
Advanced Data Management (CSCI 680/490)

Databases

Dr. David Koop

D. Koop, CSCI 680/490, Spring 2022

Python Containers
• Container: store more than one value
• Mutable versus immutable: Can we update the container?
- Yes → mutable
- No → immutable
- Lists are mutable, tuples are immutable

• Lists and tuples may contain values of different types:
• List: [1,"abc",12.34]
• Tuple: (1, "abc", 12.34)
• You can also put functions in containers!
• len function: number of items: len(l)

2D. Koop, CSCI 680/490, Spring 2022

Indexing and Slicing
• Strings and collections are the same
• Indexing:
- Where do we start counting?
- Use brackets [] to retrieve one value
- Can use negative values (count from the end)

• Slicing:
- Use brackets plus a colon to retrieve multiple values:

[<start>:<end>]
- Returns a new list (b = a[:])
- Don't need to specify the beginning or end

3D. Koop, CSCI 680/490, Spring 2022

Dictionaries
• One of the most useful features of Python
• Also known as associative arrays
• Exist in other languages but a core feature in Python
• Associate a key with a value
• When I want to find a value, I give the dictionary a key, and it returns the value
• Example: InspectionID (key) → InspectionRecord (value)
• Keys must be immutable (technically, hashable):
- Normal types like numbers, strings are fine
- Tuples work, but lists do not (TypeError: unhashable type: 'list')

• There is only one value per key!

4D. Koop, CSCI 680/490, Spring 2022

Sets
• Sets are like dictionaries but without any values:
• s = {'MA', 'RI', 'CT', 'NH'}; t = {'MA', 'NY', 'NH'}

• {} is an empty dictionary, set() is an empty set
• Adding values: s.add('ME')
• Removing values: s.discard('CT')
• Exists: "CT" in s
• Union: s | t => {'MA', 'RI', 'CT', 'NH', 'NY'}
• Intersection: s & t => {'MA', 'NH'}
• Exclusive-or (xor): s ^ t => {'RI', 'CT', 'NY'}
• Difference: s - t => {'RI', 'CT'}

5D. Koop, CSCI 680/490, Spring 2022

Objects
• d = dict() # construct an empty dictionary object

• l = list() # construct an empty list object

• s = set() # construct an empty set object

• s = set([1,2,3,4]) # construct a set with 4 numbers
• Calling methods:

- l.append('abc')

- d.update({'a': 'b'})

- s.add(3)

• The method is tied to the object preceding the dot (e.g. append modifies l to
add 'abc')

6D. Koop, CSCI 680/490, Spring 2022

Python Modules
• Python module: a file containing definitions and statements
• Import statement: like Java, get a module that isn't a Python builtin

import collections
d = collections.defaultdict(list)
d[3].append(1)

• import <name> as <shorter-name>
import collections as c

• from <module> import <name> – don't need to refer to the module
from collections import defaultdict
d = defaultdict(list)
d[3].append(1)

7D. Koop, CSCI 680/490, Spring 2022

Other Collections Features
• collections.defaultdict: specify a default value for any item in the

dictionary (instead of KeyError)
• collections.OrderedDict: keep entries ordered according to when the

key was inserted
- dict objects are ordered in Python 3.7 but OrderedDict has some other

features (equality comparison, reversed)
• collections.Counter: counts hashable objects, has a most_common

method

8D. Koop, CSCI 680/490, Spring 2022

Assignment 1
• Due Monday, Feb. 7 at 11:59pm
• Using Python for data analysis on the Met's artwork
• Provided a1.ipynb file (right-click and download)
• Use basic python for now to demonstrate language knowledge
- No pandas (for now)

• Use Anaconda or hosted Python environment
• Turn .ipynb file in via Blackboard
• Notes:
- You will need to do some parsing of the data (converting to ints, splitting

strings)

9D. Koop, CSCI 680/490, Spring 2022

http://faculty.cs.niu.edu/~dakoop/cs680-2022sp/assignment1.html

Iterators
• Remember range, values, keys, items?
• They return iterators: objects that traverse containers
• Given iterator it, next(it) gives the next element
• StopIteration exception if there isn't another element
• Generally, we don't worry about this as the for loop handles everything

automatically…but you cannot index or slice an iterator
• d.values()[0] will not work!
• If you need to index or slice, construct a list from an iterator
• list(d.values())[0] or list(range(100))[-1]
• In general, this is slower code so we try to avoid creating lists

10D. Koop, CSCI 680/490, Spring 2022

List Comprehensions
• Shorthand for transformative or filtering for loops
• squares = []
for i in range(10):
 squares.append(i**2)

• squares = [i**2 for i in range(10)]

• Filtering:
• squares = []
for i in range(10):
 if i % 3 != 1:
 squares.append(i ** 2)

• squares = [i**2 for i in range(10) if i % 3 != 1]

• if clause follows the for clause

11D. Koop, CSCI 680/490, Spring 2022

Dictionary Comprehensions
• Similar idea, but allow dictionary construction
• Could use lists:

- names = dict([(k, v) for k,v in … if …])

• Native comprehension:
- names = {"Al": ["Smith", "Brown"], "Beth":["Jones"]}
first_counts ={k: len(v) for k,v in names.items()}

• Could do this with a for loop as well

12D. Koop, CSCI 680/490, Spring 2022

Exceptions
• errors but potentially something that can be addressed
• try-except-else-finally:

- except clause runs if exactly the error(s) you wish to address happen
- else clause will run if no exceptions are encountered
- finally always runs (even if the program is about to crash)

• Can have multiple except clauses
• can also raise exceptions using the raise keyword
• (and define your own)

13D. Koop, CSCI 680/490, Spring 2022

Classes
• class ClassName:
 …

• Everything in the class should be indented until the declaration ends
• self: this in Java or C++ is self in Python
• Every instance method has self as its first parameter
• Instance variables are defined in methods (usually constructor)
• __init__: the constructor, should initialize instance variables
• def __init__(self):
 self.a = 12
 self.b = 'abc'

• def __init__(self, a, b):
 self.a = a
 self.b = b

14D. Koop, CSCI 680/490, Spring 2022

Class Example
• class Rectangle:
 def __init__(self, x, y, w, h):
 self.x = x
 self.y = y
 self.w = w
 self.h = h

 def set_corner(self, x, y):
 self.x = x
 self.y = y

 def set_width(self, w): self.w = w

 def set_height(self, h): self.h = h

 def area(self):
 return self.w * self.h

15D. Koop, CSCI 680/490, Spring 2022

16

Databases

D. Koop, CSCI 680/490, Spring 2022

Database
• Basically, just structured data/information stored on a computer
• Very generic, doesn't specify specific way that data is stored
• Can be single-file (or in-memory) or much more complex
• Methods to:
- add, update, and remove data
- query the data

17D. Koop, CSCI 680/490, Spring 2022

Using Databases
• Suppose we just use a single file or a set of files to store data
• Now, we write programs to use that data
• What are the potential issues?

18D. Koop, CSCI 680/490, Spring 2022

Using Databases
• Suppose we just use a single file or a set of files to store data
• Now, we write programs to use that data
• What are the potential issues?
- Duplicated work
- Changes to data layout (schema) require changes to programs
- New operations required more code
- Multiple users/programs accessing same data?
- Security

19D. Koop, CSCI 680/490, Spring 2022

Database Management System (DBMS)
• Software to manage databases
• Instead of each program writing its own methods to manage data,

abstract data management to the DBMS
• Provide levels of abstraction
- Physical: storage
- Logical: structure (records, columns, etc.)
- View: queries and application-support

• Goal: general-purpose
- Specify structure of the data (schema)
- Provide query capabilities

20D. Koop, CSCI 680/490, Spring 2022

Query Processing
• Parsing and translation
• Optimization
• Evaluation

21

[A. Silberschatz et al.]
D. Koop, CSCI 680/490, Spring 2022

https://www.db-book.com/db6/slide-dir/

Types of Databases
• Many kinds of databases, based on usage
• Amount of data being managed
- embedded databases: small, application-specific (e.g. SQLite, BerkeleyDB)
- data warehousing: vast quantities of data (e.g. Oracle)

• Type/frequency of operations being performed
- OLTP: Online Transaction Processing (e.g. online shopping)
- OLAP: Online Analytical Processing (e.g. sales analysis)

22

[D. Pinkston]
D. Koop, CSCI 680/490, Spring 2022

http://users.cms.caltech.edu/~donnie/cs121/CS121Lec01.pdf

Data Models
• Databases must represent:
- the data itself (typically structured in some way)
- associations between different data values
- optionally, constraints on data values

• What kind of data/associations can be represented?
• The data model specifies:
- what data can be stored (and sometimes how it is stored)
- associations between different data values
- what constraints can be enforced
- how to access and manipulate the data

23

[D. Pinkston]
D. Koop, CSCI 680/490, Spring 2022

http://users.cms.caltech.edu/~donnie/cs121/CS121Lec01.pdf

Different Data Models
• Relational model
• Entity-Relationship data model (mainly for database design)
• Object-based data models (Object-oriented and Object-relational)
• Semistructured data model (XML)
• Other older models:
- Network model
- Hierarchical model

24

[A. Silberschatz et al.]
D. Koop, CSCI 680/490, Spring 2022

https://www.db-book.com/db6/slide-dir/

Relational Model History
• Invented by Edgar F. Codd in early 1970s
• Focus was data independence
- Previous data models required physical-level design and implementation
- Changes to a database schema were very costly to applications that

accessed the database
• IBM, Oracle were first implementers of relational model (1977)
- Usage spread very rapidly through software industry
- SQL was a particularly powerful innovation

25

[D. Pinkston]
D. Koop, CSCI 680/490, Spring 2022

http://users.cms.caltech.edu/~donnie/cs121/CS121Lec01.pdf

Relations

¨ Relations are basically tables of data
¤ Each row represents a record in the relation

¨ A relational database is
a set of relations
¤ Each relation has a unique

name in the database

¨ Each row in the table specifies a relationship between
the values in that row
¤ The account ID “A-307”, branch name “Seattle”, and

balance “275” are all related to each other

acct_id branch_name balance
A-301
A-307
A-318
…

New York
Seattle
Los Angeles
…

350
275
550
…

The account relation

18

Relations
• Relations are basically tables of data
- Each row represents a tuple in the relation

• A relational database is an unordered set of
relations

- Each relation has a unique name in the
database

• Each row in the table specifies a relationship
between the values in that row

- The account ID “A-307”, branch name
“Seattle”, and balance “275” are all related
to each other

26

[D. Pinkston]
D. Koop, CSCI 680/490, Spring 2022

http://users.cms.caltech.edu/~donnie/cs121/CS121Lec01.pdf

Relations

¨ Relations are basically tables of data
¤ Each row represents a record in the relation

¨ A relational database is
a set of relations
¤ Each relation has a unique

name in the database

¨ Each row in the table specifies a relationship between
the values in that row
¤ The account ID “A-307”, branch name “Seattle”, and

balance “275” are all related to each other

acct_id branch_name balance
A-301
A-307
A-318
…

New York
Seattle
Los Angeles
…

350
275
550
…

The account relation

18

Relations and Attributes
• Each relation has some number of attributes
- Sometimes called “columns”

• Each attribute has a domain
- Set of valid values for the attribute (+ null)
- Values are usually atomic

• The account relation has 3 attributes
- Domain of balance is the set of

nonnegative integers
- Domain of branch_name is the set of all

valid branch names in the bank

27

[D. Pinkston]
D. Koop, CSCI 680/490, Spring 2022

http://users.cms.caltech.edu/~donnie/cs121/CS121Lec01.pdf

Database Schema
• Database schema: the logical

structure of the database.
• Database instance: a snapshot of the

data at a given instant in time.
• Example Schema

- instructor
(ID, name, dept_name, salary)

28

[A. Silberschatz et al.]
D. Koop, CSCI 680/490, Spring 2022

https://www.db-book.com/db6/slide-dir/

Keys
• Let K ⊆ R
• K is a superkey of R if values for K are sufficient to identify a unique tuple of

each possible relation r(R)
- Example: {ID} and {ID,name} are both superkeys of instructor.

• Superkey K is a candidate key if K is minimal
Example: {ID} is a candidate key for Instructor

• One of the candidate keys is selected to be the primary key.
- Which one?

29

[A. Silberschatz et al.]
D. Koop, CSCI 680/490, Spring 2022

https://www.db-book.com/db6/slide-dir/

Foreign Key Constraints
• Foreign key constraint: Value in one relation must appear in another
- Referencing relation
- Referenced relation
- Example: dept_name in instructor is a foreign key from instructor

referencing department

30

[A. Silberschatz et al.]
D. Koop, CSCI 680/490, Spring 2022

https://www.db-book.com/db6/slide-dir/

Schema Diagram with Keys

31

[A. Silberschatz et al.]
D. Koop, CSCI 680/490, Spring 2022

https://www.db-book.com/db6/slide-dir/

Relational Query Languages
• Procedural versus non-procedural, or declarative
• “Pure” languages:
- Relational algebra
- Tuple relational calculus
- Domain relational calculus

• The above 3 pure languages are equivalent in computing power
• Concentrate on relational algebra
- Not Turing-machine equivalent
- 6 basic operations

32

[A. Silberschatz et al.]
D. Koop, CSCI 680/490, Spring 2022

https://www.db-book.com/db6/slide-dir/

Relational Algebra
• Definition: A procedural language consisting of a set of operations that take

one or two relations as input and produce a new relation as their result.
• Six basic operators
- select: σ
- project: ∏
- union: ∪
- set difference: –
- Cartesian product: x
- rename: ρ

33

[A. Silberschatz et al.]
D. Koop, CSCI 680/490, Spring 2022

https://www.db-book.com/db6/slide-dir/

Select Operation
• The select operation selects tuples that satisfy a given predicate.
• Notation: σp(r)
• p is called the selection predicate
• Example: select those tuples of the instructor relation where the instructor

is in the “Physics” department.
- Query: σdept_name=“Physics”(instructor)
- Result:

34

[A. Silberschatz et al.]
D. Koop, CSCI 680/490, Spring 2022

https://www.db-book.com/db6/slide-dir/

Select Operation Comparisons
• We allow comparisons using =, ≠, >, ≥, <, ≤ in the selection predicate.
• We can combine several predicates into a larger predicate by using the

connectives: ∧ (and), ∨ (or), ¬ (not)
• Example: Find the instructors in Physics with a salary greater than $90,000:
- σdept_name=“Physics” ∧ salary > 90,000 (instructor)

•
• The select predicate may include comparisons between two attributes.
- Example: departments whose name is the same as their building name:

• σdept_name=building (department)

35

[A. Silberschatz et al.]
D. Koop, CSCI 680/490, Spring 2022

https://www.db-book.com/db6/slide-dir/

Project Operation
• A unary operation that returns its argument relation, with certain attributes left

out.
• Notation: ∏ A1,A2,A3,…,Ak (r)

where A1,A2,A3,…,Ak are attribute names and r is a relation name.
• The result is defined as the relation of k columns obtained by erasing the

columns that are not listed
• Duplicate rows removed from result, since relations are sets

36

[A. Silberschatz et al.]
D. Koop, CSCI 680/490, Spring 2022

https://www.db-book.com/db6/slide-dir/

Project Operation Example
• Example: eliminate the dept_name attribute

of instructor
• Query: ∏ID, name, salary (instructor)

37

[A. Silberschatz et al.]
D. Koop, CSCI 680/490, Spring 2022

https://www.db-book.com/db6/slide-dir/

Composition of Relational Operations
• The result of a relational-algebra operation is a relation
• … so relational-algebra operations can be composed together into a

relational-algebra expression.
• Example: Find the names of all instructors in the Physics department.

∏name(σdept_name =“Physics” (instructor))

• Instead of giving the name of a relation as the argument of the projection
operation, we give an expression that evaluates to a relation.

38

[A. Silberschatz et al.]
D. Koop, CSCI 680/490, Spring 2022

https://www.db-book.com/db6/slide-dir/

Cartesian-Product Operation
• The Cartesian-product operation (denoted by X) allows us to combine

information from any two relations.
• Example: the Cartesian product of the relations instructor and teaches is

written as: instructor X teaches
• We construct a tuple of the result out of each possible pair of tuples: one

from the instructor relation and one from the teaches relation
• Since the instructor ID appears in both relations we distinguish between

these attribute by attaching to the attribute the name of the relation from
which the attribute originally came.

- instructor.ID and teaches.ID

39

[A. Silberschatz et al.]
D. Koop, CSCI 680/490, Spring 2022

https://www.db-book.com/db6/slide-dir/

The instructor X teaches table

40

[A. Silberschatz et al.]
D. Koop, CSCI 680/490, Spring 2022

https://www.db-book.com/db6/slide-dir/

Join Operation
• The Cartesian-Product instructor X teaches associates every tuple of

instructor with every tuple of teaches.
- Most of the resulting rows have information about instructors who did not

teach a particular course.
• To get only those tuples of instructor X teaches that pertain to

instructors and the courses that they taught, we write:
σinstructor.id = teaches.id (instructor x teaches)

- We get only those tuples of instructor X teaches that pertain to
instructors and the courses that they taught.

41

[A. Silberschatz et al.]
D. Koop, CSCI 680/490, Spring 2022

https://www.db-book.com/db6/slide-dir/

Join Operation (Cont.)

42

[A. Silberschatz et al.]
D. Koop, CSCI 680/490, Spring 2022

The table corresponding to σinstructor.id = teaches.id (instructor x teaches)

https://www.db-book.com/db6/slide-dir/

Join Operation
• The join operation allows us to combine a select operation and a Cartesian-

Product operation into a single operation.
• Consider relations r(R) and s(S)
• Let θ be a predicate on attributes in the schema R ∪ S. The join operation is:

• Thus

σinstructor.id = teaches.id (instructor x teaches)
• can equivalently be written as

instructor Instructor.id = teaches.id teaches

𝑟 ⋈𝜃 𝑠 = 𝜎𝜃 (𝑟 × 𝑠)

⋈

43

[A. Silberschatz et al.]
D. Koop, CSCI 680/490, Spring 2022

https://www.db-book.com/db6/slide-dir/

Union Operation
• The union operation allows us to combine two relations
• Notation: r ∪ s
• For r ∪ s to be valid.

- r, s must have the same arity (same number of attributes)
- The attribute domains must be compatible (example: 2nd column of r

deals with the same type of values as does the 2nd column of s)

44

[A. Silberschatz et al.]
D. Koop, CSCI 680/490, Spring 2022

https://www.db-book.com/db6/slide-dir/

Union Example
• Find all courses taught in the Fall 2017

semester, or in the Spring 2018 semester, or
in both:
∏course_id (σsemester=“Fall” Λ year=2017 (section)) ∪
∏course_id (σsemester=“Spring” Λ year=2018 (section))

45

[A. Silberschatz et al.]
D. Koop, CSCI 680/490, Spring 2022

https://www.db-book.com/db6/slide-dir/

Set-Intersection Operation
• The set-intersection operation allows us to find tuples that are in both the

input relations.
• Notation: r ∩ s
• Same requirements as union:

- r, s have the same arity
- attributes of r and s are compatible

• Example: Find the set of all courses taught in both the Fall 2017 and the
Spring 2018 semesters.

• ∏course_id (σsemester=“Fall” Λ year=2017 (section)) ∩
∏course_id (σsemester=“Spring” Λ year=2018 (section))

46

[A. Silberschatz et al.]
D. Koop, CSCI 680/490, Spring 2022

https://www.db-book.com/db6/slide-dir/

Set Difference Operation
• The set-difference operation allows us to find tuples that are in one relation

but are not in another.
• Notation r – s
• Same requirements as union and set-intersection: .

- r and s must have the same arity
- attribute domains of r and s must be compatible

• Example: Find all courses taught in the Fall 2017 semester, but not in the
Spring 2018 semester
 ∏course_id (σsemester=“Fall” Λ year=2017 (section)) -

∏course_id (σsemester=“Spring” Λ year=2018 (section))

47

[A. Silberschatz et al.]
D. Koop, CSCI 680/490, Spring 2022

https://www.db-book.com/db6/slide-dir/

Equivalent Queries
• There is more than one way to write a query in relational algebra.
• Example: Find information about courses taught by instructors in the Physics

department with salary greater than 90,000
• Query 1: σdept_name=“Physics” ∧ salary > 90,000 (instructor)
• Query 2: σdept_name=“Physics” (σsalary > 90.000 (instructor))
• The two queries are not identical; they are, however, equivalent -- they give

the same result on any database.

48

[A. Silberschatz et al.]
D. Koop, CSCI 680/490, Spring 2022

https://www.db-book.com/db6/slide-dir/

Equivalent Queries
• Example: Find information about courses taught by instructors in the Physics

department
• Query 1:

σdept_name=“Physics” (instructor instructor.ID = teaches.ID teaches)
• Query 2

(σdept_name=“Physics” (instructor)) instructor.ID = teaches.ID teaches
• The order of joins is one focus of some of the work on query optimization

⋈

⋈

49

[A. Silberschatz et al.]
D. Koop, CSCI 680/490, Spring 2022

https://www.db-book.com/db6/slide-dir/

