
Advanced Data Management (CSCI 680/490)

Python

Dr. David Koop

D. Koop, CSCI 680/490, Spring 2022

JupyterLab

2D. Koop, CSCI 680/490, Spring 2022

JupyterLab Notebooks
• Can write code or plain text (can be styled Markdown)
- Choose the type of cell using the dropdown menu

• Cells break up your code, but all data is global
- Defining a variable a in one cell means it is available in any other cell
- This includes cells above the cell a was defined in!

• Remember Shift+Enter to execute
• Enter just adds a new line
• Use ?<function_name> for help
• Use Tab for auto-complete or suggestions
• Tab also indents, and Shift+Tab unindents

3D. Koop, CSCI 680/490, Spring 2022

Assignment 1
• To be released soon (planning on tomorrow)
• Using Python for data analysis
• Provided a1.ipynb file (right-click and download)
• Use basic python for now to demonstrate language knowledge
• Use Anaconda or hosted Python environment
• Turn .ipynb file in via Blackboard

4D. Koop, CSCI 680/490, Spring 2022

Local Jupyter Environment
• www.anaconda.com/download/
• Anaconda has Jupyter Lab
• Use Python 3.9 version (not 2.7)
• Anaconda Navigator
- GUI application for managing Python

environment
- Can install packages
- Can start JupyterLab

• Can also use the shell to do this:
- $ jupyter lab

- $ conda install <pkg_name>

5D. Koop, CSCI 680/490, Spring 2022

https://www.anaconda.com/download/

Hosted Jupyter Environments
• Nice to have ability to configure everything locally, but… you have to

configure everything locally
• Solution: Cloud-hosted Jupyter (and Jupyter-like) environments
• Pros: No setup
• Cons: Limitations on resources: data and compute
• Options:
- Google Colab (need a Google account)
- Binder
- JupyterLite

6D. Koop, CSCI 680/490, Spring 2022

https://colab.research.google.com/
https://mybinder.org

Using Hosted Jupyter Environments
• Data:
- Either point to a public URL or upload the data
- Large datasets may not be supported, data may be deleted if uploaded

(and isn't in Google Drive, etc.)
• Notebooks:
- Can download the notebook locally (e.g. to use with a conda environment)
- Currently, Python 3.8

• Differences:
- Colab has tweaked much of the interface (e.g. different nomenclature)

7D. Koop, CSCI 680/490, Spring 2022

8

Questions about Python?

D. Koop, CSCI 680/490, Spring 2022

9

Why do we create and use functions?

D. Koop, CSCI 680/490, Spring 2022

Functions
• Calling functions is as expected:

mul(2,3) # computes 2*3 (mul from operator package)

- Values passed to the function are parameters
- May be variables!
a = 5
b = 7
mul(a,b)

• print is a function
print("This line doesn't end.", end=" ")
print("See it continues")

- end is also a parameter, but this has a different syntax (keyword argument!)

10D. Koop, CSCI 680/490, Spring 2022

Defining Functions
• def keyword
• Arguments have names but no types

def hello(name):
 print(f"Hello {name}")

• Can have defaults:
def hello(name="Jane Doe"):
 print(f"Hello {name}")

• With defaults, we can skip the parameter: hello() or hello("John")
• Also can pick and choose arguments:

def hello(name1="Joe", name2="Jane"):
 print(f"Hello {name1} and {name2}")
hello(name2="Mary")

11D. Koop, CSCI 680/490, Spring 2022

Return statement
• Return statement gives back a value:

def mul(a,b):
 return a * b

• Variables changed in the function won't be updated:
def increment(a):
 a += 1
 return a
b = 12
c = increment(b)
print(b,c)

12D. Koop, CSCI 680/490, Spring 2022

Python Containers
• Container: store more than one value
• Mutable versus immutable: Can we update the container?
- Yes → mutable
- No → immutable
- Lists are mutable, tuples are immutable

• Lists and tuples may contain values of different types:
• List: [1,"abc",12.34]
• Tuple: (1, "abc", 12.34)
• You can also put functions in containers!
• len function: number of items: len(l)

13D. Koop, CSCI 680/490, Spring 2022

Indexing and Slicing
• Just like with strings
• Indexing:
- Where do we start counting?
- Use brackets [] to retrieve one value
- Can use negative values (count from the end)

• Slicing:
- Use brackets plus a colon to retrieve multiple values: [<start>:<end>]
- Returns a new list (b = a[:])
- Don't need to specify the beginning or end
- Can add a second colon to specify the increment [<start>:<end>:<step>]

14D. Koop, CSCI 680/490, Spring 2022

Tuples
• months = ('January','February','March','April',
'May','June','July','August','September','October',
'November','December')

• Useful when you know you're not going to change the contents or add or
delete values

• Can index and slice
• Also, can create new tuples from existing ones:

- t = (1,2,3)
u = (4,5,6)

- v = t + u # v points to a new object
- t += u # t is a new object

15D. Koop, CSCI 680/490, Spring 2022

Modifying Lists
• Add to a list l:

- l.append(v): add one value (v) to the end of the list
- l.extend(vlist): add multiple values (vlist) to the end of l
- l.insert(i, v): add one value (v) at index i

• Remove from a list l:
- del l[i]: deletes the value at index i
- l.pop(i): removes the value at index i (and returns it)
- l.remove(v): removes the first occurrence of value v (careful!)

• Changing an entry:
- l[i] = v: changes the value at index i to v (Watch out for IndexError!)

16D. Koop, CSCI 680/490, Spring 2022

Modifying a list
• v = [1,2,3]
w = [4,5,6]

• x = v + w # x is a new list [1,2,3,4,5,6]
• v.extend(w) # v is mutated to [1,2,3,4,5,6]
• v += w # v is mutated to [1,2,3,4,5,6]
• v.append(w) # v is mutated to [1,2,3,[4,5,6]]
• x = v + 4 # error
• v += 4 # error
• v += [4] # v is mutated to [1,2,3,4]

17D. Koop, CSCI 680/490, Spring 2022

in: Checking for a value
• The in operator:

- 'a' in l

- 'a' not in l
• Not very fast for lists

18D. Koop, CSCI 680/490, Spring 2022

For loops
• Used much more frequently than while loops
• Is actually a "for-each" type of loop
• In Java, this is:

- for (String item : someList) {
 System.out.println(item);
}

• In Python, this is:
- for item in someList:
 print(item)

• Grabs each element of someList in order and puts it into item
• Be careful modifying container in a for loop! (e.g. someList.append(new_item))

19D. Koop, CSCI 680/490, Spring 2022

What about counting?
• In C++:
• for(int i = 0; i < 100; i++) {
 cout << i << endl;
}

• In Python:
• for i in range(0,100): # or range(100)
 print(i)

• range(100) vs. list(range(100))
• What about only even integers?

20D. Koop, CSCI 680/490, Spring 2022

Exercise
• Given variables x and y, print the long division answer of x divided by y with

the remainder.
• Examples:

- x = 11, y = 4 should print "2R3"
- x = 15, y = 2 should print "7R1"

21D. Koop, CSCI 680/490, Spring 2022

Quiz
• Suppose I want to write Python code to print the numbers from 1 to 100.

What errors do you see?

// print the numbers from 1 to 100
int counter = 1
while counter < 100 {
 print counter
 counter++
}

22D. Koop, CSCI 680/490, Spring 2022

Quiz
• Suppose a = ['a', 'b', 'c', 'd'] and b = (1, 2, 3)
• What happens with?

- a[0]
- a[1:2]
- b[:-2]
- b.append(4)
- a.extend(b)
- a.pop(0)
- b[0] = "100"
- b + (4,)

23D. Koop, CSCI 680/490, Spring 2022

Quiz
• Suppose a = ['a', 'b', 'c', 'd'] and b = (1, 2, 3)
• What happens with?

- a[0] # 'a'
- a[1:2] # ['b']
- b[:-2] # (1,)
- b.append(4) # error
- a.extend(b) # ['a', 'b', 'c', 'd', 1, 2, 3]
- a.pop(0) # 'a' with side effect a becomes ['b', 'c', 'd']
- b[0] = "100" # error
- b + (4,) # (1,2,3,4)

24D. Koop, CSCI 680/490, Spring 2022

Dictionaries
• One of the most useful features of Python
• Also known as associative arrays
• Exist in other languages but a core feature in Python
• Associate a key with a value
• When I want to find a value, I give the dictionary a key, and it returns the value
• Example: InspectionID (key) → InspectionRecord (value)
• Keys must be immutable (technically, hashable):
- Normal types like numbers, strings are fine
- Tuples work, but lists do not (TypeError: unhashable type: 'list')

• There is only one value per key!

25D. Koop, CSCI 680/490, Spring 2022

Dictionaries
• Defining a dictionary: curly braces
• states = {'MA': 'Massachusetts, 'RI': 'Road Island', 'CT':
'Connecticut'}

• Accessing a value: use brackets!
• states['MA'] or states.get('MA')
• Adding a value:
• states['NH'] = 'New Hampshire'

• Checking for a key:
• 'ME' in states → returns True or False
• Removing a value: states.pop('CT') or del states['CT']
• Changing a value: states['RI'] = 'Rhode Island'

26D. Koop, CSCI 680/490, Spring 2022

Dictionaries
• Combine dictionaries: d1.update(d2)

- update overwrites any key-value pairs in d1
when the same key appears in d2

- d1 | d2
• len(d) is the number of entries in d

27D. Koop, CSCI 680/490, Spring 2022

Extracting Parts of a Dictionary
• d.keys(): the keys only
• d.values(): the values only
• d.items(): key-value pairs as a collection of tuples:
[(k1, v1), (k2, v2), …]

• Unpacking a tuple or list
- t = (1,2)
a, b = t

• Iterating through a dictionary:
for (k,v) in d.items():
 if k % 2 == 0:
 print(v)

• Important: keys, values, and items are in added order!
28D. Koop, CSCI 680/490, Spring 2022

Example: Counting Letters
• Write code that takes a string s and creates a dictionary with that counts

how often each letter appears in s
• count_letters("Mississippi") →
 {'s': 4, 'i': 4, 'p': 2', …}

29D. Koop, CSCI 680/490, Spring 2022

Sets
• Just the keys from a dictionary
• Only one copy of each item
• Define like dictionaries without values

- s = {'a','b','c','e'}

- 'a' in s # True

• Mutation
- s.add('f')
s.add('a') # only one copy
s.remove('c')

• One gotcha:
- {} is an empty dictionary not an empty set

30D. Koop, CSCI 680/490, Spring 2022

Nesting Containers
• Can have lists inside of lists, tuples inside of tuples, dictionaries inside of

dictionaries
• Can also have dictionaries inside of lists, tuples inside of dictionaries, …
• d = {"Brady": [(2015, 4770, 36), (2014, 4109, 33)],
 "Luck": [(2015, 1881, 15), (2014, 4761, 40)],
 …
 }

• JavaScript Object Notation (JSON) looks very similar for literal values; Python
allows variables in these types of structures

31D. Koop, CSCI 680/490, Spring 2022

Nesting Code
• Can have loops inside of loops, if statements inside of if statements
• Careful with variable names:
• l = {0: 0, 1: 3, 4: 5, 9: 12}
for i in range(100):
 square = i ** 2
 max_val = l[square]
 for i in range(max_val):
 print(i)

• Strange behavior, likely unintended, but Python won't complain!

32D. Koop, CSCI 680/490, Spring 2022

None
• Like null in other languages, used as a placeholder when no value exists
• The value returned from a function that doesn't return a value

def f(name):
 print("Hello,", name)
v = f("Patricia") # v will have the value None

• Also used when you need to create a new list or dictionary:
def add_letters(s, d=None):
 if d is None:
 d = {}
 d.update(count_letters(s))

• Looks like d={} would make more sense, but that causes issues
• None serves as a sentinel value in add_letters

33D. Koop, CSCI 680/490, Spring 2022

is and ==
• == does a normal equality comparison
• is checks to see if the object is the exact same object
• Common style to write statements like if d is None: …
• Weird behavior:

- a = 4 - 3
a is 1 # True

- a = 10 ** 3
a is 1000 # False

- a = 10 ** 3
a == 1000 # True

• Generally, avoid is unless writing is None

34D. Koop, CSCI 680/490, Spring 2022

is and ==
• == does a normal equality comparison
• is checks to see if the object is the exact same object
• Common style to write statements like if d is None: …
• Weird behavior:

- a = 4 - 3
a is 1 # True

- a = 10 ** 3
a is 1000 # False

- a = 10 ** 3
a == 1000 # True

• Generally, avoid is unless writing is None

34D. Koop, CSCI 680/490, Spring 2022

Python caches common integer objects

Objects
• d = dict() # construct an empty dictionary object

• l = list() # construct an empty list object

• s = set() # construct an empty set object

• s = set([1,2,3,4]) # construct a set with 4 numbers
• Calling methods:

- l.append('abc')

- d.update({'a': 'b'})

- s.add(3)

• The method is tied to the object preceding the dot (e.g. append modifies l to
add 'abc')

35D. Koop, CSCI 680/490, Spring 2022

Python Modules
• Python module: a file containing definitions and statements
• Import statement: like Java, get a module that isn't a Python builtin

import collections
d = collections.defaultdict(list)
d[3].append(1)

• import <name> as <shorter-name>
import collections as c

• from <module> import <name> : don't need to refer to the module
from collections import defaultdict
d = defaultdict(list)
d[3].append(1)

36D. Koop, CSCI 680/490, Spring 2022

Other Collections
• collections.defaultdict: specify a default value for any item in the

dictionary (instead of KeyError)
• collections.OrderedDict: keep entries ordered according to when the

key was inserted
- dict objects are ordered in Python 3.7 but OrderedDict has some other

features (equality comparison, reversed)
• collections.Counter: counts hashable objects, has a most_common

method

37D. Koop, CSCI 680/490, Spring 2022

Example: Counting Letters
• Write code that takes a string s and creates a dictionary with that counts

how often each letter appears in s
• count_letters("Mississippi") →
 {'s': 4, 'i': 4, 'p': 2', …}

38D. Koop, CSCI 680/490, Spring 2022

Solution using Counter
• Use an existing library made to count occurrences
from collections import Counter
Counter("Mississippi")

• produces
Counter({'M': 1, 'i': 4, 's': 4, 'p': 2})

• Improve: convert to lowercase first

39D. Koop, CSCI 680/490, Spring 2022

