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Types of Dirty Data Problems
• Separator Issues: e.g. CSV without respecting double quotes 

- 12, 13, "Doe, John", 45 

• Naming Conventions: NYC vs. New York 
• Missing required fields, e.g. key 
• Different representations: 2 vs. two 
• Truncated data: "Janice Keihanaikukauakahihuliheekahaunaele" 

becomes "Janice Keihanaikukauakahihuliheek" on Hawaii license 
• Redundant records: may be exactly the same or have some overlap 
• Formatting issues: 2017-11-07 vs. 07/11/2017 vs. 11/07/2017
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Dirty Data: Data Scientist's View
• Combination of: 
- Statistician's View: data has non-ideal samples for model 
- Database Expert's View: missing data, corrupted data 
- Domain Expert's View: data doesn't pass the smell test 

• All of the views present problems with the data 
• The goal may dictate the solutions: 
- Median value: don't worry too much about crazy outliers 
- Generally, aggregation is less susceptible by numeric errors 
- Be careful, the data may be correct…
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Be careful how you detect dirty data
• The appearance of a hole in the earth’s ozone layer over Antarctica, first 

detected in 1976, was so unexpected that scientists didn’t pay attention to 
what their instruments were telling them; they thought their instruments were 
malfunctioning.  
– National Center for Atmospheric Research  
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Wrangler
• Data cleaning takes a lot of time and human effort 
• "Tedium is the message" 
• Repeating this process on multiple data sets is even worse! 
• Solution: 
- interactive interface (mixed-initiative) 
- transformation language with natural language "translations" 
- suggestions + "programming by demonstration"
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Transform Definition
Format φ(R, i, f) = {(a1, . . . , ai−1, ai+1, . . . , an, f(ai)) | (a1, . . . , an) ∈ R}
Add α(R, x) = {(a1, . . . , an, x) | (a1, . . . , an) ∈ R}
Drop π(R, i) = {(a1, . . . , ai−1, ai+1, . . . , an) | (a1, . . . , an) ∈ R}
Copy κ((a1, . . . , an), i) = {(a1, . . . , an, ai) | (a1, . . . , an) ∈ R}
Merge µ((a1, . . . , an), i, j, glue) = {(a1, . . . , ai−1, ai+1, . . . , aj−1, aj+1, . . . , an, ai ⊕ glue⊕ aj) | (a1, . . . , an) ∈ R}
Split ω((a1, . . . , an), i, splitter) = {(a1, . . . , ai−1, ai+1, . . . , an, left(ai, splitter), right(ai, splitter)) | (a1, . . . , an) ∈ R}
Divide δ((a1, . . . , an), i, pred) = {(a1, . . . , ai−1, ai+1, . . . , an, ai, null) | (a1, . . . , an) ∈ R ∧ pred(ai)} ∪

{(a1, . . . , ai−1, ai+1, . . . , an, null, ai) | (a1, . . . , an) ∈ R ∧ ¬pred(ai)}
Fold λ(R, i1, i2, . . . ik) = {(a1, . . . , ai1−1, ai1+1, . . . , ai2−1, ai2+1, . . . , aik−1, aik+1, . . . , an, ail) |

(a1, . . . , an) ∈ R ∧ 1 ≤ l ≤ k}
Select σ(R, pred) = {(a1, . . . , an) | (a1, . . . , an) ∈ R ∧ pred((a1, . . . , an))}

Notation: R is a relation with n columns. i, j are column indices and ai represents the value of a column in a row. x and glue are
values. f is a function mapping values to values. x ⊕ y concatenates x and y. splitter is a position in a string or a regular expression,
left(x, splitter) is the left part of x after splitting by splitter. pred is a function returning a boolean.

Table 1: Definitions of the various transforms. Unfold is defined in the full paper [22].
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Figure 6: Using Format, Merge and Split to clean name for-
mat differences
Value Translation
The Format transform applies a function to every value in
a column. We provide built-in functions for common oper-
ations like regular-expression based substitutions and arith-
metic operations, but also allow user defined functions. Col-
umn and table names can be demoted into column values us-
ing special characters in regular expressions; these are useful
in conjunction with the Fold transform described below.
One-to-one Mappings of Rows
One-to-one transforms are column operations that transform
individual rows. As illustrated in Figures 6 and 7, they can
be used to unify data collected from different sources.
TheMerge transform concatenates values in two columns,

optionally interposing a constant (the delimiter) in the mid-
dle, to form a single new column. Split splits a column into
two or more parts, and is used typically to parse a value into
its constituent parts. The split positions are often difficult
to specify if the data is not well structured. We allow split-
ting by specifying character positions, regular expressions,
or by interactively performing splits on example values (Sec-
tion 4.3).

Drop, Copy, and Add allow users to drop or copy a col-
umn, or add a new column. Occasionally, logically different
values (maybe from multiple sources) are bunched into the
same column, and we want to transform only some of them.
Divide conditionally divides a column, sending values into
one of two new columns based on a predicate.
Many-to-Many Mappings of Rows
Many-to-Many transforms help to tackle higher-order
schematic heterogeneities [18] where information is stored

partly in data values, and partly in the schema, as shown in
Figure 8. Fold ”flattens” tables by converting one row into
multiple rows, folding a set of columns together into one col-
umn and replicating the rest. Conversely Unfold ”unflattens”
tables; it takes two columns, collects rows that have the same
values for all the other columns, and unfolds the two chosen
columns. Values in one column are used as column names to
align the values in the other column. Figures 8 and 9 show
an example with student grades where the subject names are
demoted into the row via Format, grades are Folded together,
and then Split to separate the subject from the grade. Fold
and UnFold are adapted from the restructuring operators of
SchemaSQL [16], and are discussed in more detail in the
full paper [22].
Power of Transforms: As we prove in the full paper [22],
these transforms can be used to perform all one-to-many row
mappings of rows. Fold andUnfold can also be used to f latten
tables, converting them to a form where column and table
names are all literals and do not have data values. For a for-
mal definition of (un)flattening and an analysis of the power
of Fold and Unfold, see [16].

4.2 Interactive Application of Transforms
We want to apply the transforms on tuples incrementally, as
they stream in, so that the effects of transforms can be imme-
diately shown on tuples visible on the screen of the UI. It also
lets the system pipeline discrepancy detection on the results
of the transforms, thereby giving the interactivity advantages
described in the introduction.
Among the transforms discussed above, all the one-to-one

transforms as well as the Fold transform are functions on a
single row. Hence they are easy to apply incrementally.
However Unfold operates on a set of rows with match-

ing values. Since this could potentially involve scanning the
entire data, we do not allow Unfold to be specified graphi-
cally. For displaying records on the screen we can avoid this
problem by not showing a complete row but instead show-
ing more and more columns as distinct values are found, and
filling data values in these columns as the corresponding in-
put rows are read. Such progressive column addition in the
spreadsheet interface could confuse the user; hence we plan
to implement an abstraction interface where all newly cre-
ated columns are shown as one rolled up column. When

Potter's Wheel: Example
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Transform Definition
Format φ(R, i, f) = {(a1, . . . , ai−1, ai+1, . . . , an, f(ai)) | (a1, . . . , an) ∈ R}
Add α(R, x) = {(a1, . . . , an, x) | (a1, . . . , an) ∈ R}
Drop π(R, i) = {(a1, . . . , ai−1, ai+1, . . . , an) | (a1, . . . , an) ∈ R}
Copy κ((a1, . . . , an), i) = {(a1, . . . , an, ai) | (a1, . . . , an) ∈ R}
Merge µ((a1, . . . , an), i, j, glue) = {(a1, . . . , ai−1, ai+1, . . . , aj−1, aj+1, . . . , an, ai ⊕ glue⊕ aj) | (a1, . . . , an) ∈ R}
Split ω((a1, . . . , an), i, splitter) = {(a1, . . . , ai−1, ai+1, . . . , an, left(ai, splitter), right(ai, splitter)) | (a1, . . . , an) ∈ R}
Divide δ((a1, . . . , an), i, pred) = {(a1, . . . , ai−1, ai+1, . . . , an, ai, null) | (a1, . . . , an) ∈ R ∧ pred(ai)} ∪

{(a1, . . . , ai−1, ai+1, . . . , an, null, ai) | (a1, . . . , an) ∈ R ∧ ¬pred(ai)}
Fold λ(R, i1, i2, . . . ik) = {(a1, . . . , ai1−1, ai1+1, . . . , ai2−1, ai2+1, . . . , aik−1, aik+1, . . . , an, ail) |

(a1, . . . , an) ∈ R ∧ 1 ≤ l ≤ k}
Select σ(R, pred) = {(a1, . . . , an) | (a1, . . . , an) ∈ R ∧ pred((a1, . . . , an))}

Notation: R is a relation with n columns. i, j are column indices and ai represents the value of a column in a row. x and glue are
values. f is a function mapping values to values. x ⊕ y concatenates x and y. splitter is a position in a string or a regular expression,
left(x, splitter) is the left part of x after splitting by splitter. pred is a function returning a boolean.

Table 1: Definitions of the various transforms. Unfold is defined in the full paper [22].
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Figure 6: Using Format, Merge and Split to clean name for-
mat differences
Value Translation
The Format transform applies a function to every value in
a column. We provide built-in functions for common oper-
ations like regular-expression based substitutions and arith-
metic operations, but also allow user defined functions. Col-
umn and table names can be demoted into column values us-
ing special characters in regular expressions; these are useful
in conjunction with the Fold transform described below.
One-to-one Mappings of Rows
One-to-one transforms are column operations that transform
individual rows. As illustrated in Figures 6 and 7, they can
be used to unify data collected from different sources.
TheMerge transform concatenates values in two columns,

optionally interposing a constant (the delimiter) in the mid-
dle, to form a single new column. Split splits a column into
two or more parts, and is used typically to parse a value into
its constituent parts. The split positions are often difficult
to specify if the data is not well structured. We allow split-
ting by specifying character positions, regular expressions,
or by interactively performing splits on example values (Sec-
tion 4.3).

Drop, Copy, and Add allow users to drop or copy a col-
umn, or add a new column. Occasionally, logically different
values (maybe from multiple sources) are bunched into the
same column, and we want to transform only some of them.
Divide conditionally divides a column, sending values into
one of two new columns based on a predicate.
Many-to-Many Mappings of Rows
Many-to-Many transforms help to tackle higher-order
schematic heterogeneities [18] where information is stored

partly in data values, and partly in the schema, as shown in
Figure 8. Fold ”flattens” tables by converting one row into
multiple rows, folding a set of columns together into one col-
umn and replicating the rest. Conversely Unfold ”unflattens”
tables; it takes two columns, collects rows that have the same
values for all the other columns, and unfolds the two chosen
columns. Values in one column are used as column names to
align the values in the other column. Figures 8 and 9 show
an example with student grades where the subject names are
demoted into the row via Format, grades are Folded together,
and then Split to separate the subject from the grade. Fold
and UnFold are adapted from the restructuring operators of
SchemaSQL [16], and are discussed in more detail in the
full paper [22].
Power of Transforms: As we prove in the full paper [22],
these transforms can be used to perform all one-to-many row
mappings of rows. Fold andUnfold can also be used to f latten
tables, converting them to a form where column and table
names are all literals and do not have data values. For a for-
mal definition of (un)flattening and an analysis of the power
of Fold and Unfold, see [16].

4.2 Interactive Application of Transforms
We want to apply the transforms on tuples incrementally, as
they stream in, so that the effects of transforms can be imme-
diately shown on tuples visible on the screen of the UI. It also
lets the system pipeline discrepancy detection on the results
of the transforms, thereby giving the interactivity advantages
described in the introduction.
Among the transforms discussed above, all the one-to-one

transforms as well as the Fold transform are functions on a
single row. Hence they are easy to apply incrementally.
However Unfold operates on a set of rows with match-

ing values. Since this could potentially involve scanning the
entire data, we do not allow Unfold to be specified graphi-
cally. For displaying records on the screen we can avoid this
problem by not showing a complete row but instead show-
ing more and more columns as distinct values are found, and
filling data values in these columns as the corresponding in-
put rows are read. Such progressive column addition in the
spreadsheet interface could confuse the user; hence we plan
to implement an abstraction interface where all newly cre-
ated columns are shown as one rolled up column. When

Potter's Wheel: Transforms
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Interface
• Automated Transformation Suggestions 
• Editable Natural Language Explanations 

• Visual Transformation Previews 
• Transformation History

8

[S. Kandel et al., 2011]
D. Koop, CSCI 680/490, Spring 2021

intended to enhance analysts’ ability to review and refine
transformation steps. Textual annotations enable communi-
cation of analyst intent. Wrangler also couples verification
(run in the background as data is transformed) with visual-
ization to help users discover data quality issues.

Basic Interactions
The Wrangler interface supports six basic interactions within
the data table. Users can select rows, select columns, click
bars in the data quality meter, select text within a cell, edit
data values within the table (for mass editing [14, 19]), and
assign column names, data types or semantic roles. Users
can also choose transforms from the menu or refine sugges-
tions by editing transform descriptions as described below.

Automated Transformation Suggestions
As a user interacts with data, Wrangler generates a list of
suggested transforms. In some cases the set of possible sug-
gestions is large (in the hundreds), but we wish to show only
a relevant handful to avoid overload. Instead of enumerat-
ing the entire suggestion space, users can prune and reorder
the space in three ways. First, users can provide more exam-
ples to disambiguate input to the inference engine. Providing
examples is especially effective for text selections needed
for splitting, extraction, and reformatting; two or three well-
chosen examples typically suffice. Second, users can filter
the space of transforms by selecting an operator from the
transform menu. Third, users can edit a transform by alter-
ing the parameters of a transform to a desired state.

Wrangler does not immediately execute a selected sugges-
tion. Instead, Wrangler makes it the current working trans-
form. The user can edit this transform directly; as a user edits
parameters, the suggestion space updates to reflect these ed-
its. Also, a user can instead interact with the table to generate
new suggestions that use the working transform as context.

Natural Language Descriptions
To aid apprehension of suggested transforms, Wrangler gen-
erates short natural language descriptions of the transform
type and parameters. These descriptions are editable, with
parameters presented as bold hyperlinks (Fig. 8). Clicking
a link reveals an in-place editor appropriate to the parameter
(Fig. 8b). Enumerable variables (such as the direction of a
fill) are mapped to drop-down menus while free-form text
parameters are mapped to text editors with autocomplete.

We designed these descriptions to be concise; default param-
eters that are not critical to understanding may be omitted.
For example, the unless between parameter for split opera-
tions indicates regions of text to ignore while splitting. In
most cases, this parameter is left undefined and including it
would bloat the description. To edit hidden parameters, users
can click the expansion arrow to the left of the description,
revealing an editor with entries for all possible parameters.

We also sought to make parameters within descriptions read-
able by non-experts. For instance, we translate regular ex-
pressions into natural language via pattern substitution (e.g.,
(\d+) to ‘number’). This translation can make some descrip-
tions less concise but increases readability. Translation is

Figure 8. Editable Natural Language Descriptions. (a) An example of

an editable description; highlighted text indicates editable parameters.

(b) Clicking on a parameter reveals an in-place editor. (c) After editing,

the description may update to include new parameters. In this case, a

new window size parameter is displayed for the moving average.

only performed with regular expressions generated by the
Wrangler inference engine. If a user types in a custom ex-
pression, Wrangler will reflect their input.

Visual Transformation Previews
Wrangler uses visual previews to enable users to quickly
evaluate the effect of a transform. For most transforms, Wran-
gler displays these previews in the source data, and not as
a separate visualization (e.g., side-by-side before and after
views). In-place previews provide a visual economy that
serves a number of goals. First, displaying two versions of
a table inherently forces both versions to be small, which
is particularly frustrating when the differences are sparse.
Second, presenting in-place modifications draws user atten-
tion to the effect of the transformation in its original context,
without requiring a shift in focus across multiple tables. As
we discuss next, in-place previews better afford direct ma-
nipulation for users to revise the current transform.

Wrangler maps transforms to at least one of five preview
classes: selection, deletion, update, column and table. In
defining these mappings, we attempted to convey a trans-
form’s effect with minimum displacement of the original
data. This stability allows users to continue interacting with
the original data, e.g., to provide new selection examples.

Selection previews highlight relevant regions of text in all
affected cells (Fig. 3). Deletion previews color to-be-deleted
cells in red (Fig. 2). Update previews overwrite values in a
column and indicate differences with yellow highlights (Fig.
4). Column previews display new derived columns, e.g., as
results from an extract operation (Fig. 3). We show a side-
by-side display of versions when previewing fold and unfold
transforms. These alter the structure of the table to such an
extent that the best preview is to show another table (Fig.
6, 9). These table previews use color highlights to match
input data to their new locations in the output table. Some
transforms map to multiple classes; e.g., extract transforms
use both selection and column previews.

When possible, previews also indicate where the user can
modify the transform through either direct manipulation or
description refinement. Highlighting selected text or cells
works well for certain transformations. For example, by
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Figure 9. Visual preview of a fold operation. For transforms that rear-

range table layout, Wrangler previews the output table and uses color

highlights to show the correspondence of values across table states.

highlighting the text selected by a regular expression in each
cell, users can determine which examples they need to fix.
For reshape transforms, Wrangler highlights the input data
in the same color as the corresponding output in the sec-
ondary table. For instance, in a fold operation, data values
that will become keys are colored to match the keys in the
output table (Fig. 9). Wrangler also highlights the param-
eters in the transform description using the same colors as
those generated in previews (Fig. 3–6). The consistent use
of colors allows users to associate clauses in a description
with their effects in the table.

Transformation Histories and Export
As successive transforms are applied, Wrangler adds their
descriptions to an interactive transformation history viewer.
Users can edit individual transform descriptions and selec-
tively enable and disable prior transforms. Upon changes,
Wrangler runs the edited script and updates the data table.
Toggling or editing a transform may result in downstream er-
rors; Wrangler highlights broken transforms in red and pro-
vides an error message to aid debugging.

Wrangler scripts also support lightweight text annotations.
Analysts can use annotations to document their rationale for
a particular transform and may help future users better un-
derstand data provenance. To annotate a transform, users can
click the edit icon next to the desired transform and write
their annotation in the resulting text editor. Users can view
an annotation by mousing over the same edit icon. These
annotations appear as comments in code-generated scripts.
Users can export both generated scripts and transformed data;
clicking the Export button in the transform history invokes
export options. Analysts can later run saved or exported
scripts on new data sources, modifying the script as needed.

TYPES, ROLES, AND VERIFICATION
It is often difficult to discover data quality issues and there-
fore difficult to address them by constructing the appropri-
ate transform. Wrangler aids discovery of data quality issues
through the use of data types and semantic roles.

As users transform data, Wrangler attempts to infer the data
type and semantic role for each column. Wrangler applies
validation functions to a sample of a column’s data to infer

these types, assigning the type that validates for over half of
the non-missing values. When multiple types satisfy this cri-
teria, Wrangler assigns the more specific one (e.g., integer is
more specific than double). Wrangler infers semantic roles
analogously. An icon in the column header indicates the se-
mantic role of the column, or the underlying data type if no
role has been assigned. Clicking the icon reveals a menu
with which users can manually assign a type or role.

Above each column is a data quality meter: a divided bar
chart that indicates the proportion of values in the column
that verify completely. Values that parse successfully are in-
dicated in green; values that match the type but do not match
the role (e.g., a 6 digit zip code) are shown in yellow; those
that do not match the type (e.g., ‘One’ does not parse as an
integer) are shown in red; and missing data are shown in
gray. Clicking a bar generates suggested transforms for that
category. For instance, clicking the missing values bar will
suggest transforms to fill in missing values or delete those
rows. Clicking the fails role bar will suggest transforms such
as a similarity join on misspelled country names.

THE WRANGLER INFERENCE ENGINE
We now present the design of the Wrangler inference engine,
which is responsible for generating a ranked list of suggested
transforms. Inputs to the engine consist of user interactions;
the current working transform; data descriptions such as col-
umn data types, semantic roles, and summary statistics; and
a corpus of historical usage statistics. Transform sugges-
tion proceeds in three phases: inferring transform parame-
ters from user interactions, generating candidate transforms
from inferred parameters, and finally ranking the results.

Usage Corpus and Transform Equivalence
To generate and rank transforms, Wrangler’s inference en-
gine relies on a corpus of usage statistics. The corpus con-
sists of frequency counts of transform descriptors and initi-
ating interactions. We built our initial corpus by wrangling
our collection of gathered data sets. The corpus updates over
time as more analysts use Wrangler.

For any given transform, we are unlikely to find an exact
match in the corpus. For instance, an analyst may perform
a fold operation over a combination of columns and rows
that does not appear in the corpus. In order to get useful
transform frequencies, we define a relaxed matching routine:
two transforms are considered equivalent in our corpus if (a)
they have an identical transform type (e.g., extract or fold)
and (b) they have equivalent parameters as defined below.

Wrangler transforms accept four basic types of parameters:
row, column or text selections and enumerables. We treat
two row selections as equivalent if they both (a) contain fil-
tering conditions (either index- or predicate-based) or (b)
match all rows in a table. Column selections are equivalent
if they refer to columns with the same data type or semantic
role. We based this rule on the observation that transforms
that operate on identical data types are more likely to be
similar. Text selections are equivalent if both (a) are index-
based selections or (b) contain regular expressions. We con-



Figure 1: Predictive Interaction for text pattern specification. The left image shows the interface after the user has highlighted the

string mobile in line 34. The right shows the interface after one more gesture: highlighting the string dynamic in line 31. Note

that the top-ranked suggested transform changes after the second highlight, and hence so do the Source and Preview contents.

Figure 2: A ranked list of regular expressions.

a visual rendering of their data in a familiar tabular grid. They can
guide the system by highlighting substrings in the table, which are
added to an example set. Based on this set, an inference algorithm
produces a ranked list of suggested text patterns that model the set
well. For the top-ranked pattern, the table renderer highlights any
matches found, and shows how those matches will be used.

Figure 1 shows the states of the interface after the user makes each
of two guiding interactions: first, highlighting the string mobile
in row 34, and then highlighting the additional string dynamic in
row 31. The user interface shows the highlighted patterns in the
source (blue), and the outcome of a text extraction transform in a
preview column (tan). The user can choose to view the outputs of
other suggested transforms by clicking on them in the top panel;
they can also edit the patterns directly in a Transform Editor. When
the user decides on the best pattern, they can click the “plus” (+) to
the right of the transform to add it to a DSL script.

In our initial prototype the suggested transforms looked different
than what is shown in Figure 1. Originally, users would see a
ranked list of REs in a traditional syntax, as shown in Figure 2
(corresponding to the ranked list of suggested transforms on the
right of Figure 1). In user studies we found that even experienced
programmers had difficulty deciding quickly and accurately among
alternative REs. It seems that RE syntax is better suited to writing
patterns than to reading them. Hence we changed our DSL to a new
pattern language (compilable to REs) that is better suited to rapid
disambiguation among options.

In essence, we evolved our DSL design to simplify the way that
users can interact with automated predictions. Although simple, this
example illustrates some of the subtleties involved in co-designing
Predictive Interaction across the three streams of traditional research
mentioned above. The visualization has to be informative and the
affordances for user guidance clear; the predictive model has to
receive information-rich guidance from the interactions, and do a
good job of surfacing probable but diverse choices; the DSL has
to be expressive yet sufficiently small for tractable inference and
simple user interaction.

In the remainder of the paper, we provide a general framework for
Predictive Interaction, putting it in context with previous approaches
to visual languages for managing data, and highlighting research

X Y

Z

f

h g compilation

DSL

(a) (b)

Data Results

interactionData Vis Visual Results

visualization

Figure 3: Lifts. A traditional lift (a): given a map f : X !
Y , and a map g : Z ! Y , the lifting problem is to find a

map h : X ! Z such that g � h = f . Lifting in the context

of visual specifications (b): rather than write expressions in a

textual DSL, we define a lift to a domain of data visualization

and interactions, such that the interactions in that domain lead

to final outputs: compilation � interaction � visualization = DSL
programming.

Figure 1 1  Qualified  retrieval 

EMP NAME SAL MGR DEPT 

Figure 12 Partially  underlined 
qualified  retrieval 
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Qualijied  retrieval. Print  the  names of the  employees  who  work 
in the toy department  and  earn  more  than $10000. This is shown 
in Figure 11. Note  the specification of the  condition  “more  than 
$lQl&)O.” One has  the  option  of using any of the following in- 
equality  operators: #, >, >=, <, <=. If no inequality operator is 
used’  as  a prefix, equality is implied. The symbol # can  be  re- 
placed by 1 or I=. 

Partially  underlined  qualijied  retrieval. Print  the  green items that 
start with the  letter I .  This is found in Figure 12. The I in IKE is 
not  underlined,  and it is a  constant.  Therefore,  the  system  prints 
all the  green  items  that  start with the  letter I .  The  user can  par- 
tially underline at  the beginning, middle or end of a word, a sen- 
tence,  or a  paragraph, as in the  example, XPAY, which means 
find a word, a sentence  or a paragraph such that  somewhere in 
that  sentence  or  paragraph  there  exist  the  letters PA. Since an 
example  element  can  be blank, then it word, a sentence,  or a 
paragraph  that  starts  or  ends with the  letters PA also qualifies. 

The partial underline  feature is useful if an  entry is a  sentence  or 
text  and  the  user wishes to  search to find all examples  that  con- 
tain a special word or  root.  If,  for  example,  the  query is to find 
entries with the word Texas,  the formulation’ of this  query is P. x 
TEXAS Y. 

- 
- 

Qualijied  retrieval using links. Print all the  green  items sold by 
the  toy  department.  This is shown in Figure 13.  In this  case,  the 
user  displays  both  the TYPE table  and  the SALES table by gener- 
3ting two blank skeletons on the  screen  and filling them in with 
beadings and with required entries. The significance of the  ex- 
ample  element is best  illustrated in this  query. Here,  the same 
example  element must be used in both  tables, indicating that if 
an  example item such as N U T  is green,  that  same item is also 
sold by  the toy department.  Only if these  conditions are met 
simultaneously does  the item qualify as a  solution. The manual 
equivalent is to  scan  the TYPE table  to find a green item and  then 
scan the SALES table  to  check  whether  that  same item is also 
sold by the toy department.  Since  there is no specification of 
how the  query is to  be  processed or where  the  scan is to start, 
the formulation of this  query is neutral  and  symmetric. 

Figure 13 Qualified  retrieval using links ‘“7-1 
P . E T  GREEN - 

Once  the  concept of a linking example  element is understood, 
the  user can link any  number of tables and  any  number of rows 
within a single table, as in the following examples. 

ZLOOF IBM SYST J 

Figure 4: Query By Example: qualified retrieval using

links [32].

challenges and opportunities for the community.

2. LIFTING TO VISUAL LANGUAGES

To set the stage for our discussion, we re-examine the more
traditional integration of two of our three themes: visualization
and data-centric languages. There are a number of influential prior
efforts along these lines, including Query-By-Example (QBE) [32],
Microsoft Access, and Tableau. These interfaces take a textual data
manipulation language (e.g., relational calculus) and “lift” it into
an isomorphic higher-level visual language intended to be more
natural for users. Given a visual specification of a query, a system
can translate (“ground”) to the domain of the textual language for
processing. Lifting is a basic idea from category theory, sometimes
used in the design of functional programming languages (Figure 3).

Lifting to a visual domain has proven to be useful for the specifi-
cation of standard select-project-join-aggregate queries. As illustra-
tion, we review two influential systems: QBE and Tableau.

Example 1: QBE. The main idea in QBE is to lift the database

Improvements in Prediction
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Update suggestions when given more information



Differences with Extract-Transform-Load (ETL)
• ETL: 
- Who: IT Professionals 
- Why: Create static data pipeline 
- What: Structured data 
- Where: Data centers 

• "Modern Data Preparation": 
- Who: Analysts 
- Why: Solve problems by designing recipes to use data 
- What: Original, custom data blended with other data 
- Where: Cloud, desktop

10
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Test 1
• This Wednesday, Feb. 23 
• In-class, 3:30-4:45pm in PM 153 
• Format: 
- Multiple Choice 
- Free Response 

• Information posted online

11D. Koop, CSCI 680/490, Spring 2022

http://faculty.cs.niu.edu/~dakoop/cs680-2022sp/test1.html


Paper Critique
• Foofah: Transforming Data By Example, Z. Jin et al., 2017 
• Due Monday before class, submit via Blackboard 
• Read the paper 
• Look up references if necessary 
• Keep track of things you are confused by or that seem problematic 
• Write a few sentences summarizing the paper's contribution 
• Write more sentences discussing the paper and what you think the paper 

does well or doesn't do well at 
• For this response, compare/contrast with Wrangler/Trifacta 
• Length: 1/2-1 page

12D. Koop, CSCI 680/490, Spring 2021

https://web.eecs.umich.edu/~michjc/papers/p683-jin.pdf
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Comma-separated values (CSV) Format
• Comma is a field separator, newlines denote records 

- a,b,c,d,message 
1,2,3,4,hello 
5,6,7,8,world 
9,10,11,12,foo 

• May have a header (a,b,c,d,message), but not required 
• No type information: we do not know what the columns are (numbers, 

strings, floating point, etc.) 
- Default: just keep everything as a string 
- Type inference: Figure out the type to make each column based on values 

• What about commas in a value? → double quotes

14D. Koop, CSCI 680/490, Spring 2022



Delimiter-separated Values
• Comma is a delimiter, specifies boundary between fields 
• Could be a tab, pipe (|), or perhaps spaces instead 
• All of these follow similar styles to CSV

15D. Koop, CSCI 680/490, Spring 2022



Fixed-width Format
• Old school 
• Each field gets a certain number of spots in the file 
• Example: 

- id8141    360.242940   149.910199   11950.7 
id1594    444.953632   166.985655   11788.4 
id1849    364.136849   183.628767   11806.2 
id1230    413.836124   184.375703   11916.8 
id1948    502.953953   173.237159   12468.3 

• Specify exact character ranges for each field, e.g. 0-6 is the id

16D. Koop, CSCI 680/490, Spring 2022
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Reading Data in Python
• Use the open() method to open a file for reading 

- f = open('huck-finn.txt') 

• Usually, add an 'r' as the second parameter to indicate "read" 
• Can iterate through the file (think of the file as a collection of lines): 

- f = open('huck-finn.txt', 'r') 
for line in f: 
    if 'Huckleberry' in line: 
        print(line.strip()) 

• Using line.strip() because the read includes the newline, and print 
writes a newline so we would have double-spaced text 

• Closing the file: f.close()

18D. Koop, CSCI 680/490, Spring 2022



With Statement: Improved File Handling
• With statement does "enter" and "exit" handling (similar to the finally clause): 
• In the previous example, we need to remember to call f.close() 
• Using a with statement, this is done automatically: 

- with open('huck-finn.txt', 'r') as f: 
    for line in f: 
        if 'Huckleberry' in line: 
            print(line.strip()) 

• This is more important for writing files! 
- with open('output.txt', 'w') as f: 
    for k, v in counts.items(): 
        f.write(k + ': ' + v + '\n') 

• Without with, we need f.close()

19D. Koop, CSCI 680/490, Spring 2022



Reading & Writing Data in Pandas

20

[https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html]
D. Koop, CSCI 680/490, Spring 2022

Format 
Type

Data Description Reader Writer
text CSV read_csv to_csv
text Fixed-Width Text File read_fwf
text JSON read_json to_json
text HTML read_html to_html
text Local clipboard read_clipboard to_clipboard

MS Excel read_excel to_excel
binary OpenDocument read_excel
binary HDF5 Format read_hdf to_hdf
binary Feather Format read_feather to_feather
binary Parquet Format read_parquet to_parquet
binary ORC Format read_orc
binary Msgpack read_msgpack to_msgpack
binary Stata read_stata to_stata
binary SAS read_sas
binary SPSS read_spss
binary Python Pickle Format read_pickle to_pickle
SQL SQL read_sql to_sql
SQL Google BigQuery read_gbq to_gbq

https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html
https://en.wikipedia.org/wiki/Comma-separated_values
https://www.json.org/
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/Microsoft_Excel
http://www.opendocumentformat.org/
https://support.hdfgroup.org/HDF5/whatishdf5.html
https://github.com/wesm/feather
https://parquet.apache.org/
https://https//orc.apache.org/
https://msgpack.org/index.html
https://en.wikipedia.org/wiki/Stata
https://en.wikipedia.org/wiki/SAS_(software)
https://en.wikipedia.org/wiki/SPSS
https://docs.python.org/3/library/pickle.html
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/BigQuery


Types of arguments for readers
• Indexing: choose a column to index the data, get column names from file or user 
• Type inference and data conversion: automatic or user-defined 
• Datetime parsing: can combine information from multiple columns 
• Iterating: deal with very large files 
• Unclean Data: skip rows (e.g. comments) or deal with formatted numbers 

(e.g. 1,000,345)

21D. Koop, CSCI 680/490, Spring 2022



read_csv
• Convenient method to read csv files 
• Lots of different options to help get data into the desired format 
• Basic: df = pd.read_csv(fname) 
• Parameters: 

- path: where to read the data from  
- sep (or delimiter): the delimiter (',', ' ', '\t', '\s+') 
- header: if None, no header 
- index_col: which column to use as the row index 
- names: list of header names (e.g. if the file has no header) 
- skiprows: number of list of lines to skip

22D. Koop, CSCI 680/490, Spring 2022



Argument Description
skiprows Number of rows at beginning of !le to ignore or list of row numbers (starting from 0) to skip.
na_values Sequence of values to replace with NA.
comment Character(s) to split comments o" the end of lines.
parse_dates Attempt to parse data to datetime; False by default. If True, will attempt to parse all columns.

Otherwise can specify a list of column numbers or name to parse. If element of list is tuple or list, will
combine multiple columns together and parse to date (e.g., if date/time split across two columns).

keep_date_col If joining columns to parse date, keep the joined columns; False by default.
converters Dict containing column number of name mapping to functions (e.g., {'foo': f} would apply the

function f to all values in the 'foo' column).
dayfirst When parsing potentially ambiguous dates, treat as international format (e.g., 7/6/2012 -> June 7,

2012); False by default.
date_parser Function to use to parse dates.
nrows Number of rows to read from beginning of !le.
iterator Return a TextParser object for reading !le piecemeal.
chunksize For iteration, size of !le chunks.
skip_footer Number of lines to ignore at end of !le.
verbose Print various parser output information, like the number of missing values placed in non-numeric

columns.
encoding Text encoding for Unicode (e.g., 'utf-8' for UTF-8 encoded text).
squeeze If the parsed data only contains one column, return a Series.
thousands Separator for thousands (e.g., ',' or '.').

Reading Text Files in Pieces
When processing very large files or figuring out the right set of arguments to cor‐
rectly process a large file, you may only want to read in a small piece of a file or iterate
through smaller chunks of the file.

Before we look at a large file, we make the pandas display settings more compact:
In [33]: pd.options.display.max_rows = 10

Now we have:
In [34]: result = pd.read_csv('examples/ex6.csv')

In [35]: result
Out[35]: 
           one       two     three      four key
0     0.467976 -0.038649 -0.295344 -1.824726   L
1    -0.358893  1.404453  0.704965 -0.200638   B
2    -0.501840  0.659254 -0.421691 -0.057688   G
3     0.204886  1.074134  1.388361 -0.982404   R
4     0.354628 -0.133116  0.283763 -0.837063   Q
...        ...       ...       ...       ...  ..
9995  2.311896 -0.417070 -1.409599 -0.515821   L

6.1 Reading and Writing Data in Text Format | 173

More read_csv/read_tables arguments
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Chunked Reads
• With very large files, we may not want to read the entire file 
• Why? 
- Time 
- Want to understand part of data before processing all of it 

• Reading only a few rows: 
- df = pd.read_csv('example.csv', nrows=5) 

• Reading chunks: 
- Get an iterator that returns the next chunk of the file 
- chunker = pd.read_csv('example.csv', chunksize=1000) 

- for piece in chunker: 
    process_data(piece)

24D. Koop, CSCI 680/490, Spring 2022



Python csv module
• Also, can read csv files outside of pandas using csv module 

- import csv 
with open('persons_of_concern.csv', 'r') as f: 
    for i in range(3): 
        next(f) 
    reader = csv.reader(f) 
    records = [r for r in reader] # r is a list 

• or 
- import csv 
with open('persons_of_concern.csv', 'r') as f: 
    for i in range(3): 
        next(f) 
    reader = csv.DictReader(f) 
    records = [r for r in reader] # r is a dict

25D. Koop, CSCI 680/490, Spring 2022



Writing CSV data with pandas
• Basic: df.to_csv(<fname>) 
• Change delimiter with sep kwarg: 

- df.to_csv('example.dsv', sep='|') 

• Change missing value representation 
- df.to_csv('example.dsv', na_rep='NULL') 

• Don't write row or column labels: 
- df.to_csv('example.csv', index=False, header=False) 

• Series may also be written to csv

26D. Koop, CSCI 680/490, Spring 2022



eXtensible Markup Language (XML)
• Older, self-describing format with nesting; each field has tags 
• Example: 

- <INDICATOR> 
  <INDICATOR_SEQ>373889</INDICATOR_SEQ> 
  <PARENT_SEQ></PARENT_SEQ> 
  <AGENCY_NAME>Metro-North Railroad</AGENCY_NAME> 
  <INDICATOR_NAME>Escalator Avail.</INDICATOR_NAME> 
  <PERIOD_YEAR>2011</PERIOD_YEAR> 
  <PERIOD_MONTH>12</PERIOD_MONTH> 
  <CATEGORY>Service Indicators</CATEGORY> 
  <FREQUENCY>M</FREQUENCY> 
  <YTD_TARGET>97.00</YTD_TARGET> 
</INDICATOR> 

• Top element is the root
27D. Koop, CSCI 680/490, Spring 2022



XML
• No built-in method 
• Use lxml library (also can use ElementTree) 
• from lxml import objectify  
path = 'datasets/mta_perf/Performance_MNR.xml' 
parsed = objectify.parse(open(path)) 
root = parsed.getroot() 
data = [] 
skip_fields = ['PARENT_SEQ', 'INDICATOR_SEQ', 
               'DESIRED_CHANGE','DECIMAL_PLACES'] 
for elt in root.INDICATOR: 
    el_data = {}  
    for child in elt.getchildren(): 
        if child.tag in skip_fields:  
            continue  
        el_data[child.tag] = child.pyval 
    data.append(el_data) 
perf = pd.DataFrame(data)

28
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JavaScript Object Notation (JSON)
• A format for web data 
• Looks very similar to python dictionaries and lists 
• Example: 

- {"name": "Wes",  
 "places_lived": ["United States", "Spain", "Germany"],  
 "pet": null, 
 "siblings": [{"name": "Scott", "age": 25, "pet": "Zuko"},  
             {"name": "Katie", "age": 33, "pet": "Cisco"}] } 

• Only contains literals (no variables) but allows null 
• Values: strings, arrays, dictionaries, numbers, booleans, or null 
- Dictionary keys must be strings 
- Quotation marks help differentiate string or numeric values

29D. Koop, CSCI 680/490, Spring 2022



What is the problem with reading this data?
• [{"name": "Wes",  
  "places_lived": ["United States", "Spain", "Germany"],  
  "pet": null, 
  "siblings": [ 
     {"name": "Scott", "age": 25, "pet": "Zuko"},  
     {"name": "Katie", "age": 33, "pet": "Cisco"}]  
 }, 
 {"name": "Nia", 
  "address": {"street": "143 Main", 
              "city": "New York",  
              "state": "New York"}, 
  "pet": "Fido", 
  "siblings": [ 
     {"name": "Jacques", "age": 15, "pet": "Fido"}] 
 }, 
… 
]

30D. Koop, CSCI 680/490, Spring 2022



Reading JSON data
• Python has a built-in json module 

- with open('example.json') as f: 
    data = json.load(f) 

- Can also load/dump to strings: 
• json.loads, json.dumps 

• Pandas has read_json, to_json methods

31D. Koop, CSCI 680/490, Spring 2022



JSON Orientation
• Indication of expected JSON string format. Compatible JSON strings can be 

produced by to_json() with a corresponding orient value. The set of 
possible orients is: 

- split: dict like {index -> [index],  
             columns -> [columns],  
             data -> [values]} 

- records: list like [{column -> value}, ... , {column -> value}] 
- index: dict like {index -> {column -> value}} 
- columns: dict like {column -> {index -> value}} 
- values: just the values array

32D. Koop, CSCI 680/490, Spring 2022



Binary Formats
• CSV, JSON, and XML are all text formats 
• What is a binary format? 
• Pickle: Python's built-in serialization 
• HDF5: Library for storing large scientific data 
- Hierarchical Data Format, supports compression 
- Interfaces in C, Java, MATLAB, etc. 
- Use pd.HDFStore to access 
- Shortcuts: read_hdf/to_hdf, need to specify object 

• Excel: need to specify sheet when a spreadsheet has multiple sheets 
- pd.ExcelFile or pd.read_excel
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Databases
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Databases
• Relational databases are similar to multiple data frames but have more 

features 
- Links between tables via foreign keys 
- SQL to create, store, and query data 

• duckdb is an OLAP database with support for python and pandas 
• Python has a database API which lets you access most database systems 

through a common API.
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Python DBAPI Example
import duckdb 
query = """CREATE TABLE test(a VARCHAR(20), b VARCHAR(20),  
                             c REAL, d INTEGER);""" 
conn = duckdb.connect('mydata.sqlite') 
conn.execute(query) 
conn.commit() 
# Insert some data 
data = [('Atlanta', 'Georgia', 1.25, 6), 
        ('Tallahassee', 'Florida', 2.6, 3), 
        ('Sacramento', 'California', 1.7, 5)] 
stmt = "INSERT INTO test VALUES(?, ?, ?, ?)" 
conn.executemany(stmt, data) 
conn.commit()
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Databases
• Similar syntax from other database systems (sqlite, MySQL, Microsoft SQL 

Server, Oracle, etc.) 
• SQLAlchemy: Python package that abstracts away differences between 

different database systems 
• SQLAlchemy gives support for reading queries to data frame: 

- import sqlalchemy as sqla 
db = sqla.create_engine('sqlite:///mydata.sqlite') 
pd.read_sql('select * from test', db)

37D. Koop, CSCI 680/490, Spring 2022
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Single-Source Problems

Schema Level
(Lack of integrity
constraints, poor
schema design)

Instance Level
(Data entry errors)

Multi-Source Problems

Schema Level Instance Level

Data Quality Problems

- Naming conflicts
- Structural conflicts
…

- Inconsistent aggregating
- Inconsistent timing 
…

(Heterogeneous
data models and
schema designs)

(Overlapping,
contradicting and
inconsistent data)

- Uniqueness
- Referential integrity
…

- Misspellings
- Redundancy/duplicates
- Contradictory values
…

Figure 2. Classification of data quality problems in data sources

2.1 Single-source problems
The data quality of a source largely depends on the degree to which it is governed by schema and integrity
constraints controlling permissable data values.  For sources without schema, such as files, there are few
restrictions on what data can be entered and stored, giving rise to a high probability of errors and
inconsistencies. Database systems, on the other hand, enforce restrictions of a specific data model (e.g., the
relational approach requires simple attribute values, referential integrity, etc.) as well as application-specific
integrity constraints. Schema-related data quality problems thus occur because of the lack of appropriate
model-specific or application-specific integrity constraints, e.g., due to data model limitations or poor
schema design, or because only a few integrity constraints were defined to limit the overhead for integrity
control. Instance-specific problems relate to errors and inconsistencies that cannot be prevented at the
schema level (e.g., misspellings).

Scope/Problem Dirty Data Reasons/Remarks
Attribute Illegal values bdate=30.13.70 values outside of domain range
Record Violated attribute

dependencies
age=22, bdate=12.02.70 age = (current date – birth date)

should hold
Record
type

Uniqueness
violation

emp1=(name=”John Smith”, SSN=”123456”)
emp2=(name=”Peter Miller”, SSN=”123456”)

uniqueness  for SSN (social security
number) violated

Source Referential
integrity violation

emp=(name=”John Smith”, deptno=127) referenced department (127) not defined

Table 1. Examples for single-source problems at schema level (violated integrity constraints)
For both schema- and instance-level problems we can differentiate different problem scopes: attribute (field),
record, record type and source; examples for the various cases are shown in Tables 1 and 2. Note that
uniqueness constraints specified at the schema level do not prevent duplicated instances, e.g., if information
on the same real world entity is entered twice with different attribute values (see example in Table 2).

Scope/Problem Dirty Data Reasons/Remarks
Missing values phone=9999-999999 unavailable values during data entry

(dummy values or null)
Misspellings city=”Liipzig” usually typos, phonetic errors
Cryptic values,
Abbreviations

experience=”B”;
occupation=”DB Prog.”

Embedded values name=”J. Smith 12.02.70 New York” multiple values entered in one attribute
(e.g. in a free-form field)

Attribute

Misfielded values city=”Germany”
Record Violated attribute

dependencies
city=”Redmond”, zip=77777 city and zip code should correspond

Word
transpositions

name1= “J. Smith”, name2=”Miller P.” usually in a free-form field

Duplicated records emp1=(name=”John Smith”,...);
emp2=(name=”J. Smith”,...)

same employee represented twice due to
some data entry errors

Record
type

Contradicting
records

emp1=(name=”John Smith”, bdate=12.02.70);
emp2=(name=”John Smith”, bdate=12.12.70)

the same real world entity is described by
different values

Source Wrong references emp=(name=”John Smith”, deptno=17) referenced department (17) is defined but
wrong

Table 2. Examples for single-source problems at instance level

Classifying Data Quality Problems
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emp=(name=”John Smith”, deptno=127) referenced department (127) not defined

Table 1. Examples for single-source problems at schema level (violated integrity constraints)
For both schema- and instance-level problems we can differentiate different problem scopes: attribute (field),
record, record type and source; examples for the various cases are shown in Tables 1 and 2. Note that
uniqueness constraints specified at the schema level do not prevent duplicated instances, e.g., if information
on the same real world entity is entered twice with different attribute values (see example in Table 2).

Scope/Problem Dirty Data Reasons/Remarks
Missing values phone=9999-999999 unavailable values during data entry

(dummy values or null)
Misspellings city=”Liipzig” usually typos, phonetic errors
Cryptic values,
Abbreviations

experience=”B”;
occupation=”DB Prog.”

Embedded values name=”J. Smith 12.02.70 New York” multiple values entered in one attribute
(e.g. in a free-form field)

Attribute

Misfielded values city=”Germany”
Record Violated attribute

dependencies
city=”Redmond”, zip=77777 city and zip code should correspond

Word
transpositions

name1= “J. Smith”, name2=”Miller P.” usually in a free-form field

Duplicated records emp1=(name=”John Smith”,...);
emp2=(name=”J. Smith”,...)

same employee represented twice due to
some data entry errors

Record
type

Contradicting
records

emp1=(name=”John Smith”, bdate=12.02.70);
emp2=(name=”John Smith”, bdate=12.12.70)

the same real world entity is described by
different values

Source Wrong references emp=(name=”John Smith”, deptno=17) referenced department (17) is defined but
wrong

Table 2. Examples for single-source problems at instance level
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Single-Source Problems

Schema Level
(Lack of integrity
constraints, poor
schema design)

Instance Level
(Data entry errors)

Multi-Source Problems

Schema Level Instance Level

Data Quality Problems

- Naming conflicts
- Structural conflicts
…

- Inconsistent aggregating
- Inconsistent timing 
…

(Heterogeneous
data models and
schema designs)

(Overlapping,
contradicting and
inconsistent data)

- Uniqueness
- Referential integrity
…

- Misspellings
- Redundancy/duplicates
- Contradictory values
…

Figure 2. Classification of data quality problems in data sources

2.1 Single-source problems
The data quality of a source largely depends on the degree to which it is governed by schema and integrity
constraints controlling permissable data values.  For sources without schema, such as files, there are few
restrictions on what data can be entered and stored, giving rise to a high probability of errors and
inconsistencies. Database systems, on the other hand, enforce restrictions of a specific data model (e.g., the
relational approach requires simple attribute values, referential integrity, etc.) as well as application-specific
integrity constraints. Schema-related data quality problems thus occur because of the lack of appropriate
model-specific or application-specific integrity constraints, e.g., due to data model limitations or poor
schema design, or because only a few integrity constraints were defined to limit the overhead for integrity
control. Instance-specific problems relate to errors and inconsistencies that cannot be prevented at the
schema level (e.g., misspellings).

Scope/Problem Dirty Data Reasons/Remarks
Attribute Illegal values bdate=30.13.70 values outside of domain range
Record Violated attribute

dependencies
age=22, bdate=12.02.70 age = (current date – birth date)

should hold
Record
type

Uniqueness
violation

emp1=(name=”John Smith”, SSN=”123456”)
emp2=(name=”Peter Miller”, SSN=”123456”)

uniqueness  for SSN (social security
number) violated

Source Referential
integrity violation

emp=(name=”John Smith”, deptno=127) referenced department (127) not defined

Table 1. Examples for single-source problems at schema level (violated integrity constraints)
For both schema- and instance-level problems we can differentiate different problem scopes: attribute (field),
record, record type and source; examples for the various cases are shown in Tables 1 and 2. Note that
uniqueness constraints specified at the schema level do not prevent duplicated instances, e.g., if information
on the same real world entity is entered twice with different attribute values (see example in Table 2).

Scope/Problem Dirty Data Reasons/Remarks
Missing values phone=9999-999999 unavailable values during data entry

(dummy values or null)
Misspellings city=”Liipzig” usually typos, phonetic errors
Cryptic values,
Abbreviations

experience=”B”;
occupation=”DB Prog.”

Embedded values name=”J. Smith 12.02.70 New York” multiple values entered in one attribute
(e.g. in a free-form field)

Attribute

Misfielded values city=”Germany”
Record Violated attribute

dependencies
city=”Redmond”, zip=77777 city and zip code should correspond

Word
transpositions

name1= “J. Smith”, name2=”Miller P.” usually in a free-form field

Duplicated records emp1=(name=”John Smith”,...);
emp2=(name=”J. Smith”,...)

same employee represented twice due to
some data entry errors

Record
type

Contradicting
records

emp1=(name=”John Smith”, bdate=12.02.70);
emp2=(name=”John Smith”, bdate=12.12.70)

the same real world entity is described by
different values

Source Wrong references emp=(name=”John Smith”, deptno=17) referenced department (17) is defined but
wrong

Table 2. Examples for single-source problems at instance level
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Given that cleaning data sources is an expensive process, preventing dirty data to be entered is obviously an
important step to reduce the cleaning problem. This requires an appropriate design of the database schema
and integrity constraints as well as of data entry applications. Also, the discovery of data cleaning rules
during warehouse design can suggest improvements to the constraints enforced by existing schemas.

2.2 Multi-source problems
The problems present in single sources are aggravated when multiple sources need to be integrated. Each
source may contain dirty data and the data in the sources may be represented differently, overlap or
contradict. This is because the sources are typically developed, deployed and maintained independently to
serve specific needs. This results in a large degree of heterogeneity w.r.t. data management systems, data
models, schema designs and the actual data.
At the schema level, data model and schema design differences are to be addressed by the steps of schema
translation and schema integration, respectively. The main problems w.r.t. schema design are naming and
structural conflicts [2][24][17]. Naming conflicts arise when the same name is used for different objects
(homonyms) or different names are used for the same object (synonyms). Structural conflicts occur in many
variations and refer to different representations of the same object in different sources, e.g., attribute vs. table
representation, different component structure, different data types, different integrity constraints, etc.
In addition to schema-level conflicts, many conflicts appear only at the instance level (data conflicts). All
problems from the single-source case can occur with different representations in different sources (e.g.,
duplicated records, contradicting records,…). Furthermore, even when there are the same attribute names and
data types, there may be different value representations (e.g., for marital status) or different interpretation of
the values (e.g., measurement units Dollar vs. Euro) across sources. Moreover, information in the sources
may be provided at different aggregation levels (e.g., sales per product vs. sales per product group) or refer
to different points in time (e.g. current sales as of yesterday for source 1 vs. as of last week for source 2).
A main problem for cleaning data from multiple sources is to identify overlapping data, in particular
matching records referring to the same real-world entity (e.g., customer). This problem is also referred to as
the object identity problem [11], duplicate elimination or the merge/purge problem [15]. Frequently, the
information is only partially redundant and the sources may complement each other by providing additional
information about an entity. Thus duplicate information should be purged out and complementing
information should be consolidated and merged in order to achieve a consistent view of real world entities.
Customer (source 1)
CID Name Street City Sex
 11 Kristen Smith 2 Hurley Pl South Fork, MN 48503 0
 24 Christian Smith Hurley St 2 S Fork MN 1
Client (source 2)
Cno LastName FirstName Gender Address Phone/Fax
24 Smith Christoph M 23 Harley St, Chicago

IL, 60633-2394
333-222-6542 /
333-222-6599

493 Smith Kris L. F 2 Hurley Place, South
Fork MN, 48503-5998

444-555-6666

Customers (integrated target with cleaned data)
No LName FName Gender Street City State ZIP Phone Fax CID Cno
1 Smith Kristen L. F 2 Hurley

Place
South
Fork

MN 48503-
5998

444-555-
6666

11 493

2 Smith Christian M 2 Hurley
Place

South
Fork

MN 48503-
5998

24

3 Smith Christoph M 23 Harley
Street

Chicago IL 60633-
2394

333-222-
6542

333-222-
6599

24

Figure 3. Examples of multi-source problems at schema and instance level

The two sources in the example of Fig. 3 are both in relational format but exhibit schema and data conflicts.
At the schema level, there are name conflicts (synonyms Customer/Client, Cid/Cno, Sex/Gender) and
structural conflicts (different representations for names and addresses). At the instance level, we note that
there are different gender representations (“0”/”1” vs. “F”/”M”) and presumably a duplicate record (Kristen
Smith). The latter observation also reveals that while Cid/Cno are both source-specific identifiers, their
contents are not comparable between the sources; different numbers (11/493) may refer to the same person
while different persons can have the same number (24). Solving these problems requires both schema
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HoloClean
• A holistic data cleaning framework that combines qualitative methods with 

quantitative methods: 
- Qualitative: use integrity constraints or external data sources 
- Quantitative: use statistics of the data 

• Driven by probabilistic inference. Users only need to provide a dataset to be 
cleaned and describe high-level domain specific signals. 

• Can scale to large real-world dirty datasets and perform automatic repairs 
with high accuracy
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(E) Repair using Minimality w.r.t FDs

t2

t4

t1

t3

DBAName

John Veliotis Sr.

Johnnyo’s

John Veliotis Sr.

John Veliotis Sr.

Zip

60609

60609

60608

60609

3465 S 
Morgan ST ILJohnnyo’s Cicago

Johnnyo’s 3465 S 
Morgan ST ILChicago

Johnnyo’s ILChicago3465 S 
Morgan ST

Chicago3465 S 
Morgan STJohnnyo’s IL

StateCityAddressAKAName

(G) Repair that leverages Quantitative Statistics
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(F) Repair using Matching Dependencies
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(A) Input Database External Information 
(Chicago food inspections)

t2

t4

t1

t3

DBAName

John Veliotis Sr.

Johnnyo’s

John Veliotis Sr.

John Veliotis Sr.

Zip

60609

60608

60608

60609

3465 S 
Morgan ST ILJohnnyo’s Cicago

Johnnyo’s 3465 S 
Morgan ST ILChicago

Johnnyo’s ILChicago3465 S 
Morgan ST

Chicago
3465 S 

Morgan STJohnnyo’s IL

StateCityAddressAKAName

Conflicts
due to c2

Conflict due to c2Does not obey
data distribution

c1: DBAName � Zip

c2: Zip � City, State

c3: City, State, Address � Zip

(B) Functional Dependencies

(C) Matching Dependencies
m1: Zip = Ext Zip � City = Ext City

m2: Zip = Ext Zip � State = Ext State

m3: City = Ext City � State = Ext State�
� Address = Ext Address � Zip = Ext Zip

Figure 1: A variety of signals can be used for data cleaning: integrity constraints, external dictionaries, and quantitative statistics of
the input dataset. Using each signal in isolation can lead to repairs that do not fix all errors or even introduce new errors.

limited coverage of external resources or these methods may not be
applicable as for many domains a knowledge base may not exist.

Finally, data repairing methods that are based on statistical anal-
ysis [39, 49], leverage quantitative statistics of the input dataset,
e.g., co-occurrences of attribute values, and use those for cleaning.
These techniques overlook integrity constraints. Figure 1(G) shows
such a repair. As shown the “DBAName” and “City” fields of tuple
t4 are updated as their original values correspond to outliers with
respect to other tuples in the dataset. However, this repair does not
have sufficient information to fix the zip code of tuples t2 and t3.

In our example, if we combine repairs that are based on different
signals, we can repair all errors in the input dataset correctly. If
we combine the zip code and city repairs from Figure 1(F) with the
DBAName repair from Figure 1(G) we can repair all inaccuracies
in the input dataset. Nonetheless, combining heterogeneous signals
can be challenging. This is not only because each type of signal is
associated with different operations over the input data (e.g., in-
tegrity constraints require reasoning about the satisfiability of con-
straints while external information requires efficient matching pro-
cedures) but different signals may suggest conflicting repairs. For
instance, if we naively combine the repairs in Figure 1 we end up
with conflicts on the zip code of tuples t2 and t3. The repairs in
Figure 1(E) and (G) assign value “60609” while the repair in Fig-
ure 1(F) assigns value “60608”. This raises the main question we
answer in this paper: How can we combine all aforementioned sig-
nals in a single unified data cleaning framework, and which signals
are useful for repairing different records in an input dataset?

Our Approach. We introduce HoloClean, the first data cleaning
system that unifies integrity constraints, external data, and quanti-
tative statistics, to repair errors in structured data sets. Instead of
considering each signal in isolation, we use all available signals
to suggest data repairs. We consider the input dataset as a noisy
version of a hidden clean dataset and treat each signal as evidence
on the correctness of different records in that dataset. To combine
different signals, we rely on probability theory as it allows us to
reason about inconsistencies across those.

HoloClean automatically generates a probabilistic model [35]
whose random variables capture the uncertainty over records in the
input dataset. Signals are converted to features of the graphical
model and are used to describe the distribution characterizing the
input dataset. To repair errors, HoloClean uses statistical learning
and probabilistic inference over the generated model.

HoloClean exhibits significant improvements over state-of-the-
art data cleaning methods: we show that across multiple datasets

HoloClean finds repairs with an average precision of ⇠ 90% and
an average recall of ⇠ 76%, obtaining an average F1-score im-
provement of more than 2⇥ against state-of-the-art data repairing
methods. Specifically, we find that combining all signals yields an
F1-score improvement of 2.7⇥ against methods that only use in-
tegrity constraints, an improvement of 2.81⇥ against methods that
only leverage external information, and an improvement of 2.29⇥
against methods that only use quantitative statistics.

Technical Challenges. Probabilistic models provide a means for
unifying all signals. However, it is unclear that inference scales
to large data repairing instances. Probabilistic inference involves
two tasks: (i) grounding, which enumerates all possible interac-
tions between correlated random variables to materialize a factor
graph that represents the joint distribution over all variables, and
(ii) inference where the goal is to compute the marginal probability
for every random variable. These tasks are standard but non-trivial:

(1) Integrity constraints that span multiple attributes can cause com-
binatorial explosion problems. Grounding the interactions due to
integrity constraints requires considering all value combinations
that attributes of erroneous tuples can take. If attributes are al-
lowed to obtain values from large domains, inference can become
intractable. For example, we consider repairing the smallest dataset
in our experiments, which contains 1,000 tuples, and allow attributes
in erroneous tuples to obtain any value from the set of consistent as-
signments present in the dataset. Inference over the resulting proba-
bilistic model does not terminate after an entire day. Thus, we need
mechanisms that limit the possible value assignments for records
that need to be repaired by HoloClean’s probabilistic model.

(2) Integrity constraints introduce correlations between pairs of ran-
dom variables associated with tuples in the input dataset. Enumer-
ating these interactions during grounding results in factor graphs
of quadratic size in the number of tuples. For example, in our ex-
periments we consider a dataset with more than two million tuples.
Enforcing the integrity constraints over all pairs of tuples, yields a
factor graph with more than four trillion interactions across random
variables. Thus, we need to avoid evaluating integrity constraints
for pairs of tuples that cannot result in violations.

(3) Finally, probabilistic inference is #P-complete in the presence
of complex correlations, such as hard constraints. Thus, approxi-
mate inference techniques such as Gibbs sampling are required. In
the presence of complex correlations, Gibbs sampling is known to
require an exponential number of samples in the number of random
variables to mix [45], i.e., reach a stationary distribution. Neverthe-
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(E) Repair using Minimality w.r.t FDs
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(G) Repair that leverages Quantitative Statistics
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(F) Repair using Matching Dependencies
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(A) Input Database External Information 
(Chicago food inspections)
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Figure 1: A variety of signals can be used for data cleaning: integrity constraints, external dictionaries, and quantitative statistics of
the input dataset. Using each signal in isolation can lead to repairs that do not fix all errors or even introduce new errors.

limited coverage of external resources or these methods may not be
applicable as for many domains a knowledge base may not exist.

Finally, data repairing methods that are based on statistical anal-
ysis [39, 49], leverage quantitative statistics of the input dataset,
e.g., co-occurrences of attribute values, and use those for cleaning.
These techniques overlook integrity constraints. Figure 1(G) shows
such a repair. As shown the “DBAName” and “City” fields of tuple
t4 are updated as their original values correspond to outliers with
respect to other tuples in the dataset. However, this repair does not
have sufficient information to fix the zip code of tuples t2 and t3.

In our example, if we combine repairs that are based on different
signals, we can repair all errors in the input dataset correctly. If
we combine the zip code and city repairs from Figure 1(F) with the
DBAName repair from Figure 1(G) we can repair all inaccuracies
in the input dataset. Nonetheless, combining heterogeneous signals
can be challenging. This is not only because each type of signal is
associated with different operations over the input data (e.g., in-
tegrity constraints require reasoning about the satisfiability of con-
straints while external information requires efficient matching pro-
cedures) but different signals may suggest conflicting repairs. For
instance, if we naively combine the repairs in Figure 1 we end up
with conflicts on the zip code of tuples t2 and t3. The repairs in
Figure 1(E) and (G) assign value “60609” while the repair in Fig-
ure 1(F) assigns value “60608”. This raises the main question we
answer in this paper: How can we combine all aforementioned sig-
nals in a single unified data cleaning framework, and which signals
are useful for repairing different records in an input dataset?

Our Approach. We introduce HoloClean, the first data cleaning
system that unifies integrity constraints, external data, and quanti-
tative statistics, to repair errors in structured data sets. Instead of
considering each signal in isolation, we use all available signals
to suggest data repairs. We consider the input dataset as a noisy
version of a hidden clean dataset and treat each signal as evidence
on the correctness of different records in that dataset. To combine
different signals, we rely on probability theory as it allows us to
reason about inconsistencies across those.

HoloClean automatically generates a probabilistic model [35]
whose random variables capture the uncertainty over records in the
input dataset. Signals are converted to features of the graphical
model and are used to describe the distribution characterizing the
input dataset. To repair errors, HoloClean uses statistical learning
and probabilistic inference over the generated model.

HoloClean exhibits significant improvements over state-of-the-
art data cleaning methods: we show that across multiple datasets

HoloClean finds repairs with an average precision of ⇠ 90% and
an average recall of ⇠ 76%, obtaining an average F1-score im-
provement of more than 2⇥ against state-of-the-art data repairing
methods. Specifically, we find that combining all signals yields an
F1-score improvement of 2.7⇥ against methods that only use in-
tegrity constraints, an improvement of 2.81⇥ against methods that
only leverage external information, and an improvement of 2.29⇥
against methods that only use quantitative statistics.

Technical Challenges. Probabilistic models provide a means for
unifying all signals. However, it is unclear that inference scales
to large data repairing instances. Probabilistic inference involves
two tasks: (i) grounding, which enumerates all possible interac-
tions between correlated random variables to materialize a factor
graph that represents the joint distribution over all variables, and
(ii) inference where the goal is to compute the marginal probability
for every random variable. These tasks are standard but non-trivial:

(1) Integrity constraints that span multiple attributes can cause com-
binatorial explosion problems. Grounding the interactions due to
integrity constraints requires considering all value combinations
that attributes of erroneous tuples can take. If attributes are al-
lowed to obtain values from large domains, inference can become
intractable. For example, we consider repairing the smallest dataset
in our experiments, which contains 1,000 tuples, and allow attributes
in erroneous tuples to obtain any value from the set of consistent as-
signments present in the dataset. Inference over the resulting proba-
bilistic model does not terminate after an entire day. Thus, we need
mechanisms that limit the possible value assignments for records
that need to be repaired by HoloClean’s probabilistic model.

(2) Integrity constraints introduce correlations between pairs of ran-
dom variables associated with tuples in the input dataset. Enumer-
ating these interactions during grounding results in factor graphs
of quadratic size in the number of tuples. For example, in our ex-
periments we consider a dataset with more than two million tuples.
Enforcing the integrity constraints over all pairs of tuples, yields a
factor graph with more than four trillion interactions across random
variables. Thus, we need to avoid evaluating integrity constraints
for pairs of tuples that cannot result in violations.

(3) Finally, probabilistic inference is #P-complete in the presence
of complex correlations, such as hard constraints. Thus, approxi-
mate inference techniques such as Gibbs sampling are required. In
the presence of complex correlations, Gibbs sampling is known to
require an exponential number of samples in the number of random
variables to mix [45], i.e., reach a stationary distribution. Neverthe-
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Figure 1: A variety of signals can be used for data cleaning: integrity constraints, external dictionaries, and quantitative statistics of
the input dataset. Using each signal in isolation can lead to repairs that do not fix all errors or even introduce new errors.

limited coverage of external resources or these methods may not be
applicable as for many domains a knowledge base may not exist.

Finally, data repairing methods that are based on statistical anal-
ysis [39, 49], leverage quantitative statistics of the input dataset,
e.g., co-occurrences of attribute values, and use those for cleaning.
These techniques overlook integrity constraints. Figure 1(G) shows
such a repair. As shown the “DBAName” and “City” fields of tuple
t4 are updated as their original values correspond to outliers with
respect to other tuples in the dataset. However, this repair does not
have sufficient information to fix the zip code of tuples t2 and t3.

In our example, if we combine repairs that are based on different
signals, we can repair all errors in the input dataset correctly. If
we combine the zip code and city repairs from Figure 1(F) with the
DBAName repair from Figure 1(G) we can repair all inaccuracies
in the input dataset. Nonetheless, combining heterogeneous signals
can be challenging. This is not only because each type of signal is
associated with different operations over the input data (e.g., in-
tegrity constraints require reasoning about the satisfiability of con-
straints while external information requires efficient matching pro-
cedures) but different signals may suggest conflicting repairs. For
instance, if we naively combine the repairs in Figure 1 we end up
with conflicts on the zip code of tuples t2 and t3. The repairs in
Figure 1(E) and (G) assign value “60609” while the repair in Fig-
ure 1(F) assigns value “60608”. This raises the main question we
answer in this paper: How can we combine all aforementioned sig-
nals in a single unified data cleaning framework, and which signals
are useful for repairing different records in an input dataset?

Our Approach. We introduce HoloClean, the first data cleaning
system that unifies integrity constraints, external data, and quanti-
tative statistics, to repair errors in structured data sets. Instead of
considering each signal in isolation, we use all available signals
to suggest data repairs. We consider the input dataset as a noisy
version of a hidden clean dataset and treat each signal as evidence
on the correctness of different records in that dataset. To combine
different signals, we rely on probability theory as it allows us to
reason about inconsistencies across those.

HoloClean automatically generates a probabilistic model [35]
whose random variables capture the uncertainty over records in the
input dataset. Signals are converted to features of the graphical
model and are used to describe the distribution characterizing the
input dataset. To repair errors, HoloClean uses statistical learning
and probabilistic inference over the generated model.

HoloClean exhibits significant improvements over state-of-the-
art data cleaning methods: we show that across multiple datasets

HoloClean finds repairs with an average precision of ⇠ 90% and
an average recall of ⇠ 76%, obtaining an average F1-score im-
provement of more than 2⇥ against state-of-the-art data repairing
methods. Specifically, we find that combining all signals yields an
F1-score improvement of 2.7⇥ against methods that only use in-
tegrity constraints, an improvement of 2.81⇥ against methods that
only leverage external information, and an improvement of 2.29⇥
against methods that only use quantitative statistics.

Technical Challenges. Probabilistic models provide a means for
unifying all signals. However, it is unclear that inference scales
to large data repairing instances. Probabilistic inference involves
two tasks: (i) grounding, which enumerates all possible interac-
tions between correlated random variables to materialize a factor
graph that represents the joint distribution over all variables, and
(ii) inference where the goal is to compute the marginal probability
for every random variable. These tasks are standard but non-trivial:

(1) Integrity constraints that span multiple attributes can cause com-
binatorial explosion problems. Grounding the interactions due to
integrity constraints requires considering all value combinations
that attributes of erroneous tuples can take. If attributes are al-
lowed to obtain values from large domains, inference can become
intractable. For example, we consider repairing the smallest dataset
in our experiments, which contains 1,000 tuples, and allow attributes
in erroneous tuples to obtain any value from the set of consistent as-
signments present in the dataset. Inference over the resulting proba-
bilistic model does not terminate after an entire day. Thus, we need
mechanisms that limit the possible value assignments for records
that need to be repaired by HoloClean’s probabilistic model.

(2) Integrity constraints introduce correlations between pairs of ran-
dom variables associated with tuples in the input dataset. Enumer-
ating these interactions during grounding results in factor graphs
of quadratic size in the number of tuples. For example, in our ex-
periments we consider a dataset with more than two million tuples.
Enforcing the integrity constraints over all pairs of tuples, yields a
factor graph with more than four trillion interactions across random
variables. Thus, we need to avoid evaluating integrity constraints
for pairs of tuples that cannot result in violations.

(3) Finally, probabilistic inference is #P-complete in the presence
of complex correlations, such as hard constraints. Thus, approxi-
mate inference techniques such as Gibbs sampling are required. In
the presence of complex correlations, Gibbs sampling is known to
require an exponential number of samples in the number of random
variables to mix [45], i.e., reach a stationary distribution. Neverthe-
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Figure 1: A variety of signals can be used for data cleaning: integrity constraints, external dictionaries, and quantitative statistics of
the input dataset. Using each signal in isolation can lead to repairs that do not fix all errors or even introduce new errors.

limited coverage of external resources or these methods may not be
applicable as for many domains a knowledge base may not exist.

Finally, data repairing methods that are based on statistical anal-
ysis [39, 49], leverage quantitative statistics of the input dataset,
e.g., co-occurrences of attribute values, and use those for cleaning.
These techniques overlook integrity constraints. Figure 1(G) shows
such a repair. As shown the “DBAName” and “City” fields of tuple
t4 are updated as their original values correspond to outliers with
respect to other tuples in the dataset. However, this repair does not
have sufficient information to fix the zip code of tuples t2 and t3.

In our example, if we combine repairs that are based on different
signals, we can repair all errors in the input dataset correctly. If
we combine the zip code and city repairs from Figure 1(F) with the
DBAName repair from Figure 1(G) we can repair all inaccuracies
in the input dataset. Nonetheless, combining heterogeneous signals
can be challenging. This is not only because each type of signal is
associated with different operations over the input data (e.g., in-
tegrity constraints require reasoning about the satisfiability of con-
straints while external information requires efficient matching pro-
cedures) but different signals may suggest conflicting repairs. For
instance, if we naively combine the repairs in Figure 1 we end up
with conflicts on the zip code of tuples t2 and t3. The repairs in
Figure 1(E) and (G) assign value “60609” while the repair in Fig-
ure 1(F) assigns value “60608”. This raises the main question we
answer in this paper: How can we combine all aforementioned sig-
nals in a single unified data cleaning framework, and which signals
are useful for repairing different records in an input dataset?

Our Approach. We introduce HoloClean, the first data cleaning
system that unifies integrity constraints, external data, and quanti-
tative statistics, to repair errors in structured data sets. Instead of
considering each signal in isolation, we use all available signals
to suggest data repairs. We consider the input dataset as a noisy
version of a hidden clean dataset and treat each signal as evidence
on the correctness of different records in that dataset. To combine
different signals, we rely on probability theory as it allows us to
reason about inconsistencies across those.

HoloClean automatically generates a probabilistic model [35]
whose random variables capture the uncertainty over records in the
input dataset. Signals are converted to features of the graphical
model and are used to describe the distribution characterizing the
input dataset. To repair errors, HoloClean uses statistical learning
and probabilistic inference over the generated model.

HoloClean exhibits significant improvements over state-of-the-
art data cleaning methods: we show that across multiple datasets

HoloClean finds repairs with an average precision of ⇠ 90% and
an average recall of ⇠ 76%, obtaining an average F1-score im-
provement of more than 2⇥ against state-of-the-art data repairing
methods. Specifically, we find that combining all signals yields an
F1-score improvement of 2.7⇥ against methods that only use in-
tegrity constraints, an improvement of 2.81⇥ against methods that
only leverage external information, and an improvement of 2.29⇥
against methods that only use quantitative statistics.

Technical Challenges. Probabilistic models provide a means for
unifying all signals. However, it is unclear that inference scales
to large data repairing instances. Probabilistic inference involves
two tasks: (i) grounding, which enumerates all possible interac-
tions between correlated random variables to materialize a factor
graph that represents the joint distribution over all variables, and
(ii) inference where the goal is to compute the marginal probability
for every random variable. These tasks are standard but non-trivial:

(1) Integrity constraints that span multiple attributes can cause com-
binatorial explosion problems. Grounding the interactions due to
integrity constraints requires considering all value combinations
that attributes of erroneous tuples can take. If attributes are al-
lowed to obtain values from large domains, inference can become
intractable. For example, we consider repairing the smallest dataset
in our experiments, which contains 1,000 tuples, and allow attributes
in erroneous tuples to obtain any value from the set of consistent as-
signments present in the dataset. Inference over the resulting proba-
bilistic model does not terminate after an entire day. Thus, we need
mechanisms that limit the possible value assignments for records
that need to be repaired by HoloClean’s probabilistic model.

(2) Integrity constraints introduce correlations between pairs of ran-
dom variables associated with tuples in the input dataset. Enumer-
ating these interactions during grounding results in factor graphs
of quadratic size in the number of tuples. For example, in our ex-
periments we consider a dataset with more than two million tuples.
Enforcing the integrity constraints over all pairs of tuples, yields a
factor graph with more than four trillion interactions across random
variables. Thus, we need to avoid evaluating integrity constraints
for pairs of tuples that cannot result in violations.

(3) Finally, probabilistic inference is #P-complete in the presence
of complex correlations, such as hard constraints. Thus, approxi-
mate inference techniques such as Gibbs sampling are required. In
the presence of complex correlations, Gibbs sampling is known to
require an exponential number of samples in the number of random
variables to mix [45], i.e., reach a stationary distribution. Neverthe-
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Figure 1: A variety of signals can be used for data cleaning: integrity constraints, external dictionaries, and quantitative statistics of
the input dataset. Using each signal in isolation can lead to repairs that do not fix all errors or even introduce new errors.

limited coverage of external resources or these methods may not be
applicable as for many domains a knowledge base may not exist.

Finally, data repairing methods that are based on statistical anal-
ysis [39, 49], leverage quantitative statistics of the input dataset,
e.g., co-occurrences of attribute values, and use those for cleaning.
These techniques overlook integrity constraints. Figure 1(G) shows
such a repair. As shown the “DBAName” and “City” fields of tuple
t4 are updated as their original values correspond to outliers with
respect to other tuples in the dataset. However, this repair does not
have sufficient information to fix the zip code of tuples t2 and t3.

In our example, if we combine repairs that are based on different
signals, we can repair all errors in the input dataset correctly. If
we combine the zip code and city repairs from Figure 1(F) with the
DBAName repair from Figure 1(G) we can repair all inaccuracies
in the input dataset. Nonetheless, combining heterogeneous signals
can be challenging. This is not only because each type of signal is
associated with different operations over the input data (e.g., in-
tegrity constraints require reasoning about the satisfiability of con-
straints while external information requires efficient matching pro-
cedures) but different signals may suggest conflicting repairs. For
instance, if we naively combine the repairs in Figure 1 we end up
with conflicts on the zip code of tuples t2 and t3. The repairs in
Figure 1(E) and (G) assign value “60609” while the repair in Fig-
ure 1(F) assigns value “60608”. This raises the main question we
answer in this paper: How can we combine all aforementioned sig-
nals in a single unified data cleaning framework, and which signals
are useful for repairing different records in an input dataset?

Our Approach. We introduce HoloClean, the first data cleaning
system that unifies integrity constraints, external data, and quanti-
tative statistics, to repair errors in structured data sets. Instead of
considering each signal in isolation, we use all available signals
to suggest data repairs. We consider the input dataset as a noisy
version of a hidden clean dataset and treat each signal as evidence
on the correctness of different records in that dataset. To combine
different signals, we rely on probability theory as it allows us to
reason about inconsistencies across those.

HoloClean automatically generates a probabilistic model [35]
whose random variables capture the uncertainty over records in the
input dataset. Signals are converted to features of the graphical
model and are used to describe the distribution characterizing the
input dataset. To repair errors, HoloClean uses statistical learning
and probabilistic inference over the generated model.

HoloClean exhibits significant improvements over state-of-the-
art data cleaning methods: we show that across multiple datasets

HoloClean finds repairs with an average precision of ⇠ 90% and
an average recall of ⇠ 76%, obtaining an average F1-score im-
provement of more than 2⇥ against state-of-the-art data repairing
methods. Specifically, we find that combining all signals yields an
F1-score improvement of 2.7⇥ against methods that only use in-
tegrity constraints, an improvement of 2.81⇥ against methods that
only leverage external information, and an improvement of 2.29⇥
against methods that only use quantitative statistics.

Technical Challenges. Probabilistic models provide a means for
unifying all signals. However, it is unclear that inference scales
to large data repairing instances. Probabilistic inference involves
two tasks: (i) grounding, which enumerates all possible interac-
tions between correlated random variables to materialize a factor
graph that represents the joint distribution over all variables, and
(ii) inference where the goal is to compute the marginal probability
for every random variable. These tasks are standard but non-trivial:

(1) Integrity constraints that span multiple attributes can cause com-
binatorial explosion problems. Grounding the interactions due to
integrity constraints requires considering all value combinations
that attributes of erroneous tuples can take. If attributes are al-
lowed to obtain values from large domains, inference can become
intractable. For example, we consider repairing the smallest dataset
in our experiments, which contains 1,000 tuples, and allow attributes
in erroneous tuples to obtain any value from the set of consistent as-
signments present in the dataset. Inference over the resulting proba-
bilistic model does not terminate after an entire day. Thus, we need
mechanisms that limit the possible value assignments for records
that need to be repaired by HoloClean’s probabilistic model.

(2) Integrity constraints introduce correlations between pairs of ran-
dom variables associated with tuples in the input dataset. Enumer-
ating these interactions during grounding results in factor graphs
of quadratic size in the number of tuples. For example, in our ex-
periments we consider a dataset with more than two million tuples.
Enforcing the integrity constraints over all pairs of tuples, yields a
factor graph with more than four trillion interactions across random
variables. Thus, we need to avoid evaluating integrity constraints
for pairs of tuples that cannot result in violations.

(3) Finally, probabilistic inference is #P-complete in the presence
of complex correlations, such as hard constraints. Thus, approxi-
mate inference techniques such as Gibbs sampling are required. In
the presence of complex correlations, Gibbs sampling is known to
require an exponential number of samples in the number of random
variables to mix [45], i.e., reach a stationary distribution. Neverthe-
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Figure 1: A variety of signals can be used for data cleaning: integrity constraints, external dictionaries, and quantitative statistics of
the input dataset. Using each signal in isolation can lead to repairs that do not fix all errors or even introduce new errors.

limited coverage of external resources or these methods may not be
applicable as for many domains a knowledge base may not exist.

Finally, data repairing methods that are based on statistical anal-
ysis [39, 49], leverage quantitative statistics of the input dataset,
e.g., co-occurrences of attribute values, and use those for cleaning.
These techniques overlook integrity constraints. Figure 1(G) shows
such a repair. As shown the “DBAName” and “City” fields of tuple
t4 are updated as their original values correspond to outliers with
respect to other tuples in the dataset. However, this repair does not
have sufficient information to fix the zip code of tuples t2 and t3.

In our example, if we combine repairs that are based on different
signals, we can repair all errors in the input dataset correctly. If
we combine the zip code and city repairs from Figure 1(F) with the
DBAName repair from Figure 1(G) we can repair all inaccuracies
in the input dataset. Nonetheless, combining heterogeneous signals
can be challenging. This is not only because each type of signal is
associated with different operations over the input data (e.g., in-
tegrity constraints require reasoning about the satisfiability of con-
straints while external information requires efficient matching pro-
cedures) but different signals may suggest conflicting repairs. For
instance, if we naively combine the repairs in Figure 1 we end up
with conflicts on the zip code of tuples t2 and t3. The repairs in
Figure 1(E) and (G) assign value “60609” while the repair in Fig-
ure 1(F) assigns value “60608”. This raises the main question we
answer in this paper: How can we combine all aforementioned sig-
nals in a single unified data cleaning framework, and which signals
are useful for repairing different records in an input dataset?

Our Approach. We introduce HoloClean, the first data cleaning
system that unifies integrity constraints, external data, and quanti-
tative statistics, to repair errors in structured data sets. Instead of
considering each signal in isolation, we use all available signals
to suggest data repairs. We consider the input dataset as a noisy
version of a hidden clean dataset and treat each signal as evidence
on the correctness of different records in that dataset. To combine
different signals, we rely on probability theory as it allows us to
reason about inconsistencies across those.

HoloClean automatically generates a probabilistic model [35]
whose random variables capture the uncertainty over records in the
input dataset. Signals are converted to features of the graphical
model and are used to describe the distribution characterizing the
input dataset. To repair errors, HoloClean uses statistical learning
and probabilistic inference over the generated model.

HoloClean exhibits significant improvements over state-of-the-
art data cleaning methods: we show that across multiple datasets

HoloClean finds repairs with an average precision of ⇠ 90% and
an average recall of ⇠ 76%, obtaining an average F1-score im-
provement of more than 2⇥ against state-of-the-art data repairing
methods. Specifically, we find that combining all signals yields an
F1-score improvement of 2.7⇥ against methods that only use in-
tegrity constraints, an improvement of 2.81⇥ against methods that
only leverage external information, and an improvement of 2.29⇥
against methods that only use quantitative statistics.

Technical Challenges. Probabilistic models provide a means for
unifying all signals. However, it is unclear that inference scales
to large data repairing instances. Probabilistic inference involves
two tasks: (i) grounding, which enumerates all possible interac-
tions between correlated random variables to materialize a factor
graph that represents the joint distribution over all variables, and
(ii) inference where the goal is to compute the marginal probability
for every random variable. These tasks are standard but non-trivial:

(1) Integrity constraints that span multiple attributes can cause com-
binatorial explosion problems. Grounding the interactions due to
integrity constraints requires considering all value combinations
that attributes of erroneous tuples can take. If attributes are al-
lowed to obtain values from large domains, inference can become
intractable. For example, we consider repairing the smallest dataset
in our experiments, which contains 1,000 tuples, and allow attributes
in erroneous tuples to obtain any value from the set of consistent as-
signments present in the dataset. Inference over the resulting proba-
bilistic model does not terminate after an entire day. Thus, we need
mechanisms that limit the possible value assignments for records
that need to be repaired by HoloClean’s probabilistic model.

(2) Integrity constraints introduce correlations between pairs of ran-
dom variables associated with tuples in the input dataset. Enumer-
ating these interactions during grounding results in factor graphs
of quadratic size in the number of tuples. For example, in our ex-
periments we consider a dataset with more than two million tuples.
Enforcing the integrity constraints over all pairs of tuples, yields a
factor graph with more than four trillion interactions across random
variables. Thus, we need to avoid evaluating integrity constraints
for pairs of tuples that cannot result in violations.

(3) Finally, probabilistic inference is #P-complete in the presence
of complex correlations, such as hard constraints. Thus, approxi-
mate inference techniques such as Gibbs sampling are required. In
the presence of complex correlations, Gibbs sampling is known to
require an exponential number of samples in the number of random
variables to mix [45], i.e., reach a stationary distribution. Neverthe-
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Figure 1: A variety of signals can be used for data cleaning: integrity constraints, external dictionaries, and quantitative statistics of
the input dataset. Using each signal in isolation can lead to repairs that do not fix all errors or even introduce new errors.

limited coverage of external resources or these methods may not be
applicable as for many domains a knowledge base may not exist.

Finally, data repairing methods that are based on statistical anal-
ysis [39, 49], leverage quantitative statistics of the input dataset,
e.g., co-occurrences of attribute values, and use those for cleaning.
These techniques overlook integrity constraints. Figure 1(G) shows
such a repair. As shown the “DBAName” and “City” fields of tuple
t4 are updated as their original values correspond to outliers with
respect to other tuples in the dataset. However, this repair does not
have sufficient information to fix the zip code of tuples t2 and t3.

In our example, if we combine repairs that are based on different
signals, we can repair all errors in the input dataset correctly. If
we combine the zip code and city repairs from Figure 1(F) with the
DBAName repair from Figure 1(G) we can repair all inaccuracies
in the input dataset. Nonetheless, combining heterogeneous signals
can be challenging. This is not only because each type of signal is
associated with different operations over the input data (e.g., in-
tegrity constraints require reasoning about the satisfiability of con-
straints while external information requires efficient matching pro-
cedures) but different signals may suggest conflicting repairs. For
instance, if we naively combine the repairs in Figure 1 we end up
with conflicts on the zip code of tuples t2 and t3. The repairs in
Figure 1(E) and (G) assign value “60609” while the repair in Fig-
ure 1(F) assigns value “60608”. This raises the main question we
answer in this paper: How can we combine all aforementioned sig-
nals in a single unified data cleaning framework, and which signals
are useful for repairing different records in an input dataset?

Our Approach. We introduce HoloClean, the first data cleaning
system that unifies integrity constraints, external data, and quanti-
tative statistics, to repair errors in structured data sets. Instead of
considering each signal in isolation, we use all available signals
to suggest data repairs. We consider the input dataset as a noisy
version of a hidden clean dataset and treat each signal as evidence
on the correctness of different records in that dataset. To combine
different signals, we rely on probability theory as it allows us to
reason about inconsistencies across those.

HoloClean automatically generates a probabilistic model [35]
whose random variables capture the uncertainty over records in the
input dataset. Signals are converted to features of the graphical
model and are used to describe the distribution characterizing the
input dataset. To repair errors, HoloClean uses statistical learning
and probabilistic inference over the generated model.

HoloClean exhibits significant improvements over state-of-the-
art data cleaning methods: we show that across multiple datasets

HoloClean finds repairs with an average precision of ⇠ 90% and
an average recall of ⇠ 76%, obtaining an average F1-score im-
provement of more than 2⇥ against state-of-the-art data repairing
methods. Specifically, we find that combining all signals yields an
F1-score improvement of 2.7⇥ against methods that only use in-
tegrity constraints, an improvement of 2.81⇥ against methods that
only leverage external information, and an improvement of 2.29⇥
against methods that only use quantitative statistics.

Technical Challenges. Probabilistic models provide a means for
unifying all signals. However, it is unclear that inference scales
to large data repairing instances. Probabilistic inference involves
two tasks: (i) grounding, which enumerates all possible interac-
tions between correlated random variables to materialize a factor
graph that represents the joint distribution over all variables, and
(ii) inference where the goal is to compute the marginal probability
for every random variable. These tasks are standard but non-trivial:

(1) Integrity constraints that span multiple attributes can cause com-
binatorial explosion problems. Grounding the interactions due to
integrity constraints requires considering all value combinations
that attributes of erroneous tuples can take. If attributes are al-
lowed to obtain values from large domains, inference can become
intractable. For example, we consider repairing the smallest dataset
in our experiments, which contains 1,000 tuples, and allow attributes
in erroneous tuples to obtain any value from the set of consistent as-
signments present in the dataset. Inference over the resulting proba-
bilistic model does not terminate after an entire day. Thus, we need
mechanisms that limit the possible value assignments for records
that need to be repaired by HoloClean’s probabilistic model.

(2) Integrity constraints introduce correlations between pairs of ran-
dom variables associated with tuples in the input dataset. Enumer-
ating these interactions during grounding results in factor graphs
of quadratic size in the number of tuples. For example, in our ex-
periments we consider a dataset with more than two million tuples.
Enforcing the integrity constraints over all pairs of tuples, yields a
factor graph with more than four trillion interactions across random
variables. Thus, we need to avoid evaluating integrity constraints
for pairs of tuples that cannot result in violations.

(3) Finally, probabilistic inference is #P-complete in the presence
of complex correlations, such as hard constraints. Thus, approxi-
mate inference techniques such as Gibbs sampling are required. In
the presence of complex correlations, Gibbs sampling is known to
require an exponential number of samples in the number of random
variables to mix [45], i.e., reach a stationary distribution. Neverthe-
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Figure 1: A variety of signals can be used for data cleaning: integrity constraints, external dictionaries, and quantitative statistics of
the input dataset. Using each signal in isolation can lead to repairs that do not fix all errors or even introduce new errors.

limited coverage of external resources or these methods may not be
applicable as for many domains a knowledge base may not exist.

Finally, data repairing methods that are based on statistical anal-
ysis [39, 49], leverage quantitative statistics of the input dataset,
e.g., co-occurrences of attribute values, and use those for cleaning.
These techniques overlook integrity constraints. Figure 1(G) shows
such a repair. As shown the “DBAName” and “City” fields of tuple
t4 are updated as their original values correspond to outliers with
respect to other tuples in the dataset. However, this repair does not
have sufficient information to fix the zip code of tuples t2 and t3.

In our example, if we combine repairs that are based on different
signals, we can repair all errors in the input dataset correctly. If
we combine the zip code and city repairs from Figure 1(F) with the
DBAName repair from Figure 1(G) we can repair all inaccuracies
in the input dataset. Nonetheless, combining heterogeneous signals
can be challenging. This is not only because each type of signal is
associated with different operations over the input data (e.g., in-
tegrity constraints require reasoning about the satisfiability of con-
straints while external information requires efficient matching pro-
cedures) but different signals may suggest conflicting repairs. For
instance, if we naively combine the repairs in Figure 1 we end up
with conflicts on the zip code of tuples t2 and t3. The repairs in
Figure 1(E) and (G) assign value “60609” while the repair in Fig-
ure 1(F) assigns value “60608”. This raises the main question we
answer in this paper: How can we combine all aforementioned sig-
nals in a single unified data cleaning framework, and which signals
are useful for repairing different records in an input dataset?

Our Approach. We introduce HoloClean, the first data cleaning
system that unifies integrity constraints, external data, and quanti-
tative statistics, to repair errors in structured data sets. Instead of
considering each signal in isolation, we use all available signals
to suggest data repairs. We consider the input dataset as a noisy
version of a hidden clean dataset and treat each signal as evidence
on the correctness of different records in that dataset. To combine
different signals, we rely on probability theory as it allows us to
reason about inconsistencies across those.

HoloClean automatically generates a probabilistic model [35]
whose random variables capture the uncertainty over records in the
input dataset. Signals are converted to features of the graphical
model and are used to describe the distribution characterizing the
input dataset. To repair errors, HoloClean uses statistical learning
and probabilistic inference over the generated model.

HoloClean exhibits significant improvements over state-of-the-
art data cleaning methods: we show that across multiple datasets

HoloClean finds repairs with an average precision of ⇠ 90% and
an average recall of ⇠ 76%, obtaining an average F1-score im-
provement of more than 2⇥ against state-of-the-art data repairing
methods. Specifically, we find that combining all signals yields an
F1-score improvement of 2.7⇥ against methods that only use in-
tegrity constraints, an improvement of 2.81⇥ against methods that
only leverage external information, and an improvement of 2.29⇥
against methods that only use quantitative statistics.

Technical Challenges. Probabilistic models provide a means for
unifying all signals. However, it is unclear that inference scales
to large data repairing instances. Probabilistic inference involves
two tasks: (i) grounding, which enumerates all possible interac-
tions between correlated random variables to materialize a factor
graph that represents the joint distribution over all variables, and
(ii) inference where the goal is to compute the marginal probability
for every random variable. These tasks are standard but non-trivial:

(1) Integrity constraints that span multiple attributes can cause com-
binatorial explosion problems. Grounding the interactions due to
integrity constraints requires considering all value combinations
that attributes of erroneous tuples can take. If attributes are al-
lowed to obtain values from large domains, inference can become
intractable. For example, we consider repairing the smallest dataset
in our experiments, which contains 1,000 tuples, and allow attributes
in erroneous tuples to obtain any value from the set of consistent as-
signments present in the dataset. Inference over the resulting proba-
bilistic model does not terminate after an entire day. Thus, we need
mechanisms that limit the possible value assignments for records
that need to be repaired by HoloClean’s probabilistic model.

(2) Integrity constraints introduce correlations between pairs of ran-
dom variables associated with tuples in the input dataset. Enumer-
ating these interactions during grounding results in factor graphs
of quadratic size in the number of tuples. For example, in our ex-
periments we consider a dataset with more than two million tuples.
Enforcing the integrity constraints over all pairs of tuples, yields a
factor graph with more than four trillion interactions across random
variables. Thus, we need to avoid evaluating integrity constraints
for pairs of tuples that cannot result in violations.

(3) Finally, probabilistic inference is #P-complete in the presence
of complex correlations, such as hard constraints. Thus, approxi-
mate inference techniques such as Gibbs sampling are required. In
the presence of complex correlations, Gibbs sampling is known to
require an exponential number of samples in the number of random
variables to mix [45], i.e., reach a stationary distribution. Neverthe-

1191

2806 W 
Cermak Rd Chicago 60623IL

Ext_Zip

60610

60608

60611259 E Erie ST ILChicago

ILChicago1208 N Wells  
ST

Chicago3465 S Morgan 
ST IL

Ext_StateExt_CityExt_Address

(D) External Information 
(Address listings in Chicago)

(E) Repair using Minimality w.r.t FDs

t2

t4

t1

t3

DBAName

John Veliotis Sr.

Johnnyo’s

John Veliotis Sr.

John Veliotis Sr.

Zip

60609

60609

60608

60609

3465 S 
Morgan ST ILJohnnyo’s Cicago

Johnnyo’s 3465 S 
Morgan ST ILChicago

Johnnyo’s ILChicago3465 S 
Morgan ST

Chicago3465 S 
Morgan STJohnnyo’s IL

StateCityAddressAKAName

(G) Repair that leverages Quantitative Statistics

t2

t4

t1

t3

DBAName

John Veliotis Sr.

John Veliotis Sr.

John Veliotis Sr.

John Veliotis Sr.

Zip

60609

60608

60608

60609

3465 S 
Morgan ST ILJohnnyo’s Chicago

Johnnyo’s 3465 S 
Morgan ST ILChicago

Johnnyo’s ILChicago3465 S 
Morgan ST

Chicago3465 S 
Morgan STJohnnyo’s IL

StateCityAddressAKAName

(F) Repair using Matching Dependencies

t2

t4

t1

t3

DBAName

John Veliotis Sr.

Johnnyo’s

John Veliotis Sr.

John Veliotis Sr.

Zip

60608

60608

60608

60608

3465 S 
Morgan ST ILJohnnyo’s Chicago

Johnnyo’s 3465 S 
Morgan ST ILChicago

Johnnyo’s ILChicago3465 S 
Morgan ST

Chicago3465 S 
Morgan STJohnnyo’s IL

StateCityAddressAKAName

(A) Input Database External Information 
(Chicago food inspections)

t2

t4

t1

t3

DBAName

John Veliotis Sr.

Johnnyo’s

John Veliotis Sr.

John Veliotis Sr.

Zip

60609

60608

60608

60609

3465 S 
Morgan ST ILJohnnyo’s Cicago

Johnnyo’s 3465 S 
Morgan ST ILChicago

Johnnyo’s ILChicago3465 S 
Morgan ST

Chicago
3465 S 

Morgan STJohnnyo’s IL

StateCityAddressAKAName

Conflicts
due to c2

Conflict due to c2Does not obey
data distribution

c1: DBAName � Zip

c2: Zip � City, State

c3: City, State, Address � Zip

(B) Functional Dependencies

(C) Matching Dependencies
m1: Zip = Ext Zip � City = Ext City

m2: Zip = Ext Zip � State = Ext State

m3: City = Ext City � State = Ext State�
� Address = Ext Address � Zip = Ext Zip

Figure 1: A variety of signals can be used for data cleaning: integrity constraints, external dictionaries, and quantitative statistics of
the input dataset. Using each signal in isolation can lead to repairs that do not fix all errors or even introduce new errors.

limited coverage of external resources or these methods may not be
applicable as for many domains a knowledge base may not exist.

Finally, data repairing methods that are based on statistical anal-
ysis [39, 49], leverage quantitative statistics of the input dataset,
e.g., co-occurrences of attribute values, and use those for cleaning.
These techniques overlook integrity constraints. Figure 1(G) shows
such a repair. As shown the “DBAName” and “City” fields of tuple
t4 are updated as their original values correspond to outliers with
respect to other tuples in the dataset. However, this repair does not
have sufficient information to fix the zip code of tuples t2 and t3.

In our example, if we combine repairs that are based on different
signals, we can repair all errors in the input dataset correctly. If
we combine the zip code and city repairs from Figure 1(F) with the
DBAName repair from Figure 1(G) we can repair all inaccuracies
in the input dataset. Nonetheless, combining heterogeneous signals
can be challenging. This is not only because each type of signal is
associated with different operations over the input data (e.g., in-
tegrity constraints require reasoning about the satisfiability of con-
straints while external information requires efficient matching pro-
cedures) but different signals may suggest conflicting repairs. For
instance, if we naively combine the repairs in Figure 1 we end up
with conflicts on the zip code of tuples t2 and t3. The repairs in
Figure 1(E) and (G) assign value “60609” while the repair in Fig-
ure 1(F) assigns value “60608”. This raises the main question we
answer in this paper: How can we combine all aforementioned sig-
nals in a single unified data cleaning framework, and which signals
are useful for repairing different records in an input dataset?

Our Approach. We introduce HoloClean, the first data cleaning
system that unifies integrity constraints, external data, and quanti-
tative statistics, to repair errors in structured data sets. Instead of
considering each signal in isolation, we use all available signals
to suggest data repairs. We consider the input dataset as a noisy
version of a hidden clean dataset and treat each signal as evidence
on the correctness of different records in that dataset. To combine
different signals, we rely on probability theory as it allows us to
reason about inconsistencies across those.

HoloClean automatically generates a probabilistic model [35]
whose random variables capture the uncertainty over records in the
input dataset. Signals are converted to features of the graphical
model and are used to describe the distribution characterizing the
input dataset. To repair errors, HoloClean uses statistical learning
and probabilistic inference over the generated model.

HoloClean exhibits significant improvements over state-of-the-
art data cleaning methods: we show that across multiple datasets

HoloClean finds repairs with an average precision of ⇠ 90% and
an average recall of ⇠ 76%, obtaining an average F1-score im-
provement of more than 2⇥ against state-of-the-art data repairing
methods. Specifically, we find that combining all signals yields an
F1-score improvement of 2.7⇥ against methods that only use in-
tegrity constraints, an improvement of 2.81⇥ against methods that
only leverage external information, and an improvement of 2.29⇥
against methods that only use quantitative statistics.

Technical Challenges. Probabilistic models provide a means for
unifying all signals. However, it is unclear that inference scales
to large data repairing instances. Probabilistic inference involves
two tasks: (i) grounding, which enumerates all possible interac-
tions between correlated random variables to materialize a factor
graph that represents the joint distribution over all variables, and
(ii) inference where the goal is to compute the marginal probability
for every random variable. These tasks are standard but non-trivial:

(1) Integrity constraints that span multiple attributes can cause com-
binatorial explosion problems. Grounding the interactions due to
integrity constraints requires considering all value combinations
that attributes of erroneous tuples can take. If attributes are al-
lowed to obtain values from large domains, inference can become
intractable. For example, we consider repairing the smallest dataset
in our experiments, which contains 1,000 tuples, and allow attributes
in erroneous tuples to obtain any value from the set of consistent as-
signments present in the dataset. Inference over the resulting proba-
bilistic model does not terminate after an entire day. Thus, we need
mechanisms that limit the possible value assignments for records
that need to be repaired by HoloClean’s probabilistic model.

(2) Integrity constraints introduce correlations between pairs of ran-
dom variables associated with tuples in the input dataset. Enumer-
ating these interactions during grounding results in factor graphs
of quadratic size in the number of tuples. For example, in our ex-
periments we consider a dataset with more than two million tuples.
Enforcing the integrity constraints over all pairs of tuples, yields a
factor graph with more than four trillion interactions across random
variables. Thus, we need to avoid evaluating integrity constraints
for pairs of tuples that cannot result in violations.

(3) Finally, probabilistic inference is #P-complete in the presence
of complex correlations, such as hard constraints. Thus, approxi-
mate inference techniques such as Gibbs sampling are required. In
the presence of complex correlations, Gibbs sampling is known to
require an exponential number of samples in the number of random
variables to mix [45], i.e., reach a stationary distribution. Neverthe-
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Figure 1: A variety of signals can be used for data cleaning: integrity constraints, external dictionaries, and quantitative statistics of
the input dataset. Using each signal in isolation can lead to repairs that do not fix all errors or even introduce new errors.

limited coverage of external resources or these methods may not be
applicable as for many domains a knowledge base may not exist.

Finally, data repairing methods that are based on statistical anal-
ysis [39, 49], leverage quantitative statistics of the input dataset,
e.g., co-occurrences of attribute values, and use those for cleaning.
These techniques overlook integrity constraints. Figure 1(G) shows
such a repair. As shown the “DBAName” and “City” fields of tuple
t4 are updated as their original values correspond to outliers with
respect to other tuples in the dataset. However, this repair does not
have sufficient information to fix the zip code of tuples t2 and t3.

In our example, if we combine repairs that are based on different
signals, we can repair all errors in the input dataset correctly. If
we combine the zip code and city repairs from Figure 1(F) with the
DBAName repair from Figure 1(G) we can repair all inaccuracies
in the input dataset. Nonetheless, combining heterogeneous signals
can be challenging. This is not only because each type of signal is
associated with different operations over the input data (e.g., in-
tegrity constraints require reasoning about the satisfiability of con-
straints while external information requires efficient matching pro-
cedures) but different signals may suggest conflicting repairs. For
instance, if we naively combine the repairs in Figure 1 we end up
with conflicts on the zip code of tuples t2 and t3. The repairs in
Figure 1(E) and (G) assign value “60609” while the repair in Fig-
ure 1(F) assigns value “60608”. This raises the main question we
answer in this paper: How can we combine all aforementioned sig-
nals in a single unified data cleaning framework, and which signals
are useful for repairing different records in an input dataset?

Our Approach. We introduce HoloClean, the first data cleaning
system that unifies integrity constraints, external data, and quanti-
tative statistics, to repair errors in structured data sets. Instead of
considering each signal in isolation, we use all available signals
to suggest data repairs. We consider the input dataset as a noisy
version of a hidden clean dataset and treat each signal as evidence
on the correctness of different records in that dataset. To combine
different signals, we rely on probability theory as it allows us to
reason about inconsistencies across those.

HoloClean automatically generates a probabilistic model [35]
whose random variables capture the uncertainty over records in the
input dataset. Signals are converted to features of the graphical
model and are used to describe the distribution characterizing the
input dataset. To repair errors, HoloClean uses statistical learning
and probabilistic inference over the generated model.

HoloClean exhibits significant improvements over state-of-the-
art data cleaning methods: we show that across multiple datasets

HoloClean finds repairs with an average precision of ⇠ 90% and
an average recall of ⇠ 76%, obtaining an average F1-score im-
provement of more than 2⇥ against state-of-the-art data repairing
methods. Specifically, we find that combining all signals yields an
F1-score improvement of 2.7⇥ against methods that only use in-
tegrity constraints, an improvement of 2.81⇥ against methods that
only leverage external information, and an improvement of 2.29⇥
against methods that only use quantitative statistics.

Technical Challenges. Probabilistic models provide a means for
unifying all signals. However, it is unclear that inference scales
to large data repairing instances. Probabilistic inference involves
two tasks: (i) grounding, which enumerates all possible interac-
tions between correlated random variables to materialize a factor
graph that represents the joint distribution over all variables, and
(ii) inference where the goal is to compute the marginal probability
for every random variable. These tasks are standard but non-trivial:

(1) Integrity constraints that span multiple attributes can cause com-
binatorial explosion problems. Grounding the interactions due to
integrity constraints requires considering all value combinations
that attributes of erroneous tuples can take. If attributes are al-
lowed to obtain values from large domains, inference can become
intractable. For example, we consider repairing the smallest dataset
in our experiments, which contains 1,000 tuples, and allow attributes
in erroneous tuples to obtain any value from the set of consistent as-
signments present in the dataset. Inference over the resulting proba-
bilistic model does not terminate after an entire day. Thus, we need
mechanisms that limit the possible value assignments for records
that need to be repaired by HoloClean’s probabilistic model.

(2) Integrity constraints introduce correlations between pairs of ran-
dom variables associated with tuples in the input dataset. Enumer-
ating these interactions during grounding results in factor graphs
of quadratic size in the number of tuples. For example, in our ex-
periments we consider a dataset with more than two million tuples.
Enforcing the integrity constraints over all pairs of tuples, yields a
factor graph with more than four trillion interactions across random
variables. Thus, we need to avoid evaluating integrity constraints
for pairs of tuples that cannot result in violations.

(3) Finally, probabilistic inference is #P-complete in the presence
of complex correlations, such as hard constraints. Thus, approxi-
mate inference techniques such as Gibbs sampling are required. In
the presence of complex correlations, Gibbs sampling is known to
require an exponential number of samples in the number of random
variables to mix [45], i.e., reach a stationary distribution. Neverthe-
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Figure 1: A variety of signals can be used for data cleaning: integrity constraints, external dictionaries, and quantitative statistics of
the input dataset. Using each signal in isolation can lead to repairs that do not fix all errors or even introduce new errors.
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respect to other tuples in the dataset. However, this repair does not
have sufficient information to fix the zip code of tuples t2 and t3.

In our example, if we combine repairs that are based on different
signals, we can repair all errors in the input dataset correctly. If
we combine the zip code and city repairs from Figure 1(F) with the
DBAName repair from Figure 1(G) we can repair all inaccuracies
in the input dataset. Nonetheless, combining heterogeneous signals
can be challenging. This is not only because each type of signal is
associated with different operations over the input data (e.g., in-
tegrity constraints require reasoning about the satisfiability of con-
straints while external information requires efficient matching pro-
cedures) but different signals may suggest conflicting repairs. For
instance, if we naively combine the repairs in Figure 1 we end up
with conflicts on the zip code of tuples t2 and t3. The repairs in
Figure 1(E) and (G) assign value “60609” while the repair in Fig-
ure 1(F) assigns value “60608”. This raises the main question we
answer in this paper: How can we combine all aforementioned sig-
nals in a single unified data cleaning framework, and which signals
are useful for repairing different records in an input dataset?

Our Approach. We introduce HoloClean, the first data cleaning
system that unifies integrity constraints, external data, and quanti-
tative statistics, to repair errors in structured data sets. Instead of
considering each signal in isolation, we use all available signals
to suggest data repairs. We consider the input dataset as a noisy
version of a hidden clean dataset and treat each signal as evidence
on the correctness of different records in that dataset. To combine
different signals, we rely on probability theory as it allows us to
reason about inconsistencies across those.

HoloClean automatically generates a probabilistic model [35]
whose random variables capture the uncertainty over records in the
input dataset. Signals are converted to features of the graphical
model and are used to describe the distribution characterizing the
input dataset. To repair errors, HoloClean uses statistical learning
and probabilistic inference over the generated model.

HoloClean exhibits significant improvements over state-of-the-
art data cleaning methods: we show that across multiple datasets

HoloClean finds repairs with an average precision of ⇠ 90% and
an average recall of ⇠ 76%, obtaining an average F1-score im-
provement of more than 2⇥ against state-of-the-art data repairing
methods. Specifically, we find that combining all signals yields an
F1-score improvement of 2.7⇥ against methods that only use in-
tegrity constraints, an improvement of 2.81⇥ against methods that
only leverage external information, and an improvement of 2.29⇥
against methods that only use quantitative statistics.

Technical Challenges. Probabilistic models provide a means for
unifying all signals. However, it is unclear that inference scales
to large data repairing instances. Probabilistic inference involves
two tasks: (i) grounding, which enumerates all possible interac-
tions between correlated random variables to materialize a factor
graph that represents the joint distribution over all variables, and
(ii) inference where the goal is to compute the marginal probability
for every random variable. These tasks are standard but non-trivial:

(1) Integrity constraints that span multiple attributes can cause com-
binatorial explosion problems. Grounding the interactions due to
integrity constraints requires considering all value combinations
that attributes of erroneous tuples can take. If attributes are al-
lowed to obtain values from large domains, inference can become
intractable. For example, we consider repairing the smallest dataset
in our experiments, which contains 1,000 tuples, and allow attributes
in erroneous tuples to obtain any value from the set of consistent as-
signments present in the dataset. Inference over the resulting proba-
bilistic model does not terminate after an entire day. Thus, we need
mechanisms that limit the possible value assignments for records
that need to be repaired by HoloClean’s probabilistic model.
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Data Cleaning in pandas
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Handling Missing Data
• Filtering out missing data: 
- Can choose rows or columns 

• Filling in missing data: 
- with a default value 
- with an interpolated value 

• In pandas:

50

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 680/490, Spring 2022

In [10]: string_data = pd.Series(['aardvark', 'artichoke', np.nan, 'avocado'])

In [11]: string_data
Out[11]: 
0     aardvark
1    artichoke
2          NaN
3      avocado
dtype: object

In [12]: string_data.isnull()
Out[12]: 
0    False
1    False
2     True
3    False
dtype: bool

In pandas, we’ve adopted a convention used in the R programming language by refer‐
ring to missing data as NA, which stands for not available. In statistics applications, 
NA data may either be data that does not exist or that exists but was not observed
(through problems with data collection, for example). When cleaning up data for
analysis, it is often important to do analysis on the missing data itself to identify data
collection problems or potential biases in the data caused by missing data.

The built-in Python None value is also treated as NA in object arrays:
In [13]: string_data[0] = None

In [14]: string_data.isnull()
Out[14]: 
0     True
1    False
2     True
3    False
dtype: bool

There is work ongoing in the pandas project to improve the internal details of how
missing data is handled, but the user API functions, like pandas.isnull, abstract 
away many of the annoying details. See Table 7-1 for a list of some functions related
to missing data handling.

Table 7-1. NA handling methods
Argument Description
dropna Filter axis labels based on whether values for each label have missing data, with varying thresholds for how

much missing data to tolerate.
fillna Fill in missing data with some value or using an interpolation method such as 'ffill' or 'bfill'.
isnull Return boolean values indicating which values are missing/NA.
notnull Negation of isnull.
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Filling in missing data
• fillna arguments:
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Table 7-2. !llna function arguments
Argument Description
value Scalar value or dict-like object to use to !ll missing values
method Interpolation; by default 'ffill' if function called with no other arguments
axis Axis to !ll on; default axis=0
inplace Modify the calling object without producing a copy
limit For forward and backward !lling, maximum number of consecutive periods to !ll

7.2 Data Transformation
So far in this chapter we’ve been concerned with rearranging data. Filtering, cleaning,
and other transformations are another class of important operations.

Removing Duplicates
Duplicate rows may be found in a DataFrame for any number of reasons. Here is an
example:

In [45]: data = pd.DataFrame({'k1': ['one', 'two'] * 3 + ['two'],
   ....:                      'k2': [1, 1, 2, 3, 3, 4, 4]})

In [46]: data
Out[46]: 
    k1  k2
0  one   1
1  two   1
2  one   2
3  two   3
4  one   3
5  two   4
6  two   4

The DataFrame method duplicated returns a boolean Series indicating whether each
row is a duplicate (has been observed in a previous row) or not:

In [47]: data.duplicated()
Out[47]: 
0    False
1    False
2    False
3    False
4    False
5    False
6     True
dtype: bool

Relatedly, drop_duplicates returns a DataFrame where the duplicated array is
False:
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Filtering and Cleaning Data
• Find duplicates 

- duplicated: returns boolean Series indicating whether row is a duplicate—
first instance is not marked as a duplicate 

• Remove duplicates: 
- drop_duplicates: drops all rows where duplicated is True 
- keep: which value to keep (first or last) 

• Can pass specific columns to check for duplicates, e.g. check only key 
column
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Changing Data
• Convert strings to upper/lower case 
• Convert Fahrenheit temperatures to Celsius 
• Create a new column based on another column
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3     Pastrami     6.0
4  corned beef     7.5
5        Bacon     8.0
6     pastrami     3.0
7    honey ham     5.0
8     nova lox     6.0

Suppose you wanted to add a column indicating the type of animal that each food
came from. Let’s write down a mapping of each distinct meat type to the kind of
animal:

meat_to_animal = {
  'bacon': 'pig',
  'pulled pork': 'pig',
  'pastrami': 'cow',
  'corned beef': 'cow',
  'honey ham': 'pig',
  'nova lox': 'salmon'
}

The map method on a Series accepts a function or dict-like object containing a map‐
ping, but here we have a small problem in that some of the meats are capitalized and
others are not. Thus, we need to convert each value to lowercase using the str.lower
Series method:

In [55]: lowercased = data['food'].str.lower()

In [56]: lowercased
Out[56]: 
0          bacon
1    pulled pork
2          bacon
3       pastrami
4    corned beef
5          bacon
6       pastrami
7      honey ham
8       nova lox
Name: food, dtype: object

In [57]: data['animal'] = lowercased.map(meat_to_animal)

In [58]: data
Out[58]: 
          food  ounces  animal
0        bacon     4.0     pig
1  pulled pork     3.0     pig
2        bacon    12.0     pig
3     Pastrami     6.0     cow
4  corned beef     7.5     cow
5        Bacon     8.0     pig
6     pastrami     3.0     cow
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7    honey ham     5.0     pig
8     nova lox     6.0  salmon

We could also have passed a function that does all the work:
In [59]: data['food'].map(lambda x: meat_to_animal[x.lower()])
Out[59]: 
0       pig
1       pig
2       pig
3       cow
4       cow
5       pig
6       cow
7       pig
8    salmon
Name: food, dtype: object

Using map is a convenient way to perform element-wise transformations and other
data cleaning–related operations.

Replacing Values
Filling in missing data with the fillna method is a special case of more general value
replacement. As you’ve already seen, map can be used to modify a subset of values in
an object but replace provides a simpler and more flexible way to do so. Let’s con‐
sider this Series:

In [60]: data = pd.Series([1., -999., 2., -999., -1000., 3.])

In [61]: data
Out[61]: 
0       1.0
1    -999.0
2       2.0
3    -999.0
4   -1000.0
5       3.0
dtype: float64

The -999 values might be sentinel values for missing data. To replace these with NA
values that pandas understands, we can use replace, producing a new Series (unless
you pass inplace=True):

In [62]: data.replace(-999, np.nan)
Out[62]: 
0       1.0
1       NaN
2       2.0
3       NaN
4   -1000.0
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Replacing Values
• fillna is a special case 
• What if -999 in our dataset was identified as a missing value? 

• Can pass list of values or dictionary to change different values
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5       3.0
dtype: float64

If you want to replace multiple values at once, you instead pass a list and then the
substitute value:

In [63]: data.replace([-999, -1000], np.nan)
Out[63]: 
0    1.0
1    NaN
2    2.0
3    NaN
4    NaN
5    3.0
dtype: float64

To use a different replacement for each value, pass a list of substitutes:
In [64]: data.replace([-999, -1000], [np.nan, 0])
Out[64]: 
0    1.0
1    NaN
2    2.0
3    NaN
4    0.0
5    3.0
dtype: float64

The argument passed can also be a dict:
In [65]: data.replace({-999: np.nan, -1000: 0})
Out[65]: 
0    1.0
1    NaN
2    2.0
3    NaN
4    0.0
5    3.0
dtype: float64

The data.replace method is distinct from data.str.replace,
which performs string substitution element-wise. We look at these
string methods on Series later in the chapter.

Renaming Axis Indexes
Like values in a Series, axis labels can be similarly transformed by a function or map‐
ping of some form to produce new, differently labeled objects. You can also modify
the axes in-place without creating a new data structure. Here’s a simple example:
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Clamping Values
• Values above or below a specified thresholds are set to a max/min value
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In [90]: pd.value_counts(cats)
Out[90]: 
(0.62, 3.928]       250
(-0.0265, 0.62]     250
(-0.68, -0.0265]    250
(-2.95, -0.68]      250
dtype: int64

Similar to cut you can pass your own quantiles (numbers between 0 and 1, inclusive):
In [91]: pd.qcut(data, [0, 0.1, 0.5, 0.9, 1.])
Out[91]: 
[(-0.0265, 1.286], (-0.0265, 1.286], (-1.187, -0.0265], (-0.0265, 1.286], (-0.026
5, 1.286], ..., (-1.187, -0.0265], (-1.187, -0.0265], (-2.95, -1.187], (-0.0265, 
1.286], (-1.187, -0.0265]]
Length: 1000
Categories (4, interval[float64]): [(-2.95, -1.187] < (-1.187, -0.0265] < (-0.026
5, 1.286] <
                                    (1.286, 3.928]]

We’ll return to cut and qcut later in the chapter during our discussion of aggregation
and group operations, as these discretization functions are especially useful for quan‐
tile and group analysis.

Detecting and Filtering Outliers
Filtering or transforming outliers is largely a matter of applying array operations.
Consider a DataFrame with some normally distributed data:

In [92]: data = pd.DataFrame(np.random.randn(1000, 4))

In [93]: data.describe()
Out[93]: 
                 0            1            2            3
count  1000.000000  1000.000000  1000.000000  1000.000000
mean      0.049091     0.026112    -0.002544    -0.051827
std       0.996947     1.007458     0.995232     0.998311
min      -3.645860    -3.184377    -3.745356    -3.428254
25%      -0.599807    -0.612162    -0.687373    -0.747478
50%       0.047101    -0.013609    -0.022158    -0.088274
75%       0.756646     0.695298     0.699046     0.623331
max       2.653656     3.525865     2.735527     3.366626

Suppose you wanted to find values in one of the columns exceeding 3 in absolute
value:

In [94]: col = data[2]

In [95]: col[np.abs(col) > 3]
Out[95]: 
41    -3.399312
136   -3.745356
Name: 2, dtype: float64
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To select all rows having a value exceeding 3 or –3, you can use the any method on a
boolean DataFrame:

In [96]: data[(np.abs(data) > 3).any(1)]
Out[96]: 
            0         1         2         3
41   0.457246 -0.025907 -3.399312 -0.974657
60   1.951312  3.260383  0.963301  1.201206
136  0.508391 -0.196713 -3.745356 -1.520113
235 -0.242459 -3.056990  1.918403 -0.578828
258  0.682841  0.326045  0.425384 -3.428254
322  1.179227 -3.184377  1.369891 -1.074833
544 -3.548824  1.553205 -2.186301  1.277104
635 -0.578093  0.193299  1.397822  3.366626
782 -0.207434  3.525865  0.283070  0.544635
803 -3.645860  0.255475 -0.549574 -1.907459

Values can be set based on these criteria. Here is code to cap values outside the inter‐
val –3 to 3:

In [97]: data[np.abs(data) > 3] = np.sign(data) * 3

In [98]: data.describe()
Out[98]: 
                 0            1            2            3
count  1000.000000  1000.000000  1000.000000  1000.000000
mean      0.050286     0.025567    -0.001399    -0.051765
std       0.992920     1.004214     0.991414     0.995761
min      -3.000000    -3.000000    -3.000000    -3.000000
25%      -0.599807    -0.612162    -0.687373    -0.747478
50%       0.047101    -0.013609    -0.022158    -0.088274
75%       0.756646     0.695298     0.699046     0.623331
max       2.653656     3.000000     2.735527     3.000000

The statement np.sign(data) produces 1 and –1 values based on whether the values
in data are positive or negative:

In [99]: np.sign(data).head()
Out[99]: 
     0    1    2    3
0 -1.0  1.0 -1.0  1.0
1  1.0 -1.0  1.0 -1.0
2  1.0  1.0  1.0 -1.0
3 -1.0 -1.0  1.0 -1.0
4 -1.0  1.0 -1.0 -1.0

Permutation and Random Sampling
Permuting (randomly reordering) a Series or the rows in a DataFrame is easy to do
using the numpy.random.permutation function. Calling permutation with the length
of the axis you want to permute produces an array of integers indicating the new
ordering:
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Computing Indicator Values
• Useful for machine learning 
• Want to take possible values and map them to 0-1 indicators 
• Example: 

• Example: Genres in movies
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4    4
0    5
4    4
dtype: int64

Computing Indicator/Dummy Variables
Another type of transformation for statistical modeling or machine learning applica‐
tions is converting a categorical variable into a “dummy” or “indicator” matrix. If a
column in a DataFrame has k distinct values, you would derive a matrix or Data‐
Frame with k columns containing all 1s and 0s. pandas has a get_dummies function
for doing this, though devising one yourself is not difficult. Let’s return to an earlier
example DataFrame:

In [109]: df = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'b'],
   .....:                    'data1': range(6)})

In [110]: pd.get_dummies(df['key'])
Out[110]: 
   a  b  c
0  0  1  0
1  0  1  0
2  1  0  0
3  0  0  1
4  1  0  0
5  0  1  0

In some cases, you may want to add a prefix to the columns in the indicator Data‐
Frame, which can then be merged with the other data. get_dummies has a prefix argu‐
ment for doing this:

In [111]: dummies = pd.get_dummies(df['key'], prefix='key')

In [112]: df_with_dummy = df[['data1']].join(dummies)

In [113]: df_with_dummy
Out[113]: 
   data1  key_a  key_b  key_c
0      0      0      1      0
1      1      0      1      0
2      2      1      0      0
3      3      0      0      1
4      4      1      0      0
5      5      0      1      0

If a row in a DataFrame belongs to multiple categories, things are a bit more compli‐
cated. Let’s look at the MovieLens 1M dataset, which is investigated in more detail in
Chapter 14:

208 | Chapter 7: Data Cleaning and Preparation



String Transformation
• One of the reasons for Python's popularity is string/text processing 
• split(<delimiter>): break a string into pieces: 

- s = "12,13, 14" 
slist = s.split(',') # ["12", "13", " 14"] 

• <delimiter>.join([<str>]): join several strings by a delimiter 
- ":".join(slist) # "12:13: 14" 

• strip(): remove leading and trailing whitespace 
- [p.strip() for p in slist] # ["12", "13", "14"]
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String Transformation
• replace(<from>,<to>): change substrings to another substring 

- s.replace(',', ':') # "12:13: 14" 

• upper()/lower(): casing 
- "AbCd".upper () # "ABCD" 

- "AbCd".lower() # "abcd"
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String Transformations
• index(<str>): find where a substring first occurs (Error if not found) 

- s = "12,13, 14" 
s.index(',') # 2 
s.index(':') # ValueError raised 

• find(<str>): same as index but -1 if not found 
- s.find(',') # 2 
s.find(':') # -1 

• startswith()/endswith(): boolean checks for string occurrence 
- s.startswith("1") # True 
s.endswith("5") # False
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See Table 7-3 for a listing of some of Python’s string methods.

Regular expressions can also be used with many of these operations, as you’ll see.

Table 7-3. Python built-in string methods
Argument Description
count Return the number of non-overlapping occurrences of substring in the string.
endswith Returns True if string ends with su!x.
startswith Returns True if string starts with pre"x.
join Use string as delimiter for concatenating a sequence of other strings.
index Return position of "rst character in substring if found in the string; raises ValueError if not found.
find Return position of "rst character of !rst occurrence of substring in the string; like index, but returns –1

if not found.
rfind Return position of "rst character of last occurrence of substring in the string; returns –1 if not found.
replace Replace occurrences of string with another string.
strip, 
rstrip, 
lstrip

Trim whitespace, including newlines; equivalent to x.strip() (and rstrip, lstrip, respectively)
for each element.

split Break string into list of substrings using passed delimiter.
lower Convert alphabet characters to lowercase.
upper Convert alphabet characters to uppercase.
casefold Convert characters to lowercase, and convert any region-speci"c variable character combinations to a

common comparable form.
ljust, 
rjust

Left justify or right justify, respectively; pad opposite side of string with spaces (or some other "ll
character) to return a string with a minimum width.

Regular Expressions
Regular expressions provide a flexible way to search or match (often more complex)
string patterns in text. A single expression, commonly called a regex, is a string
formed according to the regular expression language. Python’s built-in re module is
responsible for applying regular expressions to strings; I’ll give a number of examples
of its use here.

The art of writing regular expressions could be a chapter of its own
and thus is outside the book’s scope. There are many excellent tuto‐
rials and references available on the internet and in other books.

The re module functions fall into three categories: pattern matching, substitution,
and splitting. Naturally these are all related; a regex describes a pattern to locate in the
text, which can then be used for many purposes. Let’s look at a simple example:
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Regular Expressions
• AKA regex 
• A syntax to better specify how to decompose strings 
• Look for patterns rather than specific characters 
• "31" in "The last day of December is 12/31/2020."  

• May work for some questions but now suppose I have other lines like:  
"The last day of September is 9/30/2020." 

• …and I want to find dates that look like: 
• <numbers>/<numbers>/<numbers> 

• Cannot search for every combination! 
• \d+/\d+/\d+
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Regular Expressions
• Character classes: 

- \d = digits 
- \s = spaces 
- \w = word character [a-zA-Z0-9_] 
- [a-z] = lowercase letters (square brackets indicate a set of chars) 

• Repeating characters or patterns 
- + = one or more (any number) 
- * = zero or more  (any number) 
- ? = zero or one 
- {<number>} = a specific number (or range) of occurrences
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Regular Expressions in Python
• import re 

• re.search(<pattern>, <str_to_check>) 

- Returns None if no match, information about the match otherwise 
• Capturing information about what is in a string → parentheses 
• (\d+)/\d+/\d+ will capture information about the month 
• match = re.search('(\d+)/\d+/\d+','12/31/2016') 
if match: 
    match.group() # 12 

• re.findall(<pattern>, <str_to_check>) 

- Finds all matches in the string, search only finds the first match 
• Can pass in flags to alter methods: e.g. re.IGNORECASE
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Pandas String Methods
• Any column or series can have the string methods (e.g. replace, split) applied 

to the entire series 
• Fast (vectorized) on whole columns or datasets 
• use .str.<method_name> 
• .str is important! 

- data = pd.Series({'Dave': 'dave@google.com', 
                  'Steve': 'steve@gmail.com', 
                  'Rob': 'rob@gmail.com', 
                  'Wes': np.nan}) 
data.str.contains('gmail') 
data.str.split('@').str[1] 
data.str[-3:]
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