Advanced Data Management (CSCI 680/490)

Data Cleaning

Dr. David Koop

Types of Dirty Data Problems

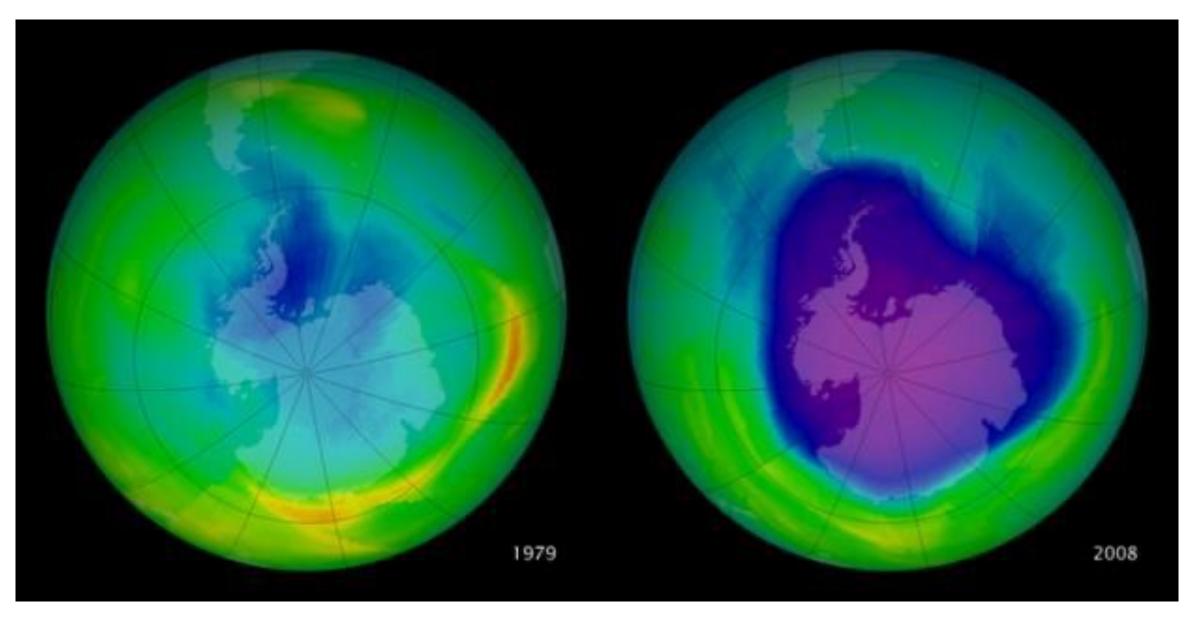
- Separator Issues: e.g. CSV without respecting double quotes -12, 13, "Doe, John", 45
- Naming Conventions: NYC VS. New York
- Missing required fields, e.g. key
- Different representations: 2 vs. two
- Redundant records: may be exactly the same or have some overlap
- Formatting issues: 2017-11-07 vs. 07/11/2017 vs. 11/07/2017

D. Koop, CSCI 680/490, Spring 2021

• Truncated data: "Janice Keihanaikukauakahihuliheekahaunaele" becomes "Janice Keihanaikukauakahihuliheek" on Hawaii license

Dirty Data: Data Scientist's View

- Combination of:
 - Statistician's View: data has non-ideal samples for model
 - Database Expert's View: missing data, corrupted data
 - Domain Expert's View: data doesn't pass the smell test
- All of the views present problems with the data
- The goal may dictate the solutions:
 - Median value: don't worry too much about crazy outliers - Generally, aggregation is less susceptible by numeric errors - Be careful, the data may be correct...



Be careful how you detect dirty data

- The appearance of a hole in the earth's ozone layer over Antarctica, first malfunctioning.
 - National Center for Atmospheric Research

D. Koop, CSCI 680/490, Spring 2021

detected in 1976, was so unexpected that scientists didn't pay attention to what their instruments were telling them; they thought their instruments were

Wrangler

- Data cleaning takes a lot of time and human effort
- "Tedium is the message"
- Repeating this process on multiple data sets is even worse!
- Solution:
 - interactive interface (mixed-initiative)
 - transformation language with natural language "translations"
 - suggestions + "programming by demonstration"

Potter's Wheel: Example

		Stewart,Bob	
Anna	Davis		'(.*), (
		Dole,Jerry	
Joan	Marsh		

Bob	Stewart	2 Mer
Anna	Davis	
Jerry	Dole	
Joan	Marsh	

D. Koop, CSCI 680/490, Spring 2021

[V. Raman and J. Hellerstein, 2001]

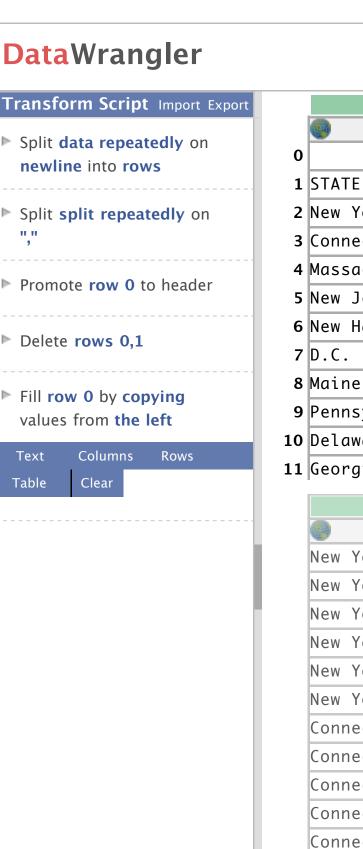
Potter's Wheel: Transforms

Transform			
Format	$\phi(R,i,f)$	=	$\{(a_1,\ldots,a_{i-1},\ldots,a_{i-1$
Add	lpha(R,x)	=	$\{(a_1,\ldots,a_n,x)\}$
Drop	$\pi(R,i)$	=	$\{(a_1, \ldots, a_{i-1}, \ldots, a_{i-1$
Сору	$\kappa((a_1,\ldots,a_n),i)$	—	$\{(a_1,\ldots,a_n,a_n)\}$
Merge	$\mu((a_1,\ldots,a_n),i,j,glue)$	=	$\{(a_1,\ldots,a_{i-1},\ldots,a_{i-1$
Split	$\omega((a_1,\ldots,a_n),i,\text{splitter})$) =	$\{(a_1,\ldots,a_{i-1},\ldots,a_{i-1$
Divide	$\delta((a_1,\ldots,a_n),i,\mathrm{pred})$	=	$\{(a_1,\ldots,a_{i-1},\ldots,a_{i-1$
			$\{(a_1,\ldots,a_{i-1},\ldots,a_{i-1$
Fold	$\lambda(R,i_1,i_2,\ldots i_k)$	=	$\{(a_1,\ldots,a_{i_1-1})\}$
			$(a_1,\ldots,a_n)\in$
Select	$\sigma(R, { m pred})$	=	$\{(a_1,\ldots,a_n)\mid$

Notation: R is a relation with n columns. i, j are column indices and a_i represents the value of a column in a row. x and glue are values. f is a function mapping values to values. $x \oplus y$ concatenates x and y. splitter is a position in a string or a regular expression, left(x, splitter) is the left part of x after splitting by splitter. pred is a function returning a boolean.

D. Koop, CSCI 680/490, Spring 2021

$$\begin{array}{l} \hline \textbf{Definition} \\ (a_{i+1}, \dots, a_n, f(a_i)) \mid (a_1, \dots, a_n) \in R \\ (a_{i+1}, \dots, a_n) \in R \\ (a_{i+1}, \dots, a_n) \mid (a_1, \dots, a_n) \in R \\ (a_{i+1}, \dots, a_{i-1}, a_{j+1}, \dots, a_n, a_i \oplus \texttt{glue} \oplus a_j) \mid (a_1, \dots, a_n) \in R \\ (a_{i+1}, \dots, a_n, \texttt{left}(a_i, \texttt{splitter}), \texttt{right}(a_i, \texttt{splitter})) \mid (a_1, \dots, a_n) \in R \\ (a_{i+1}, \dots, a_n, \texttt{ai}, \texttt{null}) \mid (a_1, \dots, a_n) \in R \land \texttt{pred}(a_i) \\ (a_{i+1}, \dots, a_n, \texttt{null}, a_i) \mid (a_1, \dots, a_n) \in R \land \texttt{pred}(a_i) \\ (a_{i+1}, \dots, a_{i_2-1}, a_{i_2+1}, \dots, a_{i_k-1}, a_{i_k+1}, \dots, a_n, a_{i_l}) \mid \\ (a_{i, \dots, a_n}) \in R \land \texttt{pred}((a_1, \dots, a_n)) \\ \end{array}$$

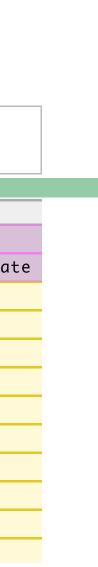

[V. Raman and J. Hellerstein, 2001]

Interface

- Automated Transformation Suggestions
- Editable Natural Langua DataWrangler
 - Fill Bangladesh by copying value Split data repeatedly on **newline** into **rows** above
 - averaging Fill Bangladesh by ✓ copying interpolating values from above
 - Fill Bangladesh by averaging t values from above
- Visual Transformation Pl
- Transformation History



C - ·


н н

Table

split	# split1	# split2	# split3	🗰 split4
	2004	2004	2004	2003
ТАТЕ	Participation Rate 2004	Mean SAT I Verbal	Mean SAT I Math	Participation Rat
ew York	87	497	510	82
onnecticut	85	515	515	84
assachusetts	85	518	523	82
ew Jersey	83	501	514	85
ew Hampshire	80	522	521	75
.C.	77	489	476	77
aine	76	505	501	70
ennsylvania	74	501	502	73
elaware	73	500	499	73
eorgia	73	494	493	66
split	# fold	Abc fold1	# value	
ew York	2004	Participation Rate 2004	87	
ew York	2004	Mean SAT I Verbal	497	
ew York	2004	Mean SAT I Math	510	
ew York	2003	Participation Rate 2003	82	
ew York	2003	Mean SAT I Verbal	496	
ew York	2003	Mean SAT I Math	510	
onnecticut	2004	Participation Rate 2004	85	
onnecticut	2004	Mean SAT I Verbal	515	
onnecticut	2004	Mean SAT I Math	515	
onnecticut	2003	Participation Rate 2003	84	
onnecticut	2003	Mean SAT I Verbal	512	
	2002	Mark CAT T Math		

IM

TR.

ех

SU

ext

ext

ext

Sou

abc

6 Ca

31 adt

32 adt

33 adt

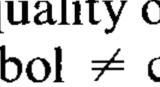
34 adt

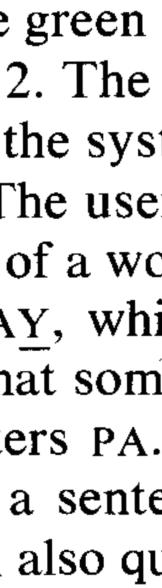
hts in Prediction

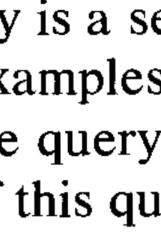
Partially underlined Figure 12 qualified retrieval

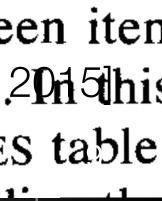
TYPE	ITEM	COLOR	SIZ
	P. I <u>KE</u>	GREEN	

D. Koop, CSCI 680/490, Spri


- equality operators: \neq , >, >=, <, <=. If no inequality c used as a prefix, equality is implied. The symbol $\neq c$ placed by \neg or $\neg =$.
- Partially underlined qualified retrieval. Print the green start with the letter I. This is found in Figure 12. The not underlined, and it is a constant. Therefore, the sys all the green items that start with the letter I. The use tially underline at the beginning, middle or end of a wo tence, or a paragraph, as in the example, XPAY, whi find a word, a sentence or a paragraph such that som that sentence or paragraph there exist the letters PA. example element can be blank, then a word, a sente


paragraph that starts or ends with the letters PA also qu


The partial underline feature is useful if an entry is a se text and the user wishes to search to find all examples tain a special word or root. If, for example, the query entries with the word Texas, the formulation of this qu TEXAS Y.


Update suggestions when given more information

Qualified retrieval using links. Print all the green iter the toy department. This is shown in Figure 13.2015 this user displays both the TYPE table and the SALES table

Differences with Extract-Transform-Load (ETL)

- ETL:
 - Who: IT Professionals
 - Why: Create static data pipeline
 - What: Structured data
 - Where: Data centers
- "Modern Data Preparation":
 - Who: Analysts
 - Why: Solve problems by designing recipes to use data
 - What: Original, custom data blended with other data
 - Where: Cloud, desktop

g recipes to use data led with other data

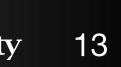
Northern Illinois University

Test 1

- This Wednesday, Feb. 23
- In-class, 3:30-4:45pm in PM 153
- Format:
 - Multiple Choice
 - Free Response
- Information posted online

Paper Critique

- Foofah: Transforming Data By Example, Z. Jin et al., 2017
- Due Monday before class, submit via Blackboard
- Read the paper
- Look up references if necessary
- Keep track of things you are confused by or that seem problematic Write a few sentences summarizing the paper's contribution Write more sentences discussing the paper and what you think the paper
- does well or doesn't do well at
- For this response, compare/contrast with Wrangler/Trifacta
- Length: 1/2-1 page



D. Koop, CSCI 680/490, Spring 2022

Data Formats

Comma-separated values (CSV) Format

- Comma is a field separator, newlines denote records
 - a,b,c,d,message 1,2,3,4,hello 5, 6, 7, 8, world 9,10,11,12,foo
- May have a header (a, b, c, d, message), but not required
- No type information: we do not know what the columns are (numbers, strings, floating point, etc.)
 - Default: just keep everything as a string
- Type inference: Figure out the type to make each column based on values What about commas in a value? \rightarrow double quotes



Delimiter-separated Values

- Comma is a **delimiter**, specifies boundary between fields
- Could be a tab, pipe (), or perhaps spaces instead
- All of these follow similar styles to CSV

Fixed-width Format

- Old school
- Each field gets a certain number of spots in the file
- Example:

- id8141	360.242940	149
id1594	444.953632	166
id1849	364.136849	183
id1230	413.836124	184
id1948	502.953953	173

• Specify exact character ranges for each field, e.g. 0-6 is the id

- .910199
- .985655
- .628767
- .375703
- .237159

- 11950.7
- 11788.4
- 11806.2
- 11916.8
- 12468.3

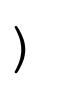
Reading & Writing Data

Reading Data in Python

- Use the open () method to open a file for reading
 - f = open('huck-finn.txt')
- f = open('huck-finn.txt', 'r')
- Usually, add an 'r' as the second parameter to indicate "read" • Can iterate through the file (think of the file as a collection of lines):
 - for line in f:

if 'Huckleberry' in line: print(line.strip())

- Using line.strip() because the read includes the newline, and print writes a newline so we would have double-spaced text
- Closing the file: f.close()




18

With Statement: Improved File Handling

- With statement does "enter" and "exit" handling (similar to the finally clause): • In the previous example, we need to remember to call f.close()
- Using a with statement, this is done automatically:
 - with open ('huck-finn.txt', 'r') as f: for line in f:
 - if 'Huckleberry' in line:
 - print(line.strip())
- This is more important for writing files!
 - with open ('output.txt', 'w') as f: for k, v in counts.items(): f.write(k + ': ' + $v + ' \setminus n'$)
- Without with, we need f.close()

Reading & Writing Data in Pandas

Format	Data Description
text	<u>CSV</u>
text	Fixed-Width Text File
text	<u>JSON</u>
text	HTML
text	Local clipboard
	MS Excel
binary	<u>OpenDocument</u>
binary	HDF5 Format
binary	Feather Format
binary	Parquet Format
binary	ORC Format
binary	<u>Msgpack</u>
binary	<u>Stata</u>
binary	SAS
binary	<u>SPSS</u>
binary	Python Pickle Format
SQL	<u>SQL</u>
SQL	Google BigQuery

D. Koop, CSCI 680/490, Spring 2022

Reader	Writer
read_csv	to_csv
read_fwf	
read_json	to_json
read_html	to_html
read_clipboard	to_clipboard
read_excel	to_excel
read_excel	
read_hdf	to_hdf
read_feather	to_feather
read_parquet	to_parquet
read_orc	
read_msgpack	to_msgpack
read_stata	to_stata
read_sas	
read_spss	
read_pickle	to_pickle
read_sql	to_sql
read_gbq	to_gbq

[https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html]

Types of arguments for readers

- Indexing: choose a column to index the data, get column names from file or user Type inference and data conversion: automatic or user-defined Datetime parsing: can combine information from multiple columns

- Iterating: deal with very large files
- Unclean Data: skip rows (e.g. comments) or deal with formatted numbers (e.g. 1,000,345)

read_csv

- Convenient method to read csv files
- Lots of different options to help get data into the desired format
- **Basic:** df = pd.read csv(fname)
- Parameters:

 - path: where to read the data from - sep (Or delimiter): the delimiter $(', ', '', '', ' \setminus t', ' \setminus s+')$
 - header: if None, no header
 - index col: which column to use as the row index - names: list of header names (e.g. if the file has no header)

 - skiprows: number of list of lines to skip

More read_csv/read_tables arguments

Argument	Description
skiprows	Number of rows at beginning of fil
na_values	Sequence of values to replace with
comment	Character(s) to split comments off
parse_dates	Attempt to parse data to datetic Otherwise can specify a list of colur combine multiple columns togethe
keep_date_col	If joining columns to parse date, ke
converters	Dict containing column number of function f to all values in the 'fo
dayfirst	When parsing potentially ambiguo 2012); False by default.
date_parser	Function to use to parse dates.
ΠΓΟ₩S	Number of rows to read from begin
iterator	Return a TextParser object for
chunksize	For iteration, size of file chunks.

D. Koop, CSCI 680/490, Spring 2022

ile to ignore or list of row numbers (starting from 0) to skip. h NA.

- the end of lines.
- Ime; False by default. If True, will attempt to parse all columns. Imn numbers or name to parse. If element of list is tuple or list, will er and parse to date (e.g., if date/time split across two columns).
- keep the joined columns; False by default.
- name mapping to functions (e.g., { 'foo': f} would apply the oo' column).
- ous dates, treat as international format (e.g., 7/6/2012 -> June 7,

inning of file.

reading file piecemeal.

[W. McKinney, Python for Data Analysis]

Chunked Reads

- With very large files, we may not want to read the entire file
- Why?
 - Time
 - Want to understand part of data before processing all of it
- Reading only a few rows:
 - df = pd.read csv('example.d
- Reading chunks:
 - Get an iterator that returns the next chunk of the file
 - chunker = pd.read csv('example.csv', chunksize=1000)
 - for piece in chunker: process data (piece)

Python csv module

- Also, can read csv files outside of pandas using csv module
 - import csv with open ('persons of concern.csv', 'r') as f: for i in range(3): next(f) reader = csv.reader(f)
 - records = [r for r in reader] # r is a list

• Or

- import csv with open('persons of concern.csv', 'r') as f: for i in range(3): next(f) reader = csv.DictReader(f) records = [r for r in reader] # r is a dict

Writing CSV data with pandas

- Basic: df.to csv(<fname>)
- Change delimiter with sep kwarg:
 - df.to csv('example.dsv', sep='|')
- Change missing value representation - df.to csv('example.dsv', na rep='NULL')
- Don't write row or column labels:
 - df.to csv('example.csv', index=False, header=False)
- Series may also be written to csv

eXtensible Markup Language (XML)

- Older, self-describing format with nesting; each field has tags
- Example:
 - <INDICATOR> <INDICATOR SEQ>373889</INDICATOR SEQ> <PARENT SEQ></PARENT SEQ> <AGENCY NAME>Metro-North Railroad</AGENCY NAME> <INDICATOR NAME>Escalator Avail.</INDICATOR NAME> <PERIOD YEAR>2011/PERIOD YEAR> <PERIOD MONTH>12/PERIOD MONTH> <CATEGORY>Service Indicators</CATEGORY> <FREQUENCY>M</FREQUENCY> <YTD TARGET>97.00</YTD TARGET> </INDICATOR>
- Top element is the **root**

XML

- No built-in method
- Use Ixml library (also can use ElementTree)
- from lxml import objectify path = 'datasets/mta perf/Performance MNR.xml' parsed = objectify.parse(open(path)) root = parsed.getroot() data = []skip fields = ['PARENT SEQ', 'INDICATOR SEQ', 'DESIRED CHANGE', 'DECIMAL PLACES'] for elt in root.INDICATOR: el data = $\{\}$ for child in elt.getchildren(): if child.tag in skip fields: continue el data[child.tag] = child.pyval data.append(el data) perf = pd.DataFrame(data)

D. Koop, CSCI 680/490, Spring 2022

[W. McKinney, Python for Data Analysis]

Northern Illinois University

JavaScript Object Notation (JSON)

- A format for web data
- Looks very similar to python dictionaries and lists
- Example:
 - { "name": "Wes", "places lived": ["United States", "Spain", "Germany"], "pet": null,
- "siblings": [{"name": "Scott", "age": 25, "pet": "Zuko"}, {"name": "Katie", "age": 33, "pet": "Cisco"}] } Only contains literals (no variables) but allows null
- Values: strings, arrays, dictionaries, numbers, booleans, or null
 - Dictionary keys must be strings
 - Quotation marks help differentiate string or numeric values

What is the problem with reading this data?

```
• [{"name": "Wes",
   "places lived": ["United States", "Spain", "Germany"],
   "pet": null,
   "siblings":
      {"name": "Scott", "age": 25, "pet": "Zuko"},
      {"name": "Katie", "age": 33, "pet": "Cisco"}]
  },
  {"name": "Nia",
   "address": {"street": "143 Main",
                "city": "New York",
                "state": "New York"},
   "pet": "Fido",
   "siblings":
      {"name": "Jacques", "age": 15, "pet": "Fido"}]
  },
 ...
```


Reading JSON data

- Python has a built-in json module
 - with open ('example.json') as f: data = json.load(f)
 - Can also load/dump to strings:
 - json.loads, json.dumps
- Pandas has read json, to json methods

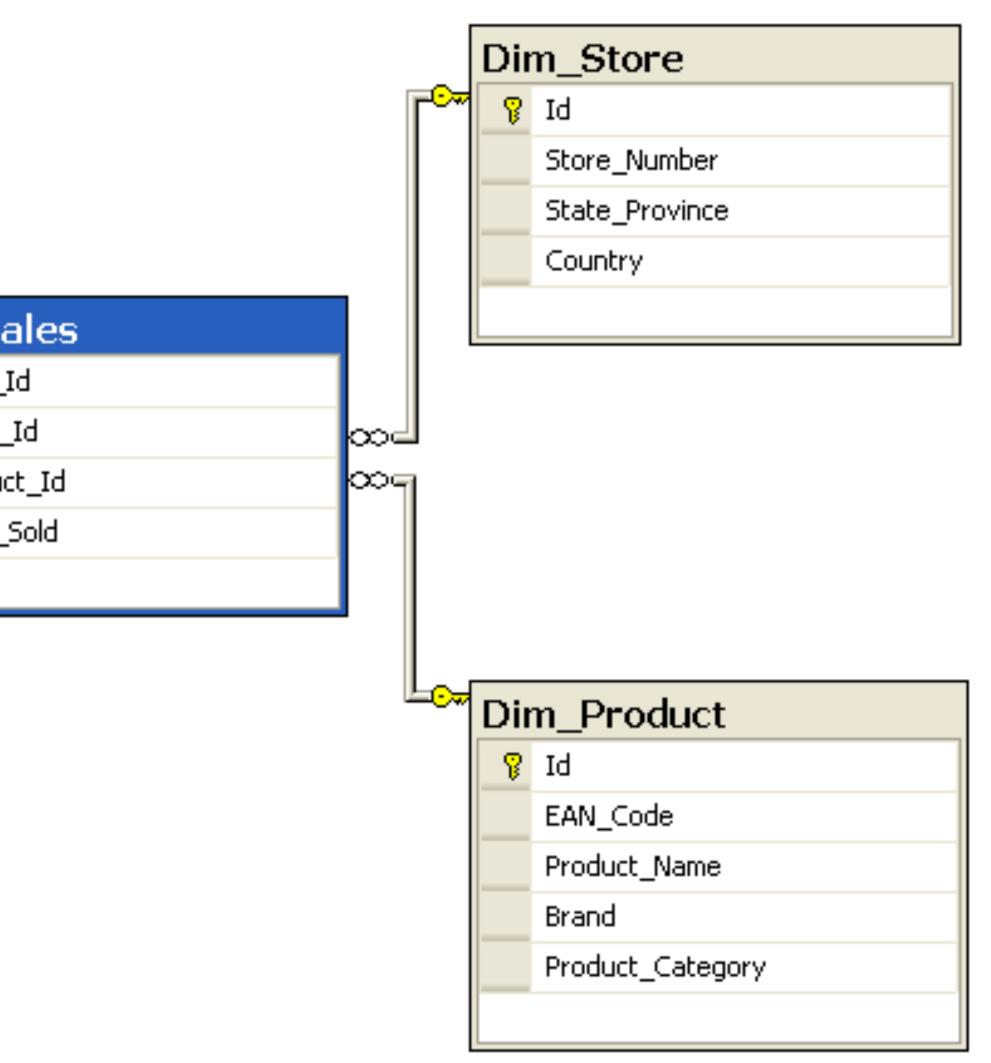
JSON Orientation

- produced by to json() with a corresponding orient value. The set of possible orients is:
 - split: dict like {index -> [index], columns -> [columns], data \rightarrow [values] }
 - records: list like [{column -> value}, ..., {column -> value}]
 - index: dict like {index -> {column -> value}}
 - columns: dict like {column -> {index -> value}}
 - values: just the values array

Indication of expected JSON string format. Compatible JSON strings can be

Binary Formats

- CSV, JSON, and XML are all text formats
- What is a binary format?
- Pickle: Python's built-in serialization
- HDF5: Library for storing large scientific data
 - Hierarchical Data Format, supports compression
 - Interfaces in C, Java, MATLAB, etc.
 - Use pd. HDFStore to access
 - Shortcuts: read hdf/to hdf, need to specify object
- Excel: need to specify sheet when a spreadsheet has multiple sheets
 - pd.ExcelFile Of pd.read excel



Databases

Dir	n_Date				
8	Id	~0 1	1		
	Date				
	Day				
	Day_of_Week		.		
	Month			Fa	ct_Sa
	Month_Name		<u> </u>		Date_)
	Quarter				Store_
	Quarter_Name				Produc
	Year				Units_

Databases

- Relational databases are similar to multiple data frames but have more features
 - Links between tables via foreign keys
 - SQL to create, store, and query data
- duckdb is an OLAP database with support for python and pandas
- Python has a database API which lets you access most database systems through a common API.

Python DBAPI Example

import duckdb

conn = duckdb.connect('mydata.sqlite') conn.execute (query) conn.commit() # Insert some data data = [('Atlanta', 'Georgia', 1.25, 6), ('Tallahassee', 'Florida', 2.6, 3), ('Sacramento', 'California', 1.7, 5)] stmt = "INSERT INTO test VALUES(?, ?, ?, ?)" conn.executemany(stmt, data) conn.commit()

query = """CREATE TABLE test(a VARCHAR(20), b VARCHAR(20), c REAL, d INTEGER);"""

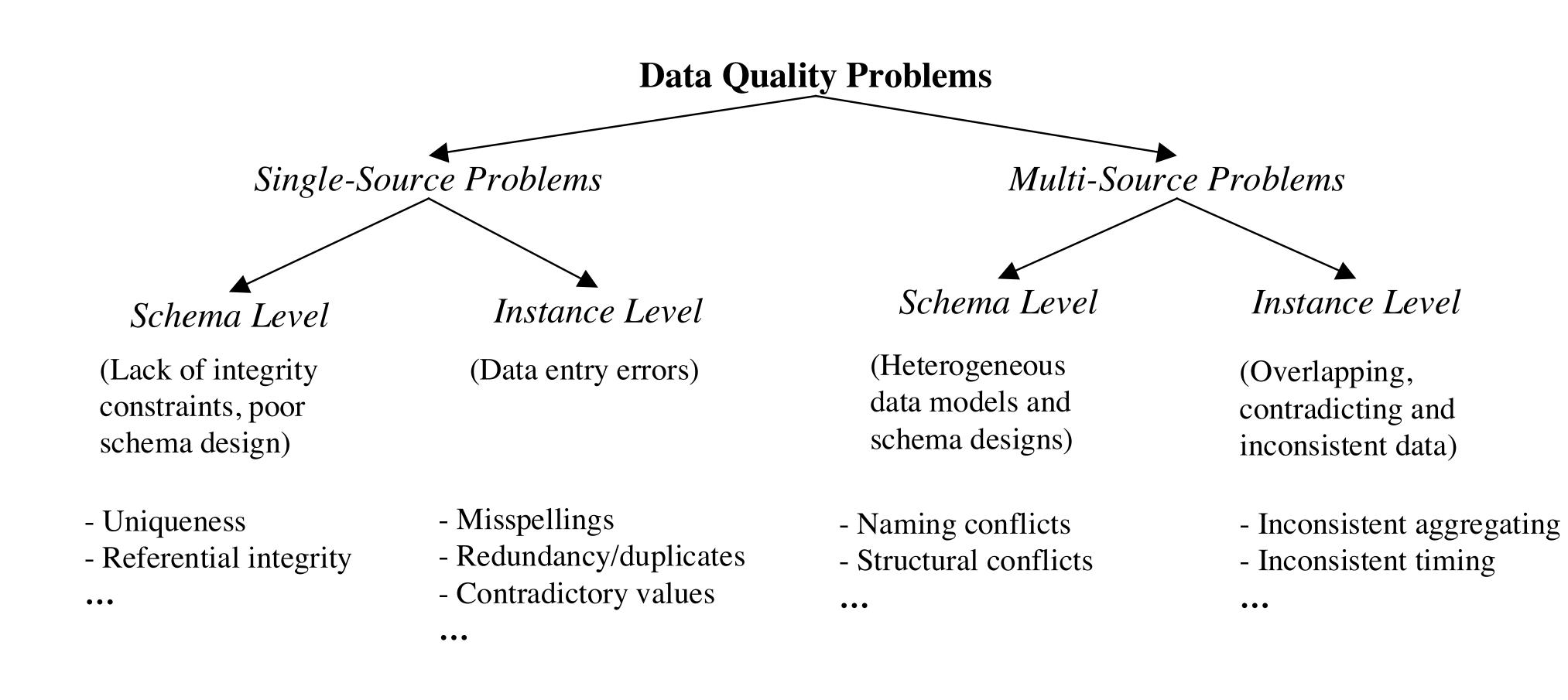
[based on W. McKinney, Python for Data Analysis]

Databases

- Server, Oracle, etc.)
- SQLAIchemy: Python package that abstracts away differences between different database systems
- SQLAIchemy gives support for reading queries to data frame:
 - import sqlalchemy as sqla db = sqla.create engine('sqlite:///mydata.sqlite') pd.read sql('select * from test', db)

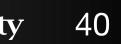
• Similar syntax from other database systems (sqlite, MySQL, Microsoft SQL)

D. Koop, CSCI 680/490, Spring 2022

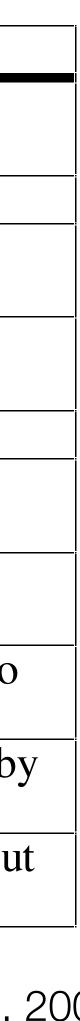

Data Cleaning

Classifying Data Quality Problems

D. Koop, CSCI 680/490, Spring 2022


Single-Source Schema Problems

Scope/Prob	lem	Dirty Data	Reasons/Remarks
Attribute	Illegal values	bdate=30.13.70	values outside of domain range
Record	Violated attribute	age=22, bdate=12.02.70	age = (current date - birth date)
	dependencies		should hold
Record	Uniqueness	emp ₁ =(name="John Smith", SSN="123456")	uniqueness for SSN (social security
type	violation	emp ₂ =(name="Peter Miller", SSN="123456")	number) violated
Source	Referential	emp=(name="John Smith", deptno=127)	referenced department (127) not defined
	integrity violation		



Single-Source Instance Problems

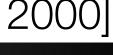
Scope/Pro	blem	Dirty Data	Reasons/Remarks
Attribute	Missing values	phone=9999-999999	unavailable values during data entry (dummy values or null)
	Misspellings	city="Liipzig"	usually typos, phonetic errors
	Cryptic values, Abbreviations	experience="B"; occupation="DB Prog."	
	Embedded values	name="J. Smith 12.02.70 New York"	multiple values entered in one attribute (e.g. in a free-form field)
	Misfielded values	city="Germany"	
Record	Violated attribute dependencies	city="Redmond", zip=77777	city and zip code should correspond
Record type	Word transpositions	name ₁ = "J. Smith", name ₂ ="Miller P."	usually in a free-form field
	Duplicated records	$emp_1=(name="John Smith",);$ $emp_2=(name="J. Smith",)$	same employee represented twice due to some data entry errors
	Contradicting records	$emp_1=(name="John Smith", bdate=12.02.70);$ $emp_2=(name="John Smith", bdate=12.12.70)$	the same real world entity is described by different values
Source	Wrong references	emp=(name="John Smith", deptno=17)	referenced department (17) is defined but wrong

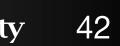
Multi-Source Schema & Instance Problems

Customer (source 1)

CID	Name	Street	City	Sex
11	Kristen Smith	2 Hurley Pl	South Fork, MN 48503	0
24	Christian Smith	Hurley St 2	S Fork MN	1

Client (source 2)


•••••	(~~~~~)				
Cno	LastName	FirstName	Gender	Address	Phone/Fax
24	Smith	Christoph	M	23 Harley St, Chicago IL, 60633-2394	333-222-6542 / 333-222-6599
493	Smith	Kris L.	F	2 Hurley Place, South Fork MN, 48503-5998	444-555-6666


Customers (integrated target with cleaned data)

No	LName	FName	Gender	Street	City	State	ZIP	Phone	Fax	CID	Cno
1	Smith	Kristen L.	F	2 Hurley	South	MN	48503-	444-555-		11	493
				Place	Fork		5998	6666			
2	Smith	Christian	M	2 Hurley	South	MN	48503-			24	
				Place	Fork		5998				
3	Smith	Christoph	M	23 Harley	Chicago	IL	60633-	333-222-	333-222-		24
				Street			2394	6542	6599		

HoloClean

- quantitative methods:
 - Qualitative: use integrity constraints or external data sources
 - Quantitative: use statistics of the data
- Driven by probabilistic inference. Users only need to provide a dataset to be cleaned and describe high-level domain specific signals.
- Can scale to large real-world dirty datasets and perform automatic repairs with high accuracy

A holistic data cleaning framework that combines qualitative methods with

Example: Input Data

(A) Input Database External Information (Chicago food inspections)

	DBAName	AKAName	Address	City	State	Zip	
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL I	60608	Cont
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609	due t
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL		
t4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Cicago	IL	60608	
		Does not obe data distributi	5) Cor	nflict due	to c2

D. Koop, CSCI 680/490, Spring 2022

c1: DBAName \rightarrow Zip (B) Functional Dependencies c2: Zip \rightarrow

c3: City, Ste

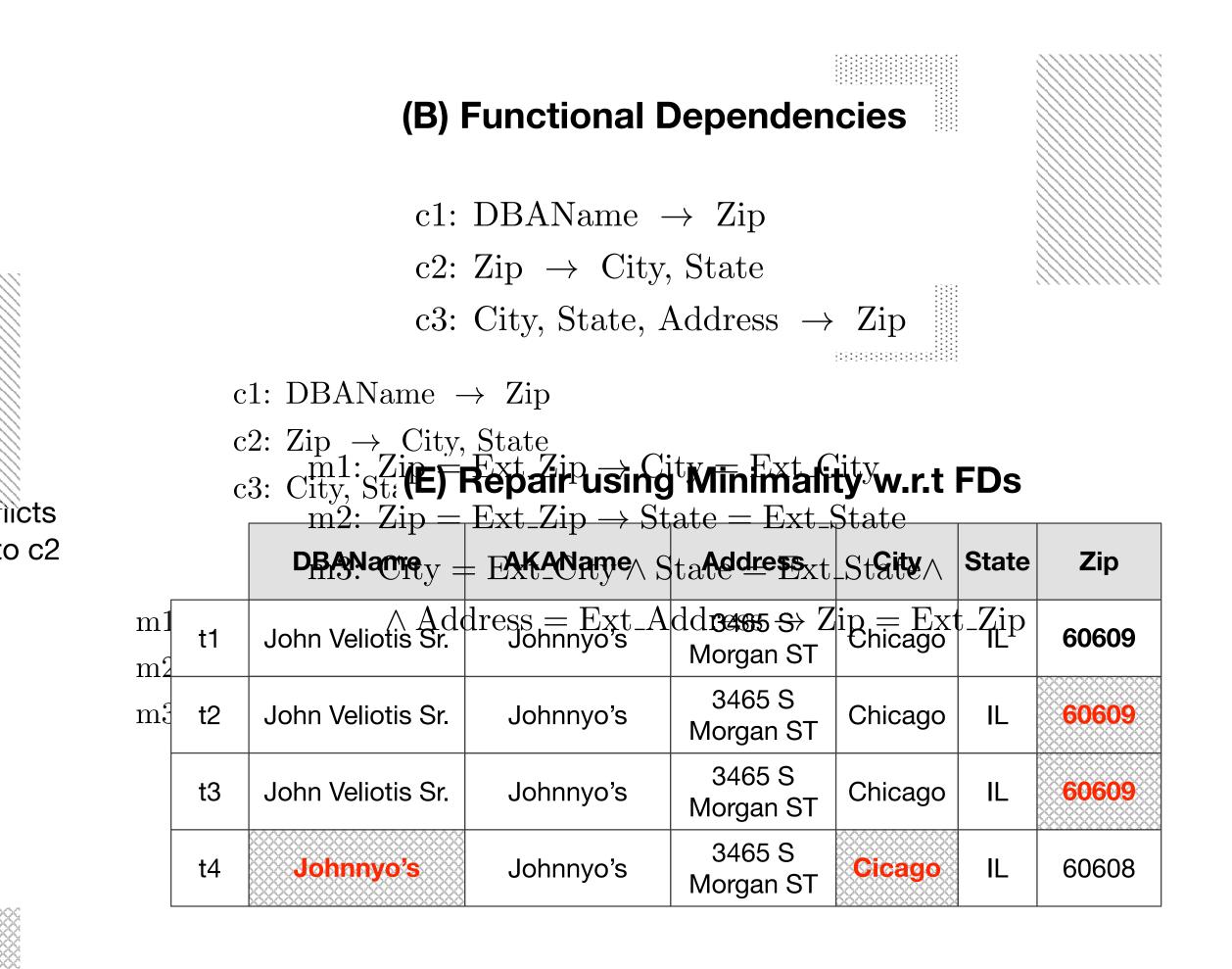
c1: DBAName \rightarrow Zip

c2: Zip \rightarrow City, State

m1: $Zip = Ext_Zip$ c3: City, State, Address \rightarrow Zip m2: $Zip = Ext_Zip \rightarrow State = Ext_State$ m3: City = Ext_City \land State = Ext_State \land $\wedge \operatorname{Address}_{\overline{m}1} \xrightarrow{Ext}_{ip} \xrightarrow{Address}_{ip} \xrightarrow{Zip} \xrightarrow{Ext}_{ip} \xrightarrow{Zip} \xrightarrow{Ext}_{ip} \xrightarrow{Zip} \xrightarrow{Ext}_{ip} \xrightarrow{Zip} \xrightarrow{Ext}_{ip} \xrightarrow{Zip} \xrightarrow{Ext}_{ip} \xrightarrow{Zip} \xrightarrow{Z$ m2: $Zip = Ext_Zip \rightarrow State = Ext_State$ m3: City = $Ext_City \land State = Ext_State \land$ $\land Address = Ext_Address \rightarrow Zip = Ext_Zip$

Northern Illinois University

icts o c2

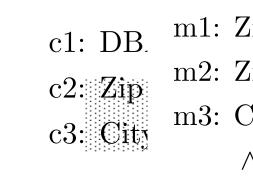

Example: Fixing via Minimality

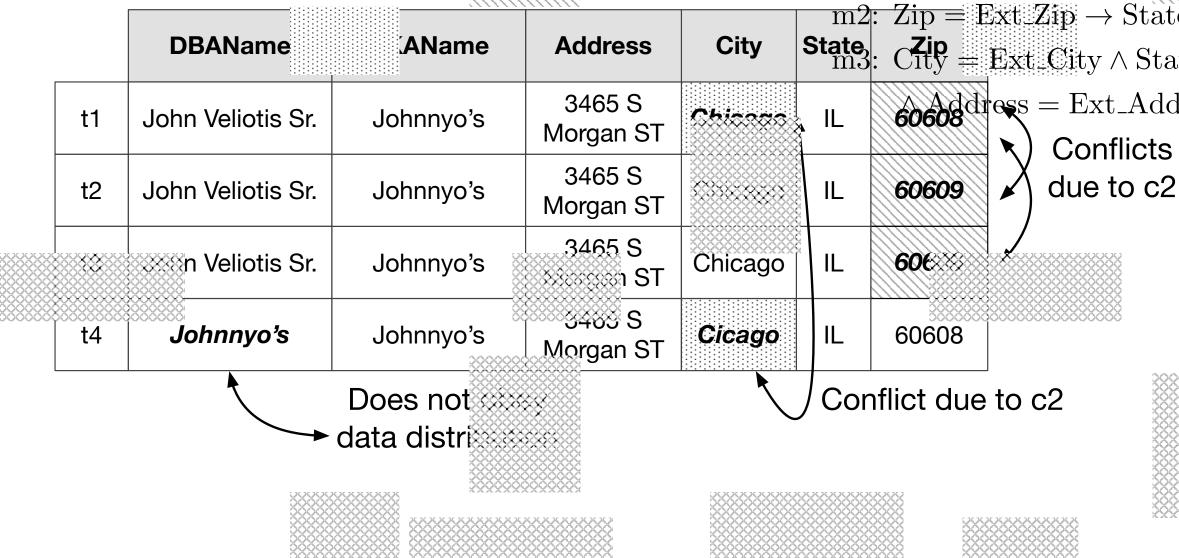
(A) Input Database External Inform (Chicago food inspections)

								111
	DBAName	AKAName	Address	City	State	Zip		
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608		
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago		609		du
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609		
t4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Cicago	IL	60608		
		Does not ob data distribut	5		Con	iflict due	e to c	2

Spring 2022

D. Koop, C





(A) Input Datab (Chicago

ternal Information nspections)

m1: $Zip = Ext_Zip \rightarrow 0$

3888888888888

D. Koop, CSCI 680/490, Spring 2022

c3: City, State, Address \rightarrow Zip

(C) Matching Dependencies

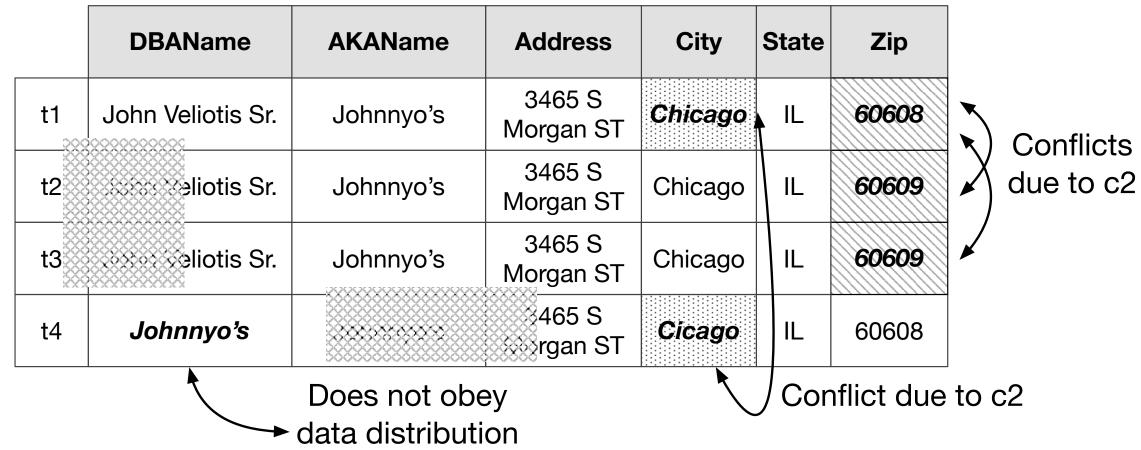
$Zip = Ext_Zip \rightarrow City = Ext_City$	DB	
$Zip = Ext_Zip \rightarrow State = Ext_State$	Zip	Ex
$City = Ext_City \land State = Ext_State \land$	Cit	
$\land \text{Address} = \text{Ext}_{Address} \rightarrow \text{Zip} = \text{Ext}_{Zip}$)	346
		12
$City = Ext_City$ m1: Zip =	= Ext	
State = Ext_State_{c1} : DBAName $\xrightarrow{m2}$ Zip_{ij}	= Ext	259
$\$ State = Ext_StateA c2: Zip \rightarrow City, State	e Ex	C
$Address \rightarrow Zip = Ext Zip Address \rightarrow Zip = City, State, Address \rightarrow Zip = Cit$	ldres ss —,	

(D) External Information (Address listings in Chicago)

Ext_Address	Ext_City	Ext_State	Ext_Zip
3465 S Morgan ST	Chicago	IL	60608
1208 N Wells ST	Chicago	IL	60610
259 E Erie ST	Chicago	IL	60611
2806 W Cermak Rd	Chicago	IL	60623

(F) Repair using Matching Dependencies

m1:		DBAName	AKAName	Address	City	State	Zip
m2: m3:	t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
	t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
	t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
	t4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608



C1: DBAName - Zip Example: Fixing in Address - Zip

m1: $Zip = Ext_Zip \rightarrow City = Ext_City$ m2: $Zip = Ext_Zip \rightarrow State = Ext_State$ m3: City = Ext_City \land State = Ext_State \land $\wedge \text{Address} = \text{Ext}_{\text{Address}} \rightarrow \text{Zip} = \text{Ext}_{\text{Zip}}$

(A) Input Database External Information (Chicago food inspections)

D. Koop, CSCI 680/490, Spring 2022

(G) Repair that leverages Quantitative Statistics

		DBAName	AKAName	Address	City	State	Zip
	t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
	t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
m1:	t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
m2: m3:	t4	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608

 $\wedge \text{Address} = \text{Ext}_{\text{Address}} \rightarrow \text{Zip} = \text{Ext}_{\text{Zip}}$

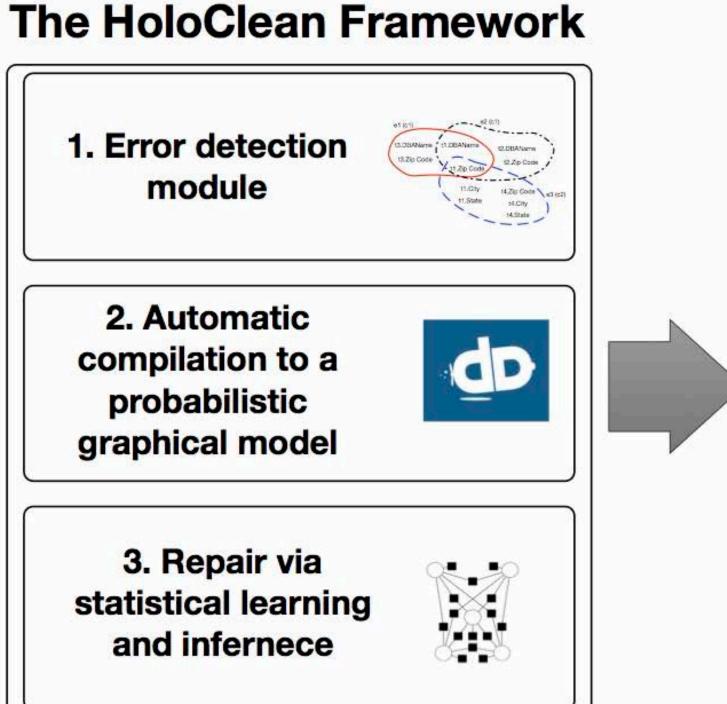
HoloClean

Input

	Dataset to be cleaned							
	DBAName	Address	City	State	Zip			
t1	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL	60608			
t2	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL	60609			
t3	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL	60609			
t4	Johnnyo's	3465 S Morgan ST	Cicago	IL	60608			

Denial Constraints

- c1: DBAName \rightarrow Zip
- c2: Zip \rightarrow City, State
- c3: City, State, Address \rightarrow Zip


Matching Dependencies

m1: $Zip = Ext_Zip \rightarrow City = Ext_City$ m2: $Zip = Ext_Zip \rightarrow State = Ext_State$ m3: City = Ext_City \land State = Ext_State \land \land Address = Ext_Address \rightarrow Zip = Ext_Zip

External Information

Ext_Address	Ext_City	Ext_State	Ext_Zip
3465 S Morgan ST	Chicago	IL	60608
1208 N Wells ST	Chicago	IL	60 <mark>610</mark>
259 E Erie ST	Chicago	IL	60611
2806 W Cermak Rd	Chicago	IL	60623

D. Koop, CSCI 680/490, Spring 2022

Output

	Proposed Cleaned Dataset				
	DBAName	Address	City	State	Zip
t1	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL	60608
t2	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL	60608
t3	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL	60608
t4	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL	60608

Marginal Distribution of Cell Assignments

Cell	Possible Values	Probability
t2.Zip	60608	0.84
	60609	0.16
t4.City	Chicago	0.95
	Cicago	0.05
t4.DBAName	John Veliotis Sr.	0.99
	Johnnyo's	0.01

Data Cleaning in pandas

Handling Missing Data

- Filtering out missing data:
 - Can choose rows or columns
- Filling in missing data:
 - with a default value
 - with an interpolated value
- In pandas:

Argument	Description
dropna	Filter axis labels based on whether values for much missing data to tolerate.
fillna	Fill in missing data with some value or using
isnull	Return boolean values indicating which value
notnull	Negation of isnull.

D. Koop, CSCI 680/490, Spring 2022

r each label have missing data, with varying thresholds for how

an interpolation method such as 'ffill' or 'bfill'. es are missing/NA.

[W. McKinney, Python for Data Analysis]

Filling in missing data

• fillna arguments:

Argument	Description
value	Scalar value or dict-like object
method	Interpolation; by default 'ff
axis	Axis to fill on; default axis=
inplace	Modify the calling object with
limit	For forward and backward fill

D. Koop, CSCI 680/490, Spring 2022

- ct to use to fill missing values
- fill' if function called with no other arguments
- =0
- hout producing a copy
- lling, maximum number of consecutive periods to fill

[W. McKinney, Python for Data Analysis]

Filtering and Cleaning Data

- Find duplicates
 - duplicated: returns boolean Series indicating whether row is a duplicate first instance is **not marked** as a duplicate
- Remove duplicates:
 - drop duplicates: drops all rows where duplicated is True - keep: which value to keep (first or last)
- Can pass specific columns to check for duplicates, e.g. check only key column

Changing Data

- Convert strings to upper/lower case
- Convert Fahrenheit temperatures to Celsius
- Create a new column based on another column

```
In [56]: lowercased
Out[56]:
                                meat_to_animal = {
0
           bacon
     pulled pork
                                  'bacon': 'pig',
1
2
           bacon
                                  'pulled pork': 'pig',
3
        pastrami
                                  'pastrami': 'cow',
     corned beef
4
                                  'corned beef': 'cow',
           bacon
5
                                  'honey ham': 'pig',
        pastrami
6
                                  'nova lox': 'salmon'
       honey ham
        nova lox
Name: food, dtype: object
```

D. Koop, CSCI 680/490, Spring 2022

In	<pre>In [57]: data['animal'] = lowercased.map(meat_to_animal)</pre>				
In [58]: data Out[58]:					
	food	ounces	animal		
0	bacon	4.0	pig		
1	pulled pork	3.0	pig		
2	bacon	12.0	pig		
3	Pastrami	6.0	COW		
4	corned beef	7.5	COW		
5	Bacon	8.0	pig		
6	pastrami	3.0	COW		
7	honey ham	5.0	pig		
8	nova lox	6.0	salmon		

[W. McKinney, Python for Data Analysis]

Replacing Values

- fillna is a special case
- What if –999 in our dataset was identified as a missing value?

In	[61]: data	In [62]:
Out	[<mark>61</mark>]:	Out[62]:
0	1.0	$oldsymbol{O}$
1	-999.0	1
2	2.0	2
3	-999.0	3
4	-1000.0	4 -100
5	3.0	5
dty	pe: float64	dtype: f

Can pass list of values or dictionary to change different values

```
: data.replace(-999, np.nan)
```

```
1.0
```

```
NaN
```

```
2.0
```

```
NaN
```

```
00.0
```

```
3.0
```

```
float64
```


Clamping Values

<pre>In [93]: data.describe()</pre>				
Out[93]:				
	0	1	2	3
count	1000.000000	1000.000000	1000.000000	1000.000000
mean	0.049091	0.026112	-0.002544	-0.051827
std	0.996947	1.007458	0.995232	0.998311
min	-3.645860	-3.184377	-3.745356	-3.428254
25%	-0.599807	-0.612162	-0.687373	-0.747478
50 %	0.047101	-0.013609	-0.022158	-0.088274
75%	0.756646	0.695298	0.699046	0.623331
max	2.653656	3.525865	2.735527	3.366626

D. Koop, CSCI 680/490, Spring 2022

Values above or below a specified thresholds are set to a max/min value

```
In [97]: data[np.abs(data) > 3] = np.sign(data) * 3
In [98]: data.describe()
Out[98]:
                                            2
                                                          3
                 0
                               1
       1000.000000
                    1000.000000
                                  1000.000000
                                               1000.000000
count
                                                 -0.051765
          0.050286
                       0.025567
                                    -0.001399
mean
          0.992920
                                     0.991414
                                                  0.995761
std
                       1.004214
         -3.000000
                                    -3.000000
min
                       -3.000000
                                                 -3.000000
25%
         -0.599807
                       -0.612162
                                    -0.687373
                                                 -0.747478
          0.047101
                       -0.013609
                                    -0.022158
                                                  -0.088274
50%
75%
                       0.695298
          0.756646
                                     0.699046
                                                  0.623331
          2.653656
                       3.000000
                                     2.735527
                                                  3.000000
max
```


Computing Indicator Values

- Useful for machine learning
- Want to take possible values and map them to 0-1 indicators
- Example:

0

•

a b c

0 1 0

0 1 0

```
In [110]: pd.get_dummies(df['key'])
Out[110]:
```

• Example: Genres in movies

```
In [109]: df = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'b'],
                            'data1': range(6)})
```


String Transformation

- One of the reasons for Python's popularity is string/text processing
- split (<delimiter>): break a string into pieces:
 - -s = "12, 13, 14"slist = s.split(',') # ["12", "13", " 14"]
- <delimiter>.join([<str>]): join several strings by a delimiter
 - ":".join(slist) # "12:13: 14"
- strip(): remove leading and trailing whitespace
 - [p.strip() for p in slist] # ["12", "13", "14"]

D. Koop, CSCI 680/490, Spring 2022

String Transformation

• replace (<from>, <to>): change substrings to another substring

- s.replace(',', ':') # "12:13: 14"

- upper()/lower(): Casing
 - "AbCd".upper () # "ABCD"
 - "AbCd".lower() # "abcd"



String Transformations

- index (<str>): find where a substring first occurs (Error if not found)
 - s = "12,13, 14" s.index(',') # 2 s.index(':') # ValueError raised
- find (<str>): same as index but -1 if not found
 - s.find(',') # 2 s.find(':') # -1
- startswith()/endswith(): boolean checks for string occurrence
 - s.startswith("1") # True s.endswith("5") # False

String Methods

Argument	Description
count	Return the number of non-overlappin
endswith	Returns True if string ends with suff
startswith	Returns True if string starts with pre
join	Use string as delimiter for concatenat
index	Return position of first character in su
find	Return position of first character of <i>fir</i> if not found.
rfind	Return position of first character of <i>la</i>
replace	Replace occurrences of string with an
strip, rstrip, lstrip	Trim whitespace, including newlines; for each element.
split	Break string into list of substrings using the string string into list of substrings using the string strin
lower	Convert alphabet characters to lower
иррег	Convert alphabet characters to upper
casefold	Convert characters to lowercase, and common comparable form.
ljust, rjust	Left justify or right justify, respectivel character) to return a string with a m

D. Koop, CSCI 680/490, Spring 2022

ng occurrences of substring in the string.

ffix.

refix.

ating a sequence of other strings.

ubstring if found in the string; raises ValueError if not found.

first occurrence of substring in the string; like index, but returns -1

last occurrence of substring in the string; returns –1 if not found.

nother string.

```
; equivalent to x.strip() (and rstrip, lstrip, respectively)
```

ing passed delimiter.

rcase.

rcase.

convert any region-specific variable character combinations to a

ely; pad opposite side of string with spaces (or some other fill ninimum width.

Regular Expressions

- AKA regex
- A syntax to better specify how to decompose strings
- Look for patterns rather than specific characters
- "31" in "The last day of December is 12/31/2020."
- May work for some questions but now suppose I have other lines like: "The last day of September is 9/30/2020."
- ...and I want to find dates that look like:
- <numbers>/<numbers>/<numbers>
- Cannot search for every combination!
- d+/d+/d+

Regular Expressions

- Character classes:
 - $\ \ d = digits$
 - $\ s = spaces$
 - $\w = word character [a-zA-Z0-9]$
 - [a-z] = lowercase letters (square brackets indicate a set of chars)
- Repeating characters or patterns
 - + = one or more (any number)
 - * = zero or more (any number)
 - -? = Zero or one
 - $\{ < number > \} = a \text{ specific number (or range) of occurrences}$

Regular Expressions in Python

- import re
- re.search(<pattern>, <str_to_check>)
 - Returns None if no match, information about the match otherwise
- Capturing information about what is in a string \rightarrow parentheses
- (d+)/d+/d+ will **capture** information about the month
- match = re.search('(\d+)/\d+/\d+','12/31/2016')
 if match:
 match.group() # 12
- re.findall(<pattern>, <str_to_check>)
 - Finds all matches in the string, search only finds the first match
- Can pass in flags to alter methods: e.g. re.IGNORECASE

Pandas String Methods

- to the entire series
- Fast (vectorized) on whole columns or datasets
- USe .str.<method name>
- .str is important!
 - data = pd.Series({'Dave': 'dave@google.com',

 - 'Wes': np.nan})

data.str.contains('gmail') data.str.split('@').str[1] data.str[-3:]

• Any column or series can have the string methods (e.g. replace, split) applied

```
'Steve': 'steve@gmail.com',
'Rob': 'rob@gmail.com',
```