Advanced Data Management (CSCI 490/680)

Data Transformation

Dr. David Koop

Regular Expressions

- Finding matches:
 - date = 'this was last year: 12/31/2020 a/b/c'
 - match = re.match(r'\d+/\d+/\d+',date)
 - match = re.search(r'\d+/\d+/\d+',date)
 - results = re.findall(r'\d+/\d+/\d+',date)
- Capture:
 - match = re.search(r'(d+)/(d+)/(d+), date)
 - match.groups() # ('12', '31', '2020')
- Substitution:
 - result = re.sub(r'($d+)/(d+)/(d+)/(d+)',r'^3-1-2',date$)
 - # 'this was last year: 2020-12-31 a/b/c'

D. Koop, CSCI 680/490, Spring 2022

: 12/31/2020 a/b/c /\d+',date) +/\d+',date) /\d+/\d+',date)

(\d+)/(\d+)',date) 1', '2020')

d+)/(\d+)',r'\3-\1-\2',date) 0-12-31 a/b/c'

2

Foofah's Goal

- Focus on data transformation
- Data transformation tools suffer usability issues:
 - High Skill: familiarity with operations and the effect or their order
 - High Effort: user effort increases as the program becomes longer
- Repetitive and tedious
- Goal: minimize a user's effort and reduce the required background knowledge for data transformation tasks

Getting Lost in Transformations

Bureau of I.A.	
Regional Director	Numbers
Niles C.	Tel: (800)645-8397
	Fax: (907)586-7252
Jean H.	Tel: (918)781-4600
	Fax: (918)781-4604
Frank K.	Tel: $(615)564-6500$
	Fax: (615)564-6701

Intermediate Table

D. Koop, CSCI 680/490, Spring 2022

	Tel	Fax
Niles C.	(800)645-8397	
		(615)564-6701
Jean H.	(918)781-4600	
Frank K.	(615)564-6500	

Problem Table

		Tel	Fax
•	Niles C.	(800)645-8397	(907)586-7252
	Jean H.	(918)781-4600	(918)781-4604
l+	Frank K.	(615)564-6500	(615)564-6701

Desired Solution

4

Foofah Design: Programming by Example

D. Koop, CSCI 680/490, Spring 2022

5

Foofah Solution

Table Edit Distance Batch

8 Transform operations

D. Koop, CSCI 680/490, Spring 2022

2 "batched" Transform operations

User Study Results

WRANGLER

Test	Complex	$\geq 4 \text{ Ops}$	Time	Mouse	Key	Time vs Wrangler	Mouse	Key
PW1	No	No	104.2	17.8	11.6	49.4 > 52.6%	20.8	22.6
PW3 (modified)	No	No	96.4	28.8	26.6	$38.6 \ 60.0\%$	14.2	23.6
ProgFromEx13	Yes	No	263.6	59.0	16.2	$145.8 \searrow 44.7\%$	43.6	78.4
PW5	Yes	No	242.0	52.0	15.2	58.8 > 75.7%	31.4	32.4
ProgFromEx17	No	Yes	72.4	18.8	11.6	48.6 > 32.9%	18.2	15.2
PW7	No	Yes	141.0	41.8	12.2	44.4 > 68.5%	19.6	35.8
Proactive1	Yes	Yes	324.2	60.0	13.8	$104.2 \ \mathbf{67.9\%}$	41.4	57.0
Wrangler3	Yes	Yes	590.6	133.2	29.6	137.0 > 76.8%	58.6	99.8

D. Koop, CSCI 680/490, Spring 2022

Foofah

TDE: Transform Data by Example

- Row-to-row translation only
- Search System, GitHub, and StackOverflow for functions
- Given dataset with examples
 - Use L1 from library
 - Compose synthesized programs (L2)
 - Rank best transformations

TDE: Transform Data by Example

С	D
Transaction Date	output
Wed, 12 Jan 2011	2011-01-12-Wednesday
Thu, 15 Sep 2011	2011-09-15-Thursday
Mon, 17 Sep 2012	
2010-Nov-30 11:10:41	
2011-Jan-11 02:27:21	
2011-Jan-12	
2010-Dec-24	
9/22/2011	
7/11/2012	
2/12/2012	

С	D	Transform Data by Example
Transaction Date	output	≡
Wed, 12 Jan 2011	2011-01-12-Wednesday	Show Instr Get Transformations
Thu, 15 Sep 2011	2011-09-15-Thursday	
Mon, 17 Sep 2012	2012-09-17-Monday	System.DateTime Parse(System.String)
2010-Nov-30 11:10:41	2010-11-30-Tuesday	System.Convert ToDateTime(System.String)
2011-Jan-11 02:27:21	2011-01-11-Tuesday	
2011-Jan-12	2011-01-12-Wednesday	DateFormat.Program Parse(System.String)
2010-Dec-24	2010-12-24-Friday	
9/22/2011	2011-09-22-Thursday	
7/11/2012	2012-07-11-Wednesday	
2/12/2012	2012-02-12-Sunday	© Microsoft Privacy Terms Feedback

Trifacta Transform by Example

\bigcirc	Initial Sample		
₽°		₽2 - + - E∃ A -	-{} 品語語 4
	7IP address zin 🗸	nec region ~	nhone number
		noo region 🗸	phone_number
00			
(F)	5,920 Categories	7 Categories	8,303 Categories
	· 44121	midwest	236.926.9604
	95757	west	916.519.4122
	92703	west	714.633.4198
	· 07731	midatlantic	732.353.4861
	97756	northwest	541.727.8235
	97720	northwest	541.399.4842
	· 95219	west	209.488.5308
	99362	northwest	509.900.5176
	· 94019	west	650.258.9728
	· 12182	midatlantic	(518)490-2717
	· 37891	south	(423)556-4809
	· 34608	south	(352)918-4506
	· 31876	northest	(978)770-2626
	- 77055	southwest	(281)853-4137
	· 32839	south	(407)560-9042
	· 32151	northest	(339)529-8838
	· 93422	west	(805)795-9951
	· 19940	midatlantic	(302)336-3587
	· 29640	south	(864)490-1683
?	· 34758	south	(407)446-3631
	· 38583	south	(931)508-3588
A	 13 Columns 8,303 Rows 	7 Data Types	(931)306-3366

D. Koop, CSCI 680/490, Spring 2022

Q 注 グ Run Job <u>-</u>- Σ- 뷰- … ▣ •(1) 솅 랴· Details \times RBC start_date ••• 0 end_date start_date \sim BC Quality Valid 8303 100% 2,823 Categories Jun 2010 - Nov 2016 Mismatched 0% 0 2015/07/06 0% Missing 0 2013/12/09 012/09/03 Unique Values 2010/01/02 2013/09/08 2016/01/19 25 2014/12/26 2016/03/14 2016/10/01 21 Aug·13·2013 21 2016/01/25 2011/01/03 2015/08/10 19 2010/08/19 2015/02/10 19 Dec · 22 · 2015 Show more values... 2012/10/17 2013/10/14 Patterns Dec · 10 · 2013 6,589 {yyyy}/{mm}/{dd} 2015/09/14 2015/07/20 {month-abbrev} {dd} {yyyy} 1,714 2016/11/10 Show pattern details... ec·20·2015 1ar · 04 · 2014 Suggestions 2012/10/08 Delete columns 2013/07/18 2016/10/24 start_date

Donom

Trifacta Transform by Example

\bigcirc	Initial Sample		
₽°		₽2 - + - E∃ A -	-{} 品語語 4
	7IP address zin 🗸	nec region ~	nhone number
		noo region 🗸	phone_number
00			
(\mathbf{b})	5,920 Categories	7 Categories	8,303 Categories
	· 44121	midwest	236.926.9604
	95757	west	916.519.4122
	92703	west	714.633.4198
	· 07731	midatlantic	732.353.4861
	97756	northwest	541.727.8235
	97720	northwest	541.399.4842
	· 95219	west	209.488.5308
	99362	northwest	509.900.5176
	· 94019	west	650.258.9728
	· 12182	midatlantic	(518)490-2717
	· 37891	south	(423)556-4809
	· 34608	south	(352)918-4506
	· 31876	northest	(978)770-2626
	- 77055	southwest	(281)853-4137
	· 32839	south	(407)560-9042
	· 32151	northest	(339)529-8838
	· 93422	west	(805)795-9951
	· 19940	midatlantic	(302)336-3587
	· 29640	south	(864)490-1683
?	· 34758	south	(407)446-3631
	· 38583	south	(931)508-3588
A	 13 Columns 8,303 Rows 	7 Data Types	(931)306-3366

D. Koop, CSCI 680/490, Spring 2022

Q 注 グ Run Job <u>-</u>- Σ- 뷰- … ▣ •(1) 솅 랴· Details \times RBC start_date ••• 0 end_date start_date \sim BC Quality Valid 8303 100% 2,823 Categories Jun 2010 - Nov 2016 Mismatched 0% 0 2015/07/06 0% Missing 0 2013/12/09 012/09/03 Unique Values 2010/01/02 2013/09/08 2016/01/19 25 2014/12/26 2016/03/14 2016/10/01 21 Aug·13·2013 21 2016/01/25 2011/01/03 2015/08/10 19 2010/08/19 2015/02/10 19 Dec · 22 · 2015 Show more values... 2012/10/17 2013/10/14 Patterns Dec · 10 · 2013 6,589 {yyyy}/{mm}/{dd} 2015/09/14 2015/07/20 {month-abbrev} {dd} {yyyy} 1,714 2016/11/10 Show pattern details... ec·20·2015 1ar · 04 · 2014 Suggestions 2012/10/08 Delete columns 2013/07/18 2016/10/24 start_date

Donom

<u>Assignment 3</u>

- Same dataset as A1 and A2...
- ...but dealing with the full raw data now
- Want to clean and transform using Trifacta and pandas
 - Medium
 - Date cleanup
 - Tags expansion
 - [CSCI 680] Artist Data

Pandas Transformations

- Split: str.split
- Fold/Unfold: stack/unstack
- Merge, join, and concatenate documentation:
 - https://pandas.pydata.org/pandas-docs/stable/merging.html

mentation: s-docs/stable/merging.html

Tidy Data

- Dataset contain values: quantitative and categorical/qualitative
- Value is either:
 - variable: all values that measure the same underlying attribute
 - **observation**: all values measured on the same unit across attributes

Three Ways to Present the Same Data

	treatmenta	treatmentb					
John Smith		2					
Jane Doe	16	11					
Mary Johnson	3	1		- -	name	trt	result
				•	John Smith	\mathbf{a}	
	nitial Data				Jane Doe	a	16
				-	Mary Johnson	a	3
					John Smith	b	2
				ſ	Jane Doe	b	11
John Sr	nith Jane De	be Mary Jo	hnson	-	Mary Johnson	b	1
menta		16	3		Tidv Г)ata	

		aumenta t	reatmento				
John	Smith		2	-			
Jane I	Doe	16	11				
Mary	Johnson	3	1		name	trt	result
					John Smith	a	
	Initia	l Data			Jane Doe	a	16
					Mary Johnson	a	3
					John Smith	b	2
					Jane Doe	b	11
	John Smith	Jane Doe	Mary Joh	nson	Mary Johnson	b	1
treatmenta		16		3) - + -	
treatmentb	2	11		1	LIQY L	Jata	

Iranspose

D. Koop, CSCI 680/490, Spring 2022

Tidy Data Principles

- **Tidy Data**: Codd's 3rd Normal Form (Databases)
 - 1. Each variable forms a column
 - 2. Each observation forms a row
 - 3. Each type of observational unit forms a table (DataFrame)
- Other structures are messy data

Tidy Data

- Benefits:
 - Easy for analyst to extract variables
 - Works well for vectorized programming
- Organize variables by their role
 - Fixed variables: describe experimental design, known in advance - Measured variables: what is measured in study
- Variables also known as dimensions and measures

Messy Dataset Problems

- Column headers are values, not variable names
- Multiple variables are stored in one column
- Variables are stored in both rows and columns
- Multiple types of observational units are stored in the same table • A single observational unit is stored in multiple tables

Problem: Column Headers are Values

religion	<\$10k	\$10-20k	\$20-30k	\$30-40k	\$40-50k	\$50-75k		
Agnostic	27	34	60	81	76	137		
Atheist	12	27	37	52	35	70		
Buddhist	27	21	30	34	33	58		
Catholic	418	617	732	670	638	1116		
Don't know/refused	15	14	15	11	10	35		
Evangelical Prot	575	869	1064	982	881	1486		
Hindu	1	9	7	9	11	34		
Historically Black Prot	228	244	236	238	197	223		
Jehovah's Witness	20	27	24	24	21	30		
Jewish	19	19	25	25	30	95		

D. Koop, CSCI 680/490, Spring 2022

Income and Religion Paw Forum

Problem: Column Headers are Values

religion	<\$10k	\$10-20k	\$20-30k	\$30-40k	\$40-50k	50-75k
Agnostic	27	34	60	81	76	137
Atheist	12	27	37	52	35	70
Buddhist	27	21	30	34	33	58
Catholic	418	617	732	670	638	1116
Don't know/refused	15	14	15	11	10	35
Evangelical Prot	575	869	1064	982	881	1486
Hindu	1	9	7	9	11	34
Historically Black Prot	228	244	236	238	197	223
Jehovah's Witness	20	27	24	24	21	30
Jewish	19	19	25	25	30	95

D. Koop, CSCI 680/490, Spring 2022

Income and Religion, Pew Forum

Variables: religion, income, frequency

19

Solution: Melt Data

- Turn columns into rows
- One or more columns become rows under a new column (column)
- Values become a new column (value)
- After melt, data is **molten**
- AKA pivot_longer
- **Inverse** of pivot

D. Koop, CSCI 680/490, Spring 2022

row	a	b	С
Α	1	4	7
В	2	5	8
\mathbf{C}	3	6	9

(a) Raw data

row	column	value
Α	a	1
В	a	2
\mathbf{C}	a	3
А	b	4
В	b	5
\mathbf{C}	b	6
A	С	7
В	С	8
\mathbf{C}	С	9

(b) Molten data

Solution: Molten Data

religion	<\$10k	\$10-20k	\$20-30k	\$30-40k	\$40-50k	\$50-75k	religion	income	fre
Agnostic	27	34	60	81	76	137	Agnostic	<\$10k	
Atheist	12	27	37	52	35	70	Agnostic	\$10-20k	
Buddhist	27	21	30	34	33	58	Agnostic	\$20-30k	6
Catholic	418	617	732	670	638	1116	Agnostic	\$30-40k	8
Don't know/refused	15	14	15	11	10	35	Agnostic	\$40-50k	
Evangelical Prot	575	869	1064	982	881	1486	Agnostic	50-75k	13
Hindu	1	9	7	9	11	34	Agnostic	\$75-100k	12
Historically Black Prot	228	244	236	238	197	223	Agnostic	\$100-150k	1(
Jehovah's Witness	20	27	24	24	21	30	Agnostic	>150k	8
Jewish	19	19	25	25	30	95	Agnostic	Don't know/refused	Q

Original

D. Koop, CSCI 680/490, Spring 2022

Molten (first 10 rows)

Melting: Billboard Top Hits

year	artist	track	time	date.entered	wk1	wk2	wk3
2000	2 Pac	Baby Don't Cry	4:22	2000-02-26	87	82	72
2000	2Ge+her	The Hardest Part Of	3:15	2000-09-02	91	87	92
2000	3 Doors Down	Kryptonite	3:53	2000-04-08	81	70	68
2000	98^0	Give Me Just One Nig	3:24	2000-08-19	51	39	34
2000	A*Teens	Dancing Queen	3:44	2000-07-08	97	97	96
2000	Aaliyah	I Don't Wanna	4:15	2000-01-29	84	62	51
2000	Aaliyah	Try Again	4:03	2000-03-18	59	53	38
2000	Adams, Yolanda	Open My Heart	5:30	2000-08-26	76	76	74

year	artist	time	track	date	week	rank
2000	2 Pac	4:22	Baby Don't Cry	2000-02-26	1	87
2000	2 Pac	4:22	Baby Don't Cry	2000-03-04	2	82
2000	2 Pac	4:22	Baby Don't Cry	2000-03-11	3	72
2000	2 Pac	4:22	Baby Don't Cry	2000-03-18	4	77
2000	2 Pac	4:22	Baby Don't Cry	2000-03-25	5	87
2000	2 Pac	4:22	Baby Don't Cry	2000-04-01	6	94
2000	2 Pac	4:22	Baby Don't Cry	2000-04-08	7	99
2000	2Ge+her	3:15	The Hardest Part Of	2000-09-02	1	91
2000	2Ge+her	3:15	The Hardest Part Of	2000-09-09	2	87
2000	2Ge+her	3:15	The Hardest Part Of	2000-09-16	3	92
2000	3 Doors Down	3:53	Kryptonite	2000-04-08	1	81
2000	3 Doors Down	3:53	Kryptonite	2000-04-15	2	70
2000	3 Doors Down	3:53	Kryptonite	2000-04-22	3	68
2000	3 Doors Down	3:53	Kryptonite	2000-04-29	4	67
2000	3 Doors Down	3:53	Kryptonite	2000-05-06	5	66

D. Koop, CSCI 680/490, Spring 2022

Table 7: The first eight Billboard top hits for 2000. Other columns not shown are wk4, wk5, ..., wk75.

Melting

Pandas also has a melt function:

```
In [41]: cheese = pd.DataFrame({'first' : ['John', 'Mary'],
                                 'last' : ['Doe', 'Bo'],
   • • • • •
                                 'height' : [5.5, 6.0],
   • • • • •
                                 'weight' : [130, 150]})
   • • • • •
   • • • • •
In [42]: cheese
Out[42]:
 first height last weight
  John
            5.5 Doe
                         130
0
                         150
            6.0
1 Mary
                 Bo
In [43]: cheese.melt(id_vars=['first', 'last'])
Out[43]:
 first last variable value
              height
                         5.5
  John
        Doe
0
               height
                         6.0
  Mary
         Bo
Τ
   John
               weight 130.0
        Doe
2
         Bo
               weight 150.0
  Mary
3
In [44]: cheese.melt(id_vars=['first', 'last'], var_name='quantity')
Out[44]:
  first last quantity value
  John Doe
              height
                         5.5
0
  Mary
         Bo
               height
                         6.0
   John
               weight 130.0
         Doe
         Bo
               weight 150.0
  Mary
3
```


Problem: Multiple variables stored in one column

Tuberculosis Data, V

country	year	m014	m1524	m2534	m3544	m4554	m5564	m65	mu	f014
AD	2000	0	0	1	0	0	0	0		
AE	2000	2	4	4	6	5	12	10		3
AF	2000	52	228	183	149	129	94	80		93
AG	2000	0	0	0	0	0	0	1		1
AL	2000	2	19	21	14	24	19	16		3
AM	2000	2	152	130	131	63	26	21		1
AN	2000	0	0	1	2	0	0	0		0
AO	2000	186	999	1003	912	482	312	194		247
AR	2000	97	278	594	402	419	368	330		121
AS	2000					1	1			

Norld Health	Organization
--------------	--------------

Problem: Multiple variables stored in one column

country	year	m014	m1524	m2534	m3544	m4554	m5564	m65	mu	f014
AD	2000	0	0	1	0	0	0	0		
AE	2000	2	4	4	6	5	12	10		3
AF	2000	52	228	183	149	129	94	80		93
AG	2000	0	0	0	0	0	0	1		1
AL	2000	2	19	21	14	24	19	16		3
AM	2000	2	152	130	131	63	26	21		1
AN	2000	0	0	1	2	0	0	0		0
AO	2000	186	999	1003	912	482	312	194		247
AR	2000	97	278	594	402	419	368	330		121
AS	2000					1	1			

D. Koop, CSCI 680/490, Spring 2022

Tuberculosis Data, World Health Organization

Two variables in columns: age and sex

Solution: Melting + Splitting

country	year	column	cases
AD	2000	m014	0
AD	2000	m1524	0
AD	2000	m2534	1
AD	2000	m3544	0
AD	2000	m4554	0
AD	2000	m5564	0
AD	2000	m65	0
AE	2000	m014	2
AE	2000	m1524	4
AE	2000	m2534	4
AE	2000	m3544	6
AE	2000	m4554	5
AE	2000	m5564	12
AE	2000	m65	10
AE	2000	f014	3

(a) Molten data

D. Koop, CSCI 680/490, Spring 2022

cases	country	year	sex	age	cases
0	AD	2000	m	0-14	0
0	AD	2000	m	15 - 24	0
1	AD	2000	m	25 - 34	1
0	AD	2000	m	35 - 44	0
0	AD	2000	m	45 - 54	0
0	AD	2000	m	55 - 64	0
0	AD	2000	m	65 +	0
2	AE	2000	m	0-14	2
4	AE	2000	m	15 - 24	4
4	AE	2000	m	25 - 34	4
6	AE	2000	m	35 - 44	6
5	AE	2000	m	45 - 54	5
12	AE	2000	m	55 - 64	12
10	AE	2000	m	65 +	10
3	AE	2000	f	0-14	3

(b) Tidy data

Problem: Variables stored in both rows & columns

Mexico Weather, Global Historical Climatology Network

id	year	month	element	d1	d2	d3	d4	d5	d6	d7	d8
MX17004	2010	1	tmax								
MX17004	2010	1	tmin								
MX17004	2010	2	tmax		27.3	24.1					
MX17004	2010	2	tmin		14.4	14.4					
MX17004	2010	3	tmax					32.1			
MX17004	2010	3	tmin					14.2			
MX17004	2010	4	tmax								
MX17004	2010	4	tmin								
MX17004	2010	5	tmax								
MX17004	2010	5	tmin								

Problem: Variables stored in both rows & columns

Mexico Weather, Global Historical Climatology Network

id	year	month	element	d1	d2	d3	d4	d5	d6	d7	d8
MX17004	2010	1	tmax								
MX17004	2010	1	tmin								
MX17004	2010	2	tmax		27.3	24.1					
MX17004	2010	2	tmin		14.4	14.4					
MX17004	2010	3	tmax					32.1			
MX17004	2010	3	tmin					14.2			
MX17004	2010	4	tmax								
MX17004	2010	4	tmin								
MX17004	2010	5	tmax								
MX17004	2010	5	tmin								

Variable in columns: day; Variable in rows: tmax/tmin

Pivot

- "wide" format (AKA pivot_wider)
- Long format: column names are data values...
- Wide format: more like spreadsheet format
- Example:

	date	item	value	
0	1959-03-31	realgdp	2710.349	
1	1959-03-31	infl	0.000	
2	1959-03-31	unemp	5.800	
3	1959-06-30	realgdp	2778.801	
4	1959-06-30	infl	2.340	
5	1959-06-30	unemp	5.100	
6	1959-09-30	realgdp	2775.488	
7	1959-09-30	infl	2.740	
8	1959-09-30	unemp	5.300	
9	1959-12-31	realgdp	2785.204	

Sometimes, we have data that is given in "long" format and we would like

```
.pivot('date', 'item', 'value')
```

item	infl	realgdp	unemp
date			
1959-03-31	0.00	2710.349	5.8
1959-06-30	2.34	2778.801	5.1
1959-09-30	2.74	2775.488	5.3
1959-12-31	0.27	2785.204	5.6
1960-03-31	2.31	2847.699	5.2

[W. McKinney, Python for Data Analysis]

Solution: Melting + Pivot

id	date	element	value	id	date	tmax	tmin
MX17004	2010-01-30	tmax	27.8	MX17004	2010-01-30	27.8	14.5
MX17004	2010-01-30	tmin	14.5	MX17004	2010-02-02	27.3	14.4
MX17004	2010-02-02	tmax	27.3	MX17004	2010-02-03	24.1	14.4
MX17004	2010-02-02	tmin	14.4	MX17004	2010-02-11	29.7	13.4
MX17004	2010-02-03	tmax	24.1	MX17004	2010-02-23	29.9	10.7
MX17004	2010-02-03	tmin	14.4	MX17004	2010-03-05	32.1	14.2
MX17004	2010-02-11	tmax	29.7	MX17004	2010-03-10	34.5	16.8
MX17004	2010-02-11	tmin	13.4	MX17004	2010-03-16	31.1	17.6
MX17004	2010-02-23	tmax	29.9	MX17004	2010-04-27	36.3	16.7
MX17004	2010-02-23	tmin	10.7	MX17004	2010-05-27	33.2	18.2

(a) Molten data

D. Koop, CSCI 680/490, Spring 2022

Tidy data (b)

Problem: Multiple types in one table

Billboard	year	artist	time	track	date	week	rank
Тор	2000	2 Pac	4:22	Baby Don't Cry	2000-02-26	1	87
Hits	2000	2 Pac	4:22	Baby Don't Cry	2000-03-04	2	82
	2000	2 Pac	4:22	Baby Don't Cry	2000-03-11	3	72
	2000	2 Pac	4:22	Baby Don't Cry	2000-03-18	4	77
	2000	2 Pac	4:22	Baby Don't Cry	2000-03-25	5	87
	2000	2 Pac	4:22	Baby Don't Cry	2000-04-01	6	94
	2000	2 Pac	4:22	Baby Don't Cry	2000-04-08	7	99
	2000	2Ge+her	3:15	The Hardest Part Of	2000-09-02	1	91
	2000	2Ge+her	3:15	The Hardest Part Of	2000-09-09	2	87
	2000	2Ge+her	3:15	The Hardest Part Of	2000-09-16	3	92
	2000	3 Doors Down	3:53	Kryptonite	2000-04-08	1	81
	2000	3 Doors Down	3:53	Kryptonite	2000-04-15	2	70
	2000	3 Doors Down	3:53	Kryptonite	2000-04-22	3	68
	2000	3 Doors Down	3:53	Kryptonite	2000-04-29	4	67
	2000	3 Doors Down	3:53	Kryptonite	2000-05-06	5	66

D. Koop, CSCI 680/490, Spring 2022

Problem: Multiple types in one table

Billboard	year	artist	time	track	date	week	rank
Тор	2000	2 Pac	4:22	Baby Don't Cry	2000-02-26	1	87
Hits	2000	2 Pac	4:22	Baby Don't Cry	2000-03-04	2	82
	2000	2 Pac	4:22	Baby Don't Cry	2000-03-11	3	72
	2000	2 Pac	4:22	Baby Don't Cry	2000-03-18	4	77
	2000	2 Pac	4:22	Baby Don't Cry	2000-03-25	5	87
	2000	2 Pac	4:22	Baby Don't Cry	2000-04-01	6	94
	2000	2 Pac	4:22	Baby Don't Cry	2000-04-08	7	99
	2000	2Ge+her	3:15	The Hardest Part Of	2000-09-02	1	91
Repeated	2000	2Ge+her	3:15	The Hardest Part Of	2000-09-09	2	87
Information	2000	2Ge+her	3:15	The Hardest Part Of	2000-09-16	3	92
	2000	3 Doors Down	3:53	Kryptonite	2000-04-08	1	81
	2000	3 Doors Down	3:53	Kryptonite	2000-04-15	2	70
	2000	3 Doors Down	3:53	Kryptonite	2000-04-22	3	68
	2000	3 Doors Down	3:53	Kryptonite	2000-04-29	4	67
	2000	3 Doors Down	3:53	Kryptonite	2000-05-06	5	66

D. Koop, CSCI 680/490, Spring 2022

Solution: Normalization

id	artist	track	time	id	date	rank
1	2 Pac	Baby Don't Cry	4:22	1	2000-02-26	87
2	2Ge+her	The Hardest Part Of	3:15	1	2000-03-04	82
3	3 Doors Down	Kryptonite	3:53	1	2000-03-11	72
4	3 Doors Down	Loser	4:24	1	2000-03-18	77
5	504 Boyz	Wobble Wobble	3:35	1	2000-03-25	87
6	98^0	Give Me Just One Nig	3:24	1	2000-04-01	94
7	A*Teens	Dancing Queen	3:44	1	2000-04-08	99
8	Aaliyah	I Don't Wanna	4:15	2	2000-09-02	91
9	Aaliyah	Try Again	4:03	2	2000-09-09	87
10	Adams, Yolanda	Open My Heart	5:30	2	2000-09-16	92
11	Adkins, Trace	More	3:05	3	2000-04-08	81
12	Aguilera, Christina	Come On Over Baby	3:38	3	2000-04-15	70
13	Aguilera, Christina	I Turn To You	4:00	3	2000-04-22	68
14	Aguilera, Christina	What A Girl Wants	3:18	3	2000-04-29	67
15	Alice Deejay	Better Off Alone	6:50	3	2000-05-06	66

Important: Analysis may require merging!

Problem: One type in many tables

Baby Names, Social Security Administration

Popularity in 2016

Rank	Male name	Female name	Rank	Male name	Female name
1	Noah	Emma	1	Noah	Emma
2	Liam	Olivia	2	Liam	Olivia
3	William	Ava	3	Mason	Sophia
4	Mason	Sophia	4	Jacob	Ava
5	James	Isahella	5	William	Isabella
6	Poniomin		6	Ethan	Mia
			7	James	Abigail
/	Jacob	Charlotte	8	Alexander	Emily
8	Michael	Abigail	9	Michael	Charlotte
9	Elijah	Emily	10	Benjamin	Harper
10	Ethan	Harper		,	

D. Koop, CSCI 680/490, Spring 2022

Popularity in 2015

[Social Security Administration]

Solution: Melt and Concatenation

Rank	Year	Sex	Name
1	2016	Female	Emma
1	2016	Male	Noah
2	2016	Female	Olivia
2	2016	Male	Liam
3	2016	Female	Ava
3	2016	Male	William
Rank	Year	Sex	Name
Rank 1	Year 2015	Sex Female	Name Emma
Rank 1 1	Year 2015 2015	Sex Female Male	Name Emma Noah
Rank 1 1 2	Year 2015 2015 2015	Sex Female Male Female	Name Emma Noah Olivia
Rank 1 1 2 2	Year 2015 2015 2015 2015	Sex Female Male Female Male	Name Emma Noah Olivia Liam
Rank 1 1 2 2 3	Year 2015 2015 2015 2015 2015	Sex Female Female Male Female	Name Emma Noah Olivia Liam Sophia

Melt 2015 and 2016

D. Koop, CSCI 680/490, Spring 2022

Rank	Year	Sex	Name
1	2015	Female	Emma
1	2015	Male	Noah
1	2016	Female	Emma
1	2016	Male	Noah
2	2015	Female	Olivia
2	2015	Male	Liam
2	2016	Female	Olivia
2	2016	Male	Liam
3	2015	Female	Sophia
3	2015	Male	Mason
3	2016	Female	Ava
3	2016	Male	William

Concatenate

Using Tidy Data

- Sorting (sort values, sort index)
- Transformation (e.g. Fahrenheit to Celsius)
- Filtering (use Boolean indexing)
- Aggregation

Hierarchical Indexing (Multiple Keys)

- We might have multiple keys to identify a single piece of data
- Example: Football records for each team over multiple years
 - Identify a specific row by **both** the team name and the year
 - Can think about this as a tuple (<team name>, <year>)
- pandas supports this via hierarchical indexing (MultiIndex)
- display mirrors the hierarchical nature of the data

Example

• data = $[{"W": 11, "L": 5},$ $\{"W": 6, "L": 10\},\$ $\{"W": 12, "L": 4\},$ {"W": 8, "L": 8}, {"W": 2, "L": 14}] index = [["Boston", "Boston", "San Diego", "San Diego", "Cleveland"], [2007, 2008, 2007,2008, 2007]] df = pd.DataFrame(data, columns=[index=pd.1 index

How do we access a row? or slice?

MultiIndex Row Access and Slicing

- df.loc["Boston", 2007]
- Remember that loc uses the index values, iloc uses integers
- Note: df.iloc[0] gets the first row, not df.iloc[0,0]
- Can get a subset of the data using partial indices
 - df.loc["Boston"] returns both 2007 and 2008 data
- What about slicing?
 - df.loc["Boston":"Cleveland"] → ERROR! (Need sorted data)
 - -df = df.sort index()
 - df.loc["Boston":"Cleveland"] → inclusive! - df.loc[(slice("Boston", "Cleveland"), 2007),:]

Reorganizing the MultiIndex

- swaplevel: switch the order of the levels
 - df = df.swaplevel("Year", "Team")
 - df.sort index()
- Can do summary statistics by level - df.sum(level="Team")
- Reset the index (back to numbers)
 - df.reset index()
- Promote columns to be the indices
 - df.set index(["Team", "Year"])

		W	
Team	Year		
	2007	11	
Boston	2008	6	1
San Diego	2007	12	4
	2008	8	
Cleveland	2007	2	14

Reshaping Data

- Reshape/pivoting are fundamental operations
- Can have a nested index in pandas
- 3rd) and associated representative rankings
- Could write this in different ways:

number	one	two	three
state			
Ohio	0	1	2
Colorado	3	4	5

stat Ohio

Coloi

D. Koop, CSCI 680/490, Spring 2022

• Example: Congressional Districts (Ohio's 1st, 2nd, 3rd, Colorado's 1st, 2nd,

state	Ohio	Colorado
number		
one	0	3
two	1	4
three	2	5

е	number		
	one	0	
rado	two	1	
	three	2	
	one	3	
	two	4	
	three	5	

Stack and Unstack

- stack: pivots from the columns into rows (may produce a Series!)
- unstack: pivots from rows into columns
- unstacking may add missing data
- stacking filters out missing data (unless dropna=False)
- level one two three number

Color

• can unstack at a different level by passing it (e.g. 0), defaults to innermost

	Т		state number	Ohio	Colorado			
			one	0	3			
			two	1	4			
	1_		three	2	5			
ac	K							
j	number							
	one	0	IINS	tack	(\cap)			
	two	1	und					
	three	2						
cado	one	3						
	two	4						
	three	5		[\	V. McKinn	ey, Python	for Data A	na
						Northern Ill	inois Univers	ity

Pivot

- "wide" format
- Long format: column names are data values...
- Wide format: more like spreadsheet format
- Example:

	date	item	value	
0	1959-03-31	realgdp	2710.349	
1	1959-03-31	infl	0.000	
2	1959-03-31	unemp	5.800	
3	1959-06-30	realgdp	2778.801	
4	1959-06-30	infl	2.340	
5	1959-06-30	unemp	5.100	
6	1959-09-30	realgdp	2775.488	
7	1959-09-30	infl	2.740	
8	1959-09-30	unemp	5.300	
9	1959-12-31	realgdp	2785.204	

Sometimes, we have data that is given in "long" format and we would like

```
.pivot('date', 'item', 'value')
```

item	infl	realgdp	unemp
date			
1959-03-31	0.00	2710.349	5.8
1959-06-30	2.34	2778.801	5.1
1959-09-30	2.74	2775.488	5.3
1959-12-31	0.27	2785.204	5.6
1960-03-31	2.31	2847.699	5.2

[W. McKinney, Python for Data Analysis]

Baby Names Example

