
Advanced Data Management (CSCI 680/490)

Time Series Data 

Dr. David Koop

D. Koop, CSCI 680/490, Spring 2022



Exploring	NASA	MODIS	data

5

Measure	vegetation	density

Measure	snow	melt

Track	phytoplankton	populations

Track	hurricanes Introduction

Spatial Data

2

[L. Battle, 2017]
D. Koop, CSCI 680/490, Spring 2022

https://courses.cs.washington.edu/courses/cse512/18sp/lectures/CSE512-Interaction.pdf


Exploratory	browsing	systems	design

7

DBMS

Client

Server

query

result

Exploratory
Browsing

SELECT	lat,	lng,	(b4-b6)/(b4+b6)	as	ndsi
FROM	modis_data
WHERE	ndsi >0.7	

Interactive Exploration of Spatial Data

3

[L. Battle, 2017]
D. Koop, CSCI 680/490, Spring 2022

https://courses.cs.washington.edu/courses/cse512/18sp/lectures/CSE512-Interaction.pdf


Exploratory	browsing	systems	design

7

DBMS

Client

Server

query

result

Exploratory
Browsing

SELECT	lat,	lng,	(b4-b6)/(b4+b6)	as	ndsi
FROM	modis_data
WHERE	ndsi >0.7	

Interactive Exploration of Spatial Data

3

[L. Battle, 2017]
D. Koop, CSCI 680/490, Spring 2022

SLOW

https://courses.cs.washington.edu/courses/cse512/18sp/lectures/CSE512-Interaction.pdf


Target	metric:	responsiveness

9

User	
submits	
query

Create	
visualization

User	
pan/zoom

Update
visualization

Prepare	data
in	DBMS

Fetch	results	
from	DBMS

Cold	start	time interaction	latency	<	500ms

Input Compute Respond Input Compute Respond

Exploratory
Browsing

(Pre-comp.
Structures)

Two Inputs to Exploratory Browsing

4

[L. Battle, 2017]
D. Koop, CSCI 680/490, Spring 2022

https://courses.cs.washington.edu/courses/cse512/18sp/lectures/CSE512-Interaction.pdf


Comparing	with	existing	exploratory	
browsing	systems

10

Sa
m
pl
in
g

Ag
gr
eg
at
io
n

Progressive/IncrementalPredictivePre-computed	structures
SampleAction (CHI	2012)
Vizdom (VLDB	2015)

Nanocubes (Infovis 2013)
imMens (Eurovis 2013)

ATLAS	(VAST	2008)

ForeCache

DICE	(ICDE	2014)

Exploratory
Browsing

O
ut
pu

t	
fo
rm

at

Time

XmdvTool (DASFAA 2003)

(Offline) (Before	interaction) (After	interaction)

A-WARE	(HILDA	2016)

Systems for Interactive Exploration

5

[L. Battle, 2017]
D. Koop, CSCI 680/490, Spring 2022

https://courses.cs.washington.edu/courses/cse512/18sp/lectures/CSE512-Interaction.pdf


Nanocubes for Real-Time Exploration of Spatiotemporal Datasets
Lauro Lins, James T. Klosowski, and Carlos Scheidegger

Fig. 1. Example visualizations of 210 million public geolocated Twitter posts over the course of a year. The data structure we
propose enables real-time (these images above were rendered faster than the typical screen refresh rate) visual exploration of large,
spatiotemporal, multidimensional datasets. The visual encodings built using nanocubes are within a controllable difference to ones
rendered by a traditional linear scan over the dataset. They naturally support linked navigation and brushing, and include choropleth
maps, time series over arbitrary regions and scales of space and time, parallel sets, histograms, and binned scatterplots. The
color scale of the choropleth map is a diverging scale in which blue corresponds to iPhones being relatively more popular, and red
corresponds to higher relative popularity of Android devices.

Abstract—Consider real-time exploration of large multidimensional spatiotemporal datasets with billions of entries, each defined by
a location, a time, and other attributes. Are certain attributes correlated spatially or temporally? Are there trends or outliers in the
data? Answering these questions requires aggregation over arbitrary regions of the domain and attributes of the data. Many relational
databases implement the well-known data cube aggregation operation, which in a sense precomputes every possible aggregate query
over the database. Data cubes are sometimes assumed to take a prohibitively large amount of space, and to consequently require disk
storage. In contrast, we show how to construct a data cube that fits in a modern laptop’s main memory, even for billions of entries;
we call this data structure a nanocube. We present algorithms to compute and query a nanocube, and show how it can be used
to generate well-known visual encodings such as heatmaps, histograms, and parallel coordinate plots. When compared to exact
visualizations created by scanning an entire dataset, nanocube plots have bounded screen error across a variety of scales, thanks
to a hierarchical structure in space and time. We demonstrate the effectiveness of our technique on a variety of real-world datasets,
and present memory, timing, and network bandwidth measurements. We find that the timings for the queries in our examples are
dominated by network and user-interaction latencies.

Index Terms—Data cube, Data structures, Interactive exploration

1 INTRODUCTION

As datasets get larger, exploratory data visualization becomes more
difficult. Consider a dataset with a billion entries. We can compute
a small summary of the dataset and visualize the summary instead of
the dataset, but as Anscombe’s famous quartet shows [3], summaries
themselves cannot ascertain their own validity. Summaries might help,
but in order to understand if that is the case, we will inevitably find
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ourselves having to visualize one billion residuals. As far as scale goes,
we are back to square one. In other words, data summarization alone
will never solve the problem of scale in exploratory visualization. As
visualization practitioners, what then can we do? Even drawing the
simplest scatterplot is not straightforward. If we decide to produce
the visualization by scanning the rows of a table, we will either need
non-trivial parallel rendering algorithms or significant time to produce
a drawing. Neither of these solutions is attractive or scales well with
dataset size.

Data cubes are structures that perform aggregations across every
possible set of dimensions of a table in a database, to support quick
exploration [15, 31]. Many visualization systems are built on top of data
cubes, concretely or conceptually. Still, only recently have researchers
started to examine data cube creation algorithms in the context of
information visualization [33, 18, 21].

Data cubes are often problematic in that they can take prohibitively
large amounts of memory as the number of dimensions increases. In

Nanocubes
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From Tables and Spreadsheets to Data Cubes
• A data warehouse is based on a multidimensional data model which views 

data in the form of a data cube 
• A data cube, such as sales, allows data to be modeled and viewed in 

multiple dimensions 
- Dimension tables, such as item (item_name, brand, type), or time(day, 

week, month, quarter, year)  
- Fact table contains measures (such as dollars_sold) and keys to each of 

the related dimension tables 
• In data warehousing literature, an n-D base cube is called a base cuboid. 

The top most 0-D cuboid, which holds the highest-level of summarization, is 
called the apex cuboid.  The lattice of cuboids forms a data cube.
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Data Cube Measures: Three Categories
• Distributive: if the result derived by applying the function to n aggregate 

values is the same as that derived by applying the function on all the data 
without partitioning 
• E.g., count(), sum(), min(), max() 

• Algebraic: if it can be computed by an algebraic function with M arguments 
(where M is a bounded integer), each of which is obtained by applying a 
distributive aggregate function 
• E.g.,  avg(), min_N(), standard_deviation() 

• Holistic: if there is no constant bound on the storage size needed to 
describe a subaggregate.   
• E.g., median(), mode(), rank()
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Multidimensional Data
• Sales volume as a function of product, month, and region
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A Sample Data Cube
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OLAP Operations
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Efficient Processing of OLAP Queries
• Determine which operations should be performed on the available cuboids 
- Transform drill, roll, etc. into corresponding SQL and/or OLAP operations, 

e.g., dice = selection + projection 
• Determine which materialized cuboid(s) for OLAP operation: 
- Query: {brand, province_or_state} with “year = 2004”  
- 4 materialized cuboids available: 

1. {year, item_name, city}   
2. {year, brand, country} 
3. {year, brand, province_or_state} 
4. {item_name, province_or_state} where year = 2004 

- Which should be selected to process the query?
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Natural language query s c t URL
count of all Delta flights R U R { Delta } R U /where/carrier=Delta
count of all Delta flights in the Midwest R Midwest R { Delta } R U /region/Midwest/where/carrier=Delta
count of all flights in 2010 R U D R 2010 /field/carrier/when/2010
time-series of all United flights in 2009 R U R { United } D 2009 /tseries/when/2009/where/carrier=United
heatmap of Delta flights in 2010 D tile0 R { Delta } R 2010 /tile/tile0/when/2010/where/carrier=Delta

Fig. 5. A simplified set of queries supported by nanocubes. The column s represents space; t, time; c, category. R means “rollup”, D means
“drilldown”. The value next to R or D contains the subset of that dimension’s domain being selected. U represents the entire domain (“universe”).

guage, but does not include the GROUP BY on Language only. As the
results of GROUP BYs, CUBEs and ROLL UPs can be seen as relations,
we can naturally compose such operators (e.g. a ROLL UP CUBE).

4 NANOCUBE: A COMPACT, SPATIOTEMPORAL DATA CUBE

Data visualizations in a computer are necessarily bounded by display
size, and so we would like to be able to quickly collect subsets of the
dataset that would end up in the same pixel on the screen. However,
spatiotemporal navigation is inherently multiscale. The same data
structure should support quick indexing for a visualization over multiple
years of time series and for drilling down into one particular hour or
day. Similarly, the data cube should support aggregation queries over
vast spatial regions covering entire continents, as well as very narrow
queries covering only a few city blocks.

The database notion of ROLL UP, in a sense, aligns nicely with the
notion of Level of Detail. For example, if the records of a table (relation)
contain a location attribute, one can design a ROLL UP query whose
resulting relation encodes the same information as the one encoded
in a level of detail data structure. More concretely, suppose `1, . . . ,`k
are attributes computed from the original location attribute and yield
“quadtree addresses” of increasingly higher levels of detail (from 1 to k).
A ROLL UP query on these (computed) attributes results in, essentially,
the same information as the one contained in a quadtree (given that we
are keeping the same summary in both, e.g. count).

The second important notion in the design of nanocubes is the idea
that we want to combine aggregations of independent dimensions at
independent levels of detail. For example we might want to know for
a whole country, what is the spatial distribution of tweets generated
by an iPhone: coarse on the spatial dimension, but specific on the
device dimension. Conversely, we might want to know the distribution
of tweets (coarse on device) in a small city block (fine in space). In
relational database terminology, this model has a name: it is a CUBE
of ROLL UP, or a ROLL UP CUBE. With the terminology set, we can
state: a nanocube is a data structure to efficiently store and query
spatiotemporal ROLL UP CUBE. Besides implementation tricks, the
main difference between nanocubes and previously published sparse
coalesced data cubes such as Dwarf cubes [30] is in the design of aggre-
gations across spatiotemporal dimensions (see Sections 4.3.1 and 4.3.3).
Next, we present a formal description of the components that make up
our nanocube index, pseudo-code for building nanocubes, an illustrated
example, and how queries are made against our index.
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1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE( ) . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK( ) . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE( ))
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE( )
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

( d= dim(S) ?
SUMMEDTABLETIMESERIES( ) : NODE( ) )

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have been recent efforts to build data cube structures specif-
ically suited for visualization. Crossfilter [32] is a software package
built on the clever observation that many queries in interactive visual-
ization are incremental: assuming that previous results are available,
the results needed for the next query can be quickly computed. Unfor-
tunately, we do not see easily how this would work for the multiscale
queries necessary in a spatiotemporal setting. Just as recently, Kandel
et al. have proposed Datavore, a column-oriented database support fast
data cube queries [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 14 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

Following common practice, we will call the table in Figure 5 a rela-
tion, its columns attributes, its lines records, and its entries values. An
aggregation represents the idea of selecting a certain group of records
from a relation and summarizing this group using an aggregation func-
tion (e.g. count, sum, max, min). For example, a possible aggrega-
tion for the relation A could be to select all its records and summarize
those using count, yielding five as the aggregation result. If we al-
low a special value All to be a valid attribute value, we could represent
this aggregation as relation B in Figure 5.

A record that contains the special value All is an aggregation record.

Using this notation, it is easy to understand some conventional ways
of describing aggregations for a given relation: group by, cube, and
rollup. A group by operation is one in which a relation is derived from
a base relation given a list of attributes and an aggregate function. For
example, group by on attributes Device and Language with the count
aggregate function results in the relation C in Figure 5.

Note that for every different combination of values present in the
attributes of a base relation an aggregation record is added to the re-
sulting relation. In our running example (Figure 5) these combinations
are (Android, en), (iPhone, en), and (iPhone, ru). The cube operation
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Our technique is most closely related to the work of Sismanis et
al. [30, 29]. Specifically, we use similar ideas to reduce the size of
a data cube from potentially exponential in the cardinality of the key
space (we define these terms in Section 4.1) to essentially linear [31].
Nanocubes improve on Sismanis et al.’s work in two fundamental di-
rections. First, we develop a model for spatiotemporal data cubes that
exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have also been recent efforts to build data cube structures
specifically suited for visualization. Crossfilter [32] is a software pack-
age built on the clever observation that many queries in interactive vi-
sualization are incremental: assuming that previous results are avail-
able, the results needed for the next query can be quickly computed.
Unfortunately, we do not see easily how this would work for the multi-
scale queries necessary in a spatiotemporal setting. Just as recently,
Kandel et al. have proposed Datavore, a column-oriented data cube
representation [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 13 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

In the relational databases community, the table below is a relation, its
columns are attributes, its lines are records, and its entries are values.

Country Device Language
US Android en
US iPhone ru

South Africa iPhone en
India Android en

Australia iPhone en

An aggregation represents the idea of selecting a certain group of
records from a relation and summarizing this group using an aggrega-
tion function (e.g.count, sum, max, min). For example, a possible
aggregation for the relation above could be to select all its records and
summarize those using count. In this case, five would be the final
aggregation result. If we allow entries in the record to have a special
value All, we could represent this aggreation as the following relation:

Country Device Language Count
All All All 5

We refer to records in a relation that contain the special value All as ag-
gregation records. Using this notation, it is easy to understand the con-
ventional ways of describing aggregations for a given relation: group
by, cube, and rollup. A group by operation is one in which a relation is
derived from a base relation given a list of attributes and an aggregate
function. For example, group by on attributes Device and Language
with the count aggregate function results in the relation:

Country Device Language Count
All Android en 2
All iPhone en 2
All iPhone ru 1

Note that for every different combination of values present in the at-
tributes of the base relation an aggregation record is added to the re-
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by, cube, and rollup. A group by operation is one in which a relation is
derived from a base relation given a list of attributes and an aggregate
function. For example, group by on attributes Device and Language
with the count aggregate function results in the relation:

Country Device Language Count
All Android en 2
All iPhone en 2
All iPhone ru 1

Note that for every different combination of values present in the at-
tributes of the base relation an aggregation record is added to the re-
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1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE( ) . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK( ) . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE( ))
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE( )
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

( d= dim(S) ?
SUMMEDTABLETIMESERIES( ) : NODE( ) )

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

Our technique is most closely related to the work of Sismanis et
al. [30, 29]. Specifically, we use similar ideas to reduce the size of
a data cube from potentially exponential in the cardinality of the key
space (we define these terms in Section 4.1) to essentially linear [31].
Nanocubes improve on Sismanis et al.’s work in two fundamental di-
rections. First, we develop a model for spatiotemporal data cubes that
exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have also been recent efforts to build data cube structures
specifically suited for visualization. Crossfilter [32] is a software pack-
age built on the clever observation that many queries in interactive vi-
sualization are incremental: assuming that previous results are avail-
able, the results needed for the next query can be quickly computed.
Unfortunately, we do not see easily how this would work for the multi-
scale queries necessary in a spatiotemporal setting. Just as recently,
Kandel et al. have proposed Datavore, a column-oriented data cube
representation [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 13 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

In the relational databases community, the table below is a relation, its
columns are attributes, its lines are records, and its entries are values.

Country Device Language
US Android en
US iPhone ru

South Africa iPhone en
India Android en

Australia iPhone en

An aggregation represents the idea of selecting a certain group of
records from a relation and summarizing this group using an aggrega-
tion function (e.g.count, sum, max, min). For example, a possible
aggregation for the relation above could be to select all its records and
summarize those using count. In this case, five would be the final
aggregation result. If we allow entries in the record to have a special
value All, we could represent this aggreation as the following relation:

Country Device Language Count
All All All 5

We refer to records in a relation that contain the special value All as ag-
gregation records. Using this notation, it is easy to understand the con-
ventional ways of describing aggregations for a given relation: group
by, cube, and rollup. A group by operation is one in which a relation is
derived from a base relation given a list of attributes and an aggregate
function. For example, group by on attributes Device and Language
with the count aggregate function results in the relation:

Country Device Language Count
All Android en 2
All iPhone en 2
All iPhone ru 1

Note that for every different combination of values present in the at-
tributes of the base relation an aggregation record is added to the re-
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Natural language query s c t URL
count of all Delta flights R U R { Delta } R U /where/carrier=Delta
count of all Delta flights in the Midwest R (Midwest) R { Delta } R U /region/(Midwest)/where/carrier=Delta
count of early flights in 2010 R U D R (2010) /field/carrier/when/(2010)
time-series of all United flights in 2009 R U R U D (2009) /tseries/when/2009/where/carrier=United
heatmap of Delta flights in 2010 D (tile) R { Delta } R (2010) /tile/(tile)/where/carrier=Delta

Fig. 4. A simplified set of queries supported by the nanocube data structure. The column s represents space; t, time; c, category. R means “rollup”,
D means “drilldown”. The value next to R or D contains the subset of that dimension’s domain being selected. We use U to represent the entire
domain (“universe”). Omitted here, but supported by our structure, are: the extra parameter for number of steps throughout the time region in a
time-based drilldown; multiple categories with separate rollups and drilldowns; tiles of variable resolution.

sulting relation. In our running example these combinations are (An-
droid, en), (iPhone, en), and (iPhone, ru). The cube operation is the
result of collecting all possible group by aggregations into a single re-
lation for a given list of attributes. In our running example, the cube
for count on Device and Language would be the same as the union
of four group by’s: on (1) no attributes; on (2) Device only; on (3)
Language only; and (4) on Device and Language (2n group bys where
n is the number of input attributes):

Country Device Language Count
All All All 5
All Android All 2
All iPhone All 3
All All eu 4
All All ru 1
All iPhone ru 1
All Android en 2
All iPhone en 2
All iPhone ru 1

Finally, a roll up is a constrained version of the cube operation where
the order of the input attributes is important. So a roll up on Device
and Language (in this order) means the union of group by’s on: (1)
no attributes; (2) Device; and (3) Device and Language. Note that the
group by on Language only is not part of the roll up. As the results
of group by’s, cubes and roll ups can be seen as relations, we can
naturally compose such operations. As we will describe nanocubes is
a specialized data structure to store and query cubes of roll ups.

4 NANOCUBES: A COMPACT, SPATIOTEMPORAL ROLL-UP
CUBE

Data visualizations in a computer are necessarily bounded by display
size, and so we would like to be able to quickly collect subspaces of
the dataset that would end up in the same pixel on the screen. How-
ever, spatiotemporal navigation is inherently multiscale. The same
data structure should support quick indexing for a visualization over
multiple years of time series and for drilling down into one particu-
lar hour or day. Similarly, the data cube should support aggregation
queries over vast spatial regions covering entire continents, as well as
very narrow queries covering only a few city blocks.

The database notion of roll ups (Section 3), in a sense, aligns nicely
with the notion of Level of Detail. For example, if the records of a table
(relation) contain a location attribute, one can design a roll up query
whose resulting relation encodes the same information as the one en-
coded in a level of detail data structure. More concretely, suppose
`1, . . . ,`k are attributes computed from the original location attribute
and yield ’quad-tree addresses’ of increasingly higher levels of detail
(from 1 to k). A roll up query on these (computed) attributes results in,
essentially, the same information as the one contained in a quad-tree
(given that we are keeping the same summary in both, e.g.count). At
first, this connection might be obvious but bridges between terminolo-
gies from different areas is usually important. As it turns out, only later
in the development of nanocubes is that we became aware of Hierar-
chical Dwarf-Cubes [29], which is a highly related to nanocubes and
was developed by the database community to efficiently store results
of aggreagation queries.

The second important notion in the design of nanocubes is the idea
that we want to combine aggregations of independent dimensions at

independent levels of detail. For example we might want to know for
a whole country, what is the spatial distribution of tweets gererated
by an iPhone: coarse on the spatial dimension, but specific on the
device dimension; conversely we might want to know the distribu-
tion of tweets (coarse on device) in a small block of a city (fine in
space). In relational database terminology, this model has a name: it
is a cube of roll-ups, or a roll-up cube. Now with the language set up,
we can state: A nanocube is a data structure to efficiently store and
query spatio-temporal roll-up cubes. Besides implmentation tricks
(e.g. tagged pointers, carefully design of the bit layout of the struc-
tures, specifically designed to live in main memory), there is, to the
best of our knowledge, a qualitative difference in nanocubes to other
data structures like [29]. The difference is in what nanocubes store for
each aggregation which is deeply related to spatio-temporal datasets:
it stores time series in a sparse summed table format. This element of
nanocubes is explained in Section 4.3 and, cannot be cannot be effi-
ciently simulated (memory-wise) by previous datastructures.

In the remainder of this section, we present a formal description
of the components that make up our nanocube index, pseudo-code
for building nanocubes together with an illustrated example, and how
queries are made against our index.

4.1 Definitions
Let O be a set of objects. A labeling function ` : O ! L associates a
label value to the objects of O. We can think of ` as an attribute in
a relational database. In connection with the level of detail discus-
sion above, if `1 and `2 are two labeling functions for O, we say `1 is
coarser than `2 or that `2 is finer than `1 if for any two objects o,o0 2 O
the implication `2(o) = `2(o0) ) `1(o) = `1(o0) holds. We denote this
fact by `1 < `2.

A sequence of labeling functions c = [`1,`, . . . ,`k] for objects O
is a chain for O if every labeling function is coarser than the next
labeling function in the sequence: `i < `i+1. Note how chains are
related to roll ups, we avoid the same name to not overload more the
term roll up. The number of levels of a chain is defined by levels(c) =
|c|+1. An indexing schema for objects O consists of a sequence of
chains S = [c1,c2, . . . ,cn]. The dimension of an indexing schema S
is the length of its sequence of chains and is denoted by dim(S). The
multiplicity of a schema S is the product of its chains’ number of levels:
µ(S) = ’n

i=1 levels(ci).
A full assignment for a sequence of labeling functions [`1,`2, . . . ,`k]

is a sequence of label values [v1,v2, . . . ,vk] where vi is a label value
under `i. Any prefix of a full assignment for a sequence of label-
ing functions, including the empty one, is referred to as a partial as-
signment. Note that an full assignment is also a patial assignment
since a sequence is also a prefix of itself. An address on a schema
is a sequence of partial assignments for its chains, more formally, if
S = [c1,c2, . . . ,cn] is an indexing schema, then a = [p1, p2, . . . , pn] is
an address of S if pi is a partial assignment for chain ci. The set of pos-
sible addresses of S is denoted by addr(S). and its size is referred to as
the Global Cardinality of S. The subset of addr(S) whose addresses
contain only full assignments is called the Key Cardinality of S. The
key Key Cardinality is exactely the number of the finest resoultion bins
a nanocube can store.

The addresses of an object o under indexing schema S, denoted by
addr(o,S) are all the addresses in addr(S) whose partial assignments
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Group By on Device, Language
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Equivalent to Group By on
all possible subsets of 
{Device, Language}
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Fig. 5. A sample relation and its associated aggregation operators.
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1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE( ) . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK( ) . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE( ))
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE( )
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

( d= dim(S) ?
SUMMEDTABLETIMESERIES( ) : NODE( ) )

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have been recent efforts to build data cube structures specif-
ically suited for visualization. Crossfilter [32] is a software package
built on the clever observation that many queries in interactive visual-
ization are incremental: assuming that previous results are available,
the results needed for the next query can be quickly computed. Unfor-
tunately, we do not see easily how this would work for the multiscale
queries necessary in a spatiotemporal setting. Just as recently, Kandel
et al. have proposed Datavore, a column-oriented database support fast
data cube queries [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 14 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

Following common practice, we will call the table in Figure 5 a rela-
tion, its columns attributes, its lines records, and its entries values. An
aggregation represents the idea of selecting a certain group of records
from a relation and summarizing this group using an aggregation func-
tion (e.g. count, sum, max, min). For example, a possible aggrega-
tion for the relation A could be to select all its records and summarize
those using count, yielding five as the aggregation result. If we al-
low a special value All to be a valid attribute value, we could represent
this aggregation as relation B in Figure 5.

A record that contains the special value All is an aggregation record.

Using this notation, it is easy to understand some conventional ways
of describing aggregations for a given relation: group by, cube, and
rollup. A group by operation is one in which a relation is derived from
a base relation given a list of attributes and an aggregate function. For
example, group by on attributes Device and Language with the count
aggregate function results in the relation C in Figure 5.

Note that for every different combination of values present in the
attributes of a base relation an aggregation record is added to the re-
sulting relation. In our running example (Figure 5) these combinations
are (Android, en), (iPhone, en), and (iPhone, ru). The cube operation
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1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE( ) . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK( ) . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE( ))
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE( )
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

( d= dim(S) ?
SUMMEDTABLETIMESERIES( ) : NODE( ) )

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

Our technique is most closely related to the work of Sismanis et
al. [30, 29]. Specifically, we use similar ideas to reduce the size of
a data cube from potentially exponential in the cardinality of the key
space (we define these terms in Section 4.1) to essentially linear [31].
Nanocubes improve on Sismanis et al.’s work in two fundamental di-
rections. First, we develop a model for spatiotemporal data cubes that
exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have also been recent efforts to build data cube structures
specifically suited for visualization. Crossfilter [32] is a software pack-
age built on the clever observation that many queries in interactive vi-
sualization are incremental: assuming that previous results are avail-
able, the results needed for the next query can be quickly computed.
Unfortunately, we do not see easily how this would work for the multi-
scale queries necessary in a spatiotemporal setting. Just as recently,
Kandel et al. have proposed Datavore, a column-oriented data cube
representation [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 13 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

In the relational databases community, the table below is a relation, its
columns are attributes, its lines are records, and its entries are values.

Country Device Language
US Android en
US iPhone ru

South Africa iPhone en
India Android en

Australia iPhone en

An aggregation represents the idea of selecting a certain group of
records from a relation and summarizing this group using an aggrega-
tion function (e.g.count, sum, max, min). For example, a possible
aggregation for the relation above could be to select all its records and
summarize those using count. In this case, five would be the final
aggregation result. If we allow entries in the record to have a special
value All, we could represent this aggreation as the following relation:

Country Device Language Count
All All All 5

We refer to records in a relation that contain the special value All as ag-
gregation records. Using this notation, it is easy to understand the con-
ventional ways of describing aggregations for a given relation: group
by, cube, and rollup. A group by operation is one in which a relation is
derived from a base relation given a list of attributes and an aggregate
function. For example, group by on attributes Device and Language
with the count aggregate function results in the relation:

Country Device Language Count
All Android en 2
All iPhone en 2
All iPhone ru 1

Note that for every different combination of values present in the at-
tributes of the base relation an aggregation record is added to the re-
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1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE( ) . New empty node
3: for i = 1 to n do
4: updated nodes /0
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9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
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16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE( )
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
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10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,
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12: update true
13: else if CONTENTISSHARED(node) and
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14: SETPROPERCONTENT(node,
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16: else if CONTENTISPROPER(node) then
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20: if d= dim(S) then
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22: else
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27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

Our technique is most closely related to the work of Sismanis et
al. [30, 29]. Specifically, we use similar ideas to reduce the size of
a data cube from potentially exponential in the cardinality of the key
space (we define these terms in Section 4.1) to essentially linear [31].
Nanocubes improve on Sismanis et al.’s work in two fundamental di-
rections. First, we develop a model for spatiotemporal data cubes that
exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have also been recent efforts to build data cube structures
specifically suited for visualization. Crossfilter [32] is a software pack-
age built on the clever observation that many queries in interactive vi-
sualization are incremental: assuming that previous results are avail-
able, the results needed for the next query can be quickly computed.
Unfortunately, we do not see easily how this would work for the multi-
scale queries necessary in a spatiotemporal setting. Just as recently,
Kandel et al. have proposed Datavore, a column-oriented data cube
representation [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 13 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

In the relational databases community, the table below is a relation, its
columns are attributes, its lines are records, and its entries are values.

Country Device Language
US Android en
US iPhone ru

South Africa iPhone en
India Android en

Australia iPhone en

An aggregation represents the idea of selecting a certain group of
records from a relation and summarizing this group using an aggrega-
tion function (e.g.count, sum, max, min). For example, a possible
aggregation for the relation above could be to select all its records and
summarize those using count. In this case, five would be the final
aggregation result. If we allow entries in the record to have a special
value All, we could represent this aggreation as the following relation:

Country Device Language Count
All All All 5

We refer to records in a relation that contain the special value All as ag-
gregation records. Using this notation, it is easy to understand the con-
ventional ways of describing aggregations for a given relation: group
by, cube, and rollup. A group by operation is one in which a relation is
derived from a base relation given a list of attributes and an aggregate
function. For example, group by on attributes Device and Language
with the count aggregate function results in the relation:

Country Device Language Count
All Android en 2
All iPhone en 2
All iPhone ru 1

Note that for every different combination of values present in the at-
tributes of the base relation an aggregation record is added to the re-
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1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE( ) . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK( ) . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE( ))
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE( )
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

( d= dim(S) ?
SUMMEDTABLETIMESERIES( ) : NODE( ) )

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

Our technique is most closely related to the work of Sismanis et
al. [30, 29]. Specifically, we use similar ideas to reduce the size of
a data cube from potentially exponential in the cardinality of the key
space (we define these terms in Section 4.1) to essentially linear [31].
Nanocubes improve on Sismanis et al.’s work in two fundamental di-
rections. First, we develop a model for spatiotemporal data cubes that
exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have also been recent efforts to build data cube structures
specifically suited for visualization. Crossfilter [32] is a software pack-
age built on the clever observation that many queries in interactive vi-
sualization are incremental: assuming that previous results are avail-
able, the results needed for the next query can be quickly computed.
Unfortunately, we do not see easily how this would work for the multi-
scale queries necessary in a spatiotemporal setting. Just as recently,
Kandel et al. have proposed Datavore, a column-oriented data cube
representation [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 13 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

In the relational databases community, the table below is a relation, its
columns are attributes, its lines are records, and its entries are values.

Country Device Language
US Android en
US iPhone ru

South Africa iPhone en
India Android en

Australia iPhone en

An aggregation represents the idea of selecting a certain group of
records from a relation and summarizing this group using an aggrega-
tion function (e.g.count, sum, max, min). For example, a possible
aggregation for the relation above could be to select all its records and
summarize those using count. In this case, five would be the final
aggregation result. If we allow entries in the record to have a special
value All, we could represent this aggreation as the following relation:

Country Device Language Count
All All All 5

We refer to records in a relation that contain the special value All as ag-
gregation records. Using this notation, it is easy to understand the con-
ventional ways of describing aggregations for a given relation: group
by, cube, and rollup. A group by operation is one in which a relation is
derived from a base relation given a list of attributes and an aggregate
function. For example, group by on attributes Device and Language
with the count aggregate function results in the relation:

Country Device Language Count
All Android en 2
All iPhone en 2
All iPhone ru 1

Note that for every different combination of values present in the at-
tributes of the base relation an aggregation record is added to the re-
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Natural language query s c t URL
count of all Delta flights R U R { Delta } R U /where/carrier=Delta
count of all Delta flights in the Midwest R (Midwest) R { Delta } R U /region/(Midwest)/where/carrier=Delta
count of early flights in 2010 R U D R (2010) /field/carrier/when/(2010)
time-series of all United flights in 2009 R U R U D (2009) /tseries/when/2009/where/carrier=United
heatmap of Delta flights in 2010 D (tile) R { Delta } R (2010) /tile/(tile)/where/carrier=Delta

Fig. 4. A simplified set of queries supported by the nanocube data structure. The column s represents space; t, time; c, category. R means “rollup”,
D means “drilldown”. The value next to R or D contains the subset of that dimension’s domain being selected. We use U to represent the entire
domain (“universe”). Omitted here, but supported by our structure, are: the extra parameter for number of steps throughout the time region in a
time-based drilldown; multiple categories with separate rollups and drilldowns; tiles of variable resolution.

sulting relation. In our running example these combinations are (An-
droid, en), (iPhone, en), and (iPhone, ru). The cube operation is the
result of collecting all possible group by aggregations into a single re-
lation for a given list of attributes. In our running example, the cube
for count on Device and Language would be the same as the union
of four group by’s: on (1) no attributes; on (2) Device only; on (3)
Language only; and (4) on Device and Language (2n group bys where
n is the number of input attributes):

Country Device Language Count
All All All 5
All Android All 2
All iPhone All 3
All All eu 4
All All ru 1
All iPhone ru 1
All Android en 2
All iPhone en 2
All iPhone ru 1

Finally, a roll up is a constrained version of the cube operation where
the order of the input attributes is important. So a roll up on Device
and Language (in this order) means the union of group by’s on: (1)
no attributes; (2) Device; and (3) Device and Language. Note that the
group by on Language only is not part of the roll up. As the results
of group by’s, cubes and roll ups can be seen as relations, we can
naturally compose such operations. As we will describe nanocubes is
a specialized data structure to store and query cubes of roll ups.

4 NANOCUBES: A COMPACT, SPATIOTEMPORAL ROLL-UP
CUBE

Data visualizations in a computer are necessarily bounded by display
size, and so we would like to be able to quickly collect subspaces of
the dataset that would end up in the same pixel on the screen. How-
ever, spatiotemporal navigation is inherently multiscale. The same
data structure should support quick indexing for a visualization over
multiple years of time series and for drilling down into one particu-
lar hour or day. Similarly, the data cube should support aggregation
queries over vast spatial regions covering entire continents, as well as
very narrow queries covering only a few city blocks.

The database notion of roll ups (Section 3), in a sense, aligns nicely
with the notion of Level of Detail. For example, if the records of a table
(relation) contain a location attribute, one can design a roll up query
whose resulting relation encodes the same information as the one en-
coded in a level of detail data structure. More concretely, suppose
`1, . . . ,`k are attributes computed from the original location attribute
and yield ’quad-tree addresses’ of increasingly higher levels of detail
(from 1 to k). A roll up query on these (computed) attributes results in,
essentially, the same information as the one contained in a quad-tree
(given that we are keeping the same summary in both, e.g.count). At
first, this connection might be obvious but bridges between terminolo-
gies from different areas is usually important. As it turns out, only later
in the development of nanocubes is that we became aware of Hierar-
chical Dwarf-Cubes [29], which is a highly related to nanocubes and
was developed by the database community to efficiently store results
of aggreagation queries.

The second important notion in the design of nanocubes is the idea
that we want to combine aggregations of independent dimensions at

independent levels of detail. For example we might want to know for
a whole country, what is the spatial distribution of tweets gererated
by an iPhone: coarse on the spatial dimension, but specific on the
device dimension; conversely we might want to know the distribu-
tion of tweets (coarse on device) in a small block of a city (fine in
space). In relational database terminology, this model has a name: it
is a cube of roll-ups, or a roll-up cube. Now with the language set up,
we can state: A nanocube is a data structure to efficiently store and
query spatio-temporal roll-up cubes. Besides implmentation tricks
(e.g. tagged pointers, carefully design of the bit layout of the struc-
tures, specifically designed to live in main memory), there is, to the
best of our knowledge, a qualitative difference in nanocubes to other
data structures like [29]. The difference is in what nanocubes store for
each aggregation which is deeply related to spatio-temporal datasets:
it stores time series in a sparse summed table format. This element of
nanocubes is explained in Section 4.3 and, cannot be cannot be effi-
ciently simulated (memory-wise) by previous datastructures.

In the remainder of this section, we present a formal description
of the components that make up our nanocube index, pseudo-code
for building nanocubes together with an illustrated example, and how
queries are made against our index.

4.1 Definitions
Let O be a set of objects. A labeling function ` : O ! L associates a
label value to the objects of O. We can think of ` as an attribute in
a relational database. In connection with the level of detail discus-
sion above, if `1 and `2 are two labeling functions for O, we say `1 is
coarser than `2 or that `2 is finer than `1 if for any two objects o,o0 2 O
the implication `2(o) = `2(o0) ) `1(o) = `1(o0) holds. We denote this
fact by `1 < `2.

A sequence of labeling functions c = [`1,`, . . . ,`k] for objects O
is a chain for O if every labeling function is coarser than the next
labeling function in the sequence: `i < `i+1. Note how chains are
related to roll ups, we avoid the same name to not overload more the
term roll up. The number of levels of a chain is defined by levels(c) =
|c|+1. An indexing schema for objects O consists of a sequence of
chains S = [c1,c2, . . . ,cn]. The dimension of an indexing schema S
is the length of its sequence of chains and is denoted by dim(S). The
multiplicity of a schema S is the product of its chains’ number of levels:
µ(S) = ’n

i=1 levels(ci).
A full assignment for a sequence of labeling functions [`1,`2, . . . ,`k]

is a sequence of label values [v1,v2, . . . ,vk] where vi is a label value
under `i. Any prefix of a full assignment for a sequence of label-
ing functions, including the empty one, is referred to as a partial as-
signment. Note that an full assignment is also a patial assignment
since a sequence is also a prefix of itself. An address on a schema
is a sequence of partial assignments for its chains, more formally, if
S = [c1,c2, . . . ,cn] is an indexing schema, then a = [p1, p2, . . . , pn] is
an address of S if pi is a partial assignment for chain ci. The set of pos-
sible addresses of S is denoted by addr(S). and its size is referred to as
the Global Cardinality of S. The subset of addr(S) whose addresses
contain only full assignments is called the Key Cardinality of S. The
key Key Cardinality is exactely the number of the finest resoultion bins
a nanocube can store.

The addresses of an object o under indexing schema S, denoted by
addr(o,S) are all the addresses in addr(S) whose partial assignments
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Group By on Device, Language
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Equivalent to Group By on
all possible subsets of 
{Device, Language}
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Fig. 5. A sample relation and its associated aggregation operators.
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1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE( ) . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK( ) . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE( ))
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE( )
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

( d= dim(S) ?
SUMMEDTABLETIMESERIES( ) : NODE( ) )

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have been recent efforts to build data cube structures specif-
ically suited for visualization. Crossfilter [32] is a software package
built on the clever observation that many queries in interactive visual-
ization are incremental: assuming that previous results are available,
the results needed for the next query can be quickly computed. Unfor-
tunately, we do not see easily how this would work for the multiscale
queries necessary in a spatiotemporal setting. Just as recently, Kandel
et al. have proposed Datavore, a column-oriented database support fast
data cube queries [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 14 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

Following common practice, we will call the table in Figure 5 a rela-
tion, its columns attributes, its lines records, and its entries values. An
aggregation represents the idea of selecting a certain group of records
from a relation and summarizing this group using an aggregation func-
tion (e.g. count, sum, max, min). For example, a possible aggrega-
tion for the relation A could be to select all its records and summarize
those using count, yielding five as the aggregation result. If we al-
low a special value All to be a valid attribute value, we could represent
this aggregation as relation B in Figure 5.

A record that contains the special value All is an aggregation record.

Using this notation, it is easy to understand some conventional ways
of describing aggregations for a given relation: group by, cube, and
rollup. A group by operation is one in which a relation is derived from
a base relation given a list of attributes and an aggregate function. For
example, group by on attributes Device and Language with the count
aggregate function results in the relation C in Figure 5.

Note that for every different combination of values present in the
attributes of a base relation an aggregation record is added to the re-
sulting relation. In our running example (Figure 5) these combinations
are (Android, en), (iPhone, en), and (iPhone, ru). The cube operation
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1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE( ) . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK( ) . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE( ))
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE( )
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

( d= dim(S) ?
SUMMEDTABLETIMESERIES( ) : NODE( ) )

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

Our technique is most closely related to the work of Sismanis et
al. [30, 29]. Specifically, we use similar ideas to reduce the size of
a data cube from potentially exponential in the cardinality of the key
space (we define these terms in Section 4.1) to essentially linear [31].
Nanocubes improve on Sismanis et al.’s work in two fundamental di-
rections. First, we develop a model for spatiotemporal data cubes that
exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have also been recent efforts to build data cube structures
specifically suited for visualization. Crossfilter [32] is a software pack-
age built on the clever observation that many queries in interactive vi-
sualization are incremental: assuming that previous results are avail-
able, the results needed for the next query can be quickly computed.
Unfortunately, we do not see easily how this would work for the multi-
scale queries necessary in a spatiotemporal setting. Just as recently,
Kandel et al. have proposed Datavore, a column-oriented data cube
representation [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 13 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

In the relational databases community, the table below is a relation, its
columns are attributes, its lines are records, and its entries are values.

Country Device Language
US Android en
US iPhone ru

South Africa iPhone en
India Android en

Australia iPhone en

An aggregation represents the idea of selecting a certain group of
records from a relation and summarizing this group using an aggrega-
tion function (e.g.count, sum, max, min). For example, a possible
aggregation for the relation above could be to select all its records and
summarize those using count. In this case, five would be the final
aggregation result. If we allow entries in the record to have a special
value All, we could represent this aggreation as the following relation:

Country Device Language Count
All All All 5

We refer to records in a relation that contain the special value All as ag-
gregation records. Using this notation, it is easy to understand the con-
ventional ways of describing aggregations for a given relation: group
by, cube, and rollup. A group by operation is one in which a relation is
derived from a base relation given a list of attributes and an aggregate
function. For example, group by on attributes Device and Language
with the count aggregate function results in the relation:

Country Device Language Count
All Android en 2
All iPhone en 2
All iPhone ru 1

Note that for every different combination of values present in the at-
tributes of the base relation an aggregation record is added to the re-
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1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
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3: for i = 1 to n do
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child, SHALLOWCOPY(child))

11: end if
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13: node child
14: end for
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16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE( )
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
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8: end function
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2: [`1, . . . ,`k] CHAIN(S, d)
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( d= dim(S) ?
SUMMEDTABLETIMESERIES( ) : NODE( ) )
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28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

Our technique is most closely related to the work of Sismanis et
al. [30, 29]. Specifically, we use similar ideas to reduce the size of
a data cube from potentially exponential in the cardinality of the key
space (we define these terms in Section 4.1) to essentially linear [31].
Nanocubes improve on Sismanis et al.’s work in two fundamental di-
rections. First, we develop a model for spatiotemporal data cubes that
exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have also been recent efforts to build data cube structures
specifically suited for visualization. Crossfilter [32] is a software pack-
age built on the clever observation that many queries in interactive vi-
sualization are incremental: assuming that previous results are avail-
able, the results needed for the next query can be quickly computed.
Unfortunately, we do not see easily how this would work for the multi-
scale queries necessary in a spatiotemporal setting. Just as recently,
Kandel et al. have proposed Datavore, a column-oriented data cube
representation [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 13 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

In the relational databases community, the table below is a relation, its
columns are attributes, its lines are records, and its entries are values.

Country Device Language
US Android en
US iPhone ru

South Africa iPhone en
India Android en

Australia iPhone en

An aggregation represents the idea of selecting a certain group of
records from a relation and summarizing this group using an aggrega-
tion function (e.g.count, sum, max, min). For example, a possible
aggregation for the relation above could be to select all its records and
summarize those using count. In this case, five would be the final
aggregation result. If we allow entries in the record to have a special
value All, we could represent this aggreation as the following relation:

Country Device Language Count
All All All 5

We refer to records in a relation that contain the special value All as ag-
gregation records. Using this notation, it is easy to understand the con-
ventional ways of describing aggregations for a given relation: group
by, cube, and rollup. A group by operation is one in which a relation is
derived from a base relation given a list of attributes and an aggregate
function. For example, group by on attributes Device and Language
with the count aggregate function results in the relation:

Country Device Language Count
All Android en 2
All iPhone en 2
All iPhone ru 1

Note that for every different combination of values present in the at-
tributes of the base relation an aggregation record is added to the re-
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1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE( ) . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK( ) . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE( ))
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE( )
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

( d= dim(S) ?
SUMMEDTABLETIMESERIES( ) : NODE( ) )

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

Our technique is most closely related to the work of Sismanis et
al. [30, 29]. Specifically, we use similar ideas to reduce the size of
a data cube from potentially exponential in the cardinality of the key
space (we define these terms in Section 4.1) to essentially linear [31].
Nanocubes improve on Sismanis et al.’s work in two fundamental di-
rections. First, we develop a model for spatiotemporal data cubes that
exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have also been recent efforts to build data cube structures
specifically suited for visualization. Crossfilter [32] is a software pack-
age built on the clever observation that many queries in interactive vi-
sualization are incremental: assuming that previous results are avail-
able, the results needed for the next query can be quickly computed.
Unfortunately, we do not see easily how this would work for the multi-
scale queries necessary in a spatiotemporal setting. Just as recently,
Kandel et al. have proposed Datavore, a column-oriented data cube
representation [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 13 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

In the relational databases community, the table below is a relation, its
columns are attributes, its lines are records, and its entries are values.

Country Device Language
US Android en
US iPhone ru

South Africa iPhone en
India Android en

Australia iPhone en

An aggregation represents the idea of selecting a certain group of
records from a relation and summarizing this group using an aggrega-
tion function (e.g.count, sum, max, min). For example, a possible
aggregation for the relation above could be to select all its records and
summarize those using count. In this case, five would be the final
aggregation result. If we allow entries in the record to have a special
value All, we could represent this aggreation as the following relation:

Country Device Language Count
All All All 5

We refer to records in a relation that contain the special value All as ag-
gregation records. Using this notation, it is easy to understand the con-
ventional ways of describing aggregations for a given relation: group
by, cube, and rollup. A group by operation is one in which a relation is
derived from a base relation given a list of attributes and an aggregate
function. For example, group by on attributes Device and Language
with the count aggregate function results in the relation:

Country Device Language Count
All Android en 2
All iPhone en 2
All iPhone ru 1

Note that for every different combination of values present in the at-
tributes of the base relation an aggregation record is added to the re-
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Natural language query s c t URL
count of all Delta flights R U R { Delta } R U /where/carrier=Delta
count of all Delta flights in the Midwest R (Midwest) R { Delta } R U /region/(Midwest)/where/carrier=Delta
count of early flights in 2010 R U D R (2010) /field/carrier/when/(2010)
time-series of all United flights in 2009 R U R U D (2009) /tseries/when/2009/where/carrier=United
heatmap of Delta flights in 2010 D (tile) R { Delta } R (2010) /tile/(tile)/where/carrier=Delta

Fig. 4. A simplified set of queries supported by the nanocube data structure. The column s represents space; t, time; c, category. R means “rollup”,
D means “drilldown”. The value next to R or D contains the subset of that dimension’s domain being selected. We use U to represent the entire
domain (“universe”). Omitted here, but supported by our structure, are: the extra parameter for number of steps throughout the time region in a
time-based drilldown; multiple categories with separate rollups and drilldowns; tiles of variable resolution.

sulting relation. In our running example these combinations are (An-
droid, en), (iPhone, en), and (iPhone, ru). The cube operation is the
result of collecting all possible group by aggregations into a single re-
lation for a given list of attributes. In our running example, the cube
for count on Device and Language would be the same as the union
of four group by’s: on (1) no attributes; on (2) Device only; on (3)
Language only; and (4) on Device and Language (2n group bys where
n is the number of input attributes):

Country Device Language Count
All All All 5
All Android All 2
All iPhone All 3
All All eu 4
All All ru 1
All iPhone ru 1
All Android en 2
All iPhone en 2
All iPhone ru 1

Finally, a roll up is a constrained version of the cube operation where
the order of the input attributes is important. So a roll up on Device
and Language (in this order) means the union of group by’s on: (1)
no attributes; (2) Device; and (3) Device and Language. Note that the
group by on Language only is not part of the roll up. As the results
of group by’s, cubes and roll ups can be seen as relations, we can
naturally compose such operations. As we will describe nanocubes is
a specialized data structure to store and query cubes of roll ups.

4 NANOCUBES: A COMPACT, SPATIOTEMPORAL ROLL-UP
CUBE

Data visualizations in a computer are necessarily bounded by display
size, and so we would like to be able to quickly collect subspaces of
the dataset that would end up in the same pixel on the screen. How-
ever, spatiotemporal navigation is inherently multiscale. The same
data structure should support quick indexing for a visualization over
multiple years of time series and for drilling down into one particu-
lar hour or day. Similarly, the data cube should support aggregation
queries over vast spatial regions covering entire continents, as well as
very narrow queries covering only a few city blocks.

The database notion of roll ups (Section 3), in a sense, aligns nicely
with the notion of Level of Detail. For example, if the records of a table
(relation) contain a location attribute, one can design a roll up query
whose resulting relation encodes the same information as the one en-
coded in a level of detail data structure. More concretely, suppose
`1, . . . ,`k are attributes computed from the original location attribute
and yield ’quad-tree addresses’ of increasingly higher levels of detail
(from 1 to k). A roll up query on these (computed) attributes results in,
essentially, the same information as the one contained in a quad-tree
(given that we are keeping the same summary in both, e.g.count). At
first, this connection might be obvious but bridges between terminolo-
gies from different areas is usually important. As it turns out, only later
in the development of nanocubes is that we became aware of Hierar-
chical Dwarf-Cubes [29], which is a highly related to nanocubes and
was developed by the database community to efficiently store results
of aggreagation queries.

The second important notion in the design of nanocubes is the idea
that we want to combine aggregations of independent dimensions at

independent levels of detail. For example we might want to know for
a whole country, what is the spatial distribution of tweets gererated
by an iPhone: coarse on the spatial dimension, but specific on the
device dimension; conversely we might want to know the distribu-
tion of tweets (coarse on device) in a small block of a city (fine in
space). In relational database terminology, this model has a name: it
is a cube of roll-ups, or a roll-up cube. Now with the language set up,
we can state: A nanocube is a data structure to efficiently store and
query spatio-temporal roll-up cubes. Besides implmentation tricks
(e.g. tagged pointers, carefully design of the bit layout of the struc-
tures, specifically designed to live in main memory), there is, to the
best of our knowledge, a qualitative difference in nanocubes to other
data structures like [29]. The difference is in what nanocubes store for
each aggregation which is deeply related to spatio-temporal datasets:
it stores time series in a sparse summed table format. This element of
nanocubes is explained in Section 4.3 and, cannot be cannot be effi-
ciently simulated (memory-wise) by previous datastructures.

In the remainder of this section, we present a formal description
of the components that make up our nanocube index, pseudo-code
for building nanocubes together with an illustrated example, and how
queries are made against our index.

4.1 Definitions
Let O be a set of objects. A labeling function ` : O ! L associates a
label value to the objects of O. We can think of ` as an attribute in
a relational database. In connection with the level of detail discus-
sion above, if `1 and `2 are two labeling functions for O, we say `1 is
coarser than `2 or that `2 is finer than `1 if for any two objects o,o0 2 O
the implication `2(o) = `2(o0) ) `1(o) = `1(o0) holds. We denote this
fact by `1 < `2.

A sequence of labeling functions c = [`1,`, . . . ,`k] for objects O
is a chain for O if every labeling function is coarser than the next
labeling function in the sequence: `i < `i+1. Note how chains are
related to roll ups, we avoid the same name to not overload more the
term roll up. The number of levels of a chain is defined by levels(c) =
|c|+1. An indexing schema for objects O consists of a sequence of
chains S = [c1,c2, . . . ,cn]. The dimension of an indexing schema S
is the length of its sequence of chains and is denoted by dim(S). The
multiplicity of a schema S is the product of its chains’ number of levels:
µ(S) = ’n

i=1 levels(ci).
A full assignment for a sequence of labeling functions [`1,`2, . . . ,`k]

is a sequence of label values [v1,v2, . . . ,vk] where vi is a label value
under `i. Any prefix of a full assignment for a sequence of label-
ing functions, including the empty one, is referred to as a partial as-
signment. Note that an full assignment is also a patial assignment
since a sequence is also a prefix of itself. An address on a schema
is a sequence of partial assignments for its chains, more formally, if
S = [c1,c2, . . . ,cn] is an indexing schema, then a = [p1, p2, . . . , pn] is
an address of S if pi is a partial assignment for chain ci. The set of pos-
sible addresses of S is denoted by addr(S). and its size is referred to as
the Global Cardinality of S. The subset of addr(S) whose addresses
contain only full assignments is called the Key Cardinality of S. The
key Key Cardinality is exactely the number of the finest resoultion bins
a nanocube can store.

The addresses of an object o under indexing schema S, denoted by
addr(o,S) are all the addresses in addr(S) whose partial assignments
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Fig. 5. A sample relation and its associated aggregation operators.
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Fig. 4. A sample relation and its associated aggregation operators.

4.1 Definitions
Let O be a set of objects. A labeling function ` : O ! L associates a
label value to the objects of O. We can think of ` as an attribute in a
relational database. In connection with the level of detail discussion
above, if `1 and `2 are two labeling functions for O, we say `1 is coarser
than `2 or that `2 is finer than `1 if for any two objects o,o0 2 O the
implication `2(o) = `2(o0) ) `1(o) = `1(o0) holds. We denote this fact
by `1 < `2.

A sequence of labeling functions c = [`1,`, . . . ,`k] for objects O is a
chain for O if every labeling function is coarser than the next labeling
function in the sequence: `i < `i+1. The number of levels of a chain
is defined by levels(c) = |c|+1. An indexing schema for objects O
consists of a sequence of chains S = [c1,c2, . . . ,cn]. The dimension of
an indexing schema S is the length of its sequence of chains and is
denoted by dim(S). The multiplicity of a schema S is the product of its
chains’ number of levels: µ(S) = ’n

i=1 levels(ci).
A full assignment for a sequence of labeling functions [`1,`2, . . . ,`k]

is a sequence of label values [v1,v2, . . . ,vk] where vi is a label value
under `i. Any prefix of a full assignment for a sequence of labeling func-
tions, including the empty one, is referred to as a partial assignment.
Note that a full assignment is also a partial assignment since a sequence
is also a prefix of itself. An address on a schema is a sequence of partial
assignments for its chains, more formally, if S = [c1,c2, . . . ,cn] is an
indexing schema, then a = [p1, p2, . . . , pn] is an address of S if pi is a
partial assignment for chain ci. The set of possible addresses of S is
denoted by addr(S).

The addresses of an object o under indexing schema S, denoted by
addr(o,S) are all the addresses in addr(S) whose partial assignments
are consistent with the label values associated to o and it is easy to
see that the size of addr(o,S) is always µ(S). Besides a schema S,
the definition of a nanocube requires a separate labeling function,
`time : O ! T , which we refer to as the time labeling function since we
use it to encode the temporal aspect of our datasets. Thus, a nanocube
for objects o1, . . . ,on is denoted by:

NANOCUBE([o1, . . . ,on],S,`time)

A key in a nanocube is any pair (a, t) where a 2 addr(S) and corre-
sponds to a full assignment (see definition above) and t 2 T is a possible
time label. If we remove the requirement of a being a full assignment,
we say that pair (a, t) is an aggregate key. Note that every key is also
an aggregate key. The set of all possible keys and the set of all possible
aggregate keys of a nanocube are respectively referred to as its key
space, or K?, and its aggregate key space, or K?

a . The size of the key
space, |K?|, is referred to as its cardinality.

4.2 Building the Index
To ease the remaining exposition, we assume that a nanocube maps an
aggregate key to a count. Nevertheless, nanocubes support any kind
of summary that is an algebra with weighted sums and subtractions.
Notably, this includes linear combinations of moment statistics, with
which we can compute means, variances and covariances.

The pseudo-code for building a nanocube is presented in Figure 3.
The main idea of the algorithm is for every object oi to first find the
finest address of the schema S hit by this object, update the time series
associated with this address and from there on update in a deepest
first fashion, all coarser addresses also hit by oi. Note that the content
of the last dimension of schema S is always a time series and that is
why, in line 21 of ADD, we insert the time label of the current object.
The important trick used is to, when possible, allow for shared links
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Fig. 2. An illustration of how to build a nanocube for five points [o1, . . . ,o5] under schema S. The complete process is described in Section 4.

Section 4, we show how to construct a data cube that fits in the main
memory of a modern laptop computer or workstation, extending the
work of Sismanis et al. [31]. In addition, the query times to build the
visual encodings in which we are interested will be at most proportional
to the size of the output, which is bounded by the number of screen
pixels (within a small factor). This is an important observation: the time
complexity of a visualization algorithm should ideally be bounded the
number of pixels it touches on the screen. Our technique enables real-
time exploratory visualization on datasets that are large, spatiotemporal,
and multidimensional. Because the speed of our data cube structure
hinges partly on it being small enough to fit in main memory, we call it
a nanocube.

By real-time, we mean query times on average under a millisecond
for a single thread running on computers ranging from laptops, to
workstations, to server-class computing nodes (Section 6). By large,
we mean that the datasets we support have millions to billions of entries.

By spatiotemporal, we mean that nanocubes support queries typical
of spatial databases, such as counting events in a spatial region that
can be either a rectangle covering most of the world, or a heatmap
of activity in downtown San Francisco (Section 4.3.1). By the same
token, nanocubes support temporal queries at multiple scales, such
as event counts by hour, day, week, or month over a period of years
(Section 4.3.3). Data cubes in general enable the Visual Information-
Seeking Mantra [29] of “Overview first, zoom and filter, then details-
on-demand” by providing summaries and letting users drill down by
expanding along the wanted dimensions. Nanocubes also provide
overviews, filters, zooming, and details-on-demand inside the spa-
tiotemporal dimensions themselves.

By multidimensional, we mean that besides latitude, longitude, and
time, each entry can have additional attributes (see section 6) that can
be used in query selections and rollups.

As we will show, nanocubes lend themselves very well to building
visual encodings which are fundamental building blocks of interac-
tive visualization systems, such as scatterplots, histograms, parallel
coordinate plots, and choropleth maps. In summary, we contribute:

• a novel data structure that improves on the current state of the art
data cube technology to enable real-time exploratory visualization
of multidimensional, spatiotemporal datasets;

• algorithms to query the nanocube and build linked and brushable
visual encodings commonly found in visualization systems; and

• case studies highlighting the strengths and weaknesses of our

technique, together with experiments to measure its utilization of
space, time, and network bandwidth.

2 RELATED WORK

Relational databases are so widespread and fundamental to the practice
of computing that they were a natural target for information visualiza-
tion almost since the field’s inception [20]. Mackinlay’s Automatic
Presentation Tool is the breakthrough result that critically connected the
relational structure of the data with the graphical primitives available
for display [23] and ultimately lead to data cube visualization tools
like Polaris [34, 35] and Show Me [24]. Nanocubes are specifically
designed to speed up queries for spatiotemporal data cubes, and could
eventually be used as a backend for these types of applications.

In contrast, some of the work in large data visualization involves
shipping the computation and data to a cluster of processing nodes.
While parallelism is an attractive option for increasing throughput, it
does not necessarily help achieve low latency, which is essential for
fluid interactions with a visualization tool. As a result, sophisticated
techniques such as query prediction become necessary [6]. Leveraging
the enormous power of graphics processing units has also become
popular [25, 21], but without algorithmic changes, linear scans through
the dataset will still be too slow for fluid interaction, even with GPUs.

Another popular way to cope with large datasets is through sampling.
Statistical sampling can be performed on the database backend [26, 1,
10, 14], or on the front-end [11]. Still, the techniques we introduce
with nanocubes can produce results quickly and exactly (to within
screen precision) without requiring approximations, which we believe
is preferable. In addition, as Liu et al. argue, sampling by itself is not
sufficient to prevent overplotting, and might actually mask important
data outliers [21].

Fekete and Plaisant have proposed modifications of traditional visual
encodings which use the computer screen more efficiently [13]. These
scale better with dataset size, but nevertheless require a traversal of
all input data points that renders the proposal less attractive for larger
datasets. Carr et al. were among the first to propose techniques replac-
ing a scatterplot with an equivalent density plot [5]; nanocubes enable
these visualizations at a variety of dataset sizes and scales.

Careful data aggregation [17], then, appears to be one of the few
scalable solutions for low-latency large data graphics. While Elmqvist
and Fekete propose variations of visualization techniques that include
aggregation as a first-class citizen [12], in this paper we show how to
issue queries such that, at the screen resolution in which the application
is operating, the result is indistinguishable (or close to) from a complete
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Assignment 5
• Chicago Bike Sharing Data 
- Spatial Analysis 
- Temporal Analysis 
- Graph Database (neo4j)
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Teaching Evaluations
• This Wednesday (April 20) in class
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TopKube: A Rank-Aware Data Cube for Real-Time 
Exploration of Spatiotemporal Data

F. Miranda, L. Lins, J. T. Klosowski, and C. T. Silva

D. Koop, CSCI 680/490, Spring 2022



TopKube: What about Top-k and Rankings?
• Aggregates are interesting 
• Also, often interested in top-k answers given particular criteria 
• …or rankings 
• Search over time and space but find specific examples 
• TopKube is a rank-aware data structure that computes top-k queries with 

low latency so interactive exploration is possible

19D. Koop, CSCI 680/490, Spring 2022



Example: Basketball
• Shots by time, number of points scored, and location on the court 

• Query: Ranked list of the 50 players who took the most shots 
- SELECT player,count(*) AS shots FROM table GROUP BY player 
ORDER BY shots DESC LIMIT 50  

• Query: Rank the top 50 players by points made: 
- SELECT player,sum(pts) AS points FROM table GROUP BY player 
ORDER BY points DESC LIMIT 50 

20D. Koop, CSCI 680/490, Spring 2022

team player time pts x y
CLE L. James 5 0 13 28
BOS R. Rondo 5 2 38 26
CLE L. James 7 3 42 35



Ranking by Shot Location
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Fig. 1. Ranking NBA players by number of shots from the left 3-point corner (orange) and right 3-point corner (blue) for the 2009-2010 season. The
left image is a heatmap of all shots: brighter colors indicate more shots were taken from that location. The hotspot clearly identifies the basket.

The core abstraction used by Nanocubes [5], and shared
by our proposal of TOPKUBE, is that of associating records
with bins in multiple dimensions: a multi-dimensional binning
model. For example, it is natural to associate the NBA shot
records in Table 1 with dimensions team, player, time,
points, and location (note we chose here to combine
columns x and y into a single location dimension). Each
player possibility can be associated its own bin in the player
dimension. Team and points are handled similarly. For time,
we could choose a one minute resolution and have each
minute of the game be a bin in the time dimension; for
location, we could have a 1ft. ⇥ 1ft. grid model of the court
area and have each cell in this grid be a bin in the location
dimension. Note that, in this modeling, each record is
associated to one and only one bin in each dimension. More
abstractly, in our formalism, we assume each dimension i
has a set of finest bins, denoted by B0

i, and a record is always
associated to a single finest bin in each dimension.

In addition to the set of finest bins B0
i associated with

dimension i, we define the notion of coarser bins, or bins that
“contain” multiple finer bins. For example, in the location
dimension, we could group adjacent finest grid cells into 2x2
groups and make each of these groups a coarser bin cell in
the location dimension. The interpretation of coarser bins
is simply that if a record is associated with a finer bin b then
it is also associated with a coarser bin that “contains” b. In
the binning model we define here, we assume that the set
of all bins Bi associated with dimension i forms a hierarchy
Hi = (Bi, ⇡i) where its leaves are a partition of finest bins
B0

i. The containment function, ⇡i : Bi ! Bi associates every
bin b to another bin ⇡i(b) which is either the smallest (i.e.
finest) bin in Hi that contains b (in case b 6= ⇡i(b)) or it is the
coarsest (or root) bin in Hi (in case b = ⇡i(b)).

An n-dimensional binning schema S is defined as an n-
ordered list of hierarchies: S = (H1, . . . , Hn). In order to ex-
tend the finest sets of bins for the player dimension, B0

player,
into a valid bin hierarchy Hplayer = (Bplayer, ⇡player), we
could include an additional coarse bin that serves as the
root of this 1-level hierarchy by making all bins in B0

player

its direct children. This is indeed the natural way to model
categorical dimensions with few classes. For dimensions
where the number of finest bins is not small, it is best
to use multi-level hierarchies so that data can later be

accessed more efficiently in a level-of-detail fashion. For
example, a natural way to model spatial dimensions is by
using a quadtree bin-hierarchy; for a temporal dimension,
in TopKube, we use a binary-tree bin-hierarchy. Given an
n-dimensional binning schema S, we say that the Cartesian
product B = B1 ⇥ . . . ⇥ Bn is the product-bin set of S, and
that an element � 2 B of this set is a product-bin of S.

To define a multi-dimensional binning model, it remains
to formalize the notion of which records in a dataset are
associated to which bins and product-bins. Let R be a set of
records and S a binning schema. If we provide an association
function ai : R ! B0

i for each dimension i that assigns a
unique finest bin in B0

i for every record, we can naturally and
uniquely define an association relation A ✓ R ⇥ B between
records and product-bins. Here is how: (1) we say a general
bin bi 2 Bi is associated with record r if either bi = ai(r)
or bi is an ancestor of ai(r) in Hi; (2) a product-bin � =
(b1, . . . , bn) is associated with record r, denoted by (r, �) 2 A
if bi is associated with record r for 1  i  n.

A multi-dimensional binning model is thus a triple M =
(S, R, A), where S is a binning schema, R is dataset of
records, and A is an association relation between records
and product-bins B from schema S. Given a product-bin �
we use A(�) to denote its associated set of records in model
M (i.e. A(�) = {r 2 R : (r, �) 2 A, � 2 B}). Analogously,
we use A(r) for a record r to denote its associated set of
product bins (i.e. A(r) = {� 2 B : (r, �) 2 A}).

4.1 Measure on a multi-dimensional binning model
The notion of product-bins in our model provides a way to
refer to groups of records through their multi-dimensional
characteristics. In our running NBA example, all shots of
LeBron James would be specified by A(�LJ), where the
product-bin �LJ 2 B consists of the coarsest (root) bin in
the bin-hierarchy of all dimensions, except on the player
dimension where we would have the bin for LeBron James.
If instead we want to refer to LeBron James’ shots in the first
minute of a game, we would replace the root bin in the time
dimension of �LJ with the bin for minute 1 of the game.

One natural approach to analyzing a set of records
through their multi-dimensional characteristics is through
some notion of “size”. For example, instead of listing all
NBA shots from the 3-pt left corner, we could simply be
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Fig. 1. Ranking NBA players by number of shots from the left 3-point corner (orange) and right 3-point corner (blue) for the 2009-2010 season. The
left image is a heatmap of all shots: brighter colors indicate more shots were taken from that location. The hotspot clearly identifies the basket.
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basketball court example in Figure 1. We want to compare the top-
20 players that take shots from the left 3-point corner (orange) versus
players that take shots from the right 3-point corner (blue). In this
case, knowing that there are only a few hundred players in the NBA
each year, it would not be computationally expensive to scan all play-
ers to figure the top 20, but there are many other cases such as GitHub
projects, Flickr images, or microblog hashtags, where having to scan
millions of objects can result in unacceptable latencies.

4.1 TOPKUBE vs. Nanocubes
The use case considered by the original Nanocube data structure was
that of multi-dimensional selections that resulted in a large number of
data records, whose aggregated counts would be presented to the user
in a variety of means: as pixel values on a heatmap, as categorical
values in a barchart, or as temporal values in a time series line plot.
The use case we have in mind here is different: the multi-dimensional
selection in our case might result in hundreds of thousands to millions
of object-value pairs, and we are not interested in presenting all these
pairs to the user, but only the top valued pairs. More concretely, the
problem we are interested in here is to quickly produce visalizations
like Figure 1 even if the NBA had millions of players.

Each dimension in the original Nanocube is modeled as a hierarchy
of bins, with the exception of time. Each product bin, i.e. the combina-
tion of one selection from each dimension, is instead mapped to a time
series, which is implemented as a summed-area table. In TOPKUBE,
in order to speed up top-k queries, we propose that each product bin
should be mapped not to a time series, but to a rank-aware multi-set.
More formally, if b is a product bin, the original Nanocube would
store a mapping like:

b 7! ((t1,v1),(t2,v1 + v2), . . . ,(tm,v1 + . . .+ vm)) [NANOCUBE]

where ti would be increasing time bins and vi would be the measure of
interest (e.g.record count). The cumulative values were stored there to
allow for fast retrieval of value sums for any time interval. In the case
of TOPKUBE, we want each product bin b to be mapped to:

b 7!
(

lst = ((q1,v1,s1), . . . ,(q j,v j,s j)),sum =
j

Â
i=1

vi

)
[TOPKUBE]

With this encoding, to access the value of a query key q in b we per-
form a binary search in lst (assuming it is ordered by qi); the i-th top
ranked object in b is the si-th entry in lst and takes constant time (fast
random access to si + fast random access to ksi and vsi ).

4.2 Top-K From Ranked Lists
With TOPKUBE, we can easily produce a list of top-k ranked objects
when a multi-dimensional selection results in a single product-bin b ,
but in general that does not happen. For example, in Figure 2, we
show a common case in a spatiotemporal dataset: a 624 bin selection
in space and 3 bins in time, which potentially results in a 1872 product
bin selection. The pre-stored ranked lists we have for each b should
help speed up the top-k query, but the task is not as trivial as collecting
top-k resulting objects in O(k) steps. To ease the exposition, and for
the lack of a consistent name in the literature reviewed, we refer to this
problem as Top-k From Ranked Lists or TKFRL.

4.3 Threshold Algorithm
The source of the difficulty for the TKFRL problem is that, for any
key object q, its final measure v for our top-k ranking purposes might
be broken into m summands v = v1, . . .vm, one for each product-bin in
the selection. Although we have an efficient way to access these sum-
mands in decreasing order (by putting all m lists into a heap/priority
queue and popping the next largest key and summand), this does not
directly imply we are going to find the measures for the top-k keys
efficiently. Fortunately, a lot is known about the TKFRL problem [5].
The famous threshold algorithm or TA (which was explained and an-
alyzed in the first database paper to win the prestigious Gödel Prize
in 2014) is known to be optimal in a strong sense: no other algorithm

Fig. 2. Dimensions of space and time represented as bin hierarchies.
Bspace are bins in a quad-tree hierarchy: we show an annulus selection
around Madison Square Garden corresponding to 624 bins; Btime is a
binary hierarchy; we show 3 bins corresponding to the interval [3,6].

can access less data than the threshold algorithm does and still obtain
the correct answer. The threshold algorithm consists of the following
steps: (1) find key q of the next largest summand; after finding the
other summands of q in the other m� 1 b ’s, compute the key-value
pair (q, v); (2) Insert the key-value pair found in the previous step into
a buffer R that maintains only the top-k key-value pairs it has seen; (3)
update threshold t to be the sum of the available largest m summands
(an upper bound for the total measure of a yet unseen key); (4) if R
has k key-value pairs and the smallest valued pair is larger than t , then
report R as the top-k result, otherwise go to Step 1.

Although TA has ideal theoretical guarantees, there is an assump-
tion that all m lists contain summands for all keys. This is natural given
the application usually associated with TA: the m lists corresponded to
m attribute-columns of a table and all keys (rows) should have an en-
try in each of those columns. However, the instances of the TKFRL
problem that we observed were quite sparse: one key q is present in
only a small fraction of the m lists, thus reducing the efficiency of TA.

4.4 Key Sweep Algorithm
Let us step back and suppose we do not store the ranking information,
s , in b . If we go back to a rank-unaware data structure, how can we
solve the top-k problem? One way, which we refer to as as the Naive
Algorithm is to traverse all the b ’s in the selection, and keep updating a
dictionary structure of key-value pairs (we would increment the value
of a key already in the dictionary with the current summand we found
for that key in the current m-bin). Once we finish traversing all b ’s,
we would sort the keys by their values and report the top-k ones. The
Naive algorithm is correct, but inefficient. It uses memory proportional
to all the keys in all m lists, and this number might be much larger than
k (e.g. millions of keys instead of 100 if we ask for k = 100).

A more efficient way to do the union of m lists (that are sorted by
keys) is to add all these lists into a heap/priority queue where the list
with the smallest key is on the top of the heap. If we keep popping
the next smallest key and summand from all the m lists, we will sweep
all key-summand pairs in key increasing order, and every time we get
a new (larger) key, we can be sure we know the total measure of all
previous keys. Using this approach, we can maintain a result list with
at most k buffers instead of a dictionary with all keys in all lists. We
will refer to this approach as the Key Sweep Algorithm. Note that this
algorithm scans all the summands, as does the Naive Algorithm, but it
does not need a potentially large buffer to solve the top-k problem.

4.5 Hybrid Algorithm
The problem with the direct application of TA to solve the TKFRL
problem is that in sparse instances, for each good candidate key to
be in the top-k result, the algorithm performs a binary search for the
other m�1 summands for that same key. If every key had a summand
present in all m lists (dense instance), these cycles would be useful, but
in a sparse instance of the problem, these are mostly wasted cycles.
In typical instances of the TKFRL problem (e.g., what are the most
active GitHub projects in the west coast of the U.S.?), we observe that
on average each key is in less than 3% of the m-lists in the selection.
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order to speed up top-k queries on one of its dimensions (e.g.
top players by number of shots, top projects by number of
commits), a TOPKUBE also includes ranking information in
the encoding of that dimension.

The special dimension in a TOPKUBE is one that could
be modeled as yet another 1-level bin hierarchy, but that
contains lots of bins (e.g. players in the NBA example,
or projects in GitHub, or tags in Flickr) and that we are
interested in quickly accessing the top valued bins from this
dimension with respect to the additive measure of interest
on any multi-dimensional selection. We refer to this special
dimension of a TOPKUBE as its key dimension, and the bins in
this dimension as keys. Note that efficiently retrieving ranks
of top-k keys (and their respective values) for an arbitrary
selection of product-bins is the main goal of our TOPKUBE
data structure. All dimensions in a TOPKUBE, except for its
key dimension, are represented in the same way as the (non-
special) dimensions of a Nanocube: as nested bin-hierarchies.
Nodes in the bin-hierarchy of a previous dimension point to
a root bin of a bin-hierarchy in the next dimension until we
get to the last special dimension (see Figure 2 of [5]). A path
through the nested hierarchies down to the last and special
dimension of a TOPKUBE corresponds to a product-bin � on
all dimensions except the key dimension.

To represent the key dimension information associated with
a product-bin �, TOPKUBE uses the following data:

� 7!
n
q, v, �,

X
vi
o

, (2)

where q = q1 . . . qp, v = v1 . . . vp, and � = �1 . . . �p are
arrays of equal length obeying the following semantics: qi is
the i-th smallest key that appears in �; vi is the value of the
measure of interest (e.g. occurrences) for key qi in �; and �i

represents index of the key with the i-th largest value in �.
For example, the third highest values key in a specific � is
given v�3 and corresponds to key q�3 . In addition to arrays
q, v, �, in order to quickly solve queries that contain no key
constraints, we also store the measure of all records in �
regardless of keys, i.e. µ(A(�)). Since in all our applications
we always assume linearity of our measures, this aggregate
reduces to the sum of the values v in �.

In Figure 3, we show a concrete TOPKUBE corresponding
to the model shown on the top left part of the display. This
TOPKUBE consists of one spatial dimension (two level quad-
tree hierarchy) and a key dimension. In this toy example, the
keys of the key dimension are the letters A, B, and C and the
measure is simply the number of occurrences of a letter in
the corresponding product-bin. Note that since there is only
one dimension outside of the key dimension in this example,
a product-bin � corresponds exactly to one spatial bin. The
TOPKUBE data structure with the keys, counts, rank and total
count are shown as tables in the bottom part of the figure.
Note, for example, that the top valued key in the whole
model is given by q�1 = C and v�1 = 6 in the right-most
table which corresponds to the coarsest spatial bin.

With this encoding for the key dimension information
of a product-bin, to find out if a given key exists in a
product-bin, we can perform a binary search in the q array
(logarithmic time in the length of the array), and to access
the i-th top ranked key we perform two random accesses:
first we retrieve �i and then q�i or v�i (both constant time).

A 1 2
C 3 1

�vq

sum 4

A 2 1
C 1 2

�vq

sum 3

B 1 2
C 2 1

�vq

sum 3

A 3 2
C 4 1

�vq
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Fig. 3. Concrete example of a TOPKUBE with one spatial dimension and
the special key-dimension for counting and ranking the event types: A, B,
or C. The additional ranking information (q, v, sigma) from Equation 2 is
shown in the tables associated with each product-bin.

As in a Nanocube, the size of a TOPKUBE is proportional
to its number of product-bins � plus the size of the encodings
of the special dimension information associated with each of
its product-bins. In the case of a Nanocube, this extra size
per product-bin is the size of the summed area data from
Equation 1, while in the case of TOPKUBE, it is given by the
size of the rank aware data-structure of Equation 2. Note that
if a Nanocube and a TOPKUBE have the same set of product-
bins � and the number of time stamps and keys encoded
in their respective special dimensions are comparable, the
extra size cost of a TOPKUBE compared to the similar
Nanocube will be the rank arrays �. This extra size cost of a
TOPKUBE represents a good trade-off if queries for interactive
top-k keys are important for a given application. Another
important remark with respect to the sizes of Nanocubes and
TOPKUBES is that in order to represent a Nanocube special
temporal dimension into a TOPKUBE dimension, we have
to convert it into a conventional TOPKUBE dimension (e.g.
a binary tree where the leaves are timestamps: right side of
Figure 2). This adds a multiplicative logarithmic term to the
size of that dimension: while O(n) in a Nanocube, it becomes
O(n log n) in a TOPKUBE. The advantage here is that now
multiple temporal dimensions can be supported.

5.1 Top-K from Ranked Lists
The easiest top-k query for a TOPKUBE happens when a
single product-bin � in involved. Suppose a user wants the
top ranked keys in a multi-dimensional selection without
any constraints. This query boils down to the single coarsest
product-bin � in the cube (formed by root bins in all
dimensions). In this case, obtaining the top-k keys is the same
as generating from � the list (q�1 , v�1), . . . , (q�k , v�k), and,
clearly, it can be done in O(k) steps. In general, though, this
task is not that easy. The number of product-bins involved in
the answer of a multi-dimensional selection is not one. For
common spatial brushes, time intervals, categorical selections,
the typical number of product-bins involved in a query
ranges from tens up to a few thousand. For example, in
Figure 2, we show a 624 bin selection in space and 3 bins in
time which potentially means a 1,872 product-bin selection.
In this case, the pre-stored ranks, or �, we have for each
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Fig. 2. Dimensions of space and time are represented as bin hierarchies.
(left) Bspace is a quad-tree hierarchy: here we show a 624 bin selection
around Madison Square Garden, NY; (right) Btime is a binary hierarchy;
in red we show 3 bins corresponding to the interval [3, 6].

interested in how many shots happened in that region, or
what the average or median distance from the basket was for
all of those shots. A measure for a multi-dimensional binning
model M is simply a real function µ : B ! R that associates
a number to any product-bin � of M , which captures some
notion of “size” for the set of incident records A(�). In the
target applications we are interested in, we want to access
measure values not for just one product-bin at a time, but
for sets of product-bins that are semantically meaningful
together. For example we might be interested in the spatial
region on the left of Figure 2 that consists of multiple bins.
In general, one cannot derive the measure value of the union
of a set of product-bins by combining the measure values of
the individual product-bins. The median distance of an NBA
shot is such an example: we cannot derive the median of the
union of two sets of values by knowing the median of each
individual set. We avoid this problem here by restricting our
universe to those of additive measures only. We start with a
real function µ : R ! R that associates a number to each
record from model M and extend this function to the whole
set of product-bins by using additivity µ(�) =

P
r2A(�) µ(r).

Additive measures can naturally count occurrences (e.g. how
many records) by making µ(r) = 1, or measure weight sums
by making µ(r) = wr. In addition to scalars, we can also
generalize additive measure to produce real vectors. For
example, by making µ(r) = (1, wr, w2

r) additivity will yield
a 3d vector on any product-bin and union of product-bins
(just sum the vectors). In this 3d measure example, it is
possible to post-process the vector entries to derive mean
and variance of weights for any set of product-bins (mean:
divide second entry by first entry). Correlations can also be
derived by post-processing an additive measure [32]. In the
remainder of this paper we assume simple additive scalar
measures. We do not deal with post-processed ones.

We refer to the combination of a multi-dimensional
binning model M with a measure µ to its product-bins
as a measure model M [µ]. The idea of precomputing and
representing a measure model M [µ] so that we can quickly
access µ(�) for any product-bin � is essentially the well-
known notion of a cube relational operator (if all hierarchies
in the model are all 1-level) or the more general roll up cube
relational operator (if some hierarchies have 2 or more levels).
Note that in practice, when precomputing such measure
models, one does not expect to be able to retrieve the original
records A(�), but only its measure µ(�).

4.2 Nanocubes
In Nanocubes [5], the authors propose an efficient encoding
of a measure model M [µ] with an additional special encoding
for one temporal dimension. Nanocubes uses a pointer-based
sparse data structure to represent the product-bins � that
have at least one record associated to it, and tries to make
every product-bin that yields the same set of records refer
to the same memory location encoding its measure value.
Conceptually, we can think of Nanocubes as an encoding to a
mapping {� 7! µ(�) : � 2 B, A(�) 6= ?}. For the temporal
dimension, the particular µ values are stored in Nanocubes
as summed area tables:

� 7! ((t1, v1), (t2, v1 + v2), . . . , (tp, v1 + . . . + vp)), (1)

where ti’s are all the finest temporal bins associated to the
records in A(�), they are sorted ti < ti+1, and vi is the
measure of µ(�, btime=ti), i.e. product-bin with the added
constraint in the time dimension. Note that by taking differ-
ences of values from two different indices of a summed area
table one can quickly find the value of any query (�, [ta, tb]),
where � is a product-bin (without the time dimension) and
[ta, tb] is the time interval of interest.

5 TOPKUBE

A Nanocubes-like approach can efficiently retrieve a measure
of interest for any pre-defined “bucket” (i.e. a product-
bin plus a time interval). This capability can be handy for
many applications, but is especially useful for interactive
visualizations where each element presented on a screen (e.g.
bar in a barchart, pixel in a heatmap) is associated with one
of these “buckets” and encoded (e.g. bar length, pixel color)
based on its value. However, suppose that, instead of simply
accessing the measure associated with specific buckets, we
are actually interested in identifying the top-k valued objects
from a potentially large set of buckets. For example, “Who
are the top-20 players that make the most shots from the
right-hand 3-point corner of the basketball court?” (blue
selection and ranking shown in Figure 1).

Since there is no ranking information encoded in a
Nanocube, the only way to obtain such a top-20 rank is
to find out, for each player associated with a shot in the
selection, their total number of shots and report the top-20
players found. This computation takes time proportional to
at least the number of players associated with the shots in the
selection. While this computation in the case of NBA shots is
not very expensive (only a few thousand players ever played
in the NBA), there are interesting use cases, analogous to the
player-shot case, where the number of “players” can be quite
large. For instance, project-commit in GitHub (a cloud based
project repository), tag-photo in Flickr (a cloud based photo
repository), or hashtag-post in a microblog website. In these
cases the number of projects, tags, and hashtags are counted
in millions instead of in thousands. The need to scan millions
of objects to solve a single top-k query can be a hard hit in
the latency budget of a fluid interactive experience.

TOPKUBE is a data structure similar to a Nanocube: it
encodes a measure in a multi-dimensional binning model, and,
with this encoding, it allows the quick access of the measure’s
value of any product-bin in the model. The main addition
of a TOPKUBE when compared to a Nanocube is that, in
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Three Algorithms to Merge Bins
• Threshold: don't do a full scan, use extra information about ranking 
• Sweep: Use a priority queue where the product bin with the current smallest 

key is on the top 
• Hybrid: 
- Threshold has best theoretical guarantee but some sparse cases can be 

faster 
- Use Sweep on small input lists, Threshold on denser problem
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Fig. 7. Comparing the top edited articles in Nevada and Mississippi.

Fig. 8. Geolocated Flickr tags in Africa: the unusual activity on the west
coast are from photos taken during a bike trip.

keywords were then used as keys in the construction of our
TOPKUBE data structure.

6.1 Use Cases
Wikipedia: The Wikipedia English dump datasets [33] con-
tains edit history for every article since its creation in 2005.
Anonymous edits contain the IP information of the user,
which we used to trace their location. The final dataset, with
geographical information, contains more than 112 million
edits of over three million articles. Figure 7 presents a
visualization of the dataset using TOPKUBE. It is interesting
to see that even though Nevada is not considered a state with
a high percentage of religious people, religious articles are
among the highest ranked. On the other hand, Mississippi,
considered one of the most religious states in the U.S., does
not have a single article related to religion among the top-20.

Flickr: The Yahoo! Flickr Creative Commons dataset [34]
contains 100 million public Flickr photos and videos, with
each record containing a set of user tags and geographical
information. The dataset contains 84 million geolocated tags
(1.57 million unique ones). Figure 8 shows how exploration
can be used to gain insight of unusual patterns in the data
along the West Coast of Africa. By highlighting the region,
we can see that there were an unusual spike of activity during
a few days in January. We create two different brushes in the
timeseries: a blue one covering the low activity days, and an
orange one covering the high activity days. We can see that
the high activity spike is mostly due to photos tagged with
freewheely.com and bicycle, which were taken by a Flickr user
during his bike trip.

Microblogging: This dataset is comprised of publicly
available geotagged microblog entries. From each post, we
extracted the latitude, longitude, and hashtags from the blog.

1. Select Paris Area 2. Observe Uncommon Spike on  Wed. Jan 7, 2015

3. Select  this Spike and Observe Top-10 Hashtags

 1. #jesuischarlie     4,456
 2. #charliehebdo      4,190
 3. #lrt               1,146
 4. #paris               607
 5. #gagnetaplace        447
 6. #charliehebdo        418
 7. #off                 402
 8. #lt                  335
 9. #noussommescharlie   197
10. #rip                 187

4. Select  Charlie Hebdo’s Top Hashtags and  
Observe its Temporal Volume Pattern

Fig. 9. Microblog exploration using TOPKUBE: a temporal perspective of
the top hashtags related to the the Charlie Hebdo terrorism act in Paris.

Fig. 10. GitHub projects with most commits in three large urban centers.

We can use TOPKUBE to explore the most popular hashtags
in order to understand how trending topics vary over time
and in a given region. Figure 9 presents a sequence of
exploration steps within January 2015 records. First we select
a geographical area around Paris and find out an unusual
Wednesday peak (Jan. 7) in the volume of hashtags. By
selecting this peak we quickly find evidence of the event that
caused the volume spike by inspecting the top-10 hashtags
in the current selection (i.e. Paris and Jan 7). The event
in question was the terrorism attack at the Charlie Hebdo
headquarters. To understand how the hashtags created for
this event at the day of the attack faded in time, we further
constrain our selection to just the hashtags related to the
terrorism attack and see that those fade almost completely
(relative to event day) after one week of the attack.

GitHub: The GitHub dataset was first made available
by Gousios [35] and contains all events from the GitHub
public event time line. We were able to obtain information
on more than 58 million commits for roughly 1.5 million
projects. Each commit was geolocated based on the location
of the user responsible for the action. Figure 10 presents a
visualization with the top-k projects of three large urban
centers. The only common project among all three regions
is dotfiles, a project for sharing customized environment files
on Unix-based operating systems. It is also interesting to
notice how llvm and related projects (such as clang), are very
popular in California, but not elsewhere. This shows a highly
diversified open source community across the United States.

6.2 Performance

To determine which of the previously described algorithms
works best when solving top-k queries, we conducted an
initial evaluation using the Microblogs dataset, which is the

Top-edited Wikipages in Nevada and Mississippi
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Fig. 7. Comparing the top edited articles in Nevada and Mississippi.

Fig. 8. Geolocated Flickr tags in Africa: the unusual activity on the west
coast are from photos taken during a bike trip.

keywords were then used as keys in the construction of our
TOPKUBE data structure.

6.1 Use Cases
Wikipedia: The Wikipedia English dump datasets [33] con-
tains edit history for every article since its creation in 2005.
Anonymous edits contain the IP information of the user,
which we used to trace their location. The final dataset, with
geographical information, contains more than 112 million
edits of over three million articles. Figure 7 presents a
visualization of the dataset using TOPKUBE. It is interesting
to see that even though Nevada is not considered a state with
a high percentage of religious people, religious articles are
among the highest ranked. On the other hand, Mississippi,
considered one of the most religious states in the U.S., does
not have a single article related to religion among the top-20.

Flickr: The Yahoo! Flickr Creative Commons dataset [34]
contains 100 million public Flickr photos and videos, with
each record containing a set of user tags and geographical
information. The dataset contains 84 million geolocated tags
(1.57 million unique ones). Figure 8 shows how exploration
can be used to gain insight of unusual patterns in the data
along the West Coast of Africa. By highlighting the region,
we can see that there were an unusual spike of activity during
a few days in January. We create two different brushes in the
timeseries: a blue one covering the low activity days, and an
orange one covering the high activity days. We can see that
the high activity spike is mostly due to photos tagged with
freewheely.com and bicycle, which were taken by a Flickr user
during his bike trip.

Microblogging: This dataset is comprised of publicly
available geotagged microblog entries. From each post, we
extracted the latitude, longitude, and hashtags from the blog.

1. Select Paris Area 2. Observe Uncommon Spike on  Wed. Jan 7, 2015

3. Select  this Spike and Observe Top-10 Hashtags

 1. #jesuischarlie     4,456
 2. #charliehebdo      4,190
 3. #lrt               1,146
 4. #paris               607
 5. #gagnetaplace        447
 6. #charliehebdo        418
 7. #off                 402
 8. #lt                  335
 9. #noussommescharlie   197
10. #rip                 187

4. Select  Charlie Hebdo’s Top Hashtags and  
Observe its Temporal Volume Pattern

Fig. 9. Microblog exploration using TOPKUBE: a temporal perspective of
the top hashtags related to the the Charlie Hebdo terrorism act in Paris.

Fig. 10. GitHub projects with most commits in three large urban centers.

We can use TOPKUBE to explore the most popular hashtags
in order to understand how trending topics vary over time
and in a given region. Figure 9 presents a sequence of
exploration steps within January 2015 records. First we select
a geographical area around Paris and find out an unusual
Wednesday peak (Jan. 7) in the volume of hashtags. By
selecting this peak we quickly find evidence of the event that
caused the volume spike by inspecting the top-10 hashtags
in the current selection (i.e. Paris and Jan 7). The event
in question was the terrorism attack at the Charlie Hebdo
headquarters. To understand how the hashtags created for
this event at the day of the attack faded in time, we further
constrain our selection to just the hashtags related to the
terrorism attack and see that those fade almost completely
(relative to event day) after one week of the attack.

GitHub: The GitHub dataset was first made available
by Gousios [35] and contains all events from the GitHub
public event time line. We were able to obtain information
on more than 58 million commits for roughly 1.5 million
projects. Each commit was geolocated based on the location
of the user responsible for the action. Figure 10 presents a
visualization with the top-k projects of three large urban
centers. The only common project among all three regions
is dotfiles, a project for sharing customized environment files
on Unix-based operating systems. It is also interesting to
notice how llvm and related projects (such as clang), are very
popular in California, but not elsewhere. This shows a highly
diversified open source community across the United States.

6.2 Performance

To determine which of the previously described algorithms
works best when solving top-k queries, we conducted an
initial evaluation using the Microblogs dataset, which is the

Geolocated Flickr tags in Africa
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Fig. 7. Comparing the top edited articles in Nevada and Mississippi.

Fig. 8. Geolocated Flickr tags in Africa: the unusual activity on the west
coast are from photos taken during a bike trip.

keywords were then used as keys in the construction of our
TOPKUBE data structure.

6.1 Use Cases
Wikipedia: The Wikipedia English dump datasets [33] con-
tains edit history for every article since its creation in 2005.
Anonymous edits contain the IP information of the user,
which we used to trace their location. The final dataset, with
geographical information, contains more than 112 million
edits of over three million articles. Figure 7 presents a
visualization of the dataset using TOPKUBE. It is interesting
to see that even though Nevada is not considered a state with
a high percentage of religious people, religious articles are
among the highest ranked. On the other hand, Mississippi,
considered one of the most religious states in the U.S., does
not have a single article related to religion among the top-20.

Flickr: The Yahoo! Flickr Creative Commons dataset [34]
contains 100 million public Flickr photos and videos, with
each record containing a set of user tags and geographical
information. The dataset contains 84 million geolocated tags
(1.57 million unique ones). Figure 8 shows how exploration
can be used to gain insight of unusual patterns in the data
along the West Coast of Africa. By highlighting the region,
we can see that there were an unusual spike of activity during
a few days in January. We create two different brushes in the
timeseries: a blue one covering the low activity days, and an
orange one covering the high activity days. We can see that
the high activity spike is mostly due to photos tagged with
freewheely.com and bicycle, which were taken by a Flickr user
during his bike trip.

Microblogging: This dataset is comprised of publicly
available geotagged microblog entries. From each post, we
extracted the latitude, longitude, and hashtags from the blog.

1. Select Paris Area 2. Observe Uncommon Spike on  Wed. Jan 7, 2015

3. Select  this Spike and Observe Top-10 Hashtags

 1. #jesuischarlie     4,456
 2. #charliehebdo      4,190
 3. #lrt               1,146
 4. #paris               607
 5. #gagnetaplace        447
 6. #charliehebdo        418
 7. #off                 402
 8. #lt                  335
 9. #noussommescharlie   197
10. #rip                 187

4. Select  Charlie Hebdo’s Top Hashtags and  
Observe its Temporal Volume Pattern

Fig. 9. Microblog exploration using TOPKUBE: a temporal perspective of
the top hashtags related to the the Charlie Hebdo terrorism act in Paris.

Fig. 10. GitHub projects with most commits in three large urban centers.

We can use TOPKUBE to explore the most popular hashtags
in order to understand how trending topics vary over time
and in a given region. Figure 9 presents a sequence of
exploration steps within January 2015 records. First we select
a geographical area around Paris and find out an unusual
Wednesday peak (Jan. 7) in the volume of hashtags. By
selecting this peak we quickly find evidence of the event that
caused the volume spike by inspecting the top-10 hashtags
in the current selection (i.e. Paris and Jan 7). The event
in question was the terrorism attack at the Charlie Hebdo
headquarters. To understand how the hashtags created for
this event at the day of the attack faded in time, we further
constrain our selection to just the hashtags related to the
terrorism attack and see that those fade almost completely
(relative to event day) after one week of the attack.

GitHub: The GitHub dataset was first made available
by Gousios [35] and contains all events from the GitHub
public event time line. We were able to obtain information
on more than 58 million commits for roughly 1.5 million
projects. Each commit was geolocated based on the location
of the user responsible for the action. Figure 10 presents a
visualization with the top-k projects of three large urban
centers. The only common project among all three regions
is dotfiles, a project for sharing customized environment files
on Unix-based operating systems. It is also interesting to
notice how llvm and related projects (such as clang), are very
popular in California, but not elsewhere. This shows a highly
diversified open source community across the United States.

6.2 Performance

To determine which of the previously described algorithms
works best when solving top-k queries, we conducted an
initial evaluation using the Microblogs dataset, which is the

Top Hashtags in Paris related to Charlie Hebdo
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Fig. 7. Comparing the top edited articles in Nevada and Mississippi.

Fig. 8. Geolocated Flickr tags in Africa: the unusual activity on the west
coast are from photos taken during a bike trip.

keywords were then used as keys in the construction of our
TOPKUBE data structure.

6.1 Use Cases
Wikipedia: The Wikipedia English dump datasets [33] con-
tains edit history for every article since its creation in 2005.
Anonymous edits contain the IP information of the user,
which we used to trace their location. The final dataset, with
geographical information, contains more than 112 million
edits of over three million articles. Figure 7 presents a
visualization of the dataset using TOPKUBE. It is interesting
to see that even though Nevada is not considered a state with
a high percentage of religious people, religious articles are
among the highest ranked. On the other hand, Mississippi,
considered one of the most religious states in the U.S., does
not have a single article related to religion among the top-20.

Flickr: The Yahoo! Flickr Creative Commons dataset [34]
contains 100 million public Flickr photos and videos, with
each record containing a set of user tags and geographical
information. The dataset contains 84 million geolocated tags
(1.57 million unique ones). Figure 8 shows how exploration
can be used to gain insight of unusual patterns in the data
along the West Coast of Africa. By highlighting the region,
we can see that there were an unusual spike of activity during
a few days in January. We create two different brushes in the
timeseries: a blue one covering the low activity days, and an
orange one covering the high activity days. We can see that
the high activity spike is mostly due to photos tagged with
freewheely.com and bicycle, which were taken by a Flickr user
during his bike trip.

Microblogging: This dataset is comprised of publicly
available geotagged microblog entries. From each post, we
extracted the latitude, longitude, and hashtags from the blog.

1. Select Paris Area 2. Observe Uncommon Spike on  Wed. Jan 7, 2015

3. Select  this Spike and Observe Top-10 Hashtags

 1. #jesuischarlie     4,456
 2. #charliehebdo      4,190
 3. #lrt               1,146
 4. #paris               607
 5. #gagnetaplace        447
 6. #charliehebdo        418
 7. #off                 402
 8. #lt                  335
 9. #noussommescharlie   197
10. #rip                 187

4. Select  Charlie Hebdo’s Top Hashtags and  
Observe its Temporal Volume Pattern

Fig. 9. Microblog exploration using TOPKUBE: a temporal perspective of
the top hashtags related to the the Charlie Hebdo terrorism act in Paris.

Fig. 10. GitHub projects with most commits in three large urban centers.

We can use TOPKUBE to explore the most popular hashtags
in order to understand how trending topics vary over time
and in a given region. Figure 9 presents a sequence of
exploration steps within January 2015 records. First we select
a geographical area around Paris and find out an unusual
Wednesday peak (Jan. 7) in the volume of hashtags. By
selecting this peak we quickly find evidence of the event that
caused the volume spike by inspecting the top-10 hashtags
in the current selection (i.e. Paris and Jan 7). The event
in question was the terrorism attack at the Charlie Hebdo
headquarters. To understand how the hashtags created for
this event at the day of the attack faded in time, we further
constrain our selection to just the hashtags related to the
terrorism attack and see that those fade almost completely
(relative to event day) after one week of the attack.

GitHub: The GitHub dataset was first made available
by Gousios [35] and contains all events from the GitHub
public event time line. We were able to obtain information
on more than 58 million commits for roughly 1.5 million
projects. Each commit was geolocated based on the location
of the user responsible for the action. Figure 10 presents a
visualization with the top-k projects of three large urban
centers. The only common project among all three regions
is dotfiles, a project for sharing customized environment files
on Unix-based operating systems. It is also interesting to
notice how llvm and related projects (such as clang), are very
popular in California, but not elsewhere. This shows a highly
diversified open source community across the United States.

6.2 Performance

To determine which of the previously described algorithms
works best when solving top-k queries, we conducted an
initial evaluation using the Microblogs dataset, which is the

GitHub Top commits near urban centers
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Fig. 11. Empirical cumulative distributions of the time to retrieve the top-
32 valued keys for 100 spatiotemporal queries on the microblog dataset.
Speedup potential of Hybrid versus Sweep, Threshold, and PostGIS.

most challenging because it has the most keys (4.7M). The
first experiment consisted of collecting 100 spatiotemporal
selections ranging from large geospatial areas (continents) to
smaller regions (cities) combined with time interval selections
ranging from multiple weeks to a few hours. Next, we
retrieved the top-32 valued keys in each of the 100 selections
with the different methods we describe in Section 5. In
addition to SWEEP, THRESHOLD, and HYBRID, we also
included PostGIS in this experiment. PostGIS is the most
popular open source GIS package that can solve the problem
that we were targeting in this work. It is the de facto spatial
database in our opinion, which is why we chose to compare
our techniques to it. We configured PostGIS according to its
official documentation for a dataset containing key, latitude,
longitude, and timestamp.

In Figure 11 we present the results of our first experiment
in the form of cumulative distributions: what percentage of
the 100 spatiotemporal queries we could retrieve the top-32
keys in less than t time units. All results were exactly the
same for all the methods tested including PostGIS. We are
able to see that the HYBRID ALGORITHM with varying ✓
thresholds had query times consistently smaller than both
TA and SWEEP. This fact confirmed our hypothesis that we
can accelerate top-k queries by adding rank information to
the index. Although this fact seems obvious, this study shows
that a natural use of rank information as done by TA does
not yield a speedup. Only a combination of the strengths of
TA and SWEEP illustrated by the HYBRID approach gave the
speedup we expected. It is worth noting, however, that there
was a steep increase in query times for HYBRID on the most
difficult problems (as cumulative probability approached 1),
which suggests that a better balance between SWEEP and
TA was possible. In Section 7 we perform a more thorough
experiment to understand the behavior of our top-k methods.

7 TOPKUBE-BENCHMARK

As illustrated in the previous examples, the main use case
that drove the development of TOPKUBE was to provide an
interactive visualization front-end to quickly access top-k
“terms” for arbitrary spatiotemporal selections. Although
we observe significant speedups using the HYBRID AL-
GORITHM (e.g. ✓ = 0.25 in Figure 11) compared to other
techniques, we believe in further improvements. To assess

how different top-k algorithms (the ones shown here and
future ones) perform in rank merging problems on datasets
similar to the ones we collected for this work, we created
the TOPKUBE-BENCHMARK and made it publicly available:
github.com/laurolins/topkube_benchmark.

7.1 Benchmark Characteristics
The TOPKUBE-BENCHMARK consists of one thousand TKR
problems. Each problem consists of a list of ranks, where
each rank is defined by a list of key-value pairs and the
associated ordering information, �, as shown in Equation 2.
The goal is to, given a value k, find the top-k keys and
their aggregated value from a consolidated rank of the
multiple input ranks (note that this problem does not require
explicitly finding the total consolidated rank). Each of the
four datasets (i.e. Flickr, GitHub, Microblog, and Wikipedia)
contributed equally with two hundred and fifty problems
for the the TOPKUBE-BENCHMARK. These problems were
collected during interactive exploratory sessions using these
four datasets In Figure 12, we present the distribution of
four characteristics of the problems in the benchmark: (1)
number of keys; (2) number of ranks; (3) number of entries;
and (4) density. The number of keys of a problem is simply
the union of the keys present in each rank. The number of
ranks is the number of lists (of key values) from the selection.
The number of entries is the sum of the sizes of the ranks (i.e.
the total number of keys in all ranks). Note that number of
entries should be larger than the number of keys since the
same key is usually present in more than one rank. Finally,
the density is simply the number of entries divided by the
product of number of ranks and number of keys. If a problem
has density one, each key is present in all ranks.

If we follow the overall thick solid gray line in the keys
plot (Figure 12, top left), we notice that fewer than 40% of
the problems involved fewer than 100k keys, which means
that most problems (more than 60%) involved 100k keys or
more. If we check the table entry in row keys/all and column
90% from the table in that figure, we see that more than 10%
of the problems involved 1.1 million keys or more. So, given
that these problem instances were collected from natural
visual interactions with the data, it is clear that large TKR
problems can show up at exploration time: a challenging
problem for interactivity. In terms of the number of ranks,
we see that more than 50% of the problems have 170 or
more ranks to be processed (row num ranks/all, column 50%),
and in 10% of the cases we had 860 ranks or more (lots of
non-empty product-bins being hit by the multi-dimensional
selection). In terms of number of entries, we see that 20% of
the problems had more than 1 million entries (row entries/all,
column 80%). Perhaps the most important observation of the
problems in the TOPKUBE-BENCHMARK comes from their
density: the problems are really sparse (worst-case scenario
for TA). If we consider 100 ranks in a problem and a density
of 0.051 (90% of the problems have density 0.051 or less: see
row density/all, column 90%), on average we will have one
key present in only 5.1 of the 100 ranks. These real-world,
interactive explorations clearly demonstrate the sparsity of
our inputs to the TKR problem, and that the binary searches
on Line 23 in TA are largely wasted effort.

From the characteristics of the four datasets, we know
that spatially the Microblog and Flickr datasets involve more
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Split-Apply-Combine
• Coined by H. Wickham, 2011 
• Similar to Map (split+apply) Reduce (combine) paradigm 
• The Pattern: 
1. Split the data by some grouping variable 
2. Apply some function to each group independently 
3. Combine the data into some output dataset 

• The apply step is usually one of : 
- Aggregate 
- Transform 
- Filter

32

[T. Brandt]
D. Koop, CSCI 680/490, Spring 2022



$JJUHJDWLRQ�RI�WLPH�VHULHV�GDWD��D�VSHFLDO�XVH�FDVH�RI�groupby��LV�UHIHUUHG
WR� DV� UHVDPSOLQJ� LQ� WKLV� ERRN� DQG�ZLOO� UHFHLYH� VHSDUDWH� WUHDWPHQW� LQ
&KDSWHU����

GroupBy Mechanics
+DGOH\�:LFNKDP��DQ�DXWKRU�RI�PDQ\�SRSXODU�SDFNDJHV�IRU�WKH�5�SURJUDPPLQJ�ODQ�
JXDJH��FRLQHG�WKH�WHUP�VSOLW�DSSO\�FRPELQH�IRU�WDONLQJ�DERXW�JURXS�RSHUDWLRQV��DQG�,
WKLQN�WKDW¦V�D�JRRG�GHVFULSWLRQ�RI�WKH�SURFHVV��,Q�WKH�ILUVW�VWDJH�RI�WKH�SURFHVV��GDWD
FRQWDLQHG�LQ�D�SDQGDV�REMHFW��ZKHWKHU�D�6HULHV��'DWD)UDPH��RU�RWKHUZLVH��LV�VSOLW�LQWR
JURXSV�EDVHG�RQ�RQH�RU�PRUH�NH\V�WKDW�\RX�SURYLGH��7KH�VSOLWWLQJ�LV�SHUIRUPHG�RQ�D
SDUWLFXODU�D[LV�RI�DQ�REMHFW��)RU�H[DPSOH��D�'DWD)UDPH�FDQ�EH�JURXSHG�RQ�LWV�URZV
�axis=0��RU�LWV�FROXPQV��axis=1���2QFH�WKLV�LV�GRQH��D�IXQFWLRQ�LV�DSSOLHG�WR�HDFK�JURXS�
SURGXFLQJ�D�QHZ�YDOXH��)LQDOO\��WKH�UHVXOWV�RI�DOO�WKRVH�IXQFWLRQ�DSSOLFDWLRQV�DUH�FRP�
ELQHG�LQWR�D�UHVXOW�REMHFW��7KH�IRUP�RI�WKH�UHVXOWLQJ�REMHFW�ZLOO�XVXDOO\�GHSHQG�RQ�ZKDW¦V
EHLQJ�GRQH�WR�WKH�GDWD��6HH�)LJXUH�����IRU�D�PRFNXS�RI�D�VLPSOH�JURXS�DJJUHJDWLRQ�

)LJXUH������,OOXVWUDWLRQ�RI�D�JURXS�DJJUHJDWLRQ

(DFK�JURXSLQJ�NH\�FDQ�WDNH�PDQ\�IRUPV��DQG�WKH�NH\V�GR�QRW�KDYH�WR�EH�DOO�RI�WKH�VDPH
W\SH�

� $�OLVW�RU�DUUD\�RI�YDOXHV�WKDW�LV�WKH�VDPH�OHQJWK�DV�WKH�D[LV�EHLQJ�JURXSHG

� $�YDOXH�LQGLFDWLQJ�D�FROXPQ�QDPH�LQ�D�'DWD)UDPH

250 | Chapter 9:ಗData Aggregation and Group Operations

Split-Apply-Combine

33

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 680/490, Spring 2022



Journal of Statistical Software 9

name age sex

John 13 Male

Peter 13 Male

Roger 14 Male

John 13 Male

Mary 15 Female

Alice 14 Female

Peter 13 Male

Roger 14 Male

Phyllis 13 Female

name age sex

Mary 15 Female

Alice 14 Female

Phyllis 13 Female

name age sex

John 13 Male

Peter 13 Male

Phyllis 13 Female

name age sex

Mary 15 Female

name age sex

Alice 14 Female

Roger 14 Male

name age sex

.(sex) .(age)

Figure 4: Two examples of splitting up a data frame by variables. If the data frame was split
up by both sex and age, there would only be one subset with more than one row: 13-year-old
males.

Output Processing function restrictions Null output

*aply atomic array, or list vector()

*dply frame data frame, or atomic vector data.frame()

*lply none list()

*_ply none —

Table 3: Summary of processing function restrictions and null output values for all output
types. Explained in more detail in each output section.

3.2. Output

The output type defines how the pieces will be joined back together and how they will be
labelled. The labels are particularly important as they allow matching up of input and output.

The input and output types are the same, except there is an additional output data type, _,
which discards the output. This is useful for functions like plot() and write.table() that
are called only for their side e↵ects, not their return value.

The output type also places some restrictions on what type of results the processing function
should return. Generally, the processing function should return the same type of data as the
eventual output, (i.e., vectors, matrices and arrays for *aply and data frames for *dply) but
some other formats are accepted for convenience and are described in Table 3. These are
explained in more detail in the individual output type sections.

Output: Array (*aply)

With array output the shape of the output array is determined by the input splits and the
dimensionality of each individual result. Figures 5 and 6 illustrate this pictorially for simple

Splitting by Variables
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12 The Split-Apply-Combine Strategy for Data Analysis

sex

Male

Female

value

3

3

age

13

14

value

3

2

15 1

age

13

14

value

2

1

sex

Male

Male

14 1

15 1

Female

Female

Female 13 1

.(sex) .(age) .(sex, age)

Figure 7: Illustrating the output from using ddply() on the example from Figure 4 with
nrow(). Splitting variables shown above each example. Note how the extra labeling columns
are added so that you can identify to which subset the results apply.

to further process the list the labels will appear as if you had used aaply, adply, daply or
ddply directly. llply is convenient for calculating complex objects once (e.g., models), from
which you later extract pieces of interest into arrays and data frames.

There are no restrictions on the output of the processing function. If there are no results,
*lply will return a list of length 0.

Output: Discarded (*_ply)

Sometimes it is convenient to operate on a list purely for the side e↵ects, e.g., plots, caching,
and output to screen/file. In this case *_ply is a little more e�cient than abandoning the
output of *lply because it does not store the intermediate results.

The *_ply functions have one additional argument, .print, which controls whether or not
each result should be printed. This is useful when working with lattice (Sarkar 2008) or
ggplot2 (Wickham 2010) graphics.

4. Helpers

The plyr package also provides a number of helper function which take a function (or func-
tions) as input and return a new function as output.

splat() converts a function that takes multiple arguments to one that takes a list as its
single argument. This is useful when you want a function to operate on a data frame,
without manually pulling it apart. In this case, the column names of the data frame
will match the argument names of the function. For example, compare the following
two ddply calls, one with, and one without spat:

R> hp_per_cyl <- function(hp, cyl, ...) hp / cyl

R> splat(hp_per_cyl)(mtcars[1,])

R> splat(hp_per_cyl)(mtcars)

R> ddply(mtcars, .(round(wt)),

+ function(df) mean_hp_per_cyl(df$hp, df$cyl))

R> ddply(mtcars, .(round(wt)), splat(mean_hp_per_cyl))

Apply+Combine: Counting
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In Pandas
• groupby method creates a GroupBy object 
• groupby doesn't actually compute anything until there is an apply/aggregate 

step or we wish to examine the groups 
• Choose keys (columns) to group by 
• size() is the count of each group
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Aggregation
• Operations: 

- count() 

- mean() 

- sum() 

• May also wish to aggregate only certain subsets 
- Use square brackets with column names 

• Can also write your own functions for aggregation and pass then to agg 
function 

- def peak_to_peak(arr): 
    return arr.max() - arr.min() 
grouped.agg(peak_to_peak)
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In [49]: hier_df
Out[49]: 
cty          US                            JP          
tenor         1         3         5         1         3
0      0.560145 -1.265934  0.119827 -1.063512  0.332883
1     -2.359419 -0.199543 -1.541996 -0.970736 -1.307030
2      0.286350  0.377984 -0.753887  0.331286  1.349742
3      0.069877  0.246674 -0.011862  1.004812  1.327195

To group by level, pass the level number or name using the level keyword:
In [50]: hier_df.groupby(level='cty', axis=1).count()
Out[50]: 
cty  JP  US
0     2   3
1     2   3
2     2   3
3     2   3

10.2 Data Aggregation
Aggregations refer to any data transformation that produces scalar values from
arrays. The preceding examples have used several of them, including mean, count,
min, and sum. You may wonder what is going on when you invoke mean() on a
GroupBy object. Many common aggregations, such as those found in Table 10-1,
have optimized implementations. However, you are not limited to only this set of
methods.

Table 10-1. Optimized groupby methods
Function name Description
count Number of non-NA values in the group
sum Sum of non-NA values
mean Mean of non-NA values
median Arithmetic median of non-NA values
std, var Unbiased (n – 1 denominator) standard deviation and variance
min, max Minimum and maximum of non-NA values
prod Product of non-NA values
first, last First and last non-NA values

You can use aggregations of your own devising and additionally call any method that
is also defined on the grouped object. For example, you might recall that quantile
computes sample quantiles of a Series or a DataFrame’s columns.

While quantile is not explicitly implemented for GroupBy, it is a Series method and
thus available for use. Internally, GroupBy efficiently slices up the Series, calls
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Iterating over groups
• for name, group in df.groupby('key1'): 
    print(name) 
    print(group) 

• Can also .describe() groups
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Apply: Generalized methods 
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6  Thur     No   17.113111  2.673778  2.488889  0.160298
7  Thur    Yes   19.190588  3.030000  2.352941  0.163863

Of course, it’s always possible to obtain the result in this format by calling
reset_index on the result. Using the as_index=False method avoids some unneces‐
sary computations.

10.3 Apply: General split-apply-combine
The most general-purpose GroupBy method is apply, which is the subject of the rest
of this section. As illustrated in Figure 10-2, apply splits the object being manipulated
into pieces, invokes the passed function on each piece, and then attempts to concate‐
nate the pieces together.

Figure 10-2. Illustration of a group aggregation

Returning to the tipping dataset from before, suppose you wanted to select the top
five tip_pct values by group. First, write a function that selects the rows with the
largest values in a particular column:

In [74]: def top(df, n=5, column='tip_pct'):
   ....:     return df.sort_values(by=column)[-n:]

In [75]: top(tips, n=6)
Out[75]: 
     total_bill   tip smoker  day    time  size   tip_pct
109       14.31  4.00    Yes  Sat  Dinner     2  0.279525
183       23.17  6.50    Yes  Sun  Dinner     4  0.280535
232       11.61  3.39     No  Sat  Dinner     2  0.291990
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67         3.07  1.00    Yes  Sat  Dinner     1  0.325733
178        9.60  4.00    Yes  Sun  Dinner     2  0.416667
172        7.25  5.15    Yes  Sun  Dinner     2  0.710345

Now, if we group by smoker, say, and call apply with this function, we get the
following:

In [76]: tips.groupby('smoker').apply(top)
Out[76]: 
            total_bill   tip smoker   day    time  size   tip_pct
smoker                                                           
No     88        24.71  5.85     No  Thur   Lunch     2  0.236746
       185       20.69  5.00     No   Sun  Dinner     5  0.241663
       51        10.29  2.60     No   Sun  Dinner     2  0.252672
       149        7.51  2.00     No  Thur   Lunch     2  0.266312
       232       11.61  3.39     No   Sat  Dinner     2  0.291990
Yes    109       14.31  4.00    Yes   Sat  Dinner     2  0.279525
       183       23.17  6.50    Yes   Sun  Dinner     4  0.280535
       67         3.07  1.00    Yes   Sat  Dinner     1  0.325733
       178        9.60  4.00    Yes   Sun  Dinner     2  0.416667
       172        7.25  5.15    Yes   Sun  Dinner     2  0.710345

What has happened here? The top function is called on each row group from the
DataFrame, and then the results are glued together using pandas.concat, labeling the
pieces with the group names. The result therefore has a hierarchical index whose
inner level contains index values from the original DataFrame.

If you pass a function to apply that takes other arguments or keywords, you can pass
these after the function:

In [77]: tips.groupby(['smoker', 'day']).apply(top, n=1, column='total_bill')
Out[77]: 
                 total_bill    tip smoker   day    time  size   tip_pct
smoker day                                                             
No     Fri  94        22.75   3.25     No   Fri  Dinner     2  0.142857
       Sat  212       48.33   9.00     No   Sat  Dinner     4  0.186220
       Sun  156       48.17   5.00     No   Sun  Dinner     6  0.103799
       Thur 142       41.19   5.00     No  Thur   Lunch     5  0.121389
Yes    Fri  95        40.17   4.73    Yes   Fri  Dinner     4  0.117750
       Sat  170       50.81  10.00    Yes   Sat  Dinner     3  0.196812
       Sun  182       45.35   3.50    Yes   Sun  Dinner     3  0.077178
       Thur 197       43.11   5.00    Yes  Thur   Lunch     4  0.115982

Beyond these basic usage mechanics, getting the most out of apply
may require some creativity. What occurs inside the function
passed is up to you; it only needs to return a pandas object or a
scalar value. The rest of this chapter will mainly consist of examples
showing you how to solve various problems using groupby.
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Apply
• tips.groupby('smoker').apply(top) 

• Function is an argument 
• Function applied on each row group 
• All row groups glued together using concat
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Types of GroupBy
• Aggregation: agg 

- n:1 n group values become one value 
- Examples: mean, min, median 

• Apply: apply 
- n:m n group values become m values 
- Most general (could do aggregation or transform with apply) 
- Example: top 5 in each group, filter 

• Transform: transform 
- n:n n group values become n values 
- Cannot mutate the input
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Transform Example
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12.2 Advanced GroupBy Use
While we’ve already discussed using the groupby method for Series and DataFrame in
depth in Chapter 10, there are some additional techniques that you may find of use.

Group Transforms and “Unwrapped” GroupBys
In Chapter 10 we looked at the apply method in grouped operations for performing
transformations. There is another built-in method called transform, which is similar
to apply but imposes more constraints on the kind of function you can use:

• It can produce a scalar value to be broadcast to the shape of the group
• It can produce an object of the same shape as the input group
• It must not mutate its input

Let’s consider a simple example for illustration:
In [75]: df = pd.DataFrame({'key': ['a', 'b', 'c'] * 4,
   ....:                    'value': np.arange(12.)})

In [76]: df
Out[76]: 
   key  value
0    a    0.0
1    b    1.0
2    c    2.0
3    a    3.0
4    b    4.0
5    c    5.0
6    a    6.0
7    b    7.0
8    c    8.0
9    a    9.0
10   b   10.0
11   c   11.0

Here are the group means by key:
In [77]: g = df.groupby('key').value

In [78]: g.mean()
Out[78]: 
key
a    4.5
b    5.5
c    6.5
Name: value, dtype: float64
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Suppose instead we wanted to produce a Series of the same shape as df['value'] but
with values replaced by the average grouped by 'key'. We can pass the function
lambda x: x.mean() to transform:

In [79]: g.transform(lambda x: x.mean())
Out[79]: 
0     4.5
1     5.5
2     6.5
3     4.5
4     5.5
5     6.5
6     4.5
7     5.5
8     6.5
9     4.5
10    5.5
11    6.5
Name: value, dtype: float64

For built-in aggregation functions, we can pass a string alias as with the GroupBy agg
method:

In [80]: g.transform('mean')
Out[80]: 
0     4.5
1     5.5
2     6.5
3     4.5
4     5.5
5     6.5
6     4.5
7     5.5
8     6.5
9     4.5
10    5.5
11    6.5
Name: value, dtype: float64

Like apply, transform works with functions that return Series, but the result must be
the same size as the input. For example, we can multiply each group by 2 using a
lambda function:

In [81]: g.transform(lambda x: x * 2)
Out[81]: 
0      0.0
1      2.0
2      4.0
3      6.0
4      8.0
5     10.0
6     12.0
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12.2 Advanced GroupBy Use
While we’ve already discussed using the groupby method for Series and DataFrame in
depth in Chapter 10, there are some additional techniques that you may find of use.

Group Transforms and “Unwrapped” GroupBys
In Chapter 10 we looked at the apply method in grouped operations for performing
transformations. There is another built-in method called transform, which is similar
to apply but imposes more constraints on the kind of function you can use:

• It can produce a scalar value to be broadcast to the shape of the group
• It can produce an object of the same shape as the input group
• It must not mutate its input

Let’s consider a simple example for illustration:
In [75]: df = pd.DataFrame({'key': ['a', 'b', 'c'] * 4,
   ....:                    'value': np.arange(12.)})

In [76]: df
Out[76]: 
   key  value
0    a    0.0
1    b    1.0
2    c    2.0
3    a    3.0
4    b    4.0
5    c    5.0
6    a    6.0
7    b    7.0
8    c    8.0
9    a    9.0
10   b   10.0
11   c   11.0

Here are the group means by key:
In [77]: g = df.groupby('key').value

In [78]: g.mean()
Out[78]: 
key
a    4.5
b    5.5
c    6.5
Name: value, dtype: float64
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Suppose instead we wanted to produce a Series of the same shape as df['value'] but
with values replaced by the average grouped by 'key'. We can pass the function
lambda x: x.mean() to transform:

In [79]: g.transform(lambda x: x.mean())
Out[79]: 
0     4.5
1     5.5
2     6.5
3     4.5
4     5.5
5     6.5
6     4.5
7     5.5
8     6.5
9     4.5
10    5.5
11    6.5
Name: value, dtype: float64

For built-in aggregation functions, we can pass a string alias as with the GroupBy agg
method:

In [80]: g.transform('mean')
Out[80]: 
0     4.5
1     5.5
2     6.5
3     4.5
4     5.5
5     6.5
6     4.5
7     5.5
8     6.5
9     4.5
10    5.5
11    6.5
Name: value, dtype: float64

Like apply, transform works with functions that return Series, but the result must be
the same size as the input. For example, we can multiply each group by 2 using a
lambda function:

In [81]: g.transform(lambda x: x * 2)
Out[81]: 
0      0.0
1      2.0
2      4.0
3      6.0
4      8.0
5     10.0
6     12.0
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7     14.0
8     16.0
9     18.0
10    20.0
11    22.0
Name: value, dtype: float64

As a more complicated example, we can compute the ranks in descending order for
each group:

In [82]: g.transform(lambda x: x.rank(ascending=False))
Out[82]: 
0     4.0
1     4.0
2     4.0
3     3.0
4     3.0
5     3.0
6     2.0
7     2.0
8     2.0
9     1.0
10    1.0
11    1.0
Name: value, dtype: float64

Consider a group transformation function composed from simple aggregations:
def normalize(x):
    return (x - x.mean()) / x.std()

We can obtain equivalent results in this case either using transform or apply:
In [84]: g.transform(normalize)
Out[84]: 
0    -1.161895
1    -1.161895
2    -1.161895
3    -0.387298
4    -0.387298
5    -0.387298
6     0.387298
7     0.387298
8     0.387298
9     1.161895
10    1.161895
11    1.161895
Name: value, dtype: float64

In [85]: g.apply(normalize)
Out[85]: 
0    -1.161895
1    -1.161895
2    -1.161895
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3    -0.387298
4    -0.387298
5    -0.387298
6     0.387298
7     0.387298
8     0.387298
9     1.161895
10    1.161895
11    1.161895
Name: value, dtype: float64

Built-in aggregate functions like 'mean' or 'sum' are often much faster than a general
apply function. These also have a “fast past” when used with transform. This allows
us to perform a so-called unwrapped group operation:

In [86]: g.transform('mean')
Out[86]: 
0     4.5
1     5.5
2     6.5
3     4.5
4     5.5
5     6.5
6     4.5
7     5.5
8     6.5
9     4.5
10    5.5
11    6.5
Name: value, dtype: float64

In [87]: normalized = (df['value'] - g.transform('mean')) / g.transform('std')

In [88]: normalized
Out[88]: 
0    -1.161895
1    -1.161895
2    -1.161895
3    -0.387298
4    -0.387298
5    -0.387298
6     0.387298
7     0.387298
8     0.387298
9     1.161895
10    1.161895
11    1.161895
Name: value, dtype: float64

While an unwrapped group operation may involve multiple group aggregations, the
overall benefit of vectorized operations often outweighs this.

376 | Chapter 12: Advanced pandas

==



Normalization

44

[W. McKinney]
D. Koop, CSCI 680/490, Spring 2022

7     14.0
8     16.0
9     18.0
10    20.0
11    22.0
Name: value, dtype: float64

As a more complicated example, we can compute the ranks in descending order for
each group:

In [82]: g.transform(lambda x: x.rank(ascending=False))
Out[82]: 
0     4.0
1     4.0
2     4.0
3     3.0
4     3.0
5     3.0
6     2.0
7     2.0
8     2.0
9     1.0
10    1.0
11    1.0
Name: value, dtype: float64

Consider a group transformation function composed from simple aggregations:
def normalize(x):
    return (x - x.mean()) / x.std()

We can obtain equivalent results in this case either using transform or apply:
In [84]: g.transform(normalize)
Out[84]: 
0    -1.161895
1    -1.161895
2    -1.161895
3    -0.387298
4    -0.387298
5    -0.387298
6     0.387298
7     0.387298
8     0.387298
9     1.161895
10    1.161895
11    1.161895
Name: value, dtype: float64

In [85]: g.apply(normalize)
Out[85]: 
0    -1.161895
1    -1.161895
2    -1.161895

12.2 Advanced GroupBy Use | 375

7     14.0
8     16.0
9     18.0
10    20.0
11    22.0
Name: value, dtype: float64

As a more complicated example, we can compute the ranks in descending order for
each group:

In [82]: g.transform(lambda x: x.rank(ascending=False))
Out[82]: 
0     4.0
1     4.0
2     4.0
3     3.0
4     3.0
5     3.0
6     2.0
7     2.0
8     2.0
9     1.0
10    1.0
11    1.0
Name: value, dtype: float64

Consider a group transformation function composed from simple aggregations:
def normalize(x):
    return (x - x.mean()) / x.std()

We can obtain equivalent results in this case either using transform or apply:
In [84]: g.transform(normalize)
Out[84]: 
0    -1.161895
1    -1.161895
2    -1.161895
3    -0.387298
4    -0.387298
5    -0.387298
6     0.387298
7     0.387298
8     0.387298
9     1.161895
10    1.161895
11    1.161895
Name: value, dtype: float64

In [85]: g.apply(normalize)
Out[85]: 
0    -1.161895
1    -1.161895
2    -1.161895

12.2 Advanced GroupBy Use | 375

7     14.0
8     16.0
9     18.0
10    20.0
11    22.0
Name: value, dtype: float64

As a more complicated example, we can compute the ranks in descending order for
each group:

In [82]: g.transform(lambda x: x.rank(ascending=False))
Out[82]: 
0     4.0
1     4.0
2     4.0
3     3.0
4     3.0
5     3.0
6     2.0
7     2.0
8     2.0
9     1.0
10    1.0
11    1.0
Name: value, dtype: float64

Consider a group transformation function composed from simple aggregations:
def normalize(x):
    return (x - x.mean()) / x.std()

We can obtain equivalent results in this case either using transform or apply:
In [84]: g.transform(normalize)
Out[84]: 
0    -1.161895
1    -1.161895
2    -1.161895
3    -0.387298
4    -0.387298
5    -0.387298
6     0.387298
7     0.387298
8     0.387298
9     1.161895
10    1.161895
11    1.161895
Name: value, dtype: float64

In [85]: g.apply(normalize)
Out[85]: 
0    -1.161895
1    -1.161895
2    -1.161895

12.2 Advanced GroupBy Use | 375

3    -0.387298
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6     0.387298
7     0.387298
8     0.387298
9     1.161895
10    1.161895
11    1.161895
Name: value, dtype: float64

Built-in aggregate functions like 'mean' or 'sum' are often much faster than a general
apply function. These also have a “fast past” when used with transform. This allows
us to perform a so-called unwrapped group operation:

In [86]: g.transform('mean')
Out[86]: 
0     4.5
1     5.5
2     6.5
3     4.5
4     5.5
5     6.5
6     4.5
7     5.5
8     6.5
9     4.5
10    5.5
11    6.5
Name: value, dtype: float64

In [87]: normalized = (df['value'] - g.transform('mean')) / g.transform('std')
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Name: value, dtype: float64

While an unwrapped group operation may involve multiple group aggregations, the
overall benefit of vectorized operations often outweighs this.
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Other Operations
• Quantiles: return values at particular splits 
- Median is a 0.5-quantile 
- df.quantile(0.1) 

- also works on groups 
• Can return data from group-by without having the keys in the index 

(as_index=False) or use reset_index after computing 
• Grouped weighted average via apply
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Pivot Tables
• Data summarization tool in many spreadsheet programs 
• Aggregates a table of data by one or more keys with some keys arranged on 

rows (index), others as columns (columns) 
• Pandas supports via pivot_table method 
• margins=True gives partial totals 
• Can use different aggregation functions via aggfunc kwarg
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6HH�7DEOH�����IRU�D�VXPPDU\�RI�pivot_table�PHWKRGV�

7DEOH������SLYRWBWDEOH�RSWLRQV

Function name Description

values Column name or names to aggregate. By default aggregates all numeric columns

rows Column names or other group keys to group on the rows of the resulting pivot table

cols Column names or other group keys to group on the columns of the resulting pivot table

aggfunc Aggregation function or list of functions; 'mean' by default. Can be any function valid in a groupby context

fill_value Replace missing values in result table

margins Add row/column subtotals and grand total, False by default

Cross-Tabulations: Crosstab
$�FURVV�WDEXODWLRQ��RU�FURVVWDE�IRU�VKRUW��LV�D�VSHFLDO�FDVH�RI�D�SLYRW�WDEOH�WKDW�FRPSXWHV
JURXS�IUHTXHQFLHV��+HUH�LV�D�FDQRQLFDO�H[DPSOH�WDNHQ�IURP�WKH�:LNLSHGLD�SDJH�RQ�FURVV�
WDEXODWLRQ�

In [292]: data
Out[292]: 
   Sample  Gender    Handedness
0       1  Female  Right-handed
1       2    Male   Left-handed
2       3  Female  Right-handed
3       4    Male  Right-handed
4       5    Male   Left-handed
5       6    Male  Right-handed
6       7  Female  Right-handed
7       8  Female   Left-handed
8       9    Male  Right-handed
9      10  Female  Right-handed

$V�SDUW�RI�VRPH�VXUYH\�DQDO\VLV��ZH�PLJKW�ZDQW�WR�VXPPDUL]H�WKLV�GDWD�E\�JHQGHU�DQG
KDQGHGQHVV��<RX�FRXOG�XVH�pivot_table�WR�GR�WKLV��EXW�WKH�pandas.crosstab�IXQFWLRQ
LV�YHU\�FRQYHQLHQW�

In [293]: pd.crosstab(data.Gender, data.Handedness, margins=True)
Out[293]: 
Handedness  Left-handed  Right-handed  All
Gender                                    
Female                1             4    5
Male                  2             3    5
All                   3             7   10

7KH�ILUVW�WZR�DUJXPHQWV�WR�crosstab�FDQ�HDFK�HLWKHU�EH�DQ�DUUD\�RU�6HULHV�RU�D�OLVW�RI
DUUD\V��$V�LQ�WKH�WLSV�GDWD�

In [294]: pd.crosstab([tips.time, tips.day], tips.smoker, margins=True)
Out[294]: 
smoker        No  Yes  All
time   day                
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Pivot Tables in Pandas
• tips 

• tips.pivot_table(index=['sex', 'smoker'])
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In [26]:

In [29]:

In [28]:

In [30]:

Out[26]: smoker       
No      count    151.000000
        mean       0.159328
        std        0.039910
        min        0.056797
        25%        0.136906
        50%        0.155625
        75%        0.185014
        max        0.291990
Yes     count     93.000000
        mean       0.163196
        std        0.085119
        min        0.035638
        25%        0.106771
        50%        0.153846
        75%        0.195059
        max        0.710345
Name: tip_pct, dtype: float64

Out[29]: count mean std min 25% 50% 75% max

smoker

No 151.0 0.159328 0.039910 0.056797 0.136906 0.155625 0.185014 0.291990

Yes 93.0 0.163196 0.085119 0.035638 0.106771 0.153846 0.195059 0.710345

Out[28]: smoker
No     0.206140
Yes    0.236398
Name: tip_pct, dtype: float64

Out[30]: size tip tip_pct total_bill

sex smoker

Female
No 2.592593 2.773519 0.156921 18.105185

Yes 2.242424 2.931515 0.182150 17.977879

Male
No 2.711340 3.113402 0.160669 19.791237

Yes 2.500000 3.051167 0.152771 22.284500

result

# can also unstack this series into a dataframe
result.unstack()

# can get arbitrary quantiles
tips.groupby('smoker')['tip_pct'].quantile(0.9)

tips.pivot_table(index=['sex', 'smoker'])

In [7]:

In [8]:

In [9]:

In [10]:

Out[7]: total_bill tip size

sex

Female 18.056897 2.833448 2.459770

Male 20.744076 3.089618 2.630573

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 244 entries, 0 to 243
Data columns (total 7 columns):
total_bill    244 non-null float64
tip           244 non-null float64
sex           244 non-null object
smoker        244 non-null object
day           244 non-null object
time          244 non-null object
size          244 non-null int64
dtypes: float64(2), int64(1), object(4)
memory usage: 13.4+ KB

Out[10]: total_bill tip sex smoker day time size tip_pct

0 16.99 1.01 Female No Sun Dinner 2 0.059447

1 10.34 1.66 Male No Sun Dinner 3 0.160542

2 21.01 3.50 Male No Sun Dinner 3 0.166587

3 23.68 3.31 Male No Sun Dinner 2 0.139780

4 24.59 3.61 Female No Sun Dinner 4 0.146808

5 25.29 4.71 Male No Sun Dinner 4 0.186240

6 8.77 2.00 Male No Sun Dinner 2 0.228050

7 26.88 3.12 Male No Sun Dinner 4 0.116071

8 15.04 1.96 Male No Sun Dinner 2 0.130319

9 14.78 3.23 Male No Sun Dinner 2 0.218539

10 10.27 1.71 Male No Sun Dinner 2 0.166504

11 35.26 5.00 Female No Sun Dinner 4 0.141804

12 15.42 1.57 Male No Sun Dinner 2 0.101816

grouped.mean()

tips.info()

tips['tip_pct'] = tips['tip']/tips['total_bill']

tips



Pivot Tables with Margins and Aggfunc
• tips.pivot_table(['size'], index=['sex', 'day'], 
columns='smoker', aggfunc='sum', margins=True)
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In [37]:

In [44]:

Out[37]: size

smoker No Yes All

sex day

Female

Fri 2.0 7.0 9.0

Sat 13.0 15.0 28.0

Sun 14.0 4.0 18.0

Thur 25.0 7.0 32.0

Male

Fri 2.0 8.0 10.0

Sat 32.0 27.0 59.0

Sun 43.0 15.0 58.0

Thur 20.0 10.0 30.0

All 151.0 93.0 244.0

Out[44]: day Fri Sat Sun Thur

time sex smoker

Dinner

Female
No 2 30 43 2

Yes 8 33 10 0

Male
No 4 85 124 0

Yes 12 71 39 0

Lunch

Female
No 3 0 0 60

Yes 6 0 0 17

Male
No 0 0 0 50

Yes 5 0 0 23

tips.pivot_table(['size'], index=['sex', 'day'], columns='smoker', aggfunc

tips.pivot_table('size', index=['time', 'sex', 'smoker'], columns=['day'], 



Crosstabs
• crosstab is a special case for group frequencies (aggfunc='count') 

• Tipping example 
• Also see the Federal Election Database example in the book
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6HH�7DEOH�����IRU�D�VXPPDU\�RI�pivot_table�PHWKRGV�

7DEOH������SLYRWBWDEOH�RSWLRQV

Function name Description

values Column name or names to aggregate. By default aggregates all numeric columns

rows Column names or other group keys to group on the rows of the resulting pivot table

cols Column names or other group keys to group on the columns of the resulting pivot table

aggfunc Aggregation function or list of functions; 'mean' by default. Can be any function valid in a groupby context

fill_value Replace missing values in result table

margins Add row/column subtotals and grand total, False by default

Cross-Tabulations: Crosstab
$�FURVV�WDEXODWLRQ��RU�FURVVWDE�IRU�VKRUW��LV�D�VSHFLDO�FDVH�RI�D�SLYRW�WDEOH�WKDW�FRPSXWHV
JURXS�IUHTXHQFLHV��+HUH�LV�D�FDQRQLFDO�H[DPSOH�WDNHQ�IURP�WKH�:LNLSHGLD�SDJH�RQ�FURVV�
WDEXODWLRQ�

In [292]: data
Out[292]: 
   Sample  Gender    Handedness
0       1  Female  Right-handed
1       2    Male   Left-handed
2       3  Female  Right-handed
3       4    Male  Right-handed
4       5    Male   Left-handed
5       6    Male  Right-handed
6       7  Female  Right-handed
7       8  Female   Left-handed
8       9    Male  Right-handed
9      10  Female  Right-handed

$V�SDUW�RI�VRPH�VXUYH\�DQDO\VLV��ZH�PLJKW�ZDQW�WR�VXPPDUL]H�WKLV�GDWD�E\�JHQGHU�DQG
KDQGHGQHVV��<RX�FRXOG�XVH�pivot_table�WR�GR�WKLV��EXW�WKH�pandas.crosstab�IXQFWLRQ
LV�YHU\�FRQYHQLHQW�

In [293]: pd.crosstab(data.Gender, data.Handedness, margins=True)
Out[293]: 
Handedness  Left-handed  Right-handed  All
Gender                                    
Female                1             4    5
Male                  2             3    5
All                   3             7   10

7KH�ILUVW�WZR�DUJXPHQWV�WR�crosstab�FDQ�HDFK�HLWKHU�EH�DQ�DUUD\�RU�6HULHV�RU�D�OLVW�RI
DUUD\V��$V�LQ�WKH�WLSV�GDWD�

In [294]: pd.crosstab([tips.time, tips.day], tips.smoker, margins=True)
Out[294]: 
smoker        No  Yes  All
time   day                
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Crosstabs
• pd.crosstab([tips.time, tips.day], tips.smoker, 
margins=True) 

• or… tips.pivot_table('total_bill',index=['time', 'day'], 
columns=['smoker'], aggfunc='count', margins=True, 
fill_value=0)
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In [45]:

In [53]:

In [ ]:

Out[45]: smoker No Yes All

time day

Dinner

Fri 3 9 12

Sat 45 42 87

Sun 57 19 76

Thur 1 0 1

Lunch
Fri 1 6 7

Thur 44 17 61

All 151 93 244

Out[53]: smoker No Yes All

time day

Dinner

Fri 3.0 9.0 12.0

Sat 45.0 42.0 87.0

Sun 57.0 19.0 76.0

Thur 1.0 0.0 1.0

Lunch
Fri 1.0 6.0 7.0

Thur 44.0 17.0 61.0

All 151.0 93.0 244.0

pd.crosstab([tips.time, tips.day], tips.smoker, margins=True)

# can mimic crosstab using a pivot_table
# doesn't matter what the data (first argument) is
tips.pivot_table('total_bill',index=['time', 'day'], columns=['smoker'], 
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What is time series data?
• Technically, it's normal tabular data with a timestamp attached 
• But… we have observations of the same values over time, usually in order 
• This allows more analysis 
• Example: Web site database that tracks the last time a user logged in 
- 1: Keep an attribute lastLogin that is overwritten every time user logs in 
- 2: Add a new row with login information every time the user logs in 
- Option 2 takes more storage, but we can also do a lot more analysis!
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Time Series Data
• Metrics: measurements at regular intervals 
• Events: measurements that are not gathered at regular intervals
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Types of Time Series Data
• time series: observations for a single entity at different time intervals 
- one patient's heart rate every minute 

• cross-section: observations for multiple entities at the same point in time 
- heart rates of 100 patients at 8:01pm 

• panel data: observations for multiple entities at different time intervals 
- heart rates of 100 patients every minute over the past hour
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Time Series Databases
• Most time series data is heavy inserts, few updates 
• Also analysis tends to be on ordered data with trends, prediction, etc. 
• Can also consider stream processing 
• Focus on time series allows databases to specialize 
• Examples: 
- InfluxDB (noSQL) 
- TimescaleDB (SQL-based)
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Features of Time Series Data
• Trend: long-term increase or decrease in the data 
• Seasonal Pattern: time series is affected by seasonal factors such as the time 

of the year or the day of the week (fixed and of known frequency) 
• Cyclic Pattern: rises and falls that are not of a fixed frequency 
• Stationary: no predictable patterns (roughly horizontal with constant variance) 
- White noise series is stationary 
- Will look the basically the same whenever you observe it
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Types of Time Data
• Timestamps: specific instants in time (e.g. 2018-11-27 14:15:00) 
• Periods: have a standard start and length  

(e.g. the month November 2018) 
• Intervals: have a start and end timestamp 
- Periods are special case 
- Example: 2018-11-21 14:15:00 — 2018-12-01 05:15:00 

• Elapsed time: measure of time relative to a start time (15 minutes)
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Dates and Times
• What is time to a computer? 
- Can be stored as seconds since Unix Epoch (January 1st, 1970) 

• Often useful to break down into minutes, hours, days, months, years… 
• Lots of different ways to write time: 
- How could you write "November 29, 2016"? 
- European vs. American ordering… 

• What about time zones?
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Python Support for Time
• The datetime package 
- Has date, time, and datetime classes 
- .now() method: the current datetime 
- Can access properties of the time (year, month, seconds, etc.) 

• Converting from strings to datetimes: 
- datetime.strptime: good for known formats 
- dateutil.parser.parse: good for unknown formats 

• Converting to strings 
- str(dt) or dt.strftime(<format>)
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Python's strftime directives

Note: Examples are based on datetime.datetime(2013, 9, 30, 7, 6, 5)

Code Meaning Example

%a Weekday as locale’s abbreviated name. Mon

%A Weekday as locale’s full name. Monday

%w Weekday as a decimal number, where 0 is Sunday and 6
is Saturday.

1

%d Day of the month as a zero-padded decimal number. 30

%-d Day of the month as a decimal number. (Platform
specific)

30

%b Month as locale’s abbreviated name. Sep

%B Month as locale’s full name. September

%m Month as a zero-padded decimal number. 09

%-m Month as a decimal number. (Platform specific) 9

%y Year without century as a zero-padded decimal
number.

13

%Y Year with century as a decimal number. 2013

%H Hour (24-hour clock) as a zero-padded decimal
number.

07

%-H Hour (24-hour clock) as a decimal number. (Platform
specific)

7

%I Hour (12-hour clock) as a zero-padded decimal
number.

07

%-I Hour (12-hour clock) as a decimal number. (Platform
specific)

7

%p Locale’s equivalent of either AM or PM. AM

%M Minute as a zero-padded decimal number. 06

%-M Minute as a decimal number. (Platform specific) 6

%S Second as a zero-padded decimal number. 05

%-S Second as a decimal number. (Platform specific) 5

%f Microsecond as a decimal number, zero-padded on the
left.

000000

Datetime format specification
• Look it up: 
- http://strftime.org 

• Generally, can create whatever format you 
need using these format strings
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Pandas Support for Datetime
• pd.to_datetime: 
- convenience method 
- can convert an entire column to datetime 

• Has a NaT to indicate a missing time value  
• Stores in a numpy.datetime64 format 
• pd.Timestamp: a wrapper for the datetime64 objects
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More Pandas Support
• Accessing a particular time or checking equivalence allows any string that 

can be interpreted as a date: 
- ts['1/10/2011'] or ts['20110110'] 

• Date ranges: pd.date_range('4/1/2012','6/1/2012',freq='4h') 
• Slicing works as expected 
• Can do operations (add, subtract) on data indexed by datetime and the 

indexes will match up 
• As with strings, to treat a column as datetime, you can use the .dt accessor
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Generating Date Ranges
• index = pd.date_range('4/1/2012', '6/1/2012') 

• Can generate based on a number of periods as well 
- index = pd.date_range('4/1/2012', periods=20) 

• Frequency (freq) controls how the range is divided 
- Codes for specifying this (e.g. 4h, D, M) 
-   

- Can also mix them: '2h30m'
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6RPHWLPHV�\RX�ZLOO�KDYH�VWDUW�RU�HQG�GDWHV�ZLWK�WLPH�LQIRUPDWLRQ�EXW�ZDQW�WR�JHQHUDWH
D� VHW�RI� WLPHVWDPSV�QRUPDOL]HG� WR�PLGQLJKW�DV�D� FRQYHQWLRQ��7R�GR� WKLV�� WKHUH� LV� D
normalize�RSWLRQ�

In [84]: pd.date_range('5/2/2012 12:56:31', periods=5, normalize=True)
Out[84]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2012-05-02, ..., 2012-05-06]
Length: 5, Freq: D, Timezone: None

Frequencies and Date Offsets
)UHTXHQFLHV� LQ�SDQGDV�DUH�FRPSRVHG�RI�D�EDVH�IUHTXHQF\�DQG�D�PXOWLSOLHU��%DVH�IUH�
TXHQFLHV�DUH�W\SLFDOO\�UHIHUUHG�WR�E\�D�VWULQJ�DOLDV��OLNH�'M'�IRU�PRQWKO\�RU�'H'�IRU�KRXUO\�
)RU�HDFK�EDVH�IUHTXHQF\��WKHUH�LV�DQ�REMHFW�GHILQHG�JHQHUDOO\�UHIHUUHG�WR�DV�D�GDWH�RII�
VHW��)RU�H[DPSOH��KRXUO\�IUHTXHQF\�FDQ�EH�UHSUHVHQWHG�ZLWK�WKH�Hour�FODVV�

In [85]: from pandas.tseries.offsets import Hour, Minute

In [86]: hour = Hour()

In [87]: hour
Out[87]: <Hour>

<RX�FDQ�GHILQH�D�PXOWLSOH�RI�DQ�RIIVHW�E\�SDVVLQJ�DQ�LQWHJHU�

In [88]: four_hours = Hour(4)

In [89]: four_hours
Out[89]: <4 * Hours>

,Q�PRVW�DSSOLFDWLRQV��\RX�ZRXOG�QHYHU�QHHG�WR�H[SOLFLWO\�FUHDWH�RQH�RI�WKHVH�REMHFWV�
LQVWHDG�XVLQJ�D�VWULQJ�DOLDV�OLNH�'H'�RU�'4H'��3XWWLQJ�DQ�LQWHJHU�EHIRUH�WKH�EDVH�IUHTXHQF\
FUHDWHV�D�PXOWLSOH�

In [90]: pd.date_range('1/1/2000', '1/3/2000 23:59', freq='4h')
Out[90]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2000-01-01 00:00:00, ..., 2000-01-03 20:00:00]
Length: 18, Freq: 4H, Timezone: None

0DQ\�RIIVHWV�FDQ�EH�FRPELQHG�WRJHWKHU�E\�DGGLWLRQ�

In [91]: Hour(2) + Minute(30)
Out[91]: <150 * Minutes>

6LPLODUO\��\RX�FDQ�SDVV�IUHTXHQF\�VWULQJV�OLNH�'2h30min'�ZKLFK�ZLOO�HIIHFWLYHO\�EH�SDUVHG
WR�WKH�VDPH�H[SUHVVLRQ�

In [92]: pd.date_range('1/1/2000', periods=10, freq='1h30min')
Out[92]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2000-01-01 00:00:00, ..., 2000-01-01 13:30:00]
Length: 10, Freq: 90T, Timezone: None
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6RPH� IUHTXHQFLHV�GHVFULEH�SRLQWV� LQ� WLPH� WKDW� DUH�QRW� HYHQO\� VSDFHG��)RU� H[DPSOH�
'M'��FDOHQGDU�PRQWK�HQG��DQG�'BM'��ODVW�EXVLQHVV�ZHHNGD\�RI�PRQWK��GHSHQG�RQ�WKH
QXPEHU�RI�GD\V�LQ�D�PRQWK�DQG��LQ�WKH�ODWWHU�FDVH��ZKHWKHU�WKH�PRQWK�HQGV�RQ�D�ZHHNHQG
RU�QRW��)RU�ODFN�RI�D�EHWWHU�WHUP��,�FDOO�WKHVH�DQFKRUHG�RIIVHWV�

6HH�7DEOH������IRU�D�OLVWLQJ�RI�IUHTXHQF\�FRGHV�DQG�GDWH�RIIVHW�FODVVHV�DYDLODEOH�LQ�SDQGDV�

8VHUV�FDQ�GHILQH�WKHLU�RZQ�FXVWRP�IUHTXHQF\�FODVVHV�WR�SURYLGH�GDWH
ORJLF�QRW�DYDLODEOH�LQ�SDQGDV��WKRXJK�WKH�IXOO�GHWDLOV�RI�WKDW�DUH�RXWVLGH
WKH�VFRSH�RI�WKLV�ERRN�

7DEOH�������%DVH�7LPH�6HULHV�)UHTXHQFLHV

Alias Offset Type Description

D Day Calendar daily

B BusinessDay Business daily

H Hour Hourly

T or min Minute Minutely

S Second Secondly

L or ms Milli Millisecond (1/1000th of 1 second)

U Micro Microsecond (1/1000000th of 1 second)

M MonthEnd Last calendar day of month

BM BusinessMonthEnd Last business day (weekday) of month

MS MonthBegin First calendar day of month

BMS BusinessMonthBegin First weekday of month

W-MON, W-TUE, ... Week Weekly on given day of week: MON, TUE, WED, THU, FRI, SAT,
or SUN.

WOM-1MON, WOM-2MON, ... WeekOfMonth Generate weekly dates in the first, second, third, or fourth week
of the month. For example, WOM-3FRI for the 3rd Friday of
each month.

Q-JAN, Q-FEB, ... QuarterEnd Quarterly dates anchored on last calendar day of each month,
for year ending in indicated month: JAN, FEB, MAR, APR, MAY,
JUN, JUL, AUG, SEP, OCT, NOV, or DEC.

BQ-JAN, BQ-FEB, ... BusinessQuarterEnd Quarterly dates anchored on last weekday day of each month,
for year ending in indicated month

QS-JAN, QS-FEB, ... QuarterBegin Quarterly dates anchored on first calendar day of each month,
for year ending in indicated month

BQS-JAN, BQS-FEB, ... BusinessQuarterBegin Quarterly dates anchored on first weekday day of each month,
for year ending in indicated month

A-JAN, A-FEB, ... YearEnd Annual dates anchored on last calendar day of given month:
JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, or DEC.
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DatetimeIndex
• Can use time as an index 
• data = [('2017-11-30', 48), 
        ('2017-12-02', 45), 
        ('2017-12-03', 44), 
        ('2017-12-04', 48)] 
dates, temps = zip(*data) 
s = pd.Series(temps, pd.to_datetime(dates)) 

• Accessing a particular time or checking equivalence allows any string that 
can be interpreted as a date: 

- s['12/04/2017'] or s['20171204'] 
• Using a less specific string will get all matching data: 

- s['2017-12'] returns the three December entries
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DatetimeIndex
• Time slices do not need to exist: 

- s['2017-12-01':'2017-12-31']
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Shifting Data
• Leading or Lagging Data 

• Shifting by time:
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Alias Offset Type Description

BA-JAN, BA-FEB, ... BusinessYearEnd Annual dates anchored on last weekday of given month

AS-JAN, AS-FEB, ... YearBegin Annual dates anchored on first day of given month

BAS-JAN, BAS-FEB, ... BusinessYearBegin Annual dates anchored on first weekday of given month

Week of month dates
2QH�XVHIXO�IUHTXHQF\�FODVV�LV�£ZHHN�RI�PRQWK¤��VWDUWLQJ�ZLWK�WOM��7KLV�HQDEOHV�\RX�WR
JHW�GDWHV�OLNH�WKH�WKLUG�)ULGD\�RI�HDFK�PRQWK�

In [93]: rng = pd.date_range('1/1/2012', '9/1/2012', freq='WOM-3FRI')

In [94]: list(rng)
Out[94]:
[Timestamp('2012-01-20 00:00:00', offset='WOM-3FRI'),
 Timestamp('2012-02-17 00:00:00', offset='WOM-3FRI'),
 Timestamp('2012-03-16 00:00:00', offset='WOM-3FRI'),
 Timestamp('2012-04-20 00:00:00', offset='WOM-3FRI'),
 Timestamp('2012-05-18 00:00:00', offset='WOM-3FRI'),
 Timestamp('2012-06-15 00:00:00', offset='WOM-3FRI'),
 Timestamp('2012-07-20 00:00:00', offset='WOM-3FRI'),
 Timestamp('2012-08-17 00:00:00', offset='WOM-3FRI')]

7UDGHUV�RI�86�HTXLW\�RSWLRQV�ZLOO�UHFRJQL]H�WKHVH�GDWHV�DV�WKH�VWDQGDUG�GDWHV�RI�PRQWKO\
H[SLU\�

Shifting (Leading and Lagging) Data
£6KLIWLQJ¤�UHIHUV�WR�PRYLQJ�GDWD�EDFNZDUG�DQG�IRUZDUG�WKURXJK�WLPH��%RWK�6HULHV�DQG
'DWD)UDPH�KDYH�D�shift�PHWKRG�IRU�GRLQJ�QDLYH�VKLIWV�IRUZDUG�RU�EDFNZDUG��OHDYLQJ
WKH�LQGH[�XQPRGLILHG�

In [95]: ts = Series(np.random.randn(4),
   ....:             index=pd.date_range('1/1/2000', periods=4, freq='M'))

In [96]: ts                  In [97]: ts.shift(2)         In [98]: ts.shift(-2)
Out[96]:                     Out[97]:                     Out[98]:
2000-01-31   -0.066748       2000-01-31         NaN       2000-01-31   -0.117388
2000-02-29    0.838639       2000-02-29         NaN       2000-02-29   -0.517795
2000-03-31   -0.117388       2000-03-31   -0.066748       2000-03-31         NaN
2000-04-30   -0.517795       2000-04-30    0.838639       2000-04-30         NaN
Freq: M, dtype: float64      Freq: M, dtype: float64      Freq: M, dtype: float64

$�FRPPRQ�XVH�RI�shift�LV�FRPSXWLQJ�SHUFHQW�FKDQJHV�LQ�D�WLPH�VHULHV�RU�PXOWLSOH�WLPH
VHULHV�DV�'DWD)UDPH�FROXPQV��7KLV�LV�H[SUHVVHG�DV

ts / ts.shift(1) - 1

%HFDXVH�QDLYH�VKLIWV�OHDYH�WKH�LQGH[�XQPRGLILHG��VRPH�GDWD�LV�GLVFDUGHG��7KXV�LI�WKH
IUHTXHQF\�LV�NQRZQ��LW�FDQ�EH�SDVVHG�WR�shift�WR�DGYDQFH�WKH�WLPHVWDPSV�LQVWHDG�RI
VLPSO\�WKH�GDWD�
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In [99]: ts.shift(2, freq='M')
Out[99]:
2000-03-31   -0.066748
2000-04-30    0.838639
2000-05-31   -0.117388
2000-06-30   -0.517795
Freq: M, dtype: float64

2WKHU�IUHTXHQFLHV�FDQ�EH�SDVVHG��WRR��JLYLQJ�\RX�D�ORW�RI�IOH[LELOLW\�LQ�KRZ�WR�OHDG�DQG
ODJ�WKH�GDWD�

In [100]: ts.shift(3, freq='D')        In [101]: ts.shift(1, freq='3D')
Out[100]:                              Out[101]:
2000-02-03   -0.066748                 2000-02-03   -0.066748
2000-03-03    0.838639                 2000-03-03    0.838639
2000-04-03   -0.117388                 2000-04-03   -0.117388
2000-05-03   -0.517795                 2000-05-03   -0.517795
dtype: float64                         dtype: float64

In [102]: ts.shift(1, freq='90T')
Out[102]:
2000-01-31 01:30:00   -0.066748
2000-02-29 01:30:00    0.838639
2000-03-31 01:30:00   -0.117388
2000-04-30 01:30:00   -0.517795
dtype: float64

Shifting dates with offsets
7KH�SDQGDV�GDWH�RIIVHWV�FDQ�DOVR�EH�XVHG�ZLWK�datetime�RU�Timestamp�REMHFWV�

In [103]: from pandas.tseries.offsets import Day, MonthEnd

In [104]: now = datetime(2011, 11, 17)

In [105]: now + 3 * Day()
Out[105]: Timestamp('2011-11-20 00:00:00')

,I�\RX�DGG�DQ�DQFKRUHG�RIIVHW�OLNH�MonthEnd��WKH�ILUVW�LQFUHPHQW�ZLOO�roll forward�D�GDWH
WR�WKH�QH[W�GDWH�DFFRUGLQJ�WR�WKH�IUHTXHQF\�UXOH�

In [106]: now + MonthEnd()
Out[106]: Timestamp('2011-11-30 00:00:00')

In [107]: now + MonthEnd(2)
Out[107]: Timestamp('2011-12-31 00:00:00')

$QFKRUHG�RIIVHWV�FDQ�H[SOLFLWO\�£UROO¤�GDWHV�IRUZDUG�RU�EDFNZDUG�XVLQJ�WKHLU�rollfor
ward�DQG�rollback�PHWKRGV��UHVSHFWLYHO\�

In [108]: offset = MonthEnd()

In [109]: offset.rollforward(now)
Out[109]: Timestamp('2011-11-30 00:00:00')
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Shifting Time Series
• Data: 

    [('2017-11-30', 48), ('2017-12-02', 45), 
   ('2017-12-03', 44), ('2017-12-04', 48)] 

• Compute day-to-day difference in high temperature: 
- s - s.shift(1) (same as s.diff()) 
- 2017-11-30    NaN 
2017-12-02   -3.0 
2017-12-03   -1.0 
2017-12-04    4.0
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- s - s.shift(1, 'd') 

- 2017-11-30    NaN 
2017-12-01    NaN 
2017-12-02    NaN 
2017-12-03   -1.0 
2017-12-04    4.0 
2017-12-05    NaN



Timedelta
• Compute differences between dates 
• Lives in datetime module 
• diff = parse_date("1 Jan 2017") - datetime.now().date() 
diff.days 

• Also a pd.Timedelta object that take strings: 
- datetime.now().date() + pd.Timedelta("4 days") 

• Also, Roll dates using anchored offsets
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In [99]: ts.shift(2, freq='M')
Out[99]:
2000-03-31   -0.066748
2000-04-30    0.838639
2000-05-31   -0.117388
2000-06-30   -0.517795
Freq: M, dtype: float64

2WKHU�IUHTXHQFLHV�FDQ�EH�SDVVHG��WRR��JLYLQJ�\RX�D�ORW�RI�IOH[LELOLW\�LQ�KRZ�WR�OHDG�DQG
ODJ�WKH�GDWD�

In [100]: ts.shift(3, freq='D')        In [101]: ts.shift(1, freq='3D')
Out[100]:                              Out[101]:
2000-02-03   -0.066748                 2000-02-03   -0.066748
2000-03-03    0.838639                 2000-03-03    0.838639
2000-04-03   -0.117388                 2000-04-03   -0.117388
2000-05-03   -0.517795                 2000-05-03   -0.517795
dtype: float64                         dtype: float64

In [102]: ts.shift(1, freq='90T')
Out[102]:
2000-01-31 01:30:00   -0.066748
2000-02-29 01:30:00    0.838639
2000-03-31 01:30:00   -0.117388
2000-04-30 01:30:00   -0.517795
dtype: float64

Shifting dates with offsets
7KH�SDQGDV�GDWH�RIIVHWV�FDQ�DOVR�EH�XVHG�ZLWK�datetime�RU�Timestamp�REMHFWV�

In [103]: from pandas.tseries.offsets import Day, MonthEnd

In [104]: now = datetime(2011, 11, 17)

In [105]: now + 3 * Day()
Out[105]: Timestamp('2011-11-20 00:00:00')

,I�\RX�DGG�DQ�DQFKRUHG�RIIVHW�OLNH�MonthEnd��WKH�ILUVW�LQFUHPHQW�ZLOO�roll forward�D�GDWH
WR�WKH�QH[W�GDWH�DFFRUGLQJ�WR�WKH�IUHTXHQF\�UXOH�

In [106]: now + MonthEnd()
Out[106]: Timestamp('2011-11-30 00:00:00')

In [107]: now + MonthEnd(2)
Out[107]: Timestamp('2011-12-31 00:00:00')

$QFKRUHG�RIIVHWV�FDQ�H[SOLFLWO\�£UROO¤�GDWHV�IRUZDUG�RU�EDFNZDUG�XVLQJ�WKHLU�rollfor
ward�DQG�rollback�PHWKRGV��UHVSHFWLYHO\�

In [108]: offset = MonthEnd()

In [109]: offset.rollforward(now)
Out[109]: Timestamp('2011-11-30 00:00:00')
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Shifting dates with offsets
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In [105]: now + 3 * Day()
Out[105]: Timestamp('2011-11-20 00:00:00')

,I�\RX�DGG�DQ�DQFKRUHG�RIIVHW�OLNH�MonthEnd��WKH�ILUVW�LQFUHPHQW�ZLOO�roll forward�D�GDWH
WR�WKH�QH[W�GDWH�DFFRUGLQJ�WR�WKH�IUHTXHQF\�UXOH�

In [106]: now + MonthEnd()
Out[106]: Timestamp('2011-11-30 00:00:00')

In [107]: now + MonthEnd(2)
Out[107]: Timestamp('2011-12-31 00:00:00')

$QFKRUHG�RIIVHWV�FDQ�H[SOLFLWO\�£UROO¤�GDWHV�IRUZDUG�RU�EDFNZDUG�XVLQJ�WKHLU�rollfor
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