Advanced Data Management (CSCI 680/490)

Scalable Databases

Dr. David Koop

Studying Data Availability

- Who mandates data sharing, and what is the impact?
 - Government
 - Funding agencies
 - Institutions
 - Journals
- How does the age of a publication/data item affect availability?
 - If not curated, how to locate?
 - What factors influence this?

D. Koop, CSCI 680/490, Spring 2022

2

Data Availability by Journal Policy

D. Koop, CSCI 680/490, Spring 2022

3

Data Availability by Year

Year	No Working E-Mail	No Response to E-Mail	Response Did Not Give Status of Data	Data Lost	Data Exist, Unwilling to Share	Data Received	Data Extant (Unwilling to Share + Received)	Number of Papers
1991	9 (35%)	9 (35%)	2 (8%)	4 (15%)	1 (4%)	1 (4%)	2 (8%)	26
1993	14 (39%)	11 (31%)	3 (8%)	7 (19%)	0 (0%)	1 (3%)	1 (3%)	36
1995	11 (31%)	9 (26%)	0 (0%)	7 (20%)	2 (6%)	6 (17%)	8 (23%)	35
1997	11 (37%)	9 (30%)	1 (3%)	2 (7%)	3 (10%)	4 (13%)	7 (23%)	30
1999	19 (48%)	13 (32%)	1 (2%)	1 (2%)	0 (0%)	6 (15%)	6 (15%)	40
2001	13 (30%)	15 (35%)	3 (7%)	4 (9%)	0 (0%)	8 (19%)	8 (19%)	43
2003	9 (20%)	20 (43%)	4 (9%)	2 (4%)	0 (0%)	11 (24%)	11 (24%)	46
2005	11 (24%)	14 (31%)	6 (13%)	1 (2%)	0 (0%)	13 (29%)	13 (29%)	45
2007	12 (18%)	31 (47%)	2 (3%)	4 (6%)	1 (2%)	16 (24%)	17 (26%)	66
2009	9 (13%)	34 (49%)	3 (4%)	5 (7%)	6 (9%)	12 (17%)	18 (26%)	69
2011	13 (16%)	29 (36%)	8 (10%)	0 (0%)	7 (9%)	23 (29%)	30 (38%)	80
Totals	131 (25%)	194 (38%)	33 (6%)	37 (7%)	20 (4%)	101 (19%)	121 (23%)	516

Data are displayed as n (%); the percentages are calculated by rows.

Why Share Data? Increased Citations

Articles with Data Articles with Data Shared (n=41)

Northern Illinois University

What Factors Impact Sharing?

Why not data sharing? (self-reported)

want student or jr faculty to publish more they themselves want to publish more

sharing is too much effort cost industrial sponsor confidentiality commercial value of results

D. Koop, CSCI 680/490, Spring 2022

Joint Declaration of Data Citation Principles

- Precursor to FAIR
- Importance: data is legitimate, citations should have importance
- Credit and Attribution: scholarly credit to all contributors
- Evidence: when data is relied on, it should be cited
- Unique Identification: machine-actionable, globally unique, and widely used
- Access: data, metadata, etc. is findable and usable
- Persistence: identifiers, metadata persist regardless of whether data does
- Specificity and Verifiability: provenance, fixity, granularity
- Interoperability and Flexibility: allow for variability across communities

Generic Data Citation

- Archive, version or subset
- Authors, repository \rightarrow Principle 2
- Global Persistent Identifier: Principle 4 and 6

Author(s), Year, Dataset Title, Global Persistent Identifier, Data Repository or

• Year and title \rightarrow not related to principle but consistent with other citations

Computational Data Citation

- Given a database D and a query Q, generate an appropriate citation. Automatic Citation requires the answers to two questions:
- - Does the citation depend on both Q and D or just on the data Q(D)extracted by Q from D?
 - If we have appropriate citations for some queries, can we use them to construct citations for other queries?
- If the data is an image or numbers, cannot expect the citation to live in that data
- If the query returns an empty dataset, we still may wish to cite that People know how to cite certain parts of a dataset but not all...

[Buneman et al., 2016]

Views and Citable Units

- Views describe "areas of responsibility" for parts of a database
- Use views to create "citable units"
- Determine which view V answers a particular query Q and generate a citation for the view
- What happens if two different views can answer the same query?

[Buneman et al., 2016]

11

Citable Views and Partial Citations

D. Koop, CSCI 680/490, Spring 2022

12

Next Class's Reading Response

- <u>Spanner: Google's Globally-Distributed Database</u>
- Reading Response for Wednesday:
 - Focus on main concepts in the paper
 - Submit to Blackboard

<u>Assignment 4</u>

- Work on Data Integration and Data Fusion
- Integrate artist datasets from different institutions (The Met, The Tate, Smithsonian, Carnegie Museum of Art)
 - Integrate information about names, places, nationality, etc.
- Record Matching:
 - Which artists are the same?
 - Which nationalities are the same? (British/English)
- Data Fusion:
 - Year of birth/death differences
 - Nationality differences

Scalable Database Systems

Relational Database Architecture

D. Koop, CSCI 680/490, Spring 2022

[Hellerstein et al., <u>Architecture of a Database System]</u>

How to Scale Relational Databases?

Parallel DB Architecture: Shared Disk

D. Koop, CSCI 680/490, Spring 2022

[Hellerstein et al., Architecture of a Database System]

Parallel DB Architecture: Shared Disk

D. Koop, CSCI 680/490, Spring 2022

[Hellerstein et al., Architecture of a Database System]

Parallel DB Architecture: Shared Memory

D. Koop, CSCI 680/490, Spring 2022

[Hellerstein et al., Architecture of a Database System]

19

TrafficDB: Shared-Memory Data Store

- Traffic-aware route planning
- Want up-to-date data for all
- Thousands of requests per second
 - High-Frequency Reads
 - Low-Frequency Writes
- "Data must be stored in a region of RAM that can be shared and efficiently accessed by *several* different application processes"

Northern Illinois University

Parallel DB Architecture: Shared Nothing

D. Koop, CSCI 680/490, Spring 2022

[Hellerstein et al., Architecture of a Database System]

Sharding

Relational Databases: One size fits all?

- Lots of work goes into relational database development:
 - B-trees
 - Cost-based query optimizers
 - ACID (Atomicity, Consistency, Isolation, Durability)
- Vendors largely stuck with this model from the 1980s through 2000s Having different systems leads to business problems:
- - cost problem
 - compatibility problem
 - sales problem
 - marketing problem

[Stonebraker and Cetinetmel, 2005]

ACID Transactions

- Make sure that transactions are processed reliably.
- Atomicity: leave the database as is if some part of the transaction fails (e.g. don't add/remove only part of the data) using rollbacks
- Consistency: database moves from one valid state to another
- Isolation: concurrent execution matches serial execution
- Durability: endure hardware failures, make sure changes hit disk

Stonebraker: The End of an Architectural Era

- "RDBMSs were designed for the business data processing market, which is their sweet spot"
- "They can be beaten handly in most any other market of significant enough size to warrant the investment in a specialized engine"
- Changes in markets (science), necessary features (scalability), and technology (amount of memory)
- RDBMS Overhead: Logging, Latching, and Locking
- Relational model is not necessarily the answer
- SQL is not necessarily the answer

Row Stores

by	movie_name
	The Black Hole
itty	Blade Runner
ur	Jurassic Park
	Star Trek: TNG
achine	Forbidden Planet
	Terminator 2: Judgment Day
	[J. Swanhart, Introduction to Column

OLTP vs. OLAP

- data entry and retrieval transactions
- OLTP Examples:
 - Add customer's shopping cart to the database of orders
 - Find me all information about John Hammond's death
- OLTP is focused on the day-to-day operations while Online Analytical Processing (OLAP) is focused on analyzing that data for trends, etc.
- OLAP Examples:

 - Find the average amount spent by each customer - Find which year had the most movies with scientists dying

Online Transactional Processing (OLTP) often used in business applications,

Inefficiency in Row Stores for OLAP

select sum(metric) as the_sum from fact

1. Storage engine gets a whole row from the table

D. Koop, CSCI 680/490, Spring 2022

2. SQL interface extracts only requested portion, adds it to "the sum"

[J. Swanhart, Introduction to Column Stores]

Column Stores

Each column has a file or segment on disk

D. Koop, CSCI 680/490, Spring 2022

	Person	Genre
oubtfire	Robin Williams	Comedy
	Roy Scheider	Horror
y	Jeff Goldblum	Horror
Magnolias	Dolly Parton	Drama
irdcage	Nathan Lane	Comedy
rokovitch	Julia Roberts	Drama

[J. Swanhart, Introduction to Column Stores]

Horizontal Partitioning vs. Vertical Partitioning

Original Table

CUSTOMER ID	FIRST NAME	LAST NAME	FAVORITE COLOR
1	TAEKO	OHNUKI	BLUE
2	O.V.	WRIGHT	GREEN
3	SELDA	BAĞCAN	PURPLE
4	JIM	PEPPER	AUBERGINE

Horizontal Partitioning vs. Vertical Partitioning

Vertical Partitions

VP1

VP2

CUSTOMER ID	FIRST NAME	LAST NAME	CUSTOMER ID	FAVORITE COLOR
1	TAEKO	OHNUKI	1	BLUE
2	O.V .	WRIGHT	2	GREEN
3	SELDA	BAĞCAN	3	PURPLE
4	JIM	PEPPER	4	AUBERGINE

Original Table				
CUSTOMER ID	FIRST NAME	LAST NAME	FAVORITE COLOR	
1	TAEKO	OHNUKI	BLUE	
2	O.V.	WRIGHT	GREEN	
3	SELDA	BAĞCAN	PURPLE	
4	JIM	PEPPER	AUBERGINE	

D. Koop, CSCI 680/490, Spring 2022

Horizontal Partitions

HP1

CUSTOMER ID	FIRST NAME	LAST NAME	FAVORITE COLOR
1	TAEKO	OHNUKI	BLUE
2	O.V .	WRIGHT	GREEN

HP2

CUSTOMER ID	FIRST NAME	LAST NAME	FAVORITE COLOR
3	SELDA	BAĞCAN	PURPLE
4	JIM	PEPPER	AUBERGINE

Problems with Relational Databases

	1
ID: 100	

Customer: Ann

Line Items:

0321293533	2	\$48	\$96
0321601912	1	\$39	\$39
0131495054	1	\$51	\$51

Payment Details:

Card: Amex **CC Number:** 12345 Expiry: 04/2001

NoSQL: Key-Value Databases

- Always use primary-key access
- Operations:
 - Get/put value for key
 - Delete key
- Examples
 - Memcached
 - Amazon DynamoDB
 - Project Voldemort
 - Couchbase

>	<key=customerid></key=customerid>	
	<value=object></value=object>	
	Customer	
	BillingAddress	
	Orders	
	Order	
	ShippingAddress	
	OrderPayment	
	OrderItem Product	

NoSQL: Document Databases

- Documents are the main entity
 - Self-describing
 - Hierarchical
 - Do not have to be the same
- Could be XML, JSON, etc.
- Key-value stores where values are "examinable"
- Can have query language and indices overlaid
- Examples: MongoDB, CouchDB, Terrastore

<Key=CustomerID>

```
"customerid": "fc986e48ca6"
"customer":
"firstname": "Pramod",
"lastname": "Sadalage",
"company": "ThoughtWorks",
"likes": [ "Biking","Photography" ]
"billingaddress":
{ "state": "AK",
  "city": "DILLINGHAM",
  "type": "R"
```


NoSQL: Column Stores

- Instead of having rows grouped/sharded, we group columns
- ... or families of columns
- Put similar columns together
- Examples: Cassandra, HBase

NoSQL: Graph Databases

- Focus on entities and relationships
- Edges may have properties
- Relational databases required a set traversal
- Traversals in Graph DBs are faster
- Examples:
 - Neo4j
 - Pregel

Distributing Data

- Aggregate-oriented databases
- Sharding (horizontal partitioning): Sharding distributes different data across multiple servers, so each server acts as the single source for a subset of data
- Replication: Replication copies data across multiple servers, so each bit of data can be found in multiple places. Replication comes in two forms,
 - Source-replica replication makes one node the authoritative copy that handles writes, replica synchronizes with the source and may handle reads. - Peer-to-peer replication allows writes to any node; the nodes coordinate to synchronize their copies of the data.

CAP Theorem

CAP Theorem

- Consistency: every read would get you the most recent write Availability: every node (if not failed) always executes queries Partition tolerance: system continues to work even if nodes are down • Theorem (Brewer): It is impossible for a distributed data store to simultaneously provide more than two of Consistency, Availability, and

- Partition Tolerance

Think about RDBMS Transactions...

Cassandra: A Decentralized Structured Storage System

A. Lakshman and P. Malik

What is Cassandra?

- Fast Distributed (Column Family NoSQL) Database
 - High availability
 - Linear Scalability
 - High Performance
- Fault tolerant on Commodity Hardware
- Multi-Data Center Support
- Easy to operate
- Proven: CERN, Netflix, eBay, GitHub, Instagram, Reddit

Cassandra and CAP

Cassandra: Ring for High Availability

Slides: Introduction to Cassandra

Robert Stupp

Next Class's Reading Response

- <u>Spanner: Google's Globally-Distributed Database</u>
- Reading Response for Wednesday:
 - Focus on main concepts in the paper
 - Submit to Blackboard

