
Advanced Data Management (CSCI 490/680)

Scalable Databases

Dr. David Koop

D. Koop, CSCI 680/490, Spring 2022

3.2 Shared-Nothing 167

threads) across the processors, and the shared data structures continue
to be accessible to all. All three models run well on these systems and
support the execution of multiple, independent SQL requests in paral-
lel. The main challenge is to modify the query execution layers to take
advantage of the ability to parallelize a single query across multiple
CPUs; we defer this to Section 5.

3.2 Shared-Nothing

A shared-nothing parallel system (Figure 3.2) is made up of a cluster
of independent machines that communicate over a high-speed network
interconnect or, increasingly frequently, over commodity networking
components. There is no way for a given system to directly access the
memory or disk of another system.

Shared-nothing systems provide no hardware sharing abstractions,
leaving coordination of the various machines entirely in the hands of the
DBMS. The most common technique employed by DBMSs to support
these clusters is to run their standard process model on each machine,
or node, in the cluster. Each node is capable of accepting client SQL

Fig. 3.2 Shared-nothing architecture.

Parallel DB Architecture: Shared Nothing

2

[Hellerstein et al., Architecture of a Database System]
D. Koop, CSCI 680/490, Spring 2022

http://db.cs.berkeley.edu/papers/fntdb07-architecture.pdf

Sharding

3

[MongoDB]
D. Koop, CSCI 680/490, Spring 2022

http://docs.mongodb.org/manual/core/sharding-introduction/

Stonebraker: The End of an Architectural Era
• "RDBMSs were designed for the business data processing market, which is

their sweet spot"
• "They can be beaten handily in most any other market of significant enough

size to warrant the investment in a specialized engine"
• Changes in markets (science), necessary features (scalability), and

technology (amount of memory)
• RDBMS Overhead: Logging, Latching, and Locking
• Relational model is not necessarily the answer
• SQL is not necessarily the answer

4D. Koop, CSCI 680/490, Spring 2022

Problems with Relational Databases

5

[P. Sadalage]
D. Koop, CSCI 680/490, Spring 2022

https://www.thoughtworks.com/insights/blog/nosql-databases-overview

Horizontal Partitioning vs. Vertical Partitioning

6

[M. Drake]
D. Koop, CSCI 680/490, Spring 2022

https://www.digitalocean.com/community/tutorials/understanding-database-sharding

CAP Theorem

7

[E. Brewer]
D. Koop, CSCI 680/490, Spring 2022

HIGH AVAILABILITY: CAP THEOREM AND CASSANDRA

6

Partition
Tolerance

Availability

Consistency 
(ACID)

RDBMS

Atomicity
Consistency
Isolation
Durability

Cassandra and CAP

8

[G. Atil]
D. Koop, CSCI 680/490, Spring 2022

https://www.slideshare.net/gokhanatil/introduction-to-cassandra-88223524

What is Cassandra?
• Fast Distributed (Column Family NoSQL) Database
- High availability
- Linear Scalability
- High Performance

• Fault tolerant on Commodity Hardware
• Multi-Data Center Support
• Easy to operate
• Proven: CERN, Netflix, eBay, GitHub, Instagram, Reddit

9

[G. Atil]
D. Koop, CSCI 680/490, Spring 2022

https://www.slideshare.net/gokhanatil/introduction-to-cassandra-88223524

NoSQL: Column Stores
• Instead of having rows grouped/sharded, we group columns
• …or families of columns
• Put similar columns together
• Examples: Cassandra, HBase

10

[P. Sadalage]
D. Koop, CSCI 680/490, Spring 2022

https://www.thoughtworks.com/insights/blog/nosql-databases-overview

Relational Databases vs. Cassandra

11

[DataStax]
D. Koop, CSCI 680/490, Spring 2022

Relational Database Cassandra

Handles moderate incoming data velocity Handles high incoming data velocity

Data arriving from one/few locations Data arriving from many locations

Manages primarily structured data Manages all types of data

Supports complex/nested transactions Supports simple transactions

Single points of failure with failover No single points of failure; constant uptime

Supports moderate data volumes Supports very high data volumes

Centralized deployments Decentralized deployments

Data written in mostly one location Data written in many locations

Supports read scalability (with consistency sacrifices) Supports read and write scalability

Deployed in vertical scale up fashion Deployed in horizontal scale out fashion

https://academy.datastax.com/resources/brief-introduction-apache-cassandra

Replication Factor 3

30

0
1

2

3
4

5

6

7

Row A

Row B

Cassandra: Replication

12

[R. Stupp]
D. Koop, CSCI 680/490, Spring 2022

https://www.slideshare.net/RobertStupp/introduction-to-apache-cassandra-39565320

Cassandra: Consistency Levels
• Data is always replicated according to replication factors
• Consistency Levels: ANY (only writes), ONE, LOCAL_ONE, QUORUM,

LOCAL_QUORUM
• Consistency levels defines how many replicas must fulfill the request
• LOCAL_* are local to the data center, others go across data centers
• quorum = (sum-of-replication-factors / 2) + 1
- Each data center may have its own replication factor

• ANY provides lowest consistency but highest availability
• ALL provides the highest consistency and lowest availability (not

recommended)

13

[R. Stupp]
D. Koop, CSCI 680/490, Spring 2022

https://www.slideshare.net/RobertStupp/introduction-to-apache-cassandra-39565320

Mutli DC replication

39

Write
DC 1 DC 2

Multiple Data Center Replication

14

[R. Stupp]
D. Koop, CSCI 680/490, Spring 2022

https://www.slideshare.net/RobertStupp/introduction-to-apache-cassandra-39565320

Reading Response
• Spanner: Google's Globally-Distributed Database

15D. Koop, CSCI 680/490, Spring 2022

https://research.google.com/archive/spanner-osdi2012.pdf

Assignment 4
• Work on Data Integration and Data Fusion
• Integrate artist datasets from different institutions (The Met, The Tate,

Smithsonian, Carnegie Museum of Art)
- Integrate information about names, places, nationality, etc.

• Record Matching:
- Which artists are the same?
- Which nationalities are the same? (British/English)

• Data Fusion:
- Year of birth/death differences
- Nationality differences

16D. Koop, CSCI 680/490, Spring 2022

http://faculty.cs.niu.edu/~dakoop/cs680-2022sp/assignment4.html

Test 2
• Wednesday, April 6
• Covers material from the beginning of course, emphasizing material since

Test 1
• Similar Format to Test 1
• We have discussed more papers since Test 1

17D. Koop, CSCI 503/490, Spring 2022

NewSQL

A. Pavlo

D. Koop, CSCI 680/490, Spring 2022

https://cs.brown.edu/courses/cs227/archives/2012/slides/newsql/newsql-intro.pdf

Spanner:
Google's Globally-Distributed Database

J. C. Corbett et al.

D. Koop, CSCI 680/490, Spring 2022

Spanner Overview
• Focus on scaling databases focused on OLTP (not OLAP)
• Since OLTP, focus is on sharding rows
• Tries to satisfy CAP (which is impossible per CAP Theorem) by not worrying

about 100% availability
• External consistency using multi-version concurrency control through timestamps
• ACID is important
• Structured: universe with zones with zone masters and then spans with span

masters
• SQL-like (updates allow SQL to be used with Spanner)

20D. Koop, CSCI 680/490, Spring 2022

HIGH AVAILABILITY: CAP THEOREM AND CASSANDRA

6

Partition
Tolerance

Availability

Consistency
(ACID)

RDBMS

Atomicity
Consistency
Isolation
Durability

Spanner and the CAP Theorem
• Which type of system is Spanner?
- C: consistency, which implies a

single value for shared data
- A: 100% availability, for both reads

and updates
- P: tolerance to network partitions

• Which two?
- CA: close, but not totally available
- So actually CP

21D. Koop, CSCI 680/490, Spring 2022

Spanner

provides externally consistent [16] reads and writes, and
globally-consistent reads across the database at a time-
stamp. These features enable Spanner to support con-
sistent backups, consistent MapReduce executions [12],
and atomic schema updates, all at global scale, and even
in the presence of ongoing transactions.

These features are enabled by the fact that Spanner as-
signs globally-meaningful commit timestamps to trans-
actions, even though transactions may be distributed.
The timestamps reflect serialization order. In addition,
the serialization order satisfies external consistency (or
equivalently, linearizability [20]): if a transaction T1

commits before another transaction T2 starts, then T1’s
commit timestamp is smaller than T2’s. Spanner is the
first system to provide such guarantees at global scale.

The key enabler of these properties is a new TrueTime
API and its implementation. The API directly exposes
clock uncertainty, and the guarantees on Spanner’s times-
tamps depend on the bounds that the implementation pro-
vides. If the uncertainty is large, Spanner slows down to
wait out that uncertainty. Google’s cluster-management
software provides an implementation of the TrueTime
API. This implementation keeps uncertainty small (gen-
erally less than 10ms) by using multiple modern clock
references (GPS and atomic clocks).

Section 2 describes the structure of Spanner’s imple-
mentation, its feature set, and the engineering decisions
that went into their design. Section 3 describes our new
TrueTime API and sketches its implementation. Sec-
tion 4 describes how Spanner uses TrueTime to imple-
ment externally-consistent distributed transactions, lock-
free read-only transactions, and atomic schema updates.
Section 5 provides some benchmarks on Spanner’s per-
formance and TrueTime behavior, and discusses the ex-
periences of F1. Sections 6, 7, and 8 describe related and
future work, and summarize our conclusions.

2 Implementation

This section describes the structure of and rationale un-
derlying Spanner’s implementation. It then describes the
directory abstraction, which is used to manage replica-
tion and locality, and is the unit of data movement. Fi-
nally, it describes our data model, why Spanner looks
like a relational database instead of a key-value store, and
how applications can control data locality.

A Spanner deployment is called a universe. Given
that Spanner manages data globally, there will be only
a handful of running universes. We currently run a
test/playground universe, a development/production uni-
verse, and a production-only universe.

Spanner is organized as a set of zones, where each
zone is the rough analog of a deployment of Bigtable

Figure 1: Spanner server organization.

servers [9]. Zones are the unit of administrative deploy-
ment. The set of zones is also the set of locations across
which data can be replicated. Zones can be added to or
removed from a running system as new datacenters are
brought into service and old ones are turned off, respec-
tively. Zones are also the unit of physical isolation: there
may be one or more zones in a datacenter, for example,
if different applications’ data must be partitioned across
different sets of servers in the same datacenter.

Figure 1 illustrates the servers in a Spanner universe.
A zone has one zonemaster and between one hundred
and several thousand spanservers. The former assigns
data to spanservers; the latter serve data to clients. The
per-zone location proxies are used by clients to locate
the spanservers assigned to serve their data. The uni-
verse master and the placement driver are currently sin-
gletons. The universe master is primarily a console that
displays status information about all the zones for inter-
active debugging. The placement driver handles auto-
mated movement of data across zones on the timescale
of minutes. The placement driver periodically commu-
nicates with the spanservers to find data that needs to be
moved, either to meet updated replication constraints or
to balance load. For space reasons, we will only describe
the spanserver in any detail.

2.1 Spanserver Software Stack

This section focuses on the spanserver implementation
to illustrate how replication and distributed transactions
have been layered onto our Bigtable-based implementa-
tion. The software stack is shown in Figure 2. At the
bottom, each spanserver is responsible for between 100
and 1000 instances of a data structure called a tablet. A
tablet is similar to Bigtable’s tablet abstraction, in that it
implements a bag of the following mappings:

(key:string, timestamp:int64) ! string

Unlike Bigtable, Spanner assigns timestamps to data,
which is an important way in which Spanner is more
like a multi-version database than a key-value store. A

Published in the Proceedings of OSDI 2012 2

Spanner Server Organization

22

[Corbett et al., 2012]
D. Koop, CSCI 680/490, Spring 2022

CREATE TABLE Users {

uid INT64 NOT NULL, email STRING

} PRIMARY KEY (uid), DIRECTORY;

CREATE TABLE Albums {

uid INT64 NOT NULL, aid INT64 NOT NULL,

name STRING

} PRIMARY KEY (uid, aid),

INTERLEAVE IN PARENT Users ON DELETE CASCADE;

Figure 4: Example Spanner schema for photo metadata, and
the interleaving implied by INTERLEAVE IN.

example, Albums(2,1) represents the row from the
Albums table for user id 2, album id 1. This
interleaving of tables to form directories is significant
because it allows clients to describe the locality relation-
ships that exist between multiple tables, which is nec-
essary for good performance in a sharded, distributed
database. Without it, Spanner would not know the most
important locality relationships.

3 TrueTime

Method Returns
TT.now() TTinterval: [earliest, latest]

TT.after(t) true if t has definitely passed
TT.before(t) true if t has definitely not arrived

Table 1: TrueTime API. The argument t is of type TTstamp.

This section describes the TrueTime API and sketches
its implementation. We leave most of the details for an-
other paper: our goal is to demonstrate the power of
having such an API. Table 1 lists the methods of the
API. TrueTime explicitly represents time as a TTinterval,
which is an interval with bounded time uncertainty (un-
like standard time interfaces that give clients no notion
of uncertainty). The endpoints of a TTinterval are of
type TTstamp. The TT.now() method returns a TTinterval
that is guaranteed to contain the absolute time during
which TT.now() was invoked. The time epoch is anal-
ogous to UNIX time with leap-second smearing. De-
fine the instantaneous error bound as ✏, which is half of
the interval’s width, and the average error bound as ✏.
The TT.after() and TT.before() methods are convenience
wrappers around TT.now().

Denote the absolute time of an event e by the func-
tion tabs(e). In more formal terms, TrueTime guaran-
tees that for an invocation tt = TT.now(), tt.earliest
tabs(enow) tt.latest, where enow is the invocation event.

The underlying time references used by TrueTime
are GPS and atomic clocks. TrueTime uses two forms
of time reference because they have different failure
modes. GPS reference-source vulnerabilities include an-
tenna and receiver failures, local radio interference, cor-
related failures (e.g., design faults such as incorrect leap-
second handling and spoofing), and GPS system outages.
Atomic clocks can fail in ways uncorrelated to GPS and
each other, and over long periods of time can drift signif-
icantly due to frequency error.

TrueTime is implemented by a set of time master ma-
chines per datacenter and a timeslave daemon per ma-
chine. The majority of masters have GPS receivers with
dedicated antennas; these masters are separated physi-
cally to reduce the effects of antenna failures, radio in-
terference, and spoofing. The remaining masters (which
we refer to as Armageddon masters) are equipped with
atomic clocks. An atomic clock is not that expensive:
the cost of an Armageddon master is of the same order
as that of a GPS master. All masters’ time references
are regularly compared against each other. Each mas-
ter also cross-checks the rate at which its reference ad-
vances time against its own local clock, and evicts itself
if there is substantial divergence. Between synchroniza-
tions, Armageddon masters advertise a slowly increasing
time uncertainty that is derived from conservatively ap-
plied worst-case clock drift. GPS masters advertise un-
certainty that is typically close to zero.

Every daemon polls a variety of masters [29] to re-
duce vulnerability to errors from any one master. Some
are GPS masters chosen from nearby datacenters; the
rest are GPS masters from farther datacenters, as well
as some Armageddon masters. Daemons apply a variant
of Marzullo’s algorithm [27] to detect and reject liars,
and synchronize the local machine clocks to the non-
liars. To protect against broken local clocks, machines
that exhibit frequency excursions larger than the worst-
case bound derived from component specifications and
operating environment are evicted.

Between synchronizations, a daemon advertises a
slowly increasing time uncertainty. ✏ is derived from
conservatively applied worst-case local clock drift. ✏ also
depends on time-master uncertainty and communication
delay to the time masters. In our production environ-
ment, ✏ is typically a sawtooth function of time, varying
from about 1 to 7 ms over each poll interval. ✏ is there-
fore 4 ms most of the time. The daemon’s poll interval is
currently 30 seconds, and the current applied drift rate is
set at 200 microseconds/second, which together account

Published in the Proceedings of OSDI 2012 5

Interleaved Schema

23

[Corbett et al., 2012]
D. Koop, CSCI 680/490, Spring 2022

External Consistency
• Traditional DB solution: two-phase locking—no writes while client reads
• "The system behaves as if all transactions were executed sequentially, even

though Spanner actually runs them across multiple servers (and possibly in
multiple datacenters) for higher performance and availability" [Google]

• Semantically indistinguishable from a single-machine database
• Uses multi-version concurrency control (MVCC) using timestamps
• Spanner uses TrueTime to generate monotonically increasing timestamps

across all nodes of the system

24D. Koop, CSCI 680/490, Spring 2022

https://cloud.google.com/spanner/docs/true-time-external-consistency

TrueTime
• API to try to keep computers on a globally-consistent clock
• Uses GPS and Atomic Clocks!
• Time masters per datacenter (usually with GPS)
• Each machine runs a timeslave daemon
• Armageddon masters have atomic clocks
• API:

25

[Corbett et al., 2012]
D. Koop, CSCI 680/490, Spring 2022

CREATE TABLE Users {

uid INT64 NOT NULL, email STRING

} PRIMARY KEY (uid), DIRECTORY;

CREATE TABLE Albums {

uid INT64 NOT NULL, aid INT64 NOT NULL,

name STRING

} PRIMARY KEY (uid, aid),

INTERLEAVE IN PARENT Users ON DELETE CASCADE;

Figure 4: Example Spanner schema for photo metadata, and
the interleaving implied by INTERLEAVE IN.

example, Albums(2,1) represents the row from the
Albums table for user id 2, album id 1. This
interleaving of tables to form directories is significant
because it allows clients to describe the locality relation-
ships that exist between multiple tables, which is nec-
essary for good performance in a sharded, distributed
database. Without it, Spanner would not know the most
important locality relationships.

3 TrueTime

Method Returns
TT.now() TTinterval: [earliest, latest]

TT.after(t) true if t has definitely passed
TT.before(t) true if t has definitely not arrived

Table 1: TrueTime API. The argument t is of type TTstamp.

This section describes the TrueTime API and sketches
its implementation. We leave most of the details for an-
other paper: our goal is to demonstrate the power of
having such an API. Table 1 lists the methods of the
API. TrueTime explicitly represents time as a TTinterval,
which is an interval with bounded time uncertainty (un-
like standard time interfaces that give clients no notion
of uncertainty). The endpoints of a TTinterval are of
type TTstamp. The TT.now() method returns a TTinterval
that is guaranteed to contain the absolute time during
which TT.now() was invoked. The time epoch is anal-
ogous to UNIX time with leap-second smearing. De-
fine the instantaneous error bound as ✏, which is half of
the interval’s width, and the average error bound as ✏.
The TT.after() and TT.before() methods are convenience
wrappers around TT.now().

Denote the absolute time of an event e by the func-
tion tabs(e). In more formal terms, TrueTime guaran-
tees that for an invocation tt = TT.now(), tt.earliest
tabs(enow) tt.latest, where enow is the invocation event.

The underlying time references used by TrueTime
are GPS and atomic clocks. TrueTime uses two forms
of time reference because they have different failure
modes. GPS reference-source vulnerabilities include an-
tenna and receiver failures, local radio interference, cor-
related failures (e.g., design faults such as incorrect leap-
second handling and spoofing), and GPS system outages.
Atomic clocks can fail in ways uncorrelated to GPS and
each other, and over long periods of time can drift signif-
icantly due to frequency error.

TrueTime is implemented by a set of time master ma-
chines per datacenter and a timeslave daemon per ma-
chine. The majority of masters have GPS receivers with
dedicated antennas; these masters are separated physi-
cally to reduce the effects of antenna failures, radio in-
terference, and spoofing. The remaining masters (which
we refer to as Armageddon masters) are equipped with
atomic clocks. An atomic clock is not that expensive:
the cost of an Armageddon master is of the same order
as that of a GPS master. All masters’ time references
are regularly compared against each other. Each mas-
ter also cross-checks the rate at which its reference ad-
vances time against its own local clock, and evicts itself
if there is substantial divergence. Between synchroniza-
tions, Armageddon masters advertise a slowly increasing
time uncertainty that is derived from conservatively ap-
plied worst-case clock drift. GPS masters advertise un-
certainty that is typically close to zero.

Every daemon polls a variety of masters [29] to re-
duce vulnerability to errors from any one master. Some
are GPS masters chosen from nearby datacenters; the
rest are GPS masters from farther datacenters, as well
as some Armageddon masters. Daemons apply a variant
of Marzullo’s algorithm [27] to detect and reject liars,
and synchronize the local machine clocks to the non-
liars. To protect against broken local clocks, machines
that exhibit frequency excursions larger than the worst-
case bound derived from component specifications and
operating environment are evicted.

Between synchronizations, a daemon advertises a
slowly increasing time uncertainty. ✏ is derived from
conservatively applied worst-case local clock drift. ✏ also
depends on time-master uncertainty and communication
delay to the time masters. In our production environ-
ment, ✏ is typically a sawtooth function of time, varying
from about 1 to 7 ms over each poll interval. ✏ is there-
fore 4 ms most of the time. The daemon’s poll interval is
currently 30 seconds, and the current applied drift rate is
set at 200 microseconds/second, which together account

Published in the Proceedings of OSDI 2012 5

Concurrency Control
• Use TrueTime to implement concurrency control
• Types of reads and writes:

• Use Two-Phase Commits (2PC)

26

[Corbett et al., 2012]
D. Koop, CSCI 680/490, Spring 2022

Timestamp Concurrency
Operation Discussion Control Replica Required

Read-Write Transaction § 4.1.2 pessimistic leader

Read-Only Transaction § 4.1.4 lock-free leader for timestamp; any for
read, subject to § 4.1.3

Snapshot Read, client-provided timestamp — lock-free any, subject to § 4.1.3
Snapshot Read, client-provided bound § 4.1.3 lock-free any, subject to § 4.1.3

Table 2: Types of reads and writes in Spanner, and how they compare.

for the sawtooth bounds from 0 to 6 ms. The remain-
ing 1 ms comes from the communication delay to the
time masters. Excursions from this sawtooth are possi-
ble in the presence of failures. For example, occasional
time-master unavailability can cause datacenter-wide in-
creases in ✏. Similarly, overloaded machines and network
links can result in occasional localized ✏ spikes.

4 Concurrency Control

This section describes how TrueTime is used to guaran-
tee the correctness properties around concurrency con-
trol, and how those properties are used to implement
features such as externally consistent transactions, lock-
free read-only transactions, and non-blocking reads in
the past. These features enable, for example, the guar-
antee that a whole-database audit read at a timestamp t
will see exactly the effects of every transaction that has
committed as of t.

Going forward, it will be important to distinguish
writes as seen by Paxos (which we will refer to as Paxos
writes unless the context is clear) from Spanner client
writes. For example, two-phase commit generates a
Paxos write for the prepare phase that has no correspond-
ing Spanner client write.

4.1 Timestamp Management

Table 2 lists the types of operations that Spanner sup-
ports. The Spanner implementation supports read-
write transactions, read-only transactions (predeclared
snapshot-isolation transactions), and snapshot reads.
Standalone writes are implemented as read-write trans-
actions; non-snapshot standalone reads are implemented
as read-only transactions. Both are internally retried
(clients need not write their own retry loops).

A read-only transaction is a kind of transaction that
has the performance benefits of snapshot isolation [6].
A read-only transaction must be predeclared as not hav-
ing any writes; it is not simply a read-write transaction
without any writes. Reads in a read-only transaction ex-
ecute at a system-chosen timestamp without locking, so
that incoming writes are not blocked. The execution of

the reads in a read-only transaction can proceed on any
replica that is sufficiently up-to-date (Section 4.1.3).

A snapshot read is a read in the past that executes with-
out locking. A client can either specify a timestamp for a
snapshot read, or provide an upper bound on the desired
timestamp’s staleness and let Spanner choose a time-
stamp. In either case, the execution of a snapshot read
proceeds at any replica that is sufficiently up-to-date.

For both read-only transactions and snapshot reads,
commit is inevitable once a timestamp has been cho-
sen, unless the data at that timestamp has been garbage-
collected. As a result, clients can avoid buffering results
inside a retry loop. When a server fails, clients can inter-
nally continue the query on a different server by repeat-
ing the timestamp and the current read position.

4.1.1 Paxos Leader Leases

Spanner’s Paxos implementation uses timed leases to
make leadership long-lived (10 seconds by default). A
potential leader sends requests for timed lease votes;
upon receiving a quorum of lease votes the leader knows
it has a lease. A replica extends its lease vote implicitly
on a successful write, and the leader requests lease-vote
extensions if they are near expiration. Define a leader’s
lease interval as starting when it discovers it has a quo-
rum of lease votes, and as ending when it no longer has
a quorum of lease votes (because some have expired).
Spanner depends on the following disjointness invariant:
for each Paxos group, each Paxos leader’s lease interval
is disjoint from every other leader’s. Appendix A de-
scribes how this invariant is enforced.

The Spanner implementation permits a Paxos leader
to abdicate by releasing its slaves from their lease votes.
To preserve the disjointness invariant, Spanner constrains
when abdication is permissible. Define smax to be the
maximum timestamp used by a leader. Subsequent sec-
tions will describe when smax is advanced. Before abdi-
cating, a leader must wait until TT.after(smax) is true.

4.1.2 Assigning Timestamps to RW Transactions

Transactional reads and writes use two-phase locking.
As a result, they can be assigned timestamps at any time

Published in the Proceedings of OSDI 2012 6

latency (ms)
participants mean 99th percentile

1 17.0 ±1.4 75.0 ±34.9
2 24.5 ±2.5 87.6 ±35.9
5 31.5 ±6.2 104.5 ±52.2
10 30.0 ±3.7 95.6 ±25.4
25 35.5 ±5.6 100.4 ±42.7
50 42.7 ±4.1 93.7 ±22.9

100 71.4 ±7.6 131.2 ±17.6
200 150.5 ±11.0 320.3 ±35.1

Table 4: Two-phase commit scalability. Mean and standard
deviations over 10 runs.

CPUs. Snapshot reads can execute at any up-to-date
replicas, so their throughput increases almost linearly
with the number of replicas. Single-read read-only trans-
actions only execute at leaders because timestamp as-
signment must happen at leaders. Read-only-transaction
throughput increases with the number of replicas because
the number of effective spanservers increases: in the
experimental setup, the number of spanservers equaled
the number of replicas, and leaders were randomly dis-
tributed among the zones. Write throughput benefits
from the same experimental artifact (which explains the
increase in throughput from 3 to 5 replicas), but that ben-
efit is outweighed by the linear increase in the amount of
work performed per write, as the number of replicas in-
creases.

Table 4 demonstrates that two-phase commit can scale
to a reasonable number of participants: it summarizes
a set of experiments run across 3 zones, each with 25
spanservers. Scaling up to 50 participants is reasonable
in both mean and 99th-percentile, and latencies start to
rise noticeably at 100 participants.

5.2 Availability

Figure 5 illustrates the availability benefits of running
Spanner in multiple datacenters. It shows the results of
three experiments on throughput in the presence of dat-
acenter failure, all of which are overlaid onto the same
time scale. The test universe consisted of 5 zones Zi,
each of which had 25 spanservers. The test database was
sharded into 1250 Paxos groups, and 100 test clients con-
stantly issued non-snapshot reads at an aggregrate rate
of 50K reads/second. All of the leaders were explic-
itly placed in Z1. Five seconds into each test, all of
the servers in one zone were killed: non-leader kills Z2;
leader-hard kills Z1; leader-soft kills Z1, but it gives no-
tifications to all of the servers that they should handoff
leadership first.

Killing Z2 has no effect on read throughput. Killing
Z1 while giving the leaders time to handoff leadership to

0 5 10 15 20

Time in seconds

200K

400K

600K

800K

1M

1.2M

1.4M

C
u

m
u

la
ti

v
e

re
a
d

s
co

m
p

le
te

d

non-leader

leader-soft

leader-hard

Figure 5: Effect of killing servers on throughput.

a different zone has a minor effect: the throughput drop
is not visible in the graph, but is around 3-4%. On the
other hand, killing Z1 with no warning has a severe ef-
fect: the rate of completion drops almost to 0. As leaders
get re-elected, though, the throughput of the system rises
to approximately 100K reads/second because of two ar-
tifacts of our experiment: there is extra capacity in the
system, and operations are queued while the leader is un-
available. As a result, the throughput of the system rises
before leveling off again at its steady-state rate.

We can also see the effect of the fact that Paxos leader
leases are set to 10 seconds. When we kill the zone,
the leader-lease expiration times for the groups should
be evenly distributed over the next 10 seconds. Soon af-
ter each lease from a dead leader expires, a new leader is
elected. Approximately 10 seconds after the kill time, all
of the groups have leaders and throughput has recovered.
Shorter lease times would reduce the effect of server
deaths on availability, but would require greater amounts
of lease-renewal network traffic. We are in the process of
designing and implementing a mechanism that will cause
slaves to release Paxos leader leases upon leader failure.

5.3 TrueTime

Two questions must be answered with respect to True-
Time: is ✏ truly a bound on clock uncertainty, and how
bad does ✏ get? For the former, the most serious prob-
lem would be if a local clock’s drift were greater than
200us/sec: that would break assumptions made by True-
Time. Our machine statistics show that bad CPUs are 6
times more likely than bad clocks. That is, clock issues
are extremely infrequent, relative to much more serious
hardware problems. As a result, we believe that True-
Time’s implementation is as trustworthy as any other
piece of software upon which Spanner depends.

Figure 6 presents TrueTime data taken at several thou-
sand spanserver machines across datacenters up to 2200

Published in the Proceedings of OSDI 2012 10

Two-Phase Commit Scalability

27

[Corbett et al., 2012]
D. Koop, CSCI 680/490, Spring 2022

Mar 29 Mar 30 Mar 31 Apr 1

Date

2

4

6

8

10
E

p
si

lo
n

 (
m

s)

99.9
99
90

6AM 8AM 10AM 12PM

Date (April 13)

1

2

3

4

5

6

Figure 6: Distribution of TrueTime ✏ values, sampled right
after timeslave daemon polls the time masters. 90th, 99th, and
99.9th percentiles are graphed.

km apart. It plots the 90th, 99th, and 99.9th percentiles
of ✏, sampled at timeslave daemons immediately after
polling the time masters. This sampling elides the saw-
tooth in ✏ due to local-clock uncertainty, and therefore
measures time-master uncertainty (which is generally 0)
plus communication delay to the time masters.

The data shows that these two factors in determining
the base value of ✏ are generally not a problem. How-
ever, there can be significant tail-latency issues that cause
higher values of ✏. The reduction in tail latencies begin-
ning on March 30 were due to networking improvements
that reduced transient network-link congestion. The in-
crease in ✏ on April 13, approximately one hour in dura-
tion, resulted from the shutdown of 2 time masters at a
datacenter for routine maintenance. We continue to in-
vestigate and remove causes of TrueTime spikes.

5.4 F1

Spanner started being experimentally evaluated under
production workloads in early 2011, as part of a rewrite
of Google’s advertising backend called F1 [35]. This
backend was originally based on a MySQL database that
was manually sharded many ways. The uncompressed
dataset is tens of terabytes, which is small compared to
many NoSQL instances, but was large enough to cause
difficulties with sharded MySQL. The MySQL sharding
scheme assigned each customer and all related data to a
fixed shard. This layout enabled the use of indexes and
complex query processing on a per-customer basis, but
required some knowledge of the sharding in application
business logic. Resharding this revenue-critical database
as it grew in the number of customers and their data was
extremely costly. The last resharding took over two years
of intense effort, and involved coordination and testing
across dozens of teams to minimize risk. This operation
was too complex to do regularly: as a result, the team had
to limit growth on the MySQL database by storing some

fragments # directories
1 >100M

2–4 341
5–9 5336

10–14 232
15–99 34

100–500 7

Table 5: Distribution of directory-fragment counts in F1.

data in external Bigtables, which compromised transac-
tional behavior and the ability to query across all data.

The F1 team chose to use Spanner for several rea-
sons. First, Spanner removes the need to manually re-
shard. Second, Spanner provides synchronous replica-
tion and automatic failover. With MySQL master-slave
replication, failover was difficult, and risked data loss
and downtime. Third, F1 requires strong transactional
semantics, which made using other NoSQL systems im-
practical. Application semantics requires transactions
across arbitrary data, and consistent reads. The F1 team
also needed secondary indexes on their data (since Span-
ner does not yet provide automatic support for secondary
indexes), and was able to implement their own consistent
global indexes using Spanner transactions.

All application writes are now by default sent through
F1 to Spanner, instead of the MySQL-based application
stack. F1 has 2 replicas on the west coast of the US, and
3 on the east coast. This choice of replica sites was made
to cope with outages due to potential major natural disas-
ters, and also the choice of their frontend sites. Anecdo-
tally, Spanner’s automatic failover has been nearly invisi-
ble to them. Although there have been unplanned cluster
failures in the last few months, the most that the F1 team
has had to do is update their database’s schema to tell
Spanner where to preferentially place Paxos leaders, so
as to keep them close to where their frontends moved.

Spanner’s timestamp semantics made it efficient for
F1 to maintain in-memory data structures computed from
the database state. F1 maintains a logical history log of
all changes, which is written into Spanner itself as part
of every transaction. F1 takes full snapshots of data at a
timestamp to initialize its data structures, and then reads
incremental changes to update them.

Table 5 illustrates the distribution of the number of
fragments per directory in F1. Each directory typically
corresponds to a customer in the application stack above
F1. The vast majority of directories (and therefore cus-
tomers) consist of only 1 fragment, which means that
reads and writes to those customers’ data are guaranteed
to occur on only a single server. The directories with
more than 100 fragments are all tables that contain F1
secondary indexes: writes to more than a few fragments

Published in the Proceedings of OSDI 2012 11

Distribution of TrueTime Epsilons

28

[Corbett et al., 2012]
D. Koop, CSCI 680/490, Spring 2022

F1: A Distributed SQL Database That Scales

J. Shute, R. Vingralek, B. Samwel, B. Handy, C. Whipkey,
E. Rollins, M. Oancea, K. Littlefield, D. Menestrina, S. Ellner,
J. Cieslewicz, I. Rae, T. Stancescu, and H. Apte

D. Koop, CSCI 680/490, Spring 2022

F1: OLTP and OLAP Together
• Distributed data storage: data is not stored at one central location
• Need to keep data and schemas in sync
• Hierarchical schemas keep data that is likely to be accessed at the same

time together
• Optimistic Transactions: Long reads that keep track of timestamps and don't

lock the database until the write happens
• Change History: Keep track of history with database, also helps with caching
• DIY Object-Relational Mapping: don't automatically join or implicitly traverse

relationships
• Protocol buffers as a way to store application data without translation +

support for queries

30D. Koop, CSCI 680/490, Spring 2022

+LHUDUFKLFDO�6FKHPD
([SOLFLW�WDEOH�KLHUDUFKLHV���([DPSOH�
Ɣ &XVWRPHU��URRW�WDEOH���3.��&XVWRPHU,G�
Ɣ &DPSDLJQ��FKLOG���3.��&XVWRPHU,G��&DPSDLJQ,G�
Ɣ $G*URXS��FKLOG�����3.��&XVWRPHU,G��&DPSDLJQ,G��$G*URXS,G�
�
�

�

�
�
�

&XVWRPHU����
&DPSDLJQ������
$G*URXS���������
$G*URXS���������
&DPSDLJQ������
$G*URXS���������
&XVWRPHU����
&DPSDLJQ������
$G*URXS���������

�

��� ���

���������������

�

���

�����

6WRUDJH�/D\RXW
�

�

5RZV�DQG�3.V
�

�

Hierarchical Schema

31

[Shute et al., 2012]
D. Koop, CSCI 680/490, Spring 2022

&OXVWHUHG�6WRUDJH

Ɣ &KLOG�URZV�XQGHU�RQH�URRW�URZ�IRUP�D�FOXVWHU
Ɣ &OXVWHU�VWRUHG�RQ�RQH�PDFKLQH��XQOHVV�KXJH�
Ɣ 7UDQVDFWLRQV�ZLWKLQ�RQH�FOXVWHU�DUH�PRVW�HIILFLHQW
Ɣ 9HU\�HIILFLHQW�MRLQV�LQVLGH�FOXVWHUV��FDQ�PHUJH�ZLWK�QR�VRUWLQJ�
�

�
&XVWRPHU����
&DPSDLJQ������
$G*URXS���������
$G*URXS���������
&DPSDLJQ������
$G*URXS���������
&XVWRPHU����
&DPSDLJQ������
$G*URXS���������

�

��� ���

���������������

�

���

�����

6WRUDJH�/D\RXW
�

�

5RZV�DQG�3.V
�

�

Clustered Storage

32

[Shute et al., 2012]
D. Koop, CSCI 680/490, Spring 2022

F1 Notes
• Schema changes: allow two different schemas
• Transaction types: Snapshot, Pessimistic, Optimistic
• Change History and application to caching
• Disk latency or network latency?

33D. Koop, CSCI 680/490, Spring 2022

34

Discussion

D. Koop, CSCI 680/490, Spring 2022

Google Cloud Spanner
• https://cloud.google.com/spanner/
• Features:
- Global Scale: thousands of nodes across regions / data centers
- Fully Managed: replication and maintenance are automatic
- Transactional Consistency: global transaction consistency
- Relational Support: Schemas, ACID Transactions, SQL Queries
- Security
- Highly Available

35D. Koop, CSCI 680/490, Spring 2022

https://cloud.google.com/spanner/

Cloud Spanner: The best of the relational and NoSQL worlds

CLOUD SPANNER TRADITIONAL RELATIONAL TRADITIONAL NON-RELATIONAL

Schema ! Yes ! Yes " No

SQL ! Yes ! Yes " No

Consistency ! Strong ! Strong " Eventual

Availability ! High " Failover ! High

Scalability ! Horizontal " Vertical ! Horizontal

Replication ! Automatic # ConBgurable # ConBgurable

businesses

Building consistent systems for transactions and inventory management in the

Bnancial services and retail industries

Supporting high-volume systems that require low latency and high throughput

in the advertising and media industries

Rely on Strong Consistency, Scale, and Performance

Google Cloud Spanner: NewSQL

36

[https://cloud.google.com/spanner/]
D. Koop, CSCI 680/490, Spring 2022

https://cloud.google.com/spanner/

write the code to handle outage exceptions: if they haven’t written that code, then they are assuming high
availability. Based on a large number of internal users of Spanner, we know that they assume Spanner is
highly available.

#�UGEQPF�TGƒPGOGPV�KU�VJCV�VJGTG�CTG�OCP[�QVJGT�UQWTEGU�QH�QWVCIGU��UQOG�QH�YJKEJ�VCMG�QWV�VJG�WUGTU�KP�
addition to Spanner (“fate sharing”). We actually care about the differential availability, in which the user is
up (and making a request) to notice that Spanner is down. This number is strictly higher (more available)
than Spanner’s actual availability — that is, you have to hear the tree fall to count it as a problem.

A third issue is whether or not outages are due to partitions. If the primary causes of Spanner outages
are not partitions, then CA is in some sense more accurate. For example, any database cannot provide
availability if all of its replicas are offline, which has nothing to do with partitions. Such a multi-replica
QWVCIG�UJQWNF�DG�XGT[�TCTG��DWV�KH�RCTVKVKQPU�CTG�UKIPKƒECPVN[�OQTG�TCTG��VJGP�[QW�ECP�GHHGEVKXGN[�KIPQTG�
partitions as a factor in availability. For Spanner, this means that when there is an availability outage, it is
not in practice due to a partition, but rather some other set of multiple faults (as no single fault will forfeit
availability).

Availability data
Before we get to Spanner, it is worth taking a look at the evolution of Chubby, another wide-area system
that provides both consistency and availability. The original Chubby paper [Bur06] mentioned nine
outages of 30 seconds or more in 700 days, and six of those were network related (as discussed in
[BK14]). This corresponds to an availability worse than 5 9s (at best), to a more realistic 4 9s if we assume
an average of 10 minutes per outage, and potentially even 3 9s at hours per outage.

For locking and consistent read/write operations, modern geographically distributed Chubby cells
provide an average availability of 99.99958% (for 30s+ outages) due to various network, architectural
and operational improvements. Starting in 2009, due to “excess” availability, Chubby’s Site Reliability
Engineers (SREs) started forcing periodic outages to ensure we continue to understand dependencies
and the impact of Chubby failures.

Internally, Spanner provides a similar level of reliability to Chubby; that is, better than 5 9s. The Cloud
version has the same foundation, but adds some new pieces, so it may be a little lower in practice
for a while.

2

7.6%
10.9%

12.1%

13.3% 52.5%

3.7%

52.5% User

7.6% Network

10.9% Other

12.1% Cluster

13.3% Bug

3.7% Operator

Causes of Spanner Availability Incidents

37

[E. Brewer, 2017]
D. Koop, CSCI 680/490, Spring 2022

Causes of Spanner Incidents
• User: overload or misconfiguration (specific to one user)
• Cluster: non-network problems, e.g. servers and power
• Operator: misconfiguration by people
• Bug: software error that caused some problem
• Other: most are one-offs
• Network: individual data centers/regions cut off and under-provisioned

bandwidth, uni-directional traffic

38

[E. Brewer, 2017]
D. Koop, CSCI 680/490, Spring 2022

Spanner as "Effectively CA"
• Criteria for being "effectively CA"
1. At a minimum it must have very high availability in practice (so that users

can ignore exceptions), and
2. As this is about partitions it should also have a low fraction of those

outages due to partitions.
• Spanner meets both of these criteria
• Spanner relies on Google's network (private links between data centers)
• TrueTime helps create consistent snapshots, sometimes have a commit

wait

39

[E. Brewer, 2017]
D. Koop, CSCI 680/490, Spring 2022

https://research.google/pubs/pub45855.pdf

More Recent Tests: Spanner vs. MySQL

40

[P. Bakkum and D. Cepeda, 2017]
D. Koop, CSCI 680/490, Spring 2022

Frequency Query

1 0.30% INSERT INTO `terms` (`term`, `rank`, `set_id`, `last_modified`) VALUES (?,?,?,?),(?,?,?,?)

2 0.25% INSERT INTO `terms` (`term`, `rank`, `set_id`, `last_modified`, `definition`) VALUES (?,?,?,?,?),(?,?,?,?,?),(?,?,?,?,?),...

3 4.22% INSERT INTO `terms` (`term`,`rank`,`set_id`,`last_modified`) VALUES (?,?,?,?)

4 1.88% INSERT INTO `terms` (`term`,`rank`,`set_id`,`last_modified`,`definition`) VALUES (?,?,?,?,?)

5 3.28% SELECT * FROM `terms` WHERE (`is_deleted` = 0) AND (`set_id` IN (??)) AND (`rank` IN (0,1,2,3)) AND (`term` != '')

6 14.13% SELECT `set_id`, COUNT(*) FROM `terms` WHERE (`is_deleted` = 0) AND (`set_id` = ?) GROUP BY `set_id`

7 12.56% SELECT * FROM `terms` WHERE (`id` = ?)

8 0.49% SELECT * FROM `terms` WHERE (`id` IN (??) AND `set_id` IN (??))

9 4.11% SELECT `id`, `set_id` FROM `terms` WHERE (`set_id` = ?) LIMIT 20000

10 0.43% SELECT `id`, `set_id` FROM `terms` WHERE (`set_id` IN (??)) LIMIT 20000

11 0.59% SELECT * FROM `terms` WHERE (`id` IN (??))

12 36.76% SELECT * FROM `terms` WHERE (`set_id` = ?)

13 0.61% SELECT * FROM `terms` WHERE (`set_id` IN (??))

14 6.10% UPDATE `terms` SET `definition`=?, `last_modified`=? WHERE `id`=? AND `set_id`=?

15 0.33% UPDATE `terms` SET `is_deleted`=?, `last_modified`=? WHERE `id` IN (??) AND `set_id`=??

16 12.56% UPDATE `terms` SET `rank`=?, `last_modified`=? WHERE `id`=? AND `set_id`=?

17 1.06% UPDATE `terms` SET `word`=?, `last_modified`=? WHERE `id`=? AND `set_id`=?

18 0.32% UPDATE `terms` SET `definition`=?, `word`=?, `last_modified`=? WHERE `id`=? AND `set_id`=?

https://quizlet.com/blog/quizlet-cloud-spanner

Latency: Spanner vs. MySQL

41

[P. Bakkum and D. Cepeda, 2017]
D. Koop, CSCI 680/490, Spring 2022

https://quizlet.com/blog/quizlet-cloud-spanner

Latency: Spanner vs. MySQL

42

[P. Bakkum and D. Cepeda, 2017]
D. Koop, CSCI 680/490, Spring 2022

https://quizlet.com/blog/quizlet-cloud-spanner

Throughput: Spanner vs. MySQL

43

[P. Bakkum and D. Cepeda, 2017]
D. Koop, CSCI 680/490, Spring 2022

https://quizlet.com/blog/quizlet-cloud-spanner

Max Throughput vs. Nodes

44

[P. Bakkum and D. Cepeda, 2017]
D. Koop, CSCI 680/490, Spring 2022

https://quizlet.com/blog/quizlet-cloud-spanner

Spanner: Latency vs. Nodes

45

[P. Bakkum and D. Cepeda, 2017]
D. Koop, CSCI 680/490, Spring 2022

https://quizlet.com/blog/quizlet-cloud-spanner

