Advanced Data Management (CSCI 680/490)

Python

Dr. David Koop

Data to Knowledge and Beyond

D. Koop, CSCI 680/490, Spring 2022

Data to Knowledge and Beyond

D. Koop, CSCI 680/490, Spring 2022

Data to Knowledge and Beyond

D. Koop, CSCI 680/490, Spring 2022

Require People

Data to Knowledge

D. Koop, CSCI 680/490, Spring 2022

Can computers do this for us?

How do data scientists spend their time?

D. Koop, CSCI 680/490, Spring 2022

What data scientists spend the most time doing

- Building training sets: 3%
- Cleaning and organizing data: 60%
- Collecting data sets; 19%
- Mining data for patterns: 9%
- Refining algorithms: 4%
- Other: 5%

[CrowdFlower Data Science Report, 2016]

Finding & Discovering Data (even data you already have!)

Data Wrangling

	А	В	С	D
1	Transaction Date	Customer Name	Phone Numbers	Address
2	Wed, 12 Jan 2011	John K. Doe Jr.	(609)-993-3001	2196 184th Ave. NE, Redmond, 98052
3	Thu, 15 Sep 2011	Mr. Doe, John	609.993.3001 ext 2001	4297 148th Avenue NE, Bellevue, 98007
4	Mon, 17 Sep 2012	Jane A. Smith	+1-4250013981	2720 N Mesa St, El Paso, 79902, USA
5	2010-Nov-30 11:10:41	MS. Jane Smith	425 001 3981	3524 W Shore Rd APT 1002, Warwick
6	2011-Jan-11 02:27:21	Smith, Jane	tel: 4250013981	4740 N 132nd St Apt 417, Omaha, 68164
7	2011-Jan-12	Anthony R Von Fange II	650-384-9911	10508 Prairie Ln, Oklahoma City
8	2010-Dec-24	Mr. Peter Tyson	(405)123-3981	525 1st St, Marysville, WA 95901
9	9/22/2011	Dan E. Williams	1-650-1234183	211 W Ridge Dr, Waukon,52172
10	7/11/2012	James Davis Sr.	+1-425-736-9999	13120 Five Mile Rd, Brainerd
11	2/12/2012	Mr. James J. Davis	425.736.9999 x 9	602 Highland Ave, Shinnston, 26431
12	3/31/2013	Donald Edward Miller	(206) 309-8381	840 W Star St, Greenville, 27834
13	6/1/2009 12:01	Miller, Donald	206 309 8381	25571 Elba, Redford, 48239
14	2/26/2007 18:37	Rajesh Krishnan	206 456 8500 extension 1	539 Co Hwy 48, Sikeston, USA
	1/4/2011 14:33	Daniel Chen	425 960 3566	1008 Whitlock Ave NW, Marietta, 30064
18, June 10-1	5, 2018, Houston, T	X, USA		

С	D
Transaction Date	output
Wed, 12 Jan 2011	2011-01-12-Wednesday
Thu, 15 Sep 2011	2011-09-15-Thursday
Mon, 17 Sep 2012	2012-09-17-Monday
2010-Nov-30 11:10:41	2010-11-30-Tuesday
2011-Jan-11 02:27:21	2011-01-11-Tuesday
2011-Jan-12	2011-01-12-Wednesday
2010-Dec-24	2010-12-24-Friday
9/22/2011	2011-09-22-Thursday
7/11/2012	2012-07-11-Wednesday
2/12/2012	2012-02-12-Sunday

C	D
Customer Name	Output
John K. Doe Jr.	Doe, John
Mr. Doe, John	Doe, John
Jane A. Smith	Smith, Jane
MS. Jane Smith	Smith, Jane
Smith, Jane	Smith, Jane
Dr Anthony R Von Fange III	Von Fange, Anthony
Peter Tyson	Tyson, Peter
Dan E. Williams	Williams, Dan
James Davis Sr.	Davis, James
James J. Davis	Davis, James
Mr. Donald Edward Miller	Miller, Donald

D. Koop, CSCI 680/490, Spring 2022

		2196	184
	-	4297	148

C	D
Address	Output
2196 184th Ave. NE Apt 417, Redmond, 98052	Redmond, WA, 98052
4297 148th Avenue NE L105, Bellevue, WA 98007	Bellevue, WA, 98007
2720 N Mesa St, El Paso, 79902, USA	El Paso, TX, 79902
3524 W Shore Rd APT 1002, Warwick,02886	Warwick, RI, 02886
4740 N 132nd St, Omaha, 68164	Omaha, NE, 68164
10508 Prairie Ln, Oklahoma City	Oklahoma City, OK, 73162
525 1st St, Marysville, WA 95901	Marysville, CA, 95901
211 W Ridge Dr, Waukon,52172	Waukon, IA, 52172
602 Highland Ave, Shinnston, 26431	Shinnston, WV, 26431
840 W Star St, Greenville, 27834	Greenville, NC, 27834

Data Cleaning/Standardization (Aliases)

D. Koop, CSCI 680/490, Spring 2022

```
'google brain resident': 'google',
'google brain': 'google',
'google inc': 'google',
'google inc.':'google',
'google research nyc': 'google',
'google research': 'google',
'google, inc.': 'google',
deepmind @ google : deepmind ,
'deepmind technologies': 'deepmind',
'google deepmind': 'deepmind',
'ibm research - china':'ibm',
'ibm research':'ibm',
'ibm research, ny':'ibm',
'ibm research, usa':'ibm',
'ibm t. j. watson research center':'ibm',
'ibm t. j. watson research':'ibm',
'ibm t.j watson research center':'ibm',
'ibm t.j. watson research center':'ibm',
'ibm t.j.watson research center':'ibm',
'ibm thomas j. watson research center':'ibm',
'ibm tj watson research center':'ibm',
'microsoft research cambridge':'microsoft',
'microsoft research india':'microsoft',
'microsoft research maluuba':'microsoft',
'microsoft research new england':'microsoft',
'microsoft research':'microsoft',
'microsoft research, redmond, w':'microsoft',
'microsoft research, redmond, wa': 'microsoft',
'miicrosoft research':'microsoft',
```

[NLP Publishing Stats, M. Rei & R. Allen]

Data Integration

- <u>Google Thinks I'm Dead</u> (I know otherwise.) [R. Abrams, NYTimes, 2017]
- Not only Google, but also Alexa:
 - "Alexa replies that Rachel Abrams is a sprinter from the Northern Mariana Islands (which is true of someone else)."
 - "He asks if Rachel Abrams is deceased, and Alexa responds yes, citing information in the Knowledge Graph panel."

Northern Illinois University 8

Data Storage

SQL DATABASES

Relational

D. Koop, CSCI 680/490, Spring 2022

NoSQL DATABASES

Column

Graph

Key-Value

Document

Provenance and Reproducibility

D. Koop, CSCI 680/490, Spring 2022

Fig. 7: Using the blog to document processes: A visualization expert created a series of blog posts to explain the problems found when gen-erating the visualizations for CMOP.

ACKNOWLEDGMENTS

Our research has been funded by the National Science Foundation (grants IIS-0905385, IIS-0746500, ATM-0835821, IIS-0844546, CNS-0751152, IIS-0713637, OCE-0424602, IIS-0534628, CNS-0514485, IIS-0513692, CNS-0524096, CCF-0401498, OISE-0405402, CCF-0528201, CNS-0551724), the Department of Energy SciDAC (VACET and SDM centers), and IBM Faculty Awards 005, 2006, 2007, and 2008). E. Santos is partially supported by a CAPES/Fulbright fellowship.

- http://www.stccmop.org.
 S. B. Davidson and J. Freire. Provenance and scientific workflows: chal The VisTrails Project. http://www.vistrails.org.
- lenges and opportunities. In Proceedings of SIGMOD, pages 1345–1350,
- R. T. Fielding. Architectural Styles and the Design of Network-based Software Architectures. PhD thesis, University of California, Irvine, 2000.
 S. Fomel and J. Claerbout. Closest editors' introduction: Reproducible research. Computing in Science Engineering, 11(1):5–1, an.-fcb. 2009.

Fig. 8: Visualizing a binary star system simulation s an image that was generated by embedding a workflow di-ectly in the text. The original workflow is available at

- J. Freire, D. Koop, E. Santos, and C. T. Silva. Provenance for computational tasks: A survey. Computing in Science & Engineering, 10(3):11–21, May-June 2008.
 J. Freire, C. Silva, S. Callahan, E. Santos, C. Scheidegger, and H. Vo. Manading profile-avoid-flow. In Integrational Proceedings (Integrational Proceeding).
- Managing rapidly-evolving scientific workflows. In International Prove-nance and Annotation Workshop (IPAW), LNCS 4145, pages 10–18. Springer Verlag, 2006.
 [10] R. Hoffmann. A wiki for the life sciences where authorship matters. Na-

- R. Hoffmann, A wiki for the life sciences where authorship matters. Nature Genetics, 40(9):1047-1051, 2008.
 [11] IBM. OpenDX. http://www.research.hbm.com/dx.
 [12] Kitware. Paraview. http://www.paraview.org.
 [13] Kitware. The visualization toolkit. http://www.vfk.org.
 [14] Many Eyes Wikified. http://wikified.researchlabs.ibm.com.
 [15] M. McKeon. Harnessing the Web Information Ecosystem with Wikibased Visualization Dashboards. *IEEE Transactions on Visualization and Computer Graphics*, 15(6):1081-1088, 2009.
- [16] A. R. Pico, T. Kelder, M. P. van Iersel, K. Hanspers, B. R. Conklin, and C. Evelo. WikiPathways: Pathway editing for the people. PLoS Biolog 6(7), 2008.
- [17] D. D. Roure, C. Goble, and R. Stevens. The design and realisation
- the virtual research environment for social sharing of we Generation Computer Systems, 25(5):561 567, 2009.
 § E. Santos, L. Lins, J. Ahrens, J. Freire, and C. Silva. Visr lining the creation of custom visualization applications. *tions on Visualization and Computer Graphics*, 1560:15
- 20] J. Tohline and E. Santos. Vis tional Sciences Community. Computing in Science & Engl 2010. To appear.
- [21] J. E. Tohline. Scientific Visualization: A Necessary Chore. Computing
- REFERENCES
 [1] L. Bavoil, S. Callahan, P. Crossno, J. Freire, C. Scheidegger, C. Silva, and H. Vo. Vis/Trails: Enabling Interactive Multiple-View Visualizations. In *IEEE Visualization* 2005, pages 135–142, 2005.
 [2] S. P. Callahan, J. Freire, C. E. Scheidegger, C. T. Silva, and H. T. Vo. Towards provenance-enabling paraview. pages 120–127, 2008.
 [3] Chemical blogspace. http://cb.opennomolecules.net/.
 [4] NSF Center for Coastal Margin Observation and Prediction (CKMP).
 [4] NSF Center for Coastal Margin Observation and Prediction (CKMP).
 [5] VisTaulis Project, P. Stania Station and Prediction (CKMP).
 [6] Vistalization Tool. https://www.istcmop.org.
 [7] Toowards and Prediction Tool. Networks and Prediction Prediction Prediction Prediction Prediction Prediction Prediction Prediction Pred

Provenance and Reproducibility

D. Koop, CSCI 680/490, Spring 2022

s an image that was generated by embedding a workflow di-ectly in the text. The original workflow is available at

- C. Evelo. WikiPathways: Pathway editing for the people. PLoS Biolo
- [17] D. D. Roure, C. Goble, and R. Stevens. The design and realisation

- [21] J. E. Tohline. Scientific Visualization: A Necessary Chore. Computin.

About this course

- Course web page is authoritative:
 - http://faculty.cs.niu.edu/~dakoop/cs680-2022sp/
 - Schedule, Readings, Assignments will be posted online
 - Check the web site before emailing me
- Lectures planned for in-person, plans can change
- Course is meant to be more "cutting edge"
 - Still focus on building skills related to data management
 - Tune into current research and tools
- Requires student participation: readings and discussions

Course Material

- Helpful Books:
 - Effective Pandas, M. Harrison
 - Python for Data Analysis, W. McKinney
 - 3rd edition updated for pandas 1.4
 - <u>https://wesmckinney.com/book/</u>
 - Intro to Python, Deitel & Deitel
 - <u>Python Data Science Handbook</u>, J.
 VanderPlas
- Research papers
- Many websites

Matt Harrison

References

- McKinney has a 3rd ed. preview available:
 - First 6 chapters currently available
 - https://wesmckinney.com/book/

JupyterLab

D. Koop, CSCI 680/490, Spring 2022

× 🖪 Data.ipynb × 🖞 README.md × Python 3 🔿 ~

In this Notebook we explore the Lorenz system of differential equations:

$$\dot{x} = \sigma(y - x)$$
$$\dot{y} = \rho x - y - xz$$
$$\dot{z} = -\beta z + xy$$

Let's call the function once to view the solutions. For this set of parameters, we see the trajectories swirling around two points,

(1-10)		
	🗈 lo	orenz.py ×
0	9 10	<pre>def solve_lorenz(N=10, max_time=4.0, sigma=10.0, beta=8./3, rho=28.0): """Plot a solution to the Lorenz differential equations."""</pre>
	11	<pre>fig = plt.figure()</pre>
7	12	ax = fig.add_axes([0, 0, 1, 1], projection='3d')
0	13	<pre>ax.axis('off')</pre>
·	14	
	15	# prepare the axes limits
	16	ax.set_xlim((-25, 25))
	17	ax.set_ylim((-35, 35))
	18	ax.set_zlim((5, 55))
	19	
	20	<pre>def lorenz_deriv(x_y_z, t0, sigma=sigma, beta=beta, rho=rho):</pre>
	21	"""Compute the time-derivative of a Lorenz system."""
	22	$x, y, z = x_y_z$
	23	return [sigma * (y - x), x * (rho - z) - y, x * y - beta * z]
	24	
	25	# Choose random starting points, uniformly distributed from -15 to 15
	26	np.random.seed(1)
	27	x0 = -15 + 30 * np.random.random((N, 3))
	28	

JupyterLab

- environment Supports many activities including notebooks • Runs in your web browser • Notebooks: IUDYter - Originally designed for Python - Supports other languages, too - Displays results (even interactive maps) inline - You decide how to divide code into executable cells
 - Shift+Enter to execute a cell

D. Koop, CSCI 680/490, Spring 2022

• An interactive, configurable programming

Installing Python & JupyterLab

- www.anaconda.com/download/
- Anaconda has Jupyter Lab
- Use Python 3.9 version (**not** 2.7)
- Anaconda Navigator
 - GUI application for managing Python environment
 - Can install packages
 - Can start JupyterLab
- Can also use the shell to do this:
 - \$ jupyter lab
 - \$ conda install <pkg name>

D. Koop, CSCI 680/490, Spring 2022

ANACONDA®

JupyterLab Notebook Tips

- Starts with a directory view
- Create new notebooks using the Launcher (+ icon on the left)
 - New notebooks have the name "Untitled"
 - File \rightarrow Rename Notebook... (or right-click) to change the name
- Save a notebook using the command under the File menu
- Shutting down the notebook requires quitting the kernel
 - Web browser is interface to display code and results
 - Kernel runs the code: may see messages in a console/terminal window
 - Closing the browser window does not stop Jupyter
 - Use File \rightarrow Shut Down to shut down everything

JupyterLab Notebooks

- Open a notebook using the left panel like you would in a desktop view Past results are displayed—does not mean they are loaded in memory
- Use "Run All" or "Run All Above" to re-execute past work
 - If you shut down the kernel, all of the data and variables you defined need to be redefined (so you need to re-run all)
 - Watch Out Order Matters: If you went back and re-executed cells in a different order than they are shown, doing "Run All" may not produce the same results!
- Edit mode (green) versus Command mode (blue == **Be Careful**)

JupyterLab Notebooks

- Can write code or plain text (can be styled Markdown)
 Choose the type of cell using the dropdown menu
- Cells break up your code, but all data is global
 - Defining a variable a in one cell means it is available in **any** other cell
 - This includes cells **above** the cell a was defined in!
- Remember Shift+Enter to execute
- Enter just adds a new line
- Use ?<function_name</pre> for help
- Use Tab for **auto-complete** or suggestions
- Tab also indents, and Shift+Tab unindents

gestions ndents

JupyterLab Outputs

- stdout: where print commands go
- stderr: where error messages go
- display: special output channel used to show rich outputs

D. Koop, CSCI 680/490, Spring 2022

• output: same as display but used to display the value of the last line of a cell

Other JupyterLab Features

- Terminal
 - Similar to what you see on turing/ hopper but for your local machine
- File Viewers
 - CSV
 - Plugins available
- Console
 - Can be linked to notebooks

JupyterLab Documentation

- JupyterLab Tutorial Video
- JupyterLab Documentation

Jupyter Notebook

- Original Notebook Interface
- Just notebooks
- Same rich representations and text
- Same cell structure
- Same notebook files .ipynb
- Web-based

Python

- Started in December 1989 by Guido van Rossum "Python has surpassed Java as the top language used to introduce U.S. students to programming..." (ComputerWorld, 2014)
- Python and R are the two top languages for data science
- High-level, interpreted language
- Supports multiple paradigms (OOP, procedural, imperative) • Help programmers write **readable** code, Use less code to do more
- Lots of libraries for python
 - Designed to be extensible
- Easy to wrap code from other languages like C/C++ • Open-source with a large, passionate community

Learning Python Resources

- Python for Programmers
- <u>https://wiki.python.org/moin/BeginnersGuide</u>
- <u>https://wiki.python.org/moin/IntroductoryBooks</u>
- http://www.pythontutor.com
- <u>https://www.python-course.eu</u>
- <u>https://software-carpentry.org/lessons/</u>

Python Compared to C++ and Java

- Dynamic Typing
 - A variable does not have a fixed type
 - Example: a = 1; a = "abc"
- Indentation
 - Braces define blocks in Java, good style is to indent but not required
 - Indentation is **critical** in Python

In-Class Notebook

- Try out the examples from the following slides:
 - Download
 - <u>View</u>

Print function

- print ("Hello World")
- Can also print variables:

name = "Jane" print("Hello,", name)

Python Variables and Types

- No type declaration necessary
- Variables are names, not memory locations
 - a = 0
 - a = "abc"
 - a = 3.14159
- Don't worry about types, but think about types
- Strings are a type
- Integers are as big as you want them
- Floats can hold large numbers, too (double-precision)

Python Math and String "Math"

- Standard Operators: +, -, *, /, %
- Division "does what you want" (new in v3)
 - -5/2 = 2.5
 - 5 // 2 = 2 # use // for integer division
- Shortcuts: +=, -=, *=
- NO ++, --
- Exponentiation (Power): **
- Order of operations and parentheses: (4 3 1 vs. 4 (3 1))
- "abc" + "def"
- "abc" * 3

Python Strings

- Strings can be delimited by single or double quotes
 - "abc" and 'abc' are exactly the same thing
 - Easier use of quotes in strings: "Joe's" or 'He said "Stop!"
- String concatenation: "abc" + "def"
- Repetition: "abc" * 3
- Special characters: $\n \t$ like Java/C++

Python Strings

- Indexing:
 - a = "abcdef" a[0]
- Slicing: a [1:3]
- Format:

name = "Jane"

print("Hello, {}".format(name))

- Or

print(f"Hello, {name}")

.00ps

- while <condition>: <indented block> # end of while block (indentation done)
- Remember the colon!

- a > 0 is the condition
- Python has standard boolean operators (<, >, <=, >=, ==, !=)
 - What does a boolean operation return?
 - Linking boolean comparisons (and, or)

Conditionals

- if, else
 - Again, indentation is required

• elif

- Shorthand for else: if:
- Same type of boolean expressions (and or)

break and continue

- break stops the execution of the loop
- continue skips the rest of the loop and goes to the next iteration

True and False

- True and False (captialized) are defined values in Python
- v == 0 will evaluate to either True Or False

Functions

- Calling functions is as expected: mul(2,3) # computes 2*3 (mul from operator package)
 - Values passed to the function are parameters
 - May be variables!
 - a = 5
 - b = 7

mul(a,b)

• print is a function

print("This line doesn't end.", end=" ") print("See it continues")

end is also a parameter, but this has a different syntax (keyword argument!)

Defining Functions

- def keyword
- Arguments have names but **no types** def hello(name):

print(f"Hello {name}")

• Can have defaults:

def hello(name="Jane Doe"): print(f"Hello {name}")

- With defaults, we can skip the parameter: hello() or hello("John")
- Also can pick and choose arguments: def hello(name1="Joe", name2="Jane"): print(f"Hello {name1} and {name2}") hello(name2="Mary")

Return statement

- Return statement gives back a value: def mul(a,b): return a * b
- Variables changed in the function won't be updated:

def increment(a):

a += 1

return a

- b = 12
- c = increment(b)

print(b,c)

Python Containers

- Container: store more than one value
- Mutable versus immutable: Can we update the container?
 - Yes \rightarrow mutable
 - No \rightarrow immutable
 - Lists are mutable, tuples are immutable
- Lists and tuples may contain values of different types:
- List: [1, "abc", 12.34]
- Tuple: (1, "abc", 12.34)
- You can also put functions in containers!
- len function: number of items: len (l)

