Advanced Data Management (CSCI 490/680)

Structured Data

Dr. David Koop

D. Koop, CSCI 680/490, Spring 2022 Northern Illinois University

Components of SQL

e Data Definition Language (DDL): the specification of information about
relations, including schema, types, integrity constraints, indices, storage

e Data Manipulation Language (DML): provides the ability to query
iInformation from the database and to insert tuples into, delete tuples from,
and modify tuples in the database.

e |ntegrity: the DDL includes commands for specifying integrity constraints.
e View definition: he DDL includes commands for defining views.
e Also: Transaction control, embedded and dynamic SQL, authorization

[A. Silberschatz et al.]
D. Koop, CSCI 680/490, Spring 2022 Northern Illinois University 2

https://www.db-book.com/db6/slide-dir/

Create Table

e An SQL relation is defined using the create table command:
create table r (A1 D1, A2 Do, ..., An Dn, (C1), ..., (Ck)

- r IS the name of the relation

- each A; is an attribute name in the schema of relation r
- Dii1s the data type of values in the domain of attribute A

e Example:
create table instructor (Ci are integrity
ID char (5), constraints:
name varchar (20), keys, foreign keys
dept name varchar (20),
salary numeric (3, 2))

[A. Silberschatz et al.]

D. Koop, CSCI 680/490, Spring 2022 Northern Illinois University 3

https://www.db-book.com/db6/slide-dir/

Basic Query Structure

e A typical SQL query has the form:

select Ay, Ao, ..., An
from l’7, 1’2, fiey I'm
where P

- Aj represents an attribute
- 17 represents a relation
- P Is a predicate.

® The result of an SQL query is a relation

[A. Silberschatz et al.]

D. Koop, CSCI 680/490, Spring 2022 Northern Illinois University

https://www.db-book.com/db6/slide-dir/

Select

* [he select clause lists the attributes desired In the result of a query
- corresponds to the projection operation of the relational algelbra

o Example: Find the names of all instructors

- select name
from 1nstructor;

e Note: SQL names are case insensitive

- Name and NAME and name are equivalent

4]

- Some people use upper case for language keywords (e.g. SELECT)

[A. Silberschatz et al.]
D. Koop, CSCI 680/490, Spring 2022 Northern Illinois University

https://www.db-book.com/db6/slide-dir/

VWhere

e [he operands can be expressions with operators <, <=, >, >=, =, and <>

e SQL allows the use of the logical connectives and, or, and not

e Comparisons can be applied to results of arithmetic expressions
e Example: Find all instructors in Comp. Sci. with salary > 70000

- select name name
from 1nstructor Katz
where dept name = 'Comp. Sci.' and salary > 70000 Brandt

[A. Silberschatz et al.]

D. Koop, CSCI 680/490, Spring 2022 Northern Illinois University 6

https://www.db-book.com/db6/slide-dir/

From

¢ [he from clause lists the relations involved in the query
- Corresponds to the Cartesian Product operation in relational algebra
e Find the Cartesian product instructor X teaches

- select *
from i1instructor, teaches;

- All possible instructor — teaches palr, with all attributes from both

- Shared attributes (e.qg., ID) are renamed (e.9., instructor. ID)
e Not very useful directly but useful combined with where clauses.

[A. Silberschatz et al.]

D. Koop, CSCI 680/490, Spring 2022 Northern Illinois University 7

https://www.db-book.com/db6/slide-dir/

Group By

e Find the average salary of instructors in each department

- select dep
from instr

group by dep-

as avg salary

dept_name avg_salary
Biology 72000
Comp. Sci. | 77333
Elec. Eng. 30000
Finance 35000
History 61000
Music 40000
Physics 91000

C name, avg(salary)
UCLOXIr
:_ﬂ ame,

ID name dept_name salary
76766 | Crick Biology 72000
45565 | Katz Comp. Sci. | 75000
10101 | Srinivasan | Comp. Sci. | 65000
83821 | Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng. 80000
12121 | Wu Finance 90000
76543 | Singh Finance 380000
32343 | EIl Said History 60000
58583 | Califieri History 62000
15151 | Mozart Music 40000
33456 | Gold Physics 87000
22222 | Einstein Physics 95000

D. Koop, CSCI 680/490, Spring 2022

[A. Silberschatz et al.]

Northern Illinois University 8

https://www.db-book.com/db6/slide-dir/

Deletion

e Delete all Instructors: delete from instructor;

o Delete all instructors from the Finance department

- delete from 1nstructor
where dept name= 'Finance’;

e Delete all tuples In the instructor relation for those instructors associated with
a department located in the Watson building

- delete from 1instructor
where dept name 1n (select dept name
from department
where building = 'Watson');

[A. Silberschatz et al.]

D. Koop, CSCI 680/490, Spring 2022 Northern Illinois University 9

https://www.db-book.com/db6/slide-dir/

INnsertion

e \ake each student in the Music department who has earned more than 144
credit hours an instructor in the Music department with a salary of $18,000.

- 1nsert into i1nstructor
select ID, name, dept name, 18000
from student
where dept name = 'Music' and total cred > 144;
® [he select-from-where statement is evaluated fully before any of its results

are Inserted into the relation.

* |f not queries like
insert into tablel select * from tablel

would cause problems

[A. Silberschatz et al.]

D. Koop, CSCI 680/490, Spring 2022 Northern Illinois University 10

https://www.db-book.com/db6/slide-dir/

Updates

e Give a 5% salary raise to all instructors

- update instructor
set salary = salary * 1.05

e Give a 5% salary raise to those instructors who earn less than 70000

- update i1nstructor
set salary = salary * 1.05
where salary < 70000;

e Give a 5% salary raise to instructors whose salary is less than average

- update instructor
set salary = salary * 1.05
where salary < (select avg(salary) from i1nstructor);

[A. Silberschatz et al.]

D. Koop, CSCI 680/490, Spring 2022 Northern Illinois University 11

https://www.db-book.com/db6/slide-dir/

Joins

e Join operations take two relations and return another relation.
e From relational algebra, this is a Cartesian product + selection
e \\Vant tuples in the two relations to match (under some condition)
® [he join operations typically used as subqguery expressions in the from clause
® [hree types of joIns:
- Natural join
- Inner join
- Quter join

[A. Silberschatz et al.]

D. Koop, CSCI 680/490, Spring 2022 Northern Illinois University 12

https://www.db-book.com/db6/slide-dir/

Join Examples

‘course_id‘ title | dept_name | credits | | course_id | prereq_id |
BIO-301 | Genetics Biology 4 BIO-301 | BIO-101
C5-190 |Game Design| Comp. Sci. | 4 CS-190 | C5-101
CS-315 |Robotics Comp. Sci. 3 CS-347 | CS-101

course prereqg

course_zd mle depr name

| BIO-301 | Genetics Biology BIO-101
Left Join CS-190 | Game Design | Comp. Sci. CS-101
(CS-315 | Robotics Comp. Scl. null

course_z’d Iztle dept name

| | BIO-301 | Genetics BIO-101
nght Join CS-190 | Game Design | Comp. Sci. CS-101
CS-347 | null CS-101

[A. Silberschatz et al.]

D. Koop, CSCI 680/490, Spring 2022 Northern Illinois University 13

https://www.db-book.com/db6/slide-dir/

Join Examples

‘course_id‘ title | dept_name | credits | | course_id | prereq_id |
BIO-301 | Genetics Biology 4 BIO-301 | BIO-101
C5-190 |Game Design| Comp. Sci. | 4 CS-190 | C5-101
CS-315 |Robotics Comp. Sci. 3 CS-347 | CS-101
course prereq
: BIO-301 | Genetics Biology BIO-101
(FUH) Outer Join CS-190 | Game Design| Comp. Sci. CS-101

CS-315 | Robotics Comp. Sci. neill
(CS-347 | nudl null CS-101

course id| e

Inner Join BIO-301 Genetlcs Blology BIO-101 | BIO-301
CS-190 | Game Design | Comp. Sci. CS-101 | CS-190

[A. Silberschatz et al.]

D. Koop, CSCI 680/490, Spring 2022 Northern Illinois University 14

https://www.db-book.com/db6/slide-dir/

Assignment 1

e Due foday at 11:59pm

e UUsing Python for data analysis on the Met's artwork

e Provided al.ipynb file (right-click and download)

e Use basic python for now to demonstrate language knowledge
- No pandas (for now)

e Use Anaconda or hosted Python environment

e [urn .ipynb file in via Blackboard

e Notes:

- You will need to do some parsing of the data (converting to ints, splitting
Strings)

D. Koop, CSCI 680/490, Spring 2022 Northern Illinois University 15

http://faculty.cs.niu.edu/~dakoop/cs680-2022sp/assignment1.html

Arrays

What is the difference between an array and a list (or a tuple)?

D. Koop, CSCI 680/490, Spring 2022 Northern Illinois University 16

Arrays

e Usually a fixed size—Ilists are meant to change size

e Are mutable —tuples are not

e Store only one type of data—Ilists and tuples can store anything

e Are faster to access and manipulate than lists or tuples

e Can be multidimensional:
- Can have list of lists or tuple of tuples but no guarantee on shape
- Multidimensional arrays are rectangles, cubes, etc.

D. Koop, CSCI 680/490, Spring 2022 Northern Illinois University 17

Why NumPy*?

e Fast vectorized array operations for data munging and cleaning, subsetting
and filtering, transtformation, and any other kinds of computations

e Common array algorithms like sorting, unique, and set operations
o fficient descriptive statistics and aggregating/summarizing data

e Data alignment and relational data manipulations for merging and joining
together heterogeneous data sets

e EXpressing conditional logic as array expressions instead of loops with if-
elif-else branches

e (Group-wise data manipulations (aggregation, transformation, function
application).

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 680/490, Spring 2022 Northern Illinois University 18

1mport numpy as np

D. Koop, CSCI 680/490, Spring 2022 Northern Illinois University 19

PyData Notebooks

o Nitps://qgithub.com/wesm/pydata-book/

e chO4.ipynb
e Click the raw button and save that file to disk

e ..or download/clone the entire repository

D. Koop, CSCI 680/490, Spring 2022 Northern Illinois University 20

https://github.com/wesm/pydata-book/

Creating arrays
e datal = [o6, 7, 8, 0, 1]

arrl = np.array(datal)
e dataz = [[1.5,2,3,4],[5,0,7,8]]
arrZ2 = np.array(data?z)
e datal3 = np.array([ob, "abc", 3.57]) 't check 11

e Can check the type of an array in dtype property

® [ypes:
- arrl.dtype dtype ('1nto4d')

- arr3.dtype dtype ('<U21'"), unilcode plus chars

D. Koop, CSCI 680/490, Spring 2022 Northern Illinois University 21

lypes

o "But | thought Python wasn't stingy about types..."
® NUMPY aims for speed

e Able to do array arithmetic

e Nt106, INt32, Int64, float32, floato4, bool, object

e Can specify type explicitly
- arrl float = np.array(datal, dtype='tfloatod')

* astype Method allows you to convert between different types of arrays:

arr = np.array([1l, 2, 3, 4, 5])
arr.dtype
float arr = arr.astype(np.floato4d)

D. Koop, CSCI 680/490, Spring 2022 Northern Illinois University 22

nuMmpy data types (dtypes)

Type Type code Description

int8, uint8 11, ul Signed and unsigned 8-bit (1 byte) integer types

intl6, uintl6 12, u2 Signed and unsigned 16-bit integer types

int32, uint32 14, u4d Signed and unsigned 32-bit integer types

int64, uint64 18, u8 Signed and unsigned 64-bit integer types

floatil6 f2 Half-precision floating point

float32 f4 or f Standard single-precision floating point; compatible with C float

float64 f8 or d Standard double-precision floating point; compatible with C double and
Python float object

float128 f16 or g Extended-precision floating point

complex64, c8, cl6, Complex numbers represented by two 32, 64, or 128 floats, respectively

comp Lex128, c32

comp lex256

bool ! Boolean type storing True and Fa'lse values

object 0 Python object type; a value can be any Python object

string_ S Fixed-length ASCII string type (1 byte per character); for example, to create a

string dtype with length 10, use 'S10'

unicode_ U Fixed-length Unicode type (number of bytes platform specific); same
specification semantics as string_ (e.q., 'U10")

M.-MeKinney, Python for Data Analysis]

D. Koop, CSCI 680/490, Spring 2022 Northern Illinois University 23

Speed Benefits

e Compare random number generation in pure Python versus numpy

* Python:
- 1mport random
stimelt rolls list = [random.randrange(l,7)
for 1 1n range (0, 60 000)]
o \With NumPy:
- stimeit rolls array = np.random.randint(l, 7, 60 000)

e Significant speedup (80x+)

D. Koop, CSCI 680/490, Spring 2022 Northern Illinois University =~ 24

Array Shape

e Our normal way of checking the size of a collection is... 1len

e How does this work for arrays?
e arrl = np.array([1,2,3,6,9])

len(arrl) 9
e arr2 = np.array([[1.5,2,3,41,15,6,7,81])
len (arr?) %

e All dimension lengths = shape: arr2.shape (2,4)

e Number of dimensions: arr2 .ndim 2

e Can also reshape an array:

- arr2Z2.reshape (4, 2)

- arrZ.reshape (-1, 2) what happens here?

D. Koop, CSCI 680/490, Spring 2022 Northern Illinois University 25

Array Programming

o | |sts:

- c = []

for 1 1n range(len(a)) :
c.append(afi1] + b[1])

e How to improve this?

D. Koop, CSCI 680/490, Spring 2022 Northern Illinois University 26

Array Programming

o | |sts:

- c = []

for 1 1n range(len(a)) :
c.append(afi1] + b[1])

- ¢ = [aa + bb for aa, bb 1n zip(a,b)]

e NumPy arrays:
-Cc =a + D

e \ore functional-style than imperative
¢ |[nternal iteration instead of external

D. Koop, CSCI 680/490, Spring 2022 Northern Illinois University 27

Operations

e a = np.arrav([1,2,3])
b = np.arrav([6,4,3])

e (Array, Array) Operations (Element-wise)

- Addition, Subtraction, Multiplication
- a + b arravy([7, 6, ©6])

e (Scalar, Array) Operations (Broadcasting):
- Addition, Subtraction, Multiplication, Division, Exponentiation
- a ** 2 array([1l, 4, 9])
- b + 3 array([9, 7, ©])

D. Koop, CSCI 680/490, Spring 2022 Northern Illinois University ~ 28

More on Array Creation

® /er0S: np.zeros (10)

e Ones: np.ones ((4,5)) shape
o EmMpty: np.empty ((2,2))

e |ike versions: pass an existing array and matches shape with specitied
contents

e Range: np.arange (15) constructs an array, not iterator!

D. Koop, CSCI 680/490, Spring 2022 Northern Illinois University 29

Indexing

e Same as with lists plus shorthand for 2D+
- arrl = np.array([o6, 7, &8, 0, 11)
- arrl|[1]

- arrl[-1]

e \\Vhat about two dimensions”?
- arr2 = np.array([[1.5,2,3,4],[5,06,7,8]1)
- arr[1][1]

-arr[1l,1] shorthand

D. Koop, CSCI 680/490, Spring 2022 Northern Illinois University 30

2D Indexing

axis 1
0 1 2

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 680/490, Spring 2022 Northern Illinois University 31

Slicing

e 1D: Similar to lists
- arrl = np.array([o6, 7, &8, 0, 11)

B

- arrl[2:5] np.array([8,0,1]), sort of

e Can mutate original array:

- arrl[2:5] = 3 supports assignment

- arrl] the original array changed

e Slicing returns views (copy the array if original array shouldn't change)
- arrl[2:5] a view

- arrl[2:5].copy () a new array

D. Koop, CSCI 680/490, Spring 2022 Northern Illinois University ~ 32

Slicing

o ?D+: comma separated indices as shorthand:
- arr2 = np.array([[1.5,2,3,4],[5,06,7,8]1)
-al[l:3,1:3]

-all:3,:] works like 1n single-dimensional lists

e Can combine index and slice in different dimensions

-all, :] glves a Irow

- al:, 1] glives a column

D. Koop, CSCI 680/490, Spring 2022 Northern Illinois University ~ 33

2D Array Slicing

How to obtain the blue slice
from array arr?

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 680/490, Spring 2022 Northern Illinois University 34

2D Array Slicing

Expression Shape

arr[:2, 1:] (2, 2)

How to obtain the blue slice
from array arr?

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 680/490, Spring 2022 Northern Illinois University 34

2D Array Slicing

How to obtain the blue slice
from array arr?

Expression

arr[:2, 1:]

arr|2
arr(2, :
arr[2:, :

Shape
(2, 2)

(3,)
(3,
(1, 3)

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 680/490, Spring 2022

Northern Illinois University 34

2D Array Slicing

How to obtain the blue slice
from array arr?

]l SEJE

Expression

arr[:2, 1:]

arr|2
arr(2, :
arr[2:, :

arr[:, :2]

Shape
(2, 2)

(3,)
(3,
(1, 3)

(3, 2)

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 680/490, Spring 2022

Northern Illinois University 34

2D Array Slicing

Expression Shape
:::1[!!!!!l arr[:2, 1:] (2, 2)
arr[2. (3,)
How to obtain the blue slice arr([2, :. (3,
from array arr? arr2:, = (1, 3)
|||||||E§§| arr[:, :2] (3, 2)
arr[1, :2] (2,)
arr[1:2, :2] (1, 2)

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 680/490, Spring 2022 Northern Illinois University 34

More Reshaping

® reshape;

- arrZ.reshape (4, 2) returns new viliew
® resize:

- arrZ.resize(4,2) no return, modifies arr2 in place
e flatten:

- arr2.flatten () array([1.5,2.,3.,4.,5.,0.,7.,8.1])

® ravel:
- arr2.ravel () array([1.5,2.,3.,4.,5.,06.,7.,8.])

¢ flatten and ravel look the same, but ravel is a view

D. Koop, CSCI 680/490, Spring 2022 Northern Illinois University ~ 35

Boolean Indexing

* names == 'Bob' gives back booleans that represent the element-wise
comparison with the array names

e Boolean arrays can be used to index Into another array:

- data[names == 'Bob']
e Can even mix and match with integer slicing

e Can do boolean operations (&, |) between arrays (just like addition,

subtraction)
- data| (names == 'Bob') | (names == '"W1ill")]

e Note: or and and do not work with arrays
e \\le can set values 100! datal[data < 0] = 0

D. Koop, CSCI 680/490, Spring 2022 Northern Illinois University 36

Array lransformations

® [ranspose

- arr2.T flip rows and columns
o Stacking: take iterable of arrays and stack them horizontally/vertically
- arrhl = np.arange (3)

- arrhZ2 = np.arange (3, 0)
- np.vstack ([arrhl, arrh2])
- np.hstack(larrl.T, arr2.T]) P27

D. Koop, CSCI 680/490, Spring 2022 Northern Illinois University 37

Unary Universal Functions

Function Description

abs, fabs
sqrt
square
exp

log, logio0,
log2, loglp

sign

ceil

floor
rint
modf
isnan

isfinite, isinf

cos, cosh, sin,
sinh, tan, tanh
arccos, arccosh,

arcsin, arcsinh,
arctan, arctanh

logical not

Compute the absolute value element-wise for integer, floating-point, or complex values
Compute the square root of each element (equivalentto arr ** 0.5)
Compute the square of each element (equivalentto arr ** 2)

Compute the exponent e* of each element
Natural logarithm (base e), log base 10, log base 2, and log(1 + x), respectively

Compute the sign of each element: 1 (positive), 0 (zero), or —1 (negative)

Compute the ceiling of each element (i.e., the smallest integer greater than or equal to that
number)

Compute the floor of each element (i.e., the largest integer less than or equal to each element)
Round elements to the nearest integer, preserving the dtype

Return fractional and integral parts of array as a separate array

Return boolean array indicating whether each value is NaN (Not a Number)

Return boolean array indicating whether each element is finite (non-inf, non-NaN) or infinite,
respectively

Regular and hyperbolic trigonometric functions

Inverse trigonometric functions

Compute truth value of not x element-wise (equivalent to ~arr).

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 680/490, Spring 2022

Northern Illinois University 38

Binary Universal Functions

Function Description

add Add corresponding elements in arrays

subtract Subtract elements in second array from first array

multiply Multiply array elements

divide, floor_divide Divide or floor divide (truncating the remainder)

power Raise elements in first array to powers indicated in second array

maximum, fmax Element-wise maximum; fmax ignores NaN

minimum, fmin Element-wise minimum; fmin ignores NaN

mod Element-wise modulus (remainder of division)

copysign Copy sign of values in second argument to values in first argument
greater, greater_equal, Perform element-wise comparison, yielding boolean array (equivalent to infix
less, less equal, operators >, >=, <, <=, ==, !=)

equal, not_equal

logical_and, Compute element-wise truth value of logical operation (equivalent to infix operators

logical or, logical xor & |, %)
[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 680/490, Spring 2022 Northern Illinois University 39

Statistical Methods

Method Description

sum Sum of all the elements in the array or along an axis; zero-length arrays have sum 0
mean Arithmetic mean; zero-length arrays have NaN mean
std, var Standard deviation and variance, respectively, with optional degrees of freedom adjustment (default

denominator n)
min, max Minimum and maximum
argmin, argmax Indices of minimum and maximum elements, respectively
cumsum Cumulative sum of elements starting from 0
cumprod Cumulative product of elements starting from 1

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 680/490, Spring 2022 Northern Illinois University 40

Vliore

e Other methods:
- any and all

- SOortC

- unique
o | inear Algebra (numpy.linalg)
e Pseudorandom Number Generation (numpy . random)

D. Koop, CSCI 680/490, Spring 2022 Northern Illinois University 41

