harvard.edu/syrah/pass) op-
erates at the level of a shared storage system: it
automatically records information about which
programs are executed, their inputs, and any new
"les created as output. The capture mechanism
consists of a set of Linux kernel modules that
transparently record provenance—it doesn’t re-
quire any changes to computational tasks. PASS
also constructs a provenance graph stored as a set
of tables in Berkeley DB. Users can pose prov-
enance queries using nq, a proprietary tool that
supports recursive searches over the provenance
graph. As discussed earlier, the "ne granularity

Table 1. Provenance-enabled systems.

System Capture mechanism Prospective provenance
Retrospective
provenance Work!ow evolution Storage Query support

Available as open
source?

REDUX Work!ow-based Relational Relational No Relational database management
system (RDBMS)

SQL No

Swift Work!ow-based SwiftScript Relational No RDBMS SQL Yes

VisTrails Work!ow-based XML and relational Relational Yes RDBMS and "les Visual query by example, specialized
language

Yes

Karma Work!ow- and
process-based

Business Process Execution
Language

XML No RDBMS Proprietary API Yes

Kepler Work!ow-based MoML MoML variation Under development Files; RDBMS planned Under development Yes

Taverna Work!ow-based Scu! RDF Under development RDBMS SPARQL Yes

Pegasus Work!ow-based OWL Relational No RDBMS SPARQL for metadata and work!ow;
SQL for execution log

Yes

PASS OS-based N/A Relational No Berkeley DB nq (proprietary query tool) No

ES3 OS-based N/A XML No XML database XQuery No

PASOA/PreServ Process-based N/A XML No Filesystem, Berkeley DB XQuery, Java query API Yes

Provenance-Enabled Systems

29

MAY/JUNE 2008 29

of PASS’s capture mechanism often leads to very
large volumes of provenance information; another
limitation of this approach is that it’s restricted to
local !lesystems. It can’t, for example, track !les
in a grid environment.

ES3’s goal is to extract provenance information
from arbitrary applications by monitoring their in-
teractions with the execution environment.6 These
interactions are logged to the ES3 database, which
stores the information as provenance graphs, rep-
resented in XML. ES3 currently supports a Linux
plugin, which uses system call tracing to capture
provenance. As in PASS, ES3 requires no changes
to the underlying processes, but provenance cap-
ture is restricted to applications that run on ES3-
supported environments.

Process-Based Systems
The Provenance-Aware Service Oriented Ar-
chitecture (PASOA) project (www.pasoa.org)
developed a provenance architecture that relies
on individual services to record their own prov-
enance.5 The system doesn’t model the notion of a
work"ow—rather, it captures assertions produced
by services that re"ect the relationships between
the represented services and data. The system
must infer the complete provenance of a task or
data product by combining these assertions and
recursively following the relationships they repre-
sent. The PASOA architecture distinguishes the
notion of process documentation—that is, the prove-
nance recorded speci!cally about a process—from
the notion of a data item’s provenance, which is de-
rived from the process documentation. The PA-

SOA project developed an open source software
package called PreServ that lets developers inte-
grate process documentation recording into their
applications. PreServ also supports multiple back
end storage systems, including !les and relational
databases; users can pose provenance queries by
using its Java-based query API or XQuery.

P rovenance management is a new area,
but it is advancing rapidly. Researchers
are actively pursuing several directions
in this area, including the ability to in-

tegrate provenance derived from different systems
and enhanced analytical and visualization mech-
anisms for exploring provenance information.
Provenance research is also enabling several new
applications, such as science collaboratories, which
have the potential to change the way people do sci-
ence—sharing provenance information at a large
scale exposes researchers to techniques and tools
to which they wouldn’t otherwise have access. By
exploring provenance information in a collabora-
tory, scientists can learn by example, expedite their
scienti!c work, and potentially reduce their time
to insight. The “wisdom of the crowds,” in the
context of scienti!c exploration, can avoid duplica-
tion and encourage continuous, documented, and
reproducible scienti!c progress.24

Acknowledgments
This work was partially supported by the US Nation-
al Science Foundation, the US Department of Energy,
and IBM faculty awards.

Table 1. Provenance-enabled systems.

System Capture mechanism Prospective provenance
Retrospective
provenance Work!ow evolution Storage Query support

Available as open
source?

REDUX Work!ow-based Relational Relational No Relational database management
system (RDBMS)

SQL No

Swift Work!ow-based SwiftScript Relational No RDBMS SQL Yes

VisTrails Work!ow-based XML and relational Relational Yes RDBMS and "les Visual query by example, specialized
language

Yes

Karma Work!ow- and
process-based

Business Process Execution
Language

XML No RDBMS Proprietary API Yes

Kepler Work!ow-based MoML MoML variation Under development Files; RDBMS planned Under development Yes

Taverna Work!ow-based Scu! RDF Under development RDBMS SPARQL Yes

Pegasus Work!ow-based OWL Relational No RDBMS SPARQL for metadata and work!ow;
SQL for execution log

Yes

PASS OS-based N/A Relational No Berkeley DB nq (proprietary query tool) No

ES3 OS-based N/A XML No XML database XQuery No

PASOA/PreServ Process-based N/A XML No Filesystem, Berkeley DB XQuery, Java query API Yes [Freire et. al, 2008]
D. Koop, CSCI 680/490, Spring 2022

Today: Two types of provenance
• Database Provenance
• Evolution Provenance

30D. Koop, CSCI 680/490, Spring 2022

Database Provenance
• Motivation: Data warehouses and curated databases
- Lots of work
- Provenance helps check correctness
- Adds value to data by how it was obtained

• Three Types:
- Why (Lineage): Associate each tuple t present in the output of a query with a

set of tuples present in the input
- How: Not just existence but routes from tuples to output (multiple contrib.'s)
- Where: Location where data is copied from (may have choice of different

tables)

31

[Cheney et al., 2007]
D. Koop, CSCI 680/490, Spring 2022

Provenance in Databases

A. Amarilli

D. Koop, CSCI 680/490, Spring 2022

http://kocoon.gforge.inria.fr/slides/amarilli.pdf

Why Provenance
• Lineage of(HarborCruz, 831-3000):
{Agencies(t2),ExternalTours(t7)}

• Lineage of (BayTours, 415-1200):
{Agencies(t1), ExternalTours(t5,t6)}

• This is not really precise because we
don't need both t5 and t6—only
one is ok

33

[Cheney et al., 2007]
D. Koop, CSCI 680/490, Spring 2022

1.1 Why, How and Where: An Overview 383

Agencies
name based in phone

t1: BayTours San Francisco 415-1200
t2: HarborCruz Santa Cruz 831-3000

ExternalTours
name destination type price

t3: BayTours San Francisco cable car $50
t4: BayTours Santa Cruz bus $100
t5: BayTours Santa Cruz boat $250
t6: BayTours Monterey boat $400
t7: HarborCruz Monterey boat $200
t8: HarborCruz Carmel train $90

Fig. 1.1 Our example database: an online travel portal.

on the name attribute, selecting tours by boat, and projecting on the
name and phone attributes:

Q1:
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name AND
e.type=‘boat’

Result of Q1:
name phone
BayTours 415-1200
HarborCruz 831-3000

The result of Q1 executed on our example database in Figure 1.1 is
shown above on the right. According to Cui et al., the lineage of the out-
put tuple (HarborCruz, 831-3000) is {Agencies(t2), ExternalTours(t7)},
where Agencies(t2) and ExternalTours(t7) denote the subinstances of
Agencies and ExternalTours consisting of tuples t2 and t7, respectively.
Intuitively, the two source tuples witness the existence of the tuple of
interest, (HarborCruz, 831-3000), according to Q1. Furthermore, each
of the two source tuples justify the existence of the HarborCruz tuple.
In other words, the source tuples t2 and t7 form a “proof” or “witness”
for the HarborCruz output tuple according to Q1, and no other source
tuples are part of the witness since they do not contribute to the Har-
borCruz output tuple. Technically speaking, by “witness” we mean a
subset of the input database records that is sufficient to ensure that a
given output tuple appears in the result of a query.

As another example, the lineage of the output tuple (Bay-
Tours, 415-1200) is the union of the lineage of the intermediate

1.1 Why, How and Where: An Overview 383

Agencies
name based in phone

t1: BayTours San Francisco 415-1200
t2: HarborCruz Santa Cruz 831-3000

ExternalTours
name destination type price

t3: BayTours San Francisco cable car $50
t4: BayTours Santa Cruz bus $100
t5: BayTours Santa Cruz boat $250
t6: BayTours Monterey boat $400
t7: HarborCruz Monterey boat $200
t8: HarborCruz Carmel train $90

Fig. 1.1 Our example database: an online travel portal.

on the name attribute, selecting tours by boat, and projecting on the
name and phone attributes:

Q1:
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name AND
e.type=‘boat’

Result of Q1:
name phone
BayTours 415-1200
HarborCruz 831-3000

The result of Q1 executed on our example database in Figure 1.1 is
shown above on the right. According to Cui et al., the lineage of the out-
put tuple (HarborCruz, 831-3000) is {Agencies(t2), ExternalTours(t7)},
where Agencies(t2) and ExternalTours(t7) denote the subinstances of
Agencies and ExternalTours consisting of tuples t2 and t7, respectively.
Intuitively, the two source tuples witness the existence of the tuple of
interest, (HarborCruz, 831-3000), according to Q1. Furthermore, each
of the two source tuples justify the existence of the HarborCruz tuple.
In other words, the source tuples t2 and t7 form a “proof” or “witness”
for the HarborCruz output tuple according to Q1, and no other source
tuples are part of the witness since they do not contribute to the Har-
borCruz output tuple. Technically speaking, by “witness” we mean a
subset of the input database records that is sufficient to ensure that a
given output tuple appears in the result of a query.

As another example, the lineage of the output tuple (Bay-
Tours, 415-1200) is the union of the lineage of the intermediate

Q1:
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name AND e.type='boat'

How Provenance
• How provenance gives more detail

about how the tuples provide
witnesses to the result

• Prov of (San Francisco, 415-1200):
{{t1}, {t1,t3}}

• t1 contributes twice
• Uses provenance semirings (the

"polynomial" shown on the right)

34

[Cheney et al., 2007]
D. Koop, CSCI 680/490, Spring 2022

386 Introduction

minimal witness since {t} is a subinstance of it and it is a witness to
(1,2). Hence, the minimal witness basis is {{t}} for this example. In a
subsequent work by [14], minimal witnesses were used in the study of
variants of the view deletion problem, which is that of finding source
tuples to remove in order to delete a tuple from the view for select-
project–join–union queries.

1.1.2 How-Provenance

Why-provenance describes the source tuples that witness the existence
of an output tuple in the result of the query. However, it leaves out
some information about how an output tuple is derived according to
the query. To illustrate, consider the query Q2 of Figure 1.4 which asks
for all cities where tours are offered (assuming all agencies offer tours
in the city they are headquartered). The result of Q2 on the example
database in Figure 1.1 is shown in the right of Figure 1.4. (Ignore the
additional tags on the output tuples for now.) For the output tuple
(San Francisco, 415-1200) in the result of Q2, its why-provenance is
{{t1}, {t1,t3}}. This description tells us that t1 alone, and t1 with t3 are
each sufficient to witness the existence of the output tuple according to
Q2. However, it does not tell us about the structure of the proof that
t1 (as well as t1 and t3) help witness the output tuple according to Q2.
Although arguably obvious from the description of the query Q2, the
why-provenance does not tell us that the source tuple t1 contributes
twice to the output tuple: (1) t1 contributes to the intermediary result
of the inner query, and (2) it combines with that intermediary result
to witness the output tuple. This intuition is formalized in [43] using

Q2:
SELECT e.destination, a.phone
FROM Agencies a,

(SELECT name,
based in AS destination

FROM Agencies a
UNION
SELECT name, destination
FROM ExternalTours) e

WHERE a.name = e.name

Result of Q2:
destination phone
San Francisco 415-1200 t1 · (t1 + t3)
Santa Cruz 831-3000 t22
Santa Cruz 415-1200 t1 · (t4 + t5)
Monterey 415-1200 t1 · t6
Monterey 831-3000 t1 · t7
Carmel 831-3000 t1 · t8

Fig. 1.4 A query and its output tagged with semiring provenance.

1.1 Why, How and Where: An Overview 383

Agencies
name based in phone

t1: BayTours San Francisco 415-1200
t2: HarborCruz Santa Cruz 831-3000

ExternalTours
name destination type price

t3: BayTours San Francisco cable car $50
t4: BayTours Santa Cruz bus $100
t5: BayTours Santa Cruz boat $250
t6: BayTours Monterey boat $400
t7: HarborCruz Monterey boat $200
t8: HarborCruz Carmel train $90

Fig. 1.1 Our example database: an online travel portal.

on the name attribute, selecting tours by boat, and projecting on the
name and phone attributes:

Q1:
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name AND
e.type=‘boat’

Result of Q1:
name phone
BayTours 415-1200
HarborCruz 831-3000

The result of Q1 executed on our example database in Figure 1.1 is
shown above on the right. According to Cui et al., the lineage of the out-
put tuple (HarborCruz, 831-3000) is {Agencies(t2), ExternalTours(t7)},
where Agencies(t2) and ExternalTours(t7) denote the subinstances of
Agencies and ExternalTours consisting of tuples t2 and t7, respectively.
Intuitively, the two source tuples witness the existence of the tuple of
interest, (HarborCruz, 831-3000), according to Q1. Furthermore, each
of the two source tuples justify the existence of the HarborCruz tuple.
In other words, the source tuples t2 and t7 form a “proof” or “witness”
for the HarborCruz output tuple according to Q1, and no other source
tuples are part of the witness since they do not contribute to the Har-
borCruz output tuple. Technically speaking, by “witness” we mean a
subset of the input database records that is sufficient to ensure that a
given output tuple appears in the result of a query.

As another example, the lineage of the output tuple (Bay-
Tours, 415-1200) is the union of the lineage of the intermediate

Where Provenance
• Where provenance traces to specific

locations, not the tuple values
• Q and Q' give the same result but

the name comes from different
places

• Prov of HarborCruz in second output:
(t2, name)

• Important in annotation-propogation

35

[Cheney et al., 2007]
D. Koop, CSCI 680/490, Spring 2022

388 Introduction

the source instance is related to data in the target instance through
the schema mapping. Hence, in retrospect, routes can be classified as
a form of how-provenance over schema mappings.

1.1.3 Where-Provenance

Why-provenance describes all combinations of source tuples that wit-
ness the existence of an output tuple in the result of a query. In turn,
how-provenance describes how the source tuples witness the output
tuple. Buneman et al. also introduced a different notion of provenance,
called where-provenance [13]. Intuitively, where-provenance describes
where a piece of data is copied from. While why-provenance is about
the relationship between source and output tuples, where-provenance
describes the relationship between source and output locations. In the
relational setting, a location is simply a column of a tuple in a relation,
which precisely refers to a “cell” in a relation. The where-provenance
of a value that resides in some location l in Q(D) consists of locations
of D from which the value in l was copied according to Q. Naturally,
this requires that all the values that reside in the source locations of
the where-provenance of l are equal to the value that resides at l. For
example, the where-provenance of the value “HarborCruz” in the sec-
ond output tuple in the result of Q1 is the location (Agencies, t2, name)
(or simply, (t2, name)) in our example database, since “HarborCruz”
was copied from the name attribute of the tuple t2 in the Agencies
relation, according to Q1.

Where-provenance is also not invariant under equivalent queries.
To illustrate, consider the queries Q1 (repeated from earlier) and Q′

1.
The only difference between Q1 and Q′

1 is in the select clause. The first
attribute of the select clause of Q1 is a.name, whereas the first attribute
of the select clause of Q′

1 is e.name.

Q1:
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name

AND e.type=‘boat’

Q′
1:

SELECT e.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name

AND e.type=‘boat’

1.1 Why, How and Where: An Overview 383

Agencies
name based in phone

t1: BayTours San Francisco 415-1200
t2: HarborCruz Santa Cruz 831-3000

ExternalTours
name destination type price

t3: BayTours San Francisco cable car $50
t4: BayTours Santa Cruz bus $100
t5: BayTours Santa Cruz boat $250
t6: BayTours Monterey boat $400
t7: HarborCruz Monterey boat $200
t8: HarborCruz Carmel train $90

Fig. 1.1 Our example database: an online travel portal.

on the name attribute, selecting tours by boat, and projecting on the
name and phone attributes:

Q1:
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name AND
e.type=‘boat’

Result of Q1:
name phone
BayTours 415-1200
HarborCruz 831-3000

The result of Q1 executed on our example database in Figure 1.1 is
shown above on the right. According to Cui et al., the lineage of the out-
put tuple (HarborCruz, 831-3000) is {Agencies(t2), ExternalTours(t7)},
where Agencies(t2) and ExternalTours(t7) denote the subinstances of
Agencies and ExternalTours consisting of tuples t2 and t7, respectively.
Intuitively, the two source tuples witness the existence of the tuple of
interest, (HarborCruz, 831-3000), according to Q1. Furthermore, each
of the two source tuples justify the existence of the HarborCruz tuple.
In other words, the source tuples t2 and t7 form a “proof” or “witness”
for the HarborCruz output tuple according to Q1, and no other source
tuples are part of the witness since they do not contribute to the Har-
borCruz output tuple. Technically speaking, by “witness” we mean a
subset of the input database records that is sufficient to ensure that a
given output tuple appears in the result of a query.

As another example, the lineage of the output tuple (Bay-
Tours, 415-1200) is the union of the lineage of the intermediate

1.1 Why, How and Where: An Overview 383

Agencies
name based in phone

t1: BayTours San Francisco 415-1200
t2: HarborCruz Santa Cruz 831-3000

ExternalTours
name destination type price

t3: BayTours San Francisco cable car $50
t4: BayTours Santa Cruz bus $100
t5: BayTours Santa Cruz boat $250
t6: BayTours Monterey boat $400
t7: HarborCruz Monterey boat $200
t8: HarborCruz Carmel train $90

Fig. 1.1 Our example database: an online travel portal.

on the name attribute, selecting tours by boat, and projecting on the
name and phone attributes:

Q1:
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name AND
e.type=‘boat’

Result of Q1:
name phone
BayTours 415-1200
HarborCruz 831-3000

The result of Q1 executed on our example database in Figure 1.1 is
shown above on the right. According to Cui et al., the lineage of the out-
put tuple (HarborCruz, 831-3000) is {Agencies(t2), ExternalTours(t7)},
where Agencies(t2) and ExternalTours(t7) denote the subinstances of
Agencies and ExternalTours consisting of tuples t2 and t7, respectively.
Intuitively, the two source tuples witness the existence of the tuple of
interest, (HarborCruz, 831-3000), according to Q1. Furthermore, each
of the two source tuples justify the existence of the HarborCruz tuple.
In other words, the source tuples t2 and t7 form a “proof” or “witness”
for the HarborCruz output tuple according to Q1, and no other source
tuples are part of the witness since they do not contribute to the Har-
borCruz output tuple. Technically speaking, by “witness” we mean a
subset of the input database records that is sufficient to ensure that a
given output tuple appears in the result of a query.

As another example, the lineage of the output tuple (Bay-
Tours, 415-1200) is the union of the lineage of the intermediate

36

Evolution Provenance

D. Koop, CSCI 680/490, Spring 2022

Data Exploration

37D. Koop, CSCI 680/490, Spring 2022

KnowledgeData Data

Products

Specification

Computation Perception &

Cognition

[Modified from Van Wijk, Vis 2005]

Data Exploration

• Data analysis and visualization are iterative processes
• In exploratory tasks, change is the norm!

37D. Koop, CSCI 680/490, Spring 2022

KnowledgeData Data

Products

Specification

Computation Perception &

Cognition

Exploration

[Modified from Van Wijk, Vis 2005]

Exploration and Creativity Support
• Reasoning is key to the exploratory processes
• “Reflective reasoning requires the ability to store temporary results, to make

inferences from stored knowledge, and to follow chains of reasoning
backward and forward, sometimes backtracking when a promising line of
thought proves to be unfruitful. …the process is slow and laborious” —
Donald A. Norman

• Need external aids—tools to facilitate this process
- "Creativity support tools" —Ben Shneiderman

• Need aid from people—collaboration

38D. Koop, CSCI 680/490, Spring 2022

Change-based Provenance: Photo Editing
• User Actions

• Undo/Redo History

39D. Koop, CSCI 680/490, Spring 2022

original darkened sharpened grayscale

Change-based Provenance: Photo Editing
• User Actions

• Undo/Redo History

39D. Koop, CSCI 680/490, Spring 2022

watercolor

original darkened sharpened grayscale

����������

	��
���	

���
�����

��������

��������	

Version Trees
• Undo/redo stacks are linear!
• We lose history of exploration
• Old Solution: User saves files/state
• VisTrails Solution:
- Automatically & transparently capture

entire history as a tree
- Users can tag or annotate each version
- Users can go back to any version by

selecting it in the tree

40D. Koop, CSCI 680/490, Spring 2022

VisTrails

41D. Koop, CSCI 680/490, Spring 2022

VisTrails
• Comprehensive provenance infrastructure for computational tasks
• Focus on exploratory tasks such as simulation, visualization, and data

analysis
• Transparently tracks provenance of the discovery process—from data

acquisition to visualization
- The trail followed as users generate and test hypotheses
- Users can refer back to any point along this trail at any time

• Leverage provenance to streamline exploration
• Focus on usability—build tools for scientists

42D. Koop, CSCI 680/490, Spring 2022

Discussion
• Reproducibility in VisTrails

43D. Koop, CSCI 680/490, Spring 2022

Workflow Evolution Provenance

44D. Koop, CSCI 680/490, Spring 2022

GMapCircleCell

Workflow Evolution Provenance

44D. Koop, CSCI 680/490, Spring 2022

GMapCircleCell

delete module “GMapCell”
delete module “CellLocation”
delete module “ProjectTable”

delete module “SelectFromTable”
...

add module “SelectFromTable”
add parameter “float_expr” to “SelectFromTable” 

 with value “latitutde > 40.6” 
delete parameter “float_expr” from “SelectFromTable” 

add parameter “float_expr” to “SelectFromTable” 
 with value “latitutde > 40.7” 

delete parameter “float_expr” from “SelectFromTable” 
add parameter “float_expr” to “SelectFromTable” 

 with value “latitutde > 40.8” 
...

Execution Provenance

45D. Koop, CSCI 680/490, Spring 2022

vtkActor

VTKCell

vtkRenderer

vtkContourFilter

vtkStructuredPointsReader

vtkDataSetMapper

vtkCamera

Execution Provenance
<module id="12" name="vtkDataSetReader"
 start_time="2010-02-19 11:01:05"
 end_time="2010-02-19 11:01:07">
 <annotation key="hash"
 value="c54bea63cb7d912a43ce"/>
</module>
<module id="13" name="vtkContourFilter"
 start_time="2010-02-19 11:01:07"
 end_time="2010-02-19 11:01:08"/>
<module id="15" name="vtkDataSetMapper"
 start_time="2010-02-19 11:01:09"
 end_time="2010-02-19 11:01:12"/>
<module id="16" name="vtkActor"
 start_time="2010-02-19 11:01:12"
 end_time="2010-02-19 11:01:13"/>
<module id="17" name="vtkCamera"
 start_time="2010-02-19 11:01:13"
 end_time="2010-02-19 11:01:14"/>
<module id="18" name="vtkRenderer"
 start_time="2010-02-19 11:01:14"
 end_time="2010-02-19 11:01:14"/>
...

46D. Koop, CSCI 680/490, Spring 2022

