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DATA

INDEX

ALGORITHMS

DATA SYSTEMS

Systems can be seen as a collection of many data structures and algorithms. 

Data systems rely on algorithms
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[S. Idreos, 2019]
D. Koop, CSCI 680/490, Spring 2021

https://stratos.seas.harvard.edu/files/stratos/files/learnedselfdesignedsystemssigmod2019tutorialpart1.pdf
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register  = this room 

disk = Pluto 
memory = nearby city

Jim Gray, Turing Award 1998

caches = this city 

As time goes by, data structures become ever more critical for data driven applications. 

Data structures define performance
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[S. Idreos, 2019]
D. Koop, CSCI 680/490, Spring 2021

https://stratos.seas.harvard.edu/files/stratos/files/learnedselfdesignedsystemssigmod2019tutorialpart1.pdf
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Every data structure design is simply a point in the design space of possible solutions. There is no perfect design. Every design balances the fundamental tradeoffs of 
Read, Update, and Memory amplification. For example, Read amplification is defined as the excess data an algorithm needs to read on top of the data it wants to read. 
Typically a data structure would have some kind of metadata or navigation data that help locate the actual data, e.g., the internal nodes of a B-tree. Reading this 
navigation data is an excess cost, adding to read amplification. Creating a data structure without any navigation data would suffer update or even more read 
amplification. For example, we could choose to not have any structure in the data at all. Then every query would have to touch all the data. The other extreme would be 
to sort all data which effectively provides an implicit structure. But then updates get expensive. Overall, there is no perfect design. 

Tradeoffs in each structure
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[S. Idreos, 2019]
D. Koop, CSCI 680/490, Spring 2021

https://stratos.seas.harvard.edu/files/stratos/files/learnedselfdesignedsystemssigmod2019tutorialpart1.pdf
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Many efforts in the field have been motivated by the vision of generating tailored systems for a specific scenario. In fact, even traditional databases are architected with 
this vision in mind. A generic database system can optimize a plan on the fly to match the query needs, it can choose from different storage and indexing options, etc. 
This is how generic database systems can be used in a wealth of applications! And then recent research has tried to push the boundaries of tailored designs be 
rethinking parts of the stack of a database system.  

"Traditional" Database Research
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[S. Idreos, 2019]
D. Koop, CSCI 680/490, Spring 2021

https://stratos.seas.harvard.edu/files/stratos/files/learnedselfdesignedsystemssigmod2019tutorialpart1.pdf


Fundamental 
Building Blocks

Sorting

B-TreeHash-
Map

Scheduling

Join

Priority
Queue

Bloom
Filter

CachingRange
Filter

Learned Data Structures and Algorithms

6D. Koop, CSCI 680/490, Spring 2021

http://people.csail.mit.edu/kraska/pub/sigmod19tutorialpart2.pdf
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Model

[T. Kraska, 2019]
D. Koop, CSCI 680/490, Spring 2021

http://people.csail.mit.edu/kraska/pub/sigmod19tutorialpart2.pdf
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[T. Kraska, 2019]
D. Koop, CSCI 680/490, Spring 2021

http://people.csail.mit.edu/kraska/pub/sigmod19tutorialpart2.pdf


Traditional model architectures 
do not work

Frameworks are not designed 
for nano-second execution

Overfitting can be good ML+System Co-Design

underfitting desired overfitting
desired

ChallengesChallenges
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[T. Kraska, 2019]
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2-Stage RMI with Linear Model
pos0 = a0 + b0 * key
pos1 = m1[pos0].a + m1[pos0].b * key
record = local-search(key, pos1)

Model 1.1

Model 2.1 Model 2.2 Model 2.3

Model 3.1 Model 3.2 Model 3.3 Model 3.4

…

…
St

ag
e 

1
St

ag
e 

3
St

ag
e 

2
Position

Key

Recursive-Model Index (RMI)Recursive Model Index (RMI)
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[T. Kraska, 2019]
D. Koop, CSCI 680/490, Spring 2021

http://people.csail.mit.edu/kraska/pub/sigmod19tutorialpart2.pdf


No

Maybe 
Yes

Is This Key In My Set?

Model

Maybe Yes

Sandwiched Bloom Filter

No

Maybe 
No

Michael Mitzenmacher: A Model for Learned Bloom Filters and Optimizing by Sandwiching. NeurIPS 2018: 462-471

Sandwiched Bloom Filter
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[M. Mitzenmacher, 2018 via T. Kraska, 2019]
D. Koop, CSCI 680/490, Spring 2021
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[T. Kraska, 2019]
D. Koop, CSCI 680/490, Spring 2021

Initial Results
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Hash-MapTree Sorting

Join

Range-FilterMulti-Dim Index

…..

Scheduling

Cache Policy

Bloom-Filter

Fundamental Algorithms & Data Structures

DNA-Search SQL Query 
Optimizer

Nearest 
Neighbor

Data
Cubes

More…
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[T. Kraska, 2019]
D. Koop, CSCI 680/490, Spring 2021

http://people.csail.mit.edu/kraska/pub/sigmod19tutorialpart2.pdf


Assignment 5
• Four parts 
- Loading Data 
- Spatial Analysis 
- Graph Analysis 
- Temporal Analysis 

• Due tomorrow 
• Questions?

14D. Koop, CSCI 680/490, Spring 2021

http://faculty.cs.niu.edu/~dakoop/cs680-2021sp/assignment5.html


Final Exam
• Monday, April 26, 4:00-5:50pm, Online (Blackboard) 
• Similar format 
• More comprehensive (questions from topics covered in Test 1 & 2) 
• Will also have questions from temporal data, provenance, reproducibility, 

machine learning

15D. Koop, CSCI 680/490, Spring 2021

http://faculty.cs.niu.edu/~dakoop/cs680-2021sp/final.html
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Review

D. Koop, CSCI 680/490, Spring 2021

What did we do this semester?



distributed environment; and support flexible and dynamic data structures. Data
acquisition is further detailed in this chapter.

Data Analysis is concerned with making the raw data acquired amenable to use in
decision-making as well as domain-specific usage. Data analysis involves explor-
ing, transforming, and modelling data with the goal of highlighting relevant data,
synthesising and extracting useful hidden information with high potential from a
business point of view. Related areas include data mining, business intelligence,
and machine learning. Chapter 4 covers data analysis.

Data Curation is the active management of data over its life cycle to ensure it
meets the necessary data quality requirements for its effective usage (Pennock
2007). Data curation processes can be categorised into different activities such as
content creation, selection, classification, transformation, validation, and preserva-
tion. Data curation is performed by expert curators that are responsible for improv-
ing the accessibility and quality of data. Data curators (also known as scientific
curators, or data annotators) hold the responsibility of ensuring that data are
trustworthy, discoverable, accessible, reusable, and fit their purpose. A key trend
for the curation of big data utilises community and crowd sourcing approaches
(Curry et al. 2010). Further analysis of data curation techniques for big data is
provided in Chap. 5.

Data Storage is the persistence and management of data in a scalable way that
satisfies the needs of applications that require fast access to the data. Relational
Database Management Systems (RDBMS) have been the main, and almost unique,
solution to the storage paradigm for nearly 40 years. However, the ACID
(Atomicity, Consistency, Isolation, and Durability) properties that guarantee data-
base transactions lack flexibility with regard to schema changes and the perfor-
mance and fault tolerance when data volumes and complexity grow, making them
unsuitable for big data scenarios. NoSQL technologies have been designed with the
scalability goal in mind and present a wide range of solutions based on alternative
data models. A more detailed discussion of data storage is provided in Chap. 6.

Data
Acquisition

Data
Analysis

Data
Curation

Data
Storage

Data
Usage

• Structured data
• Unstructured 

data
• Event processing
• Sensor networks
• Protocols
• Real-time
• Data streams
• Multimodality

• Stream mining
• Semantic analysis
• Machine learning
• Information 

extraction
• Linked Data
• Data discovery
• ‘Whole world’

semantics
• Ecosystems
• Community data 

analysis
• Cross-sectorial 

data analysis

• Data Quality
• Trust / Provenance
• Annotation
• Data validation
• Human-Data 

Interaction
• Top-down/Bottom-

up
• Community / Crowd
• Human Computation
• Curation at scale
• Incentivisation
• Automation
• Interoperability

• In-Memory DBs
• NoSQL DBs
• NewSQLDBs
• Cloud storage
• Query Interfaces
• Scalability and 

Performance
• Data Models
• Consistency, 

Availability, 
Partition-tolerance

• Security and 
Privacy

• Standardization

• Decision support
• Prediction
• In-use analytics
• Simulation
• Exploration
• Visualisation
• Modeling
• Control
• Domain-specific 

usage

Technical Working Groups

Fig. 3.1 The Big Data Value Chain as described within (Curry et al. 2014)

32 E. Curry
What's involved in dealing with data?
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[Big Data Value Chain, Curry et al., 2014]
D. Koop, CSCI 680/490, Spring 2021



Python!
• Just assign expressions to variables, no typing 

a = 12 
a = "abc" 
b = a + "de" 

• Functions defined using def, called using parenthesis: 
def hello(name1="Joe", name2="Jane"): 
    print(f"Hello {name1} and {name2}") 
hello(name2="Mary") 

• Always indent blocks (if-else-elif, while, for, etc.): 
    z = 20 
  if x > 0: 
      if y > 0: 
          z = 100 
  else: 
      z = 10

19D. Koop, CSCI 680/490, Spring 2021



Python Containers
• List: [1,"abc",12.34] 
• Tuple: (1, "abc", 12.34) 
• Indexing/Slicing: 

- x[0], x[:-1], x[1:2], x[::2] 
• Set: {1, "abc", 12.34} 
• Dictionary: {'x': 1, 'y': "abc", 'z': 12.34} 
• Mutable vs. Immutable 
• Stored by reference 
• Iterators: objects that traverse containers, just know how to get next element 
• You cannot index/slice an iterator (d.values()[-1] doesn't work)

20D. Koop, CSCI 680/490, Spring 2021



Comprehensions
• List Comprehensions: 

- squares = [i**2 for i in range(10)] 

• Dictionary Comprehensions: 
- squares = {i: i**2 for i in range(10)} 

• Set Comprehensions: 
- squares = {i**2 for i in range(10)} 

• Comprehensions allow filters: 
- squares = [i**2 for i in range(10) if i % 2 == 0]

21D. Koop, CSCI 680/490, Spring 2021



JupyterLab
• An interactive, configurable programming 

environment 
• Supports many activities including notebooks 
• Runs in your web browser 
• Notebooks: 
- Originally designed for Python  
- Supports other languages, too 
- Displays results (even interactive maps) inline 
- You decide how to divide code into 

executable cells 
- Shift+Enter to execute a cell

22D. Koop, CSCI 680/490, Spring 2021



Figure 4-1. Indexing elements in a NumPy array

In multidimensional arrays, if you omit later indices, the returned object will be a
lower dimensional ndarray consisting of all the data along the higher dimensions. So
in the 2 × 2 × 3 array arr3d:

In [76]: arr3d = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])

In [77]: arr3d
Out[77]: 
array([[[ 1,  2,  3],
        [ 4,  5,  6]],
       [[ 7,  8,  9],
        [10, 11, 12]]])

arr3d[0] is a 2 × 3 array:
In [78]: arr3d[0]
Out[78]: 
array([[1, 2, 3],
       [4, 5, 6]])

Both scalar values and arrays can be assigned to arr3d[0]:
In [79]: old_values = arr3d[0].copy()

In [80]: arr3d[0] = 42

In [81]: arr3d
Out[81]: 
array([[[42, 42, 42],
        [42, 42, 42]],
       [[ 7,  8,  9],
        [10, 11, 12]]])

In [82]: arr3d[0] = old_values

96 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

NumPy arrays and slicing
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       [ 0.1913,  0.4544,  0.4519,  0.5535],
       [ 0.5994,  0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([ True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]: 
array([[-0.048 ,  0.5433, -0.2349,  1.2792],
       [ 2.1452,  0.8799, -0.0523,  0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]: 
array([[-0.2349,  1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 680/490, Spring 2021



Boolean Indexing
• names == 'Bob' gives back booleans that represent the element-wise 

comparison with the array names 
• Boolean arrays can be used to index into another array: 

- data[names == 'Bob'] 

• Can even mix and match with integer slicing 
• Can do boolean operations (&, |) between arrays (just like addition, 

subtraction) 
- data[(names == 'Bob') | (names == 'Will')] 

• Note: or and and do not work with arrays 
• We can set values too!   data[data < 0] = 0

24D. Koop, CSCI 680/490, Spring 2021



Tables

Attributes (columns)

Items 
(rows)

Cell containing value

Networks

Link

Node 
(item)

Trees

Fields (Continuous)

Attributes (columns)

Value in cell

Cell

Multidimensional Table

Value in cell

Grid of positions

Geometry (Spatial)

Position

Dataset TypesWhat is Data?

25

[Munzner (ill. Maguire), 2014]
D. Koop, CSCI 680/490, Spring 2021
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1 = Quantitative
2 = Nominal
3 = Ordinal

 quantitative
 ordinal
 categorical

Categorial, Ordinal, and Quantitative

26D. Koop, CSCI 680/490, Spring 2021



Pandas and Data Frames

• Data Frames are tables with many database-like operations 
• Index shared across all columns 
• Can select, project, merge (join), and more 
• Read and write many file formats

27D. Koop, CSCI 680/490, Spring 2021

In [1]:

import pandas as pd

In [ ]:

import numpy as np

In [2]:

# read the dataset using pandas
df = pd.read_csv("Food_Inspections.csv")

In [ ]:

# look at the dataset, nice table formatting
df

In [ ]:

# just the beginning of the dataset
df.head()

In [ ]:

# number of records
len(df)

Out[2]:

Inspection ID DBA Name AKA Name License # Facility Type Risk Address City State Zip Inspection Date Inspection Type Results Violations Latitude Longitude Location

0 2356580 UNCOOKED LLC UNCOOKED LLC 2709319.0 NaN All 210 N CARPENTER ST CHICAGO IL 60607.0 01/13/2020 License Not Ready NaN 41.885945 -87.653462 (-87.65346178255953, 41.88594495760403)

1 2356551 MOJO 33 NORTH LASALLE LLC MOJO 33 NORTH LASALLE LLC 2689550.0 Restaurant Risk 1 (High) 33 N LA SALLE ST CHICAGO IL 60602.0 01/13/2020 License Re-Inspection Pass NaN 41.882798 -87.632242 (-87.63224208140493, 41.88279770704961)

2 2356492 LA BIZNAGA #2 LA BIZNAGA #2 2708992.0 NaN Risk 1 (High) 2949 W BELMONT AVE CHICAGO IL 60618.0 01/10/2020 License Not Ready NaN 41.939256 -87.702270 (-87.70226967930802, 41.939255926667535)

3 2356432 LAS TABLAS LAS TABLAS 1617900.0 Restaurant Risk 1 (High) 4920 W IRVING PARK RD CHICAGO IL 60641.0 01/09/2020 Canvass Pass 16. FOOD-CONTACT SURFACES: CLEANED & SANITIZED... 41.953486 -87.750732 (-87.75073172757178, 41.95348584271347)

4 2356423 GIORDANO'S OF BEVERLY GIORDANO'S OF BEVERLY 2074456.0 Restaurant Risk 1 (High) 9613 S WESTERN AVE CHICAGO IL 60643.0 01/09/2020 Canvass Pass 55. PHYSICAL FACILITIES INSTALLED, MAINTAINED ... 41.718683 -87.681848 (-87.68184758141176, 41.71868263931775)

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

199687 112321 PANDA EXPRESS #236 PANDA EXPRESS #236 1801495.0 Restaurant Risk 1 (High) 77 W JACKSON BLVD CHICAGO IL 60604.0 02/18/2010 Suspected Food Poisoning Pass 33. FOOD AND NON-FOOD CONTACT EQUIPMENT UTENSI... 41.878041 -87.630493 (-87.63049344911161, 41.87804100375637)

199688 74300 KENNYS RIBS & CHICKEN UNCLE JOE'S 81030.0 Restaurant Risk 1 (High) 1453 E HYDE PARK BLVD CHICAGO IL 60615.0 02/08/2010 Complaint Pass 30. FOOD IN ORIGINAL CONTAINER, PROPERLY LABEL... 41.802338 -87.589676 (-87.58967573279067, 41.80233814333551)

199689 70314 Cafe Marbella Cafe Marbella 2016764.0 Restaurant Risk 1 (High) 5527-5531 N Milwaukee AVE CHICAGO IL 60630.0 01/28/2010 License Re-Inspection Pass NaN 41.982350 -87.773660 (-87.77365984476519, 41.982350141069084)

199690 78309 WALGREENS # 07876 WALGREENS # 07876 2004292.0 Grocery Store Risk 3 (Low) 7544 S STONY ISLAND AVE CHICAGO IL 60649.0 02/18/2010 TASK FORCE LIQUOR 1474 Pass NaN 41.757396 -87.586251 (-87.58625101198423, 41.7573962131662)

199691 150209 YSABEL'S FILIPINO CUISINE YSABEL'S GRILL ASIAN CUISINE 2013419.0 Restaurant Risk 1 (High) 4908 W Irving Park RD CHICAGO IL 60641.0 01/12/2010 License Re-Inspection Pass NaN 41.953485 -87.750248 (-87.750248227467, 41.953485015058135)

199692 rows × 17 columns



6F INDINGS

we got about the future of the data science, 

the most salient takeaway was how excited our 

respondents were about the evolution of the 

field. They cited things in their own practice, how 

they saw their jobs getting more interesting and 

less repetitive, all while expressing a real and 

broad enthusiasm about the value of the work in 

their organization. 

As data science becomes more commonplace and 

simultaneously a bit demystified, we expect this

trend to continue as well. After all, last year’s 

respondents were just as excited about their 

work (about 79% were “satisfied” or better).

How a Data Scientist Spends Their Day

Here’s where the popular view of data scientists diverges pretty significantly from reality. Generally, 

we think of data scientists building algorithms, exploring data, and doing predictive analysis. That’s 

actually not what they spend most of their time doing, however.

     

As you can see from the chart above, 3 out of every 5 data scientists we surveyed actually spend the 

most time cleaning and organizing data. You may have heard this referred to as “data wrangling” or 

compared to digital janitor work. Everything from list verification to removing commas to debugging 

databases–that time adds up and it adds up immensely. Messy data is by far the more time- consuming 

aspect of the typical data scientist’s work flow. And nearly 60% said they simply spent too much

time doing it.

Data scientist job satisfaction

60%

19%

9%

4%
5%3%

       Building training sets: 3%

       Cleaning and organizing data: 60%

       Collecting data sets; 19%

       Mining data for patterns: 9%

       Refining algorithms: 4%

       Other: 5%

What data scientists spend the most time doing

4.0
5

4

3

2

1

35%

47%

12%

6%

1%

How do data scientists spend their time?
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FOOFAH: A Programming-By-Example System for
Synthesizing Data Transformation Program

Zhongjun Jin, Michael R. Anderson, Michael Cafarella, H. V. Jagadish
University of Michigan

Most real-world data is unstructured and must be transformed 
into a structured form to be used. Manual transformation (e.g., 
using Excel) requires too much user effort. Traditional 
transformation often requires good programming skills beyond 
most of the users. Data transformation tools, like Data 
Wranger [1], often require repetitive and tedious work and a 
depth of data transformation knowledge from the user. 
Our goal: minimize a user's effort and reduce the required 
background knowledge for data transformation tasks.

Motivation

Design of FOOFAH

Related Work

markjin@umich.edu w https://markjin1990.github.io  w SIGMOD 2017

Our Solution

Proposed Heuristic Function

1. Kandel,	Sean,	et	al.	“Wrangler:	Interactive	visual	specification	of	data	transformation	scripts.” CHI,	2011.
2. V.	Raman	and	J.	M.	Hellerstein.	“Potter’s	Wheel:	An	interactive	data	cleaning	system”.	VLDB,	2001.
3. Gulwani,	Sumit.	"Automating	string	processing	in	spreadsheets	using	input-output	examples." ACM	SIGPLAN	Notices.	

Vol.	46.	No.	1.	ACM,	2011.
4. Harris,	William	R.,	and	Sumit Gulwani.	"Spreadsheet	table	transformations	from	examples." ACM	SIGPLAN	Notices.	Vol.	

46.	No.	6.	ACM,	2011.
5. Barowy,	Daniel	W.,	et	al.	"FlashRelate:	extracting	relational	data	from	semi-structured	spreadsheets	using	

examples." ACM	SIGPLAN	Notices.	Vol.	50.	No.	6.	ACM,	2015.
6. Guo,	Philip	J.,	et	al.	"Proactive	wrangling:	mixed-initiative	end-user	programming	of	data	transformation	

scripts." Proceedings	of	the	24th	annual	ACM	symposium	on	User	interface	software	and	technology.	ACM,	2011.

User Study

Our PBE technique prototype
FOOFAH:
1. can handle most test cases from

the benchmarks.
2. requires little user effort
3. generally efficient (low system

runtime)

Benchmark Tests

Tasks: 8 tasks from
benchmarks covering both
simple and complex tasks
Comparisons: Wrangler

• FOOFAH on average requires 60% less user effort than Wrangler

0
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Task	completion	time:	Wrangler	vs	Foofah
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Foofah
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Worst-case	system	runtime	for	each	
synthesis	

Tasks: 50 test scenarios selected
from [1,2,4,6]
Test Approach: lazy approach [4]
Comparison: [1,3,4,5]

Input	
Example	ei Input	

Example	eo
?

A search problem
solved by A* algorithm

edges: operation
nodes: different views of the data
A* search: iteratively explore the 

node with min f(n)
f(n) = g(n) + h(n)

observed distance
estimated distance

Intuition: Most data transformation operations can be seen as many 
cell-level transformation operations

Solution: Table Edit Distance as the heuristic function

Table Edit Distance (TED) Definition:
The cost of transforming Table T1 to Table T2 using the cell-level
operators Add/Remove/Move/Transform cell.

TED $%, $' = min,-,… ,	,0 ∈2 3-,	34
56789 :;
<

;=>
• P(T1, T2): Set of all “paths” transforming T1 to T2 using cell-level operators

Batching: a remedy for Table Edit Distance to scale down heuristic

Batch the geometrically-adjacent cell-level operations of the same type

8 Transform operations 2 “batched” Transform operations

88.40% 97.70% 
74.40% 

55.80% 

0% 
20% 
40% 
60% 
80% 

100% 

Success	rates	on pure layout
transformation	benchmark tasks

Foofah FlashRelate ProgFromEx Wrangler

100.00% 

0.00% 0.00% 

85.70% 

0% 
20% 
40% 
60% 
80% 

100% 

Success	rates	on benchmark	tasks
requiring syntactic transformations

Foofah FlashRelate ProgFromEx Wrangler

Program to synthesize:
• A loop-free Potter’s Wheel [2] program 

System
Input-output	
Example

Synthesized	
Program

Raw	Data

Programming-By-Example interaction model: User provides input-
output examples rather than demonstrating correct operations

Note:	Ideally,	Wrangler	should	be	able	
to	handle	same	tasks	as	FOOFAH

User Input:
• Sample from raw data
• Transformed view of the sample

Raw Data: 
• A grid of values, i.e., spreadsheets
• “Somewhat” structured - must have some 

regular structure or is automatically generated.

Transformations Targeted:
1. Layout transformation              2. String transformation

05/16/2017

05/17/2017

…

05-16-2017

05-17-2017

…

Foofah: Programming by Example
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Figure 2: TDE transformation for date-time. (Left): user provides two desired output examples in column-D,
for the input data in column-C. (Right): After clicking on the “Get Transformation” button, TDE synthesizes
programs consistent with the given examples, and return them as a ranked list within a few seconds. Hovering
over the first program (using System.DateTime.Parse) gives a preview of all results (shaded in green).

Figure 3: (Left): transformation for names. The first three values in column-D are provided as output
examples. The desired first-names and last-names are marked in bold for ease of reading. A composed
program using library CSharpNameParser from GitHub is returned. (Right): transformations for addresses.
The first two values are provided as output examples to produce city, state, and zip-code. Note that some of
these info are missing from the input. A program invoking Bing Maps API is returned as the top result.

entered. For instance, in the first column dates are rep-
resented in many di↵erent formats. In the second column,
some customer names have first-name followed by last-name,
while others are last-name followed by comma, then first-
name, with various salutations (Mr., Dr., etc.) and su�xes
(II, Jr., etc.). Phone numbers are also inconsistent, with
various international calling codes (+1) and extensions (ext
2001), etc. Addresses in the last column are also not clean,
often with missing state and zip-code information.

This data in Figure 1 is clearly not ready for analysis
yet – an analyst wanting to figure out which day-of-the-
week has the most sales, for instance, cannot find it out
by executing a SQL query: the date column needs to be
transformed to day-of-the-week first, which however is non-
trivial even for programmers. Similarly the analyst may
want to analyze sales by area-code (which can be extracted
from phone-numbers), or by zip-code (from addresses), both
of which again require non-trivial data transformations.

In a separate scenario, suppose one would like identified
possible duplicate customer records in Figure 1, by first stan-
dardizing customer names into a format with only last and
first names (e.g., both the first two records will convert into
“Doe, John”). This again requires complex transformations.

Data transformation is clearly di�cult. However, our ob-
servation is that these domain-specific transformation prob-
lems like name parsing and address standardization are re-
ally not new – for decades developers have built custom
code libraries to solve them in a variety of domains, and
shared their code in places like GitHub. In a recent crawl,
we obtained over 1.8M functions extracted from code li-
braries crawled from GitHub, and over 2M code snippets
from StackOverflow, some of which specifically written to
handle data transformations in a variety of domains.

Transform-Data-by-Example. The overarching goal of
the project is to build a search engine for end-users to eas-
ily reuse code for transformations from existing sources.
Specifically, we adopt the by-example paradigm and build a
production-quality system called Transform-Data-by-Example
(TDE). The front-end of TDE is an Excel add-in, currently
in beta and available from O�ce Store [7]. From the Excel
add-in, users can find transformations by providing a few in-
put/output examples. In Figure 2(left), a user provides two
output examples to specify the desired output. Once she
clicks on the “Get Suggestions” button, the front-end talks
to the TDE back-end service running on Microsoft Azure
cloud, which searches over thousands of indexed functions,
to on-the-fly synthesize new programs consistent with all
examples. In the right part of Figure 2, a ranked list of pro-
grams are returned based on program complexity. The top-
ranked program uses the System.DateTime.Parse() func-
tion from the .Net system library to generate correct output
for all input. Figure 3 shows additional examples for trans-
forming names and addresses using the data in Figure 1.
TDE has a number of unique features, which we believe

are important first steps towards realizing self-service data
transformation.
• Search-by-Example. TDE works like a search engine, which
allows end-users to search transformations by just a few ex-
amples, a paradigm known as program-by-example (PBE) [23]
that was also used by FlashFill [16] for data transformation
with much success. Compared to existing PBE systems such
as FlashFill that compose a small number of string primi-
tives predefined in a Domain Specific Language (DSL), TDE
synthesizes programs from a much larger search space (tens
of thousands of functions). We develop novel algorithms to
make it possible at an interactive speed.

1166

TDE: Transform Data by Example
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Journal of Statistical Software 3

2.1. Data structure

Most statistical datasets are rectangular tables made up of rows and columns. The columns
are almost always labelled and the rows are sometimes labelled. Table 1 provides some data
about an imaginary experiment in a format commonly seen in the wild. The table has two
columns and three rows, and both rows and columns are labelled.

treatmenta treatmentb

John Smith — 2
Jane Doe 16 11
Mary Johnson 3 1

Table 1: Typical presentation dataset.

There are many ways to structure the same underlying data. Table 2 shows the same data
as Table 1, but the rows and columns have been transposed. The data is the same, but the
layout is di↵erent. Our vocabulary of rows and columns is simply not rich enough to describe
why the two tables represent the same data. In addition to appearance, we need a way to
describe the underlying semantics, or meaning, of the values displayed in table.

John Smith Jane Doe Mary Johnson

treatmenta — 16 3
treatmentb 2 11 1

Table 2: The same data as in Table 1 but structured di↵erently.

2.2. Data semantics

A dataset is a collection of values, usually either numbers (if quantitative) or strings (if
qualitative). Values are organised in two ways. Every value belongs to a variable and an
observation. A variable contains all values that measure the same underlying attribute (like
height, temperature, duration) across units. An observation contains all values measured on
the same unit (like a person, or a day, or a race) across attributes.

Table 3 reorganises Table 1 to make the values, variables and obserations more clear. The
dataset contains 18 values representing three variables and six observations. The variables
are:

1. person, with three possible values (John, Mary, and Jane).

2. treatment, with two possible values (a and b).

3. result, with five or six values depending on how you think of the missing value (-, 16,
3, 2, 11, 1).

The experimental design tells us more about the structure of the observations. In this exper-
iment, every combination of of person and treatment was measured, a completely crossed
design. The experimental design also determines whether or not missing values can be safely
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4 Tidy Data

dropped. In this experiment, the missing value represents an observation that should have
been made, but wasn’t, so it’s important to keep it. Structural missing values, which represent
measurements that can’t be made (e.g., the count of pregnant males) can be safely removed.

name trt result

John Smith a —
Jane Doe a 16
Mary Johnson a 3
John Smith b 2
Jane Doe b 11
Mary Johnson b 1

Table 3: The same data as in Table 1 but with variables in columns and observations in rows.

For a given dataset, it’s usually easy to figure out what are observations and what are variables,
but it is surprisingly di�cult to precisely define variables and observations in general. For
example, if the columns in the Table 1 were height and weight we would have been happy
to call them variables. If the columns were height and width, it would be less clear cut, as
we might think of height and width as values of a dimension variable. If the columns were
home phone and work phone, we could treat these as two variables, but in a fraud detection
environment we might want variables phone number and number type because the use of one
phone number for multiple people might suggest fraud. A general rule of thumb is that it is
easier to describe functional relationships between variables (e.g., z is a linear combination
of x and y, density is the ratio of weight to volume) than between rows, and it is easier
to make comparisons between groups of observations (e.g., average of group a vs. average of
group b) than between groups of columns.

In a given analysis, there may be multiple levels of observation. For example, in a trial of new
allergy medication we might have three observational types: demographic data collected from
each person (age, sex, race), medical data collected from each person on each day (number
of sneezes, redness of eyes), and meterological data collected on each day (temperature,
pollen count).

2.3. Tidy data

Tidy data is a standard way of mapping the meaning of a dataset to its structure. A dataset is
messy or tidy depending on how rows, columns and tables are matched up with observations,
variables and types. In tidy data:

1. Each variable forms a column.

2. Each observation forms a row.

3. Each type of observational unit forms a table.

This is Codd’s 3rd normal form (Codd 1990), but with the constraints framed in statistical
language, and the focus put on a single dataset rather than the many connected datasets
common in relational databases. Messy data is any other other arrangement of the data.

Initial Data

Transpose

Tidy Data



MultiIndex Row Access and Slicing
• df.loc[("Boston", 2007)] or sometimes df.loc["Boston", 2007] 
• Remember that loc uses the index values, iloc uses integers  
• Note: df.iloc[0] gets the first row, not df.iloc[0,0] 
• Can get a subset of the data using partial indices 

- df.loc["Boston"] returns both 2007 and 2008 data 
• What about slicing? 

- df.loc["Boston":"Cleveland"] → ERROR! (Need sorted data) 
- df = df.sort_index() 

- df.loc["Boston":"Cleveland"] → inclusive! 
- df.loc[(slice("Boston","Cleveland"),2007),:]
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Merges (aka Joins)
• Need to merge data from one DataFrame with data from another DataFrame 
• Example: Football game data merged with temperature data

34D. Koop, CSCI 680/490, Spring 2021

Id Location Date Home Away
0 Boston 9/2 1 15
1 Boston 9/9 1 7
2 Cleveland 9/16 12 1
3 San Diego 9/23 21 1

Game
wId City Date Temp
0 Boston 9/2 72
1 Boston 9/3 68
… … … …
7 Boston 9/9 75
… … … …
21 Boston 9/23 54
… … … …
36 Cleveland 9/16 81

Weather

No data for San Diego



Inner Strategy
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Id Location Date Home Away Temp wId
0 Boston 9/2 1 15 72 0
1 Boston 9/9 1 7 75 7
2 Cleveland 9/16 12 1 81 36

Merged

No San Diego entry



Outer Strategy
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Id Location Date Home Away Temp wId
0 Boston 9/2 1 15 72 0

NaN Boston 9/3 NaN NaN 68 1
… … … … … … …
1 Boston 9/9 1 7 75 7

NaN Boston 9/10 NaN NaN 76 8
… … … … … … …

NaN Cleveland 9/2 NaN NaN 61 22
… … … … … … …
2 Cleveland 9/16 12 1 81 36
… … … … … … …
3 San Diego 9/23 21 1 NaN NaN

Merged



Data Integration
select title, startTime 
from Movie, Plays 
where Movie.title=Plays.movie AND 
           location=“New York”  AND 
           director=“Woody Allen” 

Sources S1 and S3 are relevant, sources S4 and S5 are irrelevant, and 
source S2 is relevant but possibly redundant.
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Cinemas: 
place, movie, 

start

Reviews: 
title, date

grade, review

Movies: 
 name, actors,  
director, genre

Cinemas in NYC: 
cinema, title, 

startTime

Cinemas in SF: 
location, movie, 

startingTime

Movie: Title, director, year, genre 
Actors: title, actor 
Plays: movie, location, startTime 
Reviews: title, rating, description

S1 S2 S3 S4 S5
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Source A

Source B

<pub> 
    <Titel> Federated Database  
                Systems </Titel> 
    <Autoren> 
         <Autor> Amit Sheth </Autor> 
         <Autor> James Larson </Autor> 
     </Autoren> 
</pub>

<publication> 
    <title> Federated Database  
               Systems for Managing  
               Distributed, Heterogeneous,  
               and Autonomous  
               Databases </title> 
    <author> Scheth & Larson </author> 
    <year> 1990 </year> 
</publication>

Schema 
Mapping

Data 
Transformation

Duplicate 
Detection Data Fusion
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Source A

Source B

<pub> 
    <Titel> Federated Database  
                Systems </Titel> 
    <Autoren> 
         <Autor> Amit Sheth </Autor> 
         <Autor> James Larson </Autor> 
     </Autoren> 
</pub>

<publication> 
    <title> Federated Database  
               Systems for Managing  
               Distributed, Heterogeneous,  
               and Autonomous  
               Databases </title> 
    <author> Scheth & Larson </author> 
    <year> 1990 </year> 
</publication>

<pub> 
    <title>  </title> 
    <Autoren> 
         <author> </author> 
         <author> </author> 
     </Autoren>  
     <year>  </year> 
</pub>

Schema Mapping

Schema Integration

Schema 
Mapping

Data 
Transformation

Duplicate 
Detection Data Fusion
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Source A

Source B

<pub> 
    <Titel> Federated Database  
                Systems </Titel> 
    <Autoren> 
         <Autor> Amit Sheth </Autor> 
         <Autor> James Larson </Autor> 
     </Autoren> 
</pub>

<publication> 
    <title> Federated Database  
               Systems for Managing  
               Distributed, Heterogeneous,  
               and Autonomous  
               Databases </title> 
    <author> Scheth & Larson </author> 
    <year> 1990 </year> 
</publication>

<pub> 
    <title> Federated Database  
                Systems </title> 
    <Autoren> 
         <author> Amit Sheth </author> 
         <author> James Larson </author> 
     </Autoren> 
</pub> 
<pub> 
    <title> Federated Database Systems for 
                Managing Distributed,  
                Heterogeneous, and Autonomous  
                Databases </title> 
    <Autoren> 
         <author> Scheth & Larson </author> 
     </Autoren> 
 <year> 1990 </year> 
</pub>

Schema 
Mapping

Data 
Transformation

Duplicate 
Detection Data Fusion

XQuery

XQuery

Transformation 
queries or views
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Source A

Source B
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               Databases </title> 
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</publication>

<pub> 
    <title> Federated Database  
                Systems </title> 
    <Autoren> 
         <author> Amit Sheth </author> 
         <author> James Larson </author> 
     </Autoren> 
</pub> 
<pub> 
    <title> Federated Database Systems for 
                Managing Distributed,  
                Heterogeneous, and Autonomous  
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    <Autoren> 
         <author> Scheth & Larson </author> 
     </Autoren> 
 <year> 1990 </year> 
</pub>

Schema 
Mapping

Data 
Transformation

Duplicate 
Detection Data Fusion
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Figure 1: An overview of the Dataset Search components. Google crawler collects the metadata from the Web; Dataset Search
backend normalizes and reconciles the metadata; we then index the reconciled metadata and rank results for user queries.

triples [28]. We then look for the triples that use our vocabular-
ies of interest, Schema.org and DCAT. Speci�cally, we collect all
the triples for all the pages that have elements of speci�c types:
http://schema.org/Dataset, http://schema.org/DataCatalog,
and http://www.w3.org/ns/dcat#Dataset.

For a set of triples from each page, we traverse the graph to
collect all the properties and related objects for each dataset in a
protocol bu�er [32], a nested-relational record corresponding to
each metadata entry. A dataset record can point to other records
such as organizations that provided a dataset or a record describing
the distribution of a dataset. A single Web page can have multiple
dataset records on it.

The speci�cation of the graph traversal captures the mapping
from Schema.org and DCAT vocabularies to the corresponding
elements in the protocol-bu�er de�nition (e.g., example �elds in
Figure 2). The schema of the protocol bu�er for the metadata largely
corresponds to http://schema.org/Dataset and therefore the
transformation of metadata at this stage is rather small.

To improve scalability, we use the graph query independently
on the triples from each individual page rather than try to extract
information from a graph that includes all metadata triples on
the Web. Because the links across di�erent pages must specify
objects on another page directly through a URL (e.g., a provider
of this dataset on page A is described on page B), we can do this
reconciliation post-hoc. So, essentially, each page corresponds to its
own, possibly disconnected graph. At the same time, doing graph
traversal only for a single page is dramatically more scalable.

The information that we extract through graph traversal consti-
tutes the rawmetadata, metadata that closely mimics the structure
of Schema.org properties on the original page.

In the next few steps, we describe how we create reconciled
metadata for each dataset, accounting for the di�erent levels of
quality and variety of the modeling patterns used.

5.2 Normalizing and cleaning the metadata
As we mentioned in Section 4.1, we must assume that we will en-
counter every possible misuse andmis-interpretation of Schema.org
properties when we operate at the scale of the whole Web. Thus,
we perform a number of operations to normalize and clean up the
metadata.

First, for the properties where we observe di�erent patterns on
the Web, we analyze the common patterns used and try to account
for all of them. For instance Figure 2 shows the di�erent patterns
that we observed for de�ning downloads and distribution. In the
�gure, the �rst example of raw metadata de�nes the format of the
dataset (CSV) at the level of the dataset itself and stores the down-
load URL as the value of the http://schema.org/distribution
property. Other examples in the �gure deal with these two pieces
of information di�erently. All these patterns are commonly used in
our corpus. We mine these patterns by traversing either the initial
graph or the resulting protocol bu�er. Once we identify the patterns,
we write adapters to convert all of them into the same modeling
pattern in the reconciled metadata record. The right-hand side of
Figure 2 shows this reconciled result.

Similarly, we have developed adapters for other metadata �elds:
We understand a lot more representations of dates than the ISO
standard required by the Schema.org speci�cation (Section 4.1. We
will pick up digital object identi�ers (DOIs) for a dataset from a
variety of �elds, and not just http://schema.org/identifier.
We will use a uniform �eld, provider, for the many di�erent �elds
that dataset providers used to identify this property. As we collect
more metadata, our set of such adapters grows. Our decisions in
these steps are guided by two factors: (1) the frequent usage patterns
that we observed in the data; and (2) our understanding of what we
expect the users to see in Dataset Search results.

1369

Google Dataset Search Overview
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The DCC Curation
Lifecycle Model 

Description and
Representation Information

Preservation Planning

Community Watch and
Participation

Curate and Preserve

Conceptualise

Create or Receive

Appraise and Select

Ingest

Preservation Action

Store

Access, Use and Reuse

Transform

Assign administrative, descriptive, technical, structural and preservation metadata, using appropriate standards, to ensure adequate description and control over the long-term. Collect and assign representation information required to understand
and render both the digital material and the associated metadata.

Plan for preservation throughout the curation lifecycle of digital material. This would include plans for management and administration of all curation lifecycle actions.

Maintain a watch on appropriate community activities, and participate in the development of shared standards, tools and suitable software.

Be aware of, and undertake management and administrative actions planned to promote curation and preservation throughout the curation lifecycle. 

Conceive and plan the creation of data, including capture method and storage options.

Create data including administrative, descriptive, structural and technical metadata. Preservation metadata may also be added at the time of creation. 
Receive data, in accordance with documented collecting policies, from data creators, other archives, repositories or data centres, and if required assign appropriate metadata. 

Evaluate data and select for long-term curation and preservation. Adhere to documented guidance, policies or legal requirements.

Transfer data to an archive, repository, data centre or other custodian. Adhere to documented guidance, policies or legal requirements.

Undertake actions to ensure long-term preservation and retention of the authoritative nature of data. Preservation actions should ensure that data remains authentic, reliable and usable while maintaining its integrity. Actions include data cleaning, 
validation, assigning preservation metadata, assigning representation information and ensuring acceptable data structures or file formats.

Store the data in a secure manner adhering to relevant standards.

Ensure that data is accessible to both designated users and reusers, on a day-to-day basis. This may be in the form of publicly available published information.  Robust access controls and authentication procedures may be applicable.

Create new data from the original, for example 
- By migration into a different format.
- By creating a subset, by selection or query, to create newly derived results, perhaps for publication.

www.dcc.ac.uk
info@dcc.ac.uk

The Curation Lifecycle
The DCC Curation Lifecycle Model provides a graphical high level overview of the stages required for successful curation and preservation of data from initial conceptualisation or receipt. The model can be used to plan activities within an organisation or consortium to
ensure that all necessary stages are undertaken, each in the correct sequence. The model enables granular functionality to be mapped against it; to define roles and responsibilities, and build a framework of standards and technologies to implement. It can help with
the process of identifying additional steps which may be required, or actions which are not required by certain situations or disciplines, and ensuring that processes and policies are adequately documented.

Data, any information in binary digital form, is at the centre of the Curation Lifecycle. This includes:

- Simple Digital Objects are discrete digital items; such as textual files, images or sound files, along with their related identifiers and metadata. 
- Complex Digital Objects are discrete digital objects, made by combining a number of other digital objects, such as websites.

Structured collections of records or data stored in a computer system.

Full Lifecycle Actions

Sequential Actions

Data (Digital Objects or Databases)

Occasional Actions
Dispose

Reappraise

Migrate

Dispose of data, which has not been selected for long-term curation and preservation in accordance with documented policies, guidance or legal requirements. Typically data may be transferred to another archive, repository, data centre or 
other custodian. In some instances data is destroyed. The data’s nature may, for legal reasons, necessitate secure destruction.

Return data which fails validation procedures for further appraisal and reselection.

Migrate data to a different format. This may be done to accord with the storage environment or to ensure the data’s immunity from hardware or software obsolescence. 

Digital Objects

Databases

Data Curation
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contributed articles

authors, or publishers of a database 
have good ideas about how their data 
should be cited. However, it is unlikely 
that they will know how to associate a 
citation with some complex SQL query, 
and even less likely that the user of the 
data, whose query was generated by 
some user interface, will understand 
what is wanted. In order to extract the 
citation automatically from the query 
Q and the database D, two questions 

need to be answered: 
 ! Does the citation depend on both Q 

and D or just on the data Q(D) extracted 
by Q from D? 

 ! If we have appropriate citations for 
some queries, can we use them to con-
struct citations for other queries? 

If the retrieved data is simply a 
number or an image, one cannot 
expect to find the citation in the re-
trieved data. Moreover, even if the 
query returns nothing, it may be wor-
thy of citation, but what citation is as-
sociated with the empty set? We need 
at least context information; so we 
need both Q and D. 

The answer to the second question 
is important because authors and pub-
lishers frequently have ideas as to how 
to cite certain parts of the database; 
that is, they can provide citations for 
certain queries but do not know what 
to do about other queries. 

Numerous organizations2,6,12,16 have 
advocated data citation and developed 
principles2–4,7,8,12,13,15 that refine and 
standardize the notion.1,3,4,8,9,18 The 
purpose of these standards is mostly 
to prescribe the information in a cita-
tion—the snippets—and also to define 
its structure. 

A major, but not the only, purpose 
of a citation is to identify the cited ma-
terial, and citation is often linked to 

database? Here, we use the term “data-
base” in a broad sense and “query” to 
mean any mechanism used to extract 
the data, such as a set of file names, an 
SQL query, a URL, or a special-purpose 
GUI. The computational problem this 
poses can be broadly and simply for-
mulated as: 

Given a database D and a query Q, 
generate an appropriate citation. 

It is often the case that the curators, 

Figure 1. GtoPdb family and introductory pages with independent citations. 

Figure 2. The MODIS grid, with highlighted tiles (red) of spatial extent for California 
(green), with citation. Computational Data Citation (MODIS)
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FAIR Principles
• Findable: Metadata and data should be easy to find for both humans and 

computers 
• Accessible: Users need to know how data can be accessed, possibly 

including authentication and authorization 
• Interoperable: Can be integrated with other data, and can interoperate with 

applications or workflows for analysis, storage, and processing 
• Reusable: Optimize the reuse of data. Metadata and data should be well-

described so they can be replicated and/or combined in different settings
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3.2 Shared-Nothing 167

threads) across the processors, and the shared data structures continue
to be accessible to all. All three models run well on these systems and
support the execution of multiple, independent SQL requests in paral-
lel. The main challenge is to modify the query execution layers to take
advantage of the ability to parallelize a single query across multiple
CPUs; we defer this to Section 5.

3.2 Shared-Nothing

A shared-nothing parallel system (Figure 3.2) is made up of a cluster
of independent machines that communicate over a high-speed network
interconnect or, increasingly frequently, over commodity networking
components. There is no way for a given system to directly access the
memory or disk of another system.

Shared-nothing systems provide no hardware sharing abstractions,
leaving coordination of the various machines entirely in the hands of the
DBMS. The most common technique employed by DBMSs to support
these clusters is to run their standard process model on each machine,
or node, in the cluster. Each node is capable of accepting client SQL

Fig. 3.2 Shared-nothing architecture.

Parallel DB Architecture: Shared Nothing
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Simple column store on disk

Genre

Comedy
Horror
Horror
Drama
Comedy
Drama

id

1
2
3
4
5
6

Title

Mrs. Doubtfire
Jaws
The Fly
Steel Magnolias
The Birdcage
Erin Brokovitch

Person

Robin Williams
Roy Scheider
Jeff Goldblum
Dolly Parton
Nathan Lane
Julia Roberts

row id = 1

row id = 6

Each column has a file or segment on disk

Column Stores
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CAP Theorem
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Mutli DC replication

39

Write
DC 1 DC 2

Cassandra: Replication and Consistency
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HIGH AVAILABILITY: CAP THEOREM AND CASSANDRA

6

Partition 
Tolerance

Availability

Consistency
(ACID)

RDBMS

Atomicity 
Consistency 
Isolation 
Durability

Spanner: Google's NewSQL Cloud Database
• Which type of system is Spanner? 
- C: consistency, which implies a 

single value for shared data 
- A: 100% availability, for both reads 

and updates 
- P: tolerance to network partitions 

• Which two? 
- CA: close, but not totally available 
- So actually CP

51D. Koop, CSCI 680/490, Spring 2021

Spanner



Graph Databases focus on relationships
• Directed, labelled, attributed multigraph  
• Properties are key/value pairs that represent metadata for nodes and edges 

52

[R. Angles  and C. Gutierrez, 2017] 

D. Koop, CSCI 680/490, Spring 2021
Figure 7: Property graph data model. The main characteristic of this model
is the occurrence of properties in nodes and edges. Each property is repre-
sented as a pair property-name = “property-value”.

(i.e. AND, UNION, OPTIONAL, and FILTER). The latest version of the
language, SPARQL 1.1 [71], includes explicit operators to express negation of
graph patterns, arbitrary length path matching (i.e. reachability), aggregate
operators (e.g. COUNT), subqueries, and query federation.

3.6 Nodes, edges and properties: The Property graph model

A property graph is a directed, labelled, attributed multigraph. That is,
a graph where the edges are directed, both nodes and edges are labeled
and can have any number of properties (or attributes), and there can be
multiple edges between any two vertices [128]. Properties are key/value
pairs that represent metadata for nodes and edges. In practice, each vertex
of a property graph has an identifier (unique within the graph) and zero
or more labels. Node labels could be associated to node typing in order to
provide schema-based restrictions. Additionally, each (directed) edge has a
unique identifier and one or more labels. An example of property graph is
shown in Figure 7.

Property graphs are used extensively in computing as they are more
expressive2 than the simplified mathematical objects studied in theory. In
fact, the property graph model can express other types of graph models by
simply abandoning or adding particular bits and pieces [128].

There is no standard query language for property graphs although some
proposals are available. Blueprints [11] was one of the first libraries created

2Note that the expressiveness of a model is defined by ease of use, not by the limits of
what can be modeled.
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Zhicheng Liu, Biye Jiang & Jeffrey Heer / imMens: Real-time Visual Querying of Big Data

Figure 3: Panning and zooming in a binned plot: initial view
(left), zooming in (middle), panning to the lower-left (right).

5. Enabling Interaction in Binned Plots

Interaction is essential to exploratory visual analysis [HS12],
but big data imposes challenges to real-time response rates.
While each binned chart type in the previous section visual-
izes one or two aggregated dimensions, more data resolution
is needed to support interaction. Panning and zooming may
require finer grained bins, as in Figure 3.

Brushing & linking, in which selections in one view high-
light the corresponding data in other views, requires com-
puting aggregates filtered by an initial data selection. These
queries require partially de-aggregated data over which to
compute the filtered aggregation (or “roll-up”). Sending
these queries to a server incurs latency due to both process-
ing and networking delays, and can easily exceed a 100 mil-
lisecond threshold for interactive response [CMN83]. Fur-
thermore, multiple clients might overload the server.

In this section, we present our method for enabling real-
time visual querying in imMens. We use brushing & linking
over the Brightkite data set as a running example. The raw
Brightkite data has five dimensions: User, Date, Time, Lat
and Lon. Figure 4 shows four linked visualizations depict-
ing binned data from different perspectives. The geographi-
cal heatmap (X, Y) is based on Mercator-projected Lon, Lat
coordinates; the three histograms show monthly (Month),
daily (Day) and hourly (Hour) checkin distributions derived
from the Date and Time fields. The Jan bin is selected in the
Month histogram. In response, corresponding data are high-
lighted in orange in the other histograms, and the geographic
heatmap shows only checkins in the month of January.

5.1. Data Cube Queries to Support Interaction

Applying binned aggregation to X, Y, Month, Day and Hour,
we form a 5-dimensional data cube (Figure 5(a)). The data
cube contains the lowest level of data resolution in the
linked visualizations. To perform brushing & linking from
the Month histogram to the Day histogram, we can filter the
data cube to only the rows with bin value 0 in the Month di-
mension (corresponding to January; highlighted in yellow in
Figure 5(a)) and perform a roll-up by summing data along
the Hour, X and Y dimensions. To zoom out, we can aggre-
gate adjacent bins to compute a coarser-grained projection.
Panning at the most zoomed-in level involves querying the
bins visible in the current viewport.

Figure 4: Multiple coordinated views of Brightkite user
checkins in North America. Cyan lines in the heatmap in-
dicate data tile boundaries. Each visualization region is an-
notated by its backing data dimensions and indices.

5.2. From Data Cubes to Multivariate Data Tiles

A full data cube is often too big to fit in memory and query
in real-time. The size of a cube is ’i bi, where bi is the bin
count for dimension i. As the number of dimensions or bins
increases, the data cube size may become unwieldy. To ad-
dress this issue, we decompose the full cube into sub-cubes
with at most four dimensions.

The primary contributor to data cube size is the combina-
torial explosion of multiple dimensions. However, for any
pair of 1D or 2D binned plots, the maximum number of
dimensions needed to support brushing & linking is four
(e.g., between two binned scatterplots that do not share a
dimension). As a result, we can safely decompose the full
cube into a collection of smaller 3- or 4-dimensional projec-
tions. For example, four 3-dimensional cubes can cover all
the possible brushing and linking scenarios shown in Figure
4: (X,Y,Hour), (X,Y,Day), (X,Y,Month), (Hour,Day,Month).
If we assume a uniform bin count b, this decomposition re-
duces the total data record count from b5 to 4b3; when b=50,
the reduction is from 312.5M to 0.5M records.

After decomposition, individual sub-cubes may still be
prohibitively large if the bin count is high. In some plots,
we can treat the bin count as a free parameter, and adjust ac-
cordingly. For others – particularly geographic heatmaps –
we may wish to zoom in to see fine-grained details, requir-
ing an exponentially increasing number of bins across zoom
levels. To handle large bin counts, we segment the bin ranges
to form multivariate data tiles, as illustrated in Figure 5(b).

Data tiles are inspired by the notion of map tiles used in
systems such as Google Maps and Hotmap [Fis07]. How-
ever, data tiles differ in two important ways. First, they pro-
vide data for dynamic visualization, not pre-rendered im-
ages. Second, they contain multidimensional data to support
querying as well as rendering. Given a set of data tiles and
a query selection (bin range), we can dynamically compute
roll-up queries and render projected data. Figure 4 shows ge-
ographic tile boundaries highlighted in cyan. We label each

© 2013 The Author(s)
© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Spatial Data: Minimize Latency

54

[Z. Liu et al., 2013]
D. Koop, CSCI 680/490, Spring 2021

http://vis.stanford.edu/files/2013-imMens-EuroVis.pdf


00,11 01,11 10,11 11,11

00,10 01,10 10,10 11,10

00,01 01,01 10,01 11,01

00,00 01,00 10,00 11,00

o1

o2

o3

o4

o5

0,1 1,1

0,0 1,0

Five Tweets: Location and Device

= iPhone
= Android`device( )

`device( )

`spatial1 `spatial2

S = [ [`spatial1, `spatial2], [`device] ]

o2

o2o1

o2 o3

0,1

01,10

Android

o1

iPhone

1,0

10,01

o3

iPhone

o2o1 o3

iPhone Android

10,10

Android

o4

1,1

o1 o4

o4

11,01

iPhone

o5

iPhone

o5o3

0,1

01,10

Android

o1

0,1

01,10

Android

o1 o2 o2o1

iPhone

0,1

01,10

Android

o1 o2 o2o1

iPhone

1,0

10,01

o3

iPhone

o2o1 o3

iPhone
Android

o2 o3

0,1

01,10

Android

o1 o2 o2o1

iPhone

1,0

10,01

o3

iPhone

o2o1 o3

iPhone Android

o2 o3

10,10

Android

o4

1,1

o1 o4

o4

Indexing Schema

1. 2. 3.

4. 5.

parent-child (same dimension):

proper

content (next dimension):

shared

proper shared

o5

o5

updated in 
current step

dimension
boundary

Fig. 2. An illustration of how to build a nanocube for five points [o1, . . . ,o5] under schema S. The complete process is described in Section 4.

Section 4, we show how to construct a data cube that fits in the main
memory of a modern laptop computer or workstation, extending the
work of Sismanis et al. [31]. In addition, the query times to build the
visual encodings in which we are interested will be at most proportional
to the size of the output, which is bounded by the number of screen
pixels (within a small factor). This is an important observation: the time
complexity of a visualization algorithm should ideally be bounded the
number of pixels it touches on the screen. Our technique enables real-
time exploratory visualization on datasets that are large, spatiotemporal,
and multidimensional. Because the speed of our data cube structure
hinges partly on it being small enough to fit in main memory, we call it
a nanocube.

By real-time, we mean query times on average under a millisecond
for a single thread running on computers ranging from laptops, to
workstations, to server-class computing nodes (Section 6). By large,
we mean that the datasets we support have millions to billions of entries.

By spatiotemporal, we mean that nanocubes support queries typical
of spatial databases, such as counting events in a spatial region that
can be either a rectangle covering most of the world, or a heatmap
of activity in downtown San Francisco (Section 4.3.1). By the same
token, nanocubes support temporal queries at multiple scales, such
as event counts by hour, day, week, or month over a period of years
(Section 4.3.3). Data cubes in general enable the Visual Information-
Seeking Mantra [29] of “Overview first, zoom and filter, then details-
on-demand” by providing summaries and letting users drill down by
expanding along the wanted dimensions. Nanocubes also provide
overviews, filters, zooming, and details-on-demand inside the spa-
tiotemporal dimensions themselves.

By multidimensional, we mean that besides latitude, longitude, and
time, each entry can have additional attributes (see section 6) that can
be used in query selections and rollups.

As we will show, nanocubes lend themselves very well to building
visual encodings which are fundamental building blocks of interac-
tive visualization systems, such as scatterplots, histograms, parallel
coordinate plots, and choropleth maps. In summary, we contribute:

• a novel data structure that improves on the current state of the art
data cube technology to enable real-time exploratory visualization
of multidimensional, spatiotemporal datasets;

• algorithms to query the nanocube and build linked and brushable
visual encodings commonly found in visualization systems; and

• case studies highlighting the strengths and weaknesses of our

technique, together with experiments to measure its utilization of
space, time, and network bandwidth.

2 RELATED WORK

Relational databases are so widespread and fundamental to the practice
of computing that they were a natural target for information visualiza-
tion almost since the field’s inception [20]. Mackinlay’s Automatic
Presentation Tool is the breakthrough result that critically connected the
relational structure of the data with the graphical primitives available
for display [23] and ultimately lead to data cube visualization tools
like Polaris [34, 35] and Show Me [24]. Nanocubes are specifically
designed to speed up queries for spatiotemporal data cubes, and could
eventually be used as a backend for these types of applications.

In contrast, some of the work in large data visualization involves
shipping the computation and data to a cluster of processing nodes.
While parallelism is an attractive option for increasing throughput, it
does not necessarily help achieve low latency, which is essential for
fluid interactions with a visualization tool. As a result, sophisticated
techniques such as query prediction become necessary [6]. Leveraging
the enormous power of graphics processing units has also become
popular [25, 21], but without algorithmic changes, linear scans through
the dataset will still be too slow for fluid interaction, even with GPUs.

Another popular way to cope with large datasets is through sampling.
Statistical sampling can be performed on the database backend [26, 1,
10, 14], or on the front-end [11]. Still, the techniques we introduce
with nanocubes can produce results quickly and exactly (to within
screen precision) without requiring approximations, which we believe
is preferable. In addition, as Liu et al. argue, sampling by itself is not
sufficient to prevent overplotting, and might actually mask important
data outliers [21].

Fekete and Plaisant have proposed modifications of traditional visual
encodings which use the computer screen more efficiently [13]. These
scale better with dataset size, but nevertheless require a traversal of
all input data points that renders the proposal less attractive for larger
datasets. Carr et al. were among the first to propose techniques replac-
ing a scatterplot with an equivalent density plot [5]; nanocubes enable
these visualizations at a variety of dataset sizes and scales.

Careful data aggregation [17], then, appears to be one of the few
scalable solutions for low-latency large data graphics. While Elmqvist
and Fekete propose variations of visualization techniques that include
aggregation as a first-class citizen [12], in this paper we show how to
issue queries such that, at the screen resolution in which the application
is operating, the result is indistinguishable (or close to) from a complete

Spatial Data: Precompute Optimized Storage
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Spatial Data: Prefetching
• Predict which tiles a user will need next and prefetch those 
- Use common patterns (zoom, pan) 
- Use regions of interest (ROIs)
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Algorithm 2 Pseudocode showing the Markov chain transition fre-
quencies building process.
Input: For PROCESSTRACES, a set of user traces, and sequence length n.
Output: F , computed transition frequencies.
1: procedure PROCESSTRACES({U1,U2, ...,Uj, ...}, n)
2: F  {}
3: for user trace Uj do
4: Vj  GETMOVESEQUENCE(Uj)
5: F  UPDATEFREQUENCIES(Vj , F , n)
6: return F
7: procedure GETMOVESEQUENCE(Uj)
8: Vj  [ ]
9: for i = 1,2, ..., where i |Vj | do

10: Vj[i] Uj[i].move
11: return Vj

12: procedure UPDATEFREQUENCIES(Vj = [v1,v2,v3, ...], F , n)
13: for i = n+1,n+2, ..., where n < i |Vj | do
14: F [sequence(vi�n,vi�(n�1),vi�(n�2), ...,vi�1)! vi] += 1
15: return F

(line 6). In contrast, an observed zoom-out tells the prediction en-
gine to stop adding tiles to tempROI (lines 8-12). If the inFlag was
set while the zoom-out occurred, we replace the user’s old ROI
with tempROI (lines 9-10). Then, tempROI is reset (line 12). Last,
if r.move = pan while the inFlag is true, Tr (i.e., the requested tile)
is added to tempROI (lines 13-14).

4.3.2 Actions-Based (AB) Recommender
As the user moves to or from ROI’s, she is likely to consistently

zoom or pan in a predictable way (e.g., zoom out three times).
Doshi et al. leverage this assumption in their Momentum model,
which predicts that the user’s next move will match her previous
move [8]. We expand on this idea with our AB recommender,
which builds an n-th order Markov chain from users’ past actions.

To build the Markov chain, we create a state for each possible
sequence of moves, where we only consider sequences of length n
(i.e., the length of H). For example, if n = 3, then the following
are two sequences that would have their own states in the Markov
chain: panning left three times (i.e., le f t, le f t, le f t), and zooming
out twice and then panning right (i.e., out, out, right). After creat-
ing our states, we create an outgoing transition from each state for
every possible move the user can make in the interface. In the n = 3
case, if the user is in state (le f t, le f t, le f t) and then decides to pan
right, we represent this as the user taking the edge labeled “right”
from the state (le f t, le f t, le f t) to the state (le f t, le f t, right).

We learn transition probabilities for our Markov chains using
traces from our user study; the traces are described in Section 4.1.
Algorithm 2 shows how we calculate the transition frequencies
needed to compute the final probabilities. For each user trace Uj
from the study, we extract the sequence of moves observed in the
trace (lines 7-11). We then iterate over every sub-sequence of length
n (i.e., every time a state was visited in the trace), and count how of-
ten each transition was taken (lines 12-15). To do this, for each sub-
sequence observed (i.e., for each state observed from our Markov
chain), we identified the move that was made immediately after this
sub-sequence occurred, and incremented the relevant counter (line
14). To fill in missing counts, we apply Kneser-Ney smoothing, a
well-studied smoothing method in natural language processing for
Markov chains [7]. We used the BerkeleyLM [18] Java library to
implement our Markov chains.

4.3.3 Signature-Based (SB) Recommender
The goal of our SB recommender is to identify neighboring tiles

that are visually similar to what the user has requested in the past.

(a) Potential snow cover
ROI’s in the US and Canada.

(b) Tiles in the user’s history,
after visiting ROI’s from (a).

Figure 6: Example ROI’s in the US and Canada for snow cover
data. Snow is orange to yellow, snow-free areas in green to blue.
Note that (a) and (b) span the same latitude-longitude range.

Table 2: Features computed over individual array attributes in Fore-
Cache to compare data tiles for visual similarity.

Signature Measures Visual Characteristics
Compared Captured

Normal Mean, standard average position/color/size
Distribution deviation of rendered datapoints
1-D histogram bins position/color/size distribu-
histogram -tion of rendered datapoints
SIFT histogram built distinct “landmarks” in the

from clustered visualization (e.g., clusters
SIFT descriptors of orange pixels)

DenseSIFT same as SIFT distinct “landmarks” and
their positions in the
visualization

For example, in the Foraging phase, the user is using a coarse view
of the data to find new ROI’s to explore. When the user finds a new
ROI, she zooms into this area until she reaches her desired zoom
level. Each tile along her zooming path will share the same visual
features, which the user depends on to navigate to her destination.
In the Sensemaking phase, the user is analyzing visually similar
data tiles at the same zoom level. One such example is when the
user is exploring satellite imagery of the earth, and panning to tiles
within the same mountain range.

Consider Figure 6a, where the user is exploring snow cover data
derived from a satellite imagery dataset. Snow is colored orange,
and regions without snow are blue. Thus, the user will search for
ROI’s that contain large clusters of orange pixels, which are circled
in Figure 6a. These ROI’s correspond to mountain ranges.

Given the user’s last ROI (i.e., the last mountain range the user
visited), we can look for neighboring tiles that look similar (i.e.,
find more mountains). Figure 6b is an example of some tiles that
may be in the user’s history if she has recently explored some of
these ROI’s, which we can use for reference to find new ROI’s.

We measure visual similarity by computing a diverse set of tile
signatures. A signature is a compact, numerical representation of
a data tile, and is stored as a vector of double-precision values.
Table 2 lists the four signatures we compute in ForeCache. All of
our signatures are calculated over a single SciDB array attribute.
The first signature in Table 2 calculates the average and standard
deviation of all values stored within a single data tile. The second
signature builds a histogram over these array values, using a fixed
number of bins.

We also tested two machine vision techniques as signatures: the
scale-invariant feature transform (SIFT), and a variant called dens-
eSIFT (signatures 3 and 4 in Table 2). SIFT is used to identify and
compare visual “landmarks” in an image, called keypoints. Much
like how seeing the Statue of Liberty can help people distinguish
pictures of New York city from pictures of other cities, SIFT key-



Aggregation of time series data, a special use case of groupby, is referred
to as resampling in this book and will receive separate treatment in
Chapter 10.

GroupBy Mechanics
Hadley Wickham, an author of many popular packages for the R programming lan-
guage, coined the term split-apply-combine for talking about group operations, and I
think that’s a good description of the process. In the first stage of the process, data
contained in a pandas object, whether a Series, DataFrame, or otherwise, is split into
groups based on one or more keys that you provide. The splitting is performed on a
particular axis of an object. For example, a DataFrame can be grouped on its rows
(axis=0) or its columns (axis=1). Once this is done, a function is applied to each group,
producing a new value. Finally, the results of all those function applications are com-
bined into a result object. The form of the resulting object will usually depend on what’s
being done to the data. See Figure 9-1 for a mockup of a simple group aggregation.

Figure 9-1. Illustration of a group aggregation

Each grouping key can take many forms, and the keys do not have to be all of the same
type:

• A list or array of values that is the same length as the axis being grouped

• A value indicating a column name in a DataFrame

250 | Chapter 9: Data Aggregation and Group Operations

Split-Apply-Combine

57

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 680/490, Spring 2021



Time Series Data
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Fig. 7: Using the blog to document processes: A visualization expert
created a series of blog posts to explain the problems found when gen-
erating the visualizations for CMOP.
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Prospective and Retrospective Provenance	
• Recipe for baking a cake versus the actual process & outcome 
• Prospective provenance is what was specified/intended 
- a workflow, script, list of steps 

• Retrospective provenance is what actually happened 
- actual data, actual parameters, errors that occurred, timestamps, machine 

information 
• Do not need prospective provenance to have retrospective provenance!
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Fig. 1.
The spectrum of reproducibility.
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Fundamental 
Building Blocks
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Final Exam
• Monday, April 26, 4:00-5:50pm, Online (Blackboard) 
• Similar format 
• More comprehensive (questions from topics covered in Test 1 & 2) 
• Will also have questions from temporal data, provenance, reproducibility, 

machine learning
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