Advanced Data Management (CSCI 490/680)

Machine Learning in Databases

Dr. David Koop

Checking Computational Results in Systems

D. Koop, CSCI 680/490, Spring 2021

Northern Illinois University

NIU

Repeatability Results

Figure 11: Study result. Blue numbers represent papers that were excluded from consideration, green numbers papers that are weakly repeatable, red numbers papers that are non-weakly repeatable, and orange numbers represent papers that were excluded (due to our restriction of sending at most one email to each author).

OK ^{≤30} OK [≤] 130 64	>30 OK ^{Auth} 23					
	Notation	Number of papers				
Build fails 9	HW	excluded due to replication requiring special hardware				
	NC	excluded due to results not being backed by code				
	EX	excluded due to overlapping author lists				
	BC	where the results are backed by code				
	Article	where code was found in the paper itself				
	Web	where code was found through a Web search				
	EM yes	where the author provides code after receiving an email message				
	EM ^{no}	where the author responds to an email message saying code cannot be provided				
	EMø	where the author does not respond to email requests within two months				
	OK ^{≤30}	where code is available and we succeed in building the system in \leq 30 minutes				
	OK >30	where code is available and we succeed in building the system in >30 minutes				
	OK ^{Auth}	where code is available and we fail to build, and the author says the code builds with reasonable effort				
\mathbf{M}^{\emptyset} $\mathbf{E}\mathbf{M}^{\mathrm{no}}$ 30 146	Fails	where code is available and we fail to build, and the author says the code may have problems building				

Excuses for not sharing

- Versioning
- Available Soon
- No Intention to Share
- Personnel Issues
- Lost Code
- Academic Tradeoffs
- Industrial Lab Tradeoffs
- Obsolete HW/SW
- Controlled Usage
- Privacy/Security
- Design Issues

D. Koop, CSCI 680/490, Spring 2021

Northern Illinois University

Examining 'Reproducibility in Computer Science'

- Repeat the experiment in reproducibility!
- Differences from original
- Shows issues with trying to classify experiments

F	າ	ır
	D)i

All Others Purported Not 27%

- ported Not Building; 6% ••••• sputed; Not Checked
- Purported Building; Disputed; 2% •• Not Checked
 - Conflicting Checks! 0%
 - Misclassified 1% •
 - Purported Not Building But 14% ••••••••• Found Building
- Purported Building But Found 0% Not Building
 - Purported Not Building; 0% Confirmed
- Purported Building; Confirmed 0% •

Reproducible Research

- Science is verified by replicating work independently
- Replication Issues:
 - Requires many resources to replicate (Sloan Digital Sky Survey) - Requires significant computing power (Climate Model Simulation) - Requires too much time or very specific circumstances (Environment

 - Epidemiology)
- Reproducibility
 - Replication of the analysis based on the collected data (not replicating the data collection itself)
 - Better if we have the actual code or available executables _

Reproducibility Spectrum

D. Koop, CSCI 680/490, Spring 2021

7

10 Rules for Reproducible Computational Research

- Rule 1: For Every Result, Keep Track of How It Was Produced
- Rule 2: Avoid Manual Data Manipulation Steps
- Rule 3: Archive the Exact Versions of All External Programs Used
- Rule 4: Version Control All Custom Scripts
- Rule 5: Record All Intermediate Results, When Possible in Standardized Formats

10 Rules for Reproducible Computational Research

- Rule 6: For Analyses That Include Randomness, Note Underlying Random Seeds
- Rule 7: Always Store Raw Data behind Plots
- Rule 8: Generate Hierarchical Analysis Output, Allowing Layers of Increasing Detail to Be Inspected
- Rule 9: Connect Textual Statements to Underlying Results • Rule 10: Provide Public Access to Scripts, Runs, and Results

(Database) Reproducibility Research Topics

- Design and Management of Experiment Repositories
- Querying and Searching Experiments
- Mining Experiments

Notebook Reproducibility

- Use notebooks from Github (~1 million) - Unambiguous cell order? 81.99%
- Study notebook dependencies
 - Dependencies Available? 13.72%
 - Dependencies Install? 5.03%
- Study notebook executability
 - Execute: 24.11% of unambiguous cell order
 - Matched results: 4.03%

Dataflow Notebooks: Resolve Notebook Ambiguities

In [d51f8eab]:	<pre>import pandas as pd df = pd.read_csv('guardian-top100-female-2019.csv')</pre>				In [over30]:	<pre>df = df\$full[df\$full.Age >= 31]</pre>						
df:	Name	Rank Position	Age on 1 Dec 2019	Nationality		df:		Name	Rank	Position	Age	Nationality
	0 Sam Kerr	1 Forward	26	Australia			2 Me	egan Rapinoe	3	Midfielder	34	USA
	99 Ludmila	100 Forward	25	Brazil			96 (Cláudia Neto	97 I	Midfielder	31	Portugal
	100 rows × 5 co	lumns					19 rows :	× 5 columns				
In [full]:	df = df.1	cename(colur	nns={'Age on 1	Dec 2019	<pre>9': 'Age'})</pre>	In [under25]:	df =	df <mark>\$full</mark> [d	df <mark>\$fu</mark>	ll.Age	<= 2	24]
df.	Name	Rank Position	Age Nationality			df:		Name I	Rank	Position	Age N	Nationality
ur.	0 Sam Kerr	1 Forward	26 Australia				3 Ada	a Hegerberg	4	Forward	24	Norway
	99 Ludmila	100 Forward	25 Brazil				98 Le	ena Oberdorf	99 N	/lidfielder	17	Germany
	100 rows × 5 co	lumns					25 rows :	× 5 columns				

<u>Assignment 5</u>

- Four parts
 - Loading Data
 - Spatial Analysis
 - Graph Analysis
 - Temporal Analysis
- Due at the end of the semester (April 22, 2021)
- Questions?

Final Exam

- Monday, April 26, 4:00-5:50pm, Online (Blackboard)
- Similar format
- More comprehensive (questions from topics covered in Test 1 & 2)
- machine learning
- Bring questions on Wednesday

Will also have questions from temporal data, provenance, reproducibility,

Improving Databases

LEARNED AND **SELF-DESIGNING** DATA STRUCTURES Data Systems and AI Lab Stratos Idreos & Tim Kraska

Algorithms rely on the order of data

D. Koop, CSCI 680/490, Spring 2021

ALGORITHMS

[7,4,2,6,1,3,9,10,5,8]

17

Data systems rely on algorithms

DATA SYSTEMS ALGORITHMS

D. Koop, CSCI 680/490, Spring 2021

18

Data structures define performance

D. Koop, CSCI 680/490, Spring 2021

register = this room
caches = this city
memory = nearby city
disk = Pluto

Jim Gray, Turing Award 1998

Database Questions

How do I make my **data system** run x times as fast?

How do I extend the **lifetime** of my hardware?

How to accelerate statistics computation for data science/ML?

D. Koop, CSCI 680/490, Spring 2021

How do I minimize my **bill** in the **cloud**?

How do I train my **neural network** x times faster?

Tradeoffs in each structure

New Applications Demand Change

existing systems need to change too

"Traditional" Database Research

Self-designing systems

D. Koop, CSCI 680/490, Spring 2021

without coding or accessing the h/w

algorithms

performance

SageDB: a learned database system

G. Leclerc, S. Madden, H. Mao, and V. Nathan

D. Koop, CSCI 680/490, Spring 2021

T. Kraska, M. Alizadeh, A. Beutel, E. H. Chi, J. Ding, A. Kristo,

Learned Data Structures and Algorithms

Discussion

- Is this the future?
- What about comparison baselines?
- Lots of work being done in this area

Reminders

- Assignment 5 Due Thursday
- Final Exam Review Wednesday (come with questions!)
- Final Exam on Monday, April 26 from 4-5:50pm (Online)

