
Advanced Data Management (CSCI 490/680)

Provenance

Dr. David Koop

D. Koop, CSCI 680/490, Spring 2021

Split-Apply-Combine
• Coined by H. Wickham, 2011
• Similar to Map (split+apply) Reduce (combine) paradigm
• The Pattern:
1. Split the data by some grouping variable
2. Apply some function to each group independently
3. Combine the data into some output dataset

• The apply step is usually one of :
- Aggregate
- Transform
- Filter

2

[T. Brandt]
D. Koop, CSCI 680/490, Spring 2021

Aggregation of time series data, a special use case of groupby, is referred
to as resampling in this book and will receive separate treatment in
Chapter 10.

GroupBy Mechanics
Hadley Wickham, an author of many popular packages for the R programming lan-
guage, coined the term split-apply-combine for talking about group operations, and I
think that’s a good description of the process. In the first stage of the process, data
contained in a pandas object, whether a Series, DataFrame, or otherwise, is split into
groups based on one or more keys that you provide. The splitting is performed on a
particular axis of an object. For example, a DataFrame can be grouped on its rows
(axis=0) or its columns (axis=1). Once this is done, a function is applied to each group,
producing a new value. Finally, the results of all those function applications are com-
bined into a result object. The form of the resulting object will usually depend on what’s
being done to the data. See Figure 9-1 for a mockup of a simple group aggregation.

Figure 9-1. Illustration of a group aggregation

Each grouping key can take many forms, and the keys do not have to be all of the same
type:

• A list or array of values that is the same length as the axis being grouped

• A value indicating a column name in a DataFrame

250 | Chapter 9: Data Aggregation and Group Operations

Split-Apply-Combine

3

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 680/490, Spring 2021

Split-Apply-Combine
• df.groupby('Island')[['Culmen Length (mm)',
 'Culmen Depth (mm)']].mean()

• df.groupby('Island').agg({'Culmen Length (mm)': 'mean',
 'Culmen Depth (mm)': 'mean'})

• df.groupby('Island').agg(
 cul_length=('Culmen Length (mm)', 'mean'),
 cul_depth=('Culmen Depth (mm)', 'mean'))

4D. Koop, CSCI 680/490, Spring 2021

Transform Example

5

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 680/490, Spring 2021

12.2 Advanced GroupBy Use
While we’ve already discussed using the groupby method for Series and DataFrame in
depth in Chapter 10, there are some additional techniques that you may find of use.

Group Transforms and “Unwrapped” GroupBys
In Chapter 10 we looked at the apply method in grouped operations for performing
transformations. There is another built-in method called transform, which is similar
to apply but imposes more constraints on the kind of function you can use:

• It can produce a scalar value to be broadcast to the shape of the group
• It can produce an object of the same shape as the input group
• It must not mutate its input

Let’s consider a simple example for illustration:
In [75]: df = pd.DataFrame({'key': ['a', 'b', 'c'] * 4,
 : 'value': np.arange(12.)})

In [76]: df
Out[76]:
 key value
0 a 0.0
1 b 1.0
2 c 2.0
3 a 3.0
4 b 4.0
5 c 5.0
6 a 6.0
7 b 7.0
8 c 8.0
9 a 9.0
10 b 10.0
11 c 11.0

Here are the group means by key:
In [77]: g = df.groupby('key').value

In [78]: g.mean()
Out[78]:
key
a 4.5
b 5.5
c 6.5
Name: value, dtype: float64

12.2 Advanced GroupBy Use | 373

12.2 Advanced GroupBy Use
While we’ve already discussed using the groupby method for Series and DataFrame in
depth in Chapter 10, there are some additional techniques that you may find of use.

Group Transforms and “Unwrapped” GroupBys
In Chapter 10 we looked at the apply method in grouped operations for performing
transformations. There is another built-in method called transform, which is similar
to apply but imposes more constraints on the kind of function you can use:

• It can produce a scalar value to be broadcast to the shape of the group
• It can produce an object of the same shape as the input group
• It must not mutate its input

Let’s consider a simple example for illustration:
In [75]: df = pd.DataFrame({'key': ['a', 'b', 'c'] * 4,
 : 'value': np.arange(12.)})

In [76]: df
Out[76]:
 key value
0 a 0.0
1 b 1.0
2 c 2.0
3 a 3.0
4 b 4.0
5 c 5.0
6 a 6.0
7 b 7.0
8 c 8.0
9 a 9.0
10 b 10.0
11 c 11.0

Here are the group means by key:
In [77]: g = df.groupby('key').value

In [78]: g.mean()
Out[78]:
key
a 4.5
b 5.5
c 6.5
Name: value, dtype: float64

12.2 Advanced GroupBy Use | 373

Suppose instead we wanted to produce a Series of the same shape as df['value'] but
with values replaced by the average grouped by 'key'. We can pass the function
lambda x: x.mean() to transform:

In [79]: g.transform(lambda x: x.mean())
Out[79]:
0 4.5
1 5.5
2 6.5
3 4.5
4 5.5
5 6.5
6 4.5
7 5.5
8 6.5
9 4.5
10 5.5
11 6.5
Name: value, dtype: float64

For built-in aggregation functions, we can pass a string alias as with the GroupBy agg
method:

In [80]: g.transform('mean')
Out[80]:
0 4.5
1 5.5
2 6.5
3 4.5
4 5.5
5 6.5
6 4.5
7 5.5
8 6.5
9 4.5
10 5.5
11 6.5
Name: value, dtype: float64

Like apply, transform works with functions that return Series, but the result must be
the same size as the input. For example, we can multiply each group by 2 using a
lambda function:

In [81]: g.transform(lambda x: x * 2)
Out[81]:
0 0.0
1 2.0
2 4.0
3 6.0
4 8.0
5 10.0
6 12.0

374 | Chapter 12: Advanced pandas

Transform Example

5

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 680/490, Spring 2021

12.2 Advanced GroupBy Use
While we’ve already discussed using the groupby method for Series and DataFrame in
depth in Chapter 10, there are some additional techniques that you may find of use.

Group Transforms and “Unwrapped” GroupBys
In Chapter 10 we looked at the apply method in grouped operations for performing
transformations. There is another built-in method called transform, which is similar
to apply but imposes more constraints on the kind of function you can use:

• It can produce a scalar value to be broadcast to the shape of the group
• It can produce an object of the same shape as the input group
• It must not mutate its input

Let’s consider a simple example for illustration:
In [75]: df = pd.DataFrame({'key': ['a', 'b', 'c'] * 4,
 : 'value': np.arange(12.)})

In [76]: df
Out[76]:
 key value
0 a 0.0
1 b 1.0
2 c 2.0
3 a 3.0
4 b 4.0
5 c 5.0
6 a 6.0
7 b 7.0
8 c 8.0
9 a 9.0
10 b 10.0
11 c 11.0

Here are the group means by key:
In [77]: g = df.groupby('key').value

In [78]: g.mean()
Out[78]:
key
a 4.5
b 5.5
c 6.5
Name: value, dtype: float64

12.2 Advanced GroupBy Use | 373

12.2 Advanced GroupBy Use
While we’ve already discussed using the groupby method for Series and DataFrame in
depth in Chapter 10, there are some additional techniques that you may find of use.

Group Transforms and “Unwrapped” GroupBys
In Chapter 10 we looked at the apply method in grouped operations for performing
transformations. There is another built-in method called transform, which is similar
to apply but imposes more constraints on the kind of function you can use:

• It can produce a scalar value to be broadcast to the shape of the group
• It can produce an object of the same shape as the input group
• It must not mutate its input

Let’s consider a simple example for illustration:
In [75]: df = pd.DataFrame({'key': ['a', 'b', 'c'] * 4,
 : 'value': np.arange(12.)})

In [76]: df
Out[76]:
 key value
0 a 0.0
1 b 1.0
2 c 2.0
3 a 3.0
4 b 4.0
5 c 5.0
6 a 6.0
7 b 7.0
8 c 8.0
9 a 9.0
10 b 10.0
11 c 11.0

Here are the group means by key:
In [77]: g = df.groupby('key').value

In [78]: g.mean()
Out[78]:
key
a 4.5
b 5.5
c 6.5
Name: value, dtype: float64

12.2 Advanced GroupBy Use | 373

Suppose instead we wanted to produce a Series of the same shape as df['value'] but
with values replaced by the average grouped by 'key'. We can pass the function
lambda x: x.mean() to transform:

In [79]: g.transform(lambda x: x.mean())
Out[79]:
0 4.5
1 5.5
2 6.5
3 4.5
4 5.5
5 6.5
6 4.5
7 5.5
8 6.5
9 4.5
10 5.5
11 6.5
Name: value, dtype: float64

For built-in aggregation functions, we can pass a string alias as with the GroupBy agg
method:

In [80]: g.transform('mean')
Out[80]:
0 4.5
1 5.5
2 6.5
3 4.5
4 5.5
5 6.5
6 4.5
7 5.5
8 6.5
9 4.5
10 5.5
11 6.5
Name: value, dtype: float64

Like apply, transform works with functions that return Series, but the result must be
the same size as the input. For example, we can multiply each group by 2 using a
lambda function:

In [81]: g.transform(lambda x: x * 2)
Out[81]:
0 0.0
1 2.0
2 4.0
3 6.0
4 8.0
5 10.0
6 12.0

374 | Chapter 12: Advanced pandas

or g.transform('mean')

Crosstabs and Pivot Tables
• pd.crosstab([tips.time, tips.day], tips.smoker,
margins=True)

• or… tips.pivot_table('total_bill',index=['time', 'day'],
columns=['smoker'], aggfunc='count', margins=True,
fill_value=0)

6D. Koop, CSCI 680/490, Spring 2021

In [45]:

In [53]:

In []:

Out[45]: smoker No Yes All

time day

Dinner

Fri 3 9 12

Sat 45 42 87

Sun 57 19 76

Thur 1 0 1

Lunch
Fri 1 6 7

Thur 44 17 61

All 151 93 244

Out[53]: smoker No Yes All

time day

Dinner

Fri 3.0 9.0 12.0

Sat 45.0 42.0 87.0

Sun 57.0 19.0 76.0

Thur 1.0 0.0 1.0

Lunch
Fri 1.0 6.0 7.0

Thur 44.0 17.0 61.0

All 151.0 93.0 244.0

pd.crosstab([tips.time, tips.day], tips.smoker, margins=True)

can mimic crosstab using a pivot_table
doesn't matter what the data (first argument) is
tips.pivot_table('total_bill',index=['time', 'day'], columns=['smoker'],

What is time series data?
• Technically, it's normal tabular data with a timestamp attached
• But… we have observations of the same values over time, usually in order
• This allows more analysis
• Example: Web site database that tracks the last time a user logged in
- 1: Keep an attribute lastLogin that is overwritten every time user logs in
- 2: Add a new row with login information every time the user logs in
- Option 2 takes more storage, but we can also do a lot more analysis!

7D. Koop, CSCI 680/490, Spring 2021

Time Series Data
• Metrics: measurements at regular intervals
• Events: measurements that are not gathered at regular intervals

8

[InfluxDB]
D. Koop, CSCI 680/490, Spring 2021

https://www.influxdata.com/what-is-time-series-data/

Time Series Databases
• Most time series data is heavy inserts, few updates
• Also analysis tends to be on ordered data with trends, prediction, etc.
• Can also consider stream processing
• Focus on time series allows databases to specialize
• Examples:
- InfluxDB (noSQL)
- TimescaleDB (SQL-based)

9D. Koop, CSCI 680/490, Spring 2021

Time Series Patterns

10

[R. J. Hyndman]
D. Koop, CSCI 680/490, Spring 2021

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 19

US Treasury bill contracts

Day

pr
ic
e

0 20 40 60 80 100

85
86

87
88

89
90

91

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 16

Australian electricity production

Year

G
W
h

1980 1985 1990 1995

80
00

10
00
0

12
00
0

14
00
0

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 18

Sales of new one−family houses, USA

To
ta

l s
al

es

1975 1980 1985 1990 1995

30
40

50
60

70
80

90

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 20

Annual Canadian Lynx trappings

Time

N
um

be
r t

ra
pp

ed

1820 1840 1860 1880 1900 1920

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

https://robjhyndman.com/seminars/uwa/

Time Series Patterns

10

[R. J. Hyndman]
D. Koop, CSCI 680/490, Spring 2021

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 19

US Treasury bill contracts

Day

pr
ic
e

0 20 40 60 80 100

85
86

87
88

89
90

91

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 16

Australian electricity production

Year

G
W
h

1980 1985 1990 1995

80
00

10
00
0

12
00
0

14
00
0

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 18

Sales of new one−family houses, USA

To
ta

l s
al

es

1975 1980 1985 1990 1995

30
40

50
60

70
80

90

Trend

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 20

Annual Canadian Lynx trappings

Time

N
um

be
r t

ra
pp

ed

1820 1840 1860 1880 1900 1920

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

https://robjhyndman.com/seminars/uwa/

Time Series Patterns

10

[R. J. Hyndman]
D. Koop, CSCI 680/490, Spring 2021

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 19

US Treasury bill contracts

Day

pr
ic
e

0 20 40 60 80 100

85
86

87
88

89
90

91

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 16

Australian electricity production

Year

G
W
h

1980 1985 1990 1995

80
00

10
00
0

12
00
0

14
00
0

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 18

Sales of new one−family houses, USA

To
ta

l s
al

es

1975 1980 1985 1990 1995

30
40

50
60

70
80

90

Trend Trend +
Seasonality

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 20

Annual Canadian Lynx trappings

Time

N
um

be
r t

ra
pp

ed

1820 1840 1860 1880 1900 1920

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

https://robjhyndman.com/seminars/uwa/

Time Series Patterns

10

[R. J. Hyndman]
D. Koop, CSCI 680/490, Spring 2021

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 19

US Treasury bill contracts

Day

pr
ic
e

0 20 40 60 80 100

85
86

87
88

89
90

91

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 16

Australian electricity production

Year

G
W
h

1980 1985 1990 1995

80
00

10
00
0

12
00
0

14
00
0

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 18

Sales of new one−family houses, USA

To
ta

l s
al

es

1975 1980 1985 1990 1995

30
40

50
60

70
80

90

Trend Trend +
Seasonality

Seasonality +
Cyclic

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 20

Annual Canadian Lynx trappings

Time

N
um

be
r t

ra
pp

ed

1820 1840 1860 1880 1900 1920

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

https://robjhyndman.com/seminars/uwa/

Time Series Patterns

10

[R. J. Hyndman]
D. Koop, CSCI 680/490, Spring 2021

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 19

US Treasury bill contracts

Day

pr
ic
e

0 20 40 60 80 100

85
86

87
88

89
90

91

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 16

Australian electricity production

Year

G
W
h

1980 1985 1990 1995

80
00

10
00
0

12
00
0

14
00
0

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 18

Sales of new one−family houses, USA

To
ta

l s
al

es

1975 1980 1985 1990 1995

30
40

50
60

70
80

90

Trend Trend +
Seasonality

Seasonality +
Cyclic

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 20

Annual Canadian Lynx trappings

Time

N
um

be
r t

ra
pp

ed

1820 1840 1860 1880 1900 1920

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

Stationary

https://robjhyndman.com/seminars/uwa/

Pandas Support for Datetime
• pd.to_datetime:
- convenience method
- can convert an entire column to datetime

• Has a NaT to indicate a missing time value
• Stores in a numpy.datetime64 format
• pd.Timestamp: a wrapper for the datetime64 objects

11D. Koop, CSCI 680/490, Spring 2021

Python, Pandas, and Time Zones
• Time series in pandas are time zone native
• The pytz module keeps track of all of the time zone parameters
- even Daylight Savings Time

• Localize a timestamp using tz_localize
- ts = pd.Timestamp("1 Dec 2016 12:30 PM")
ts = ts.tz_localize("US/Eastern")

• Convert a timestamp using tz_convert
- ts.tz_convert("Europe/Budapest")

• Operations involving timestamps from different time zones become UTC

12D. Koop, CSCI 680/490, Spring 2021

Shifting Time Series
• Data:

 [('2017-11-30', 48), ('2017-12-02', 45),
 ('2017-12-03', 44), ('2017-12-04', 48)]

• Compute day-to-day difference in high temperature:
- s - s.shift(1) (same as s.diff())
- 2017-11-30 NaN
2017-12-02 -3.0
2017-12-03 -1.0
2017-12-04 4.0

13D. Koop, CSCI 680/490, Spring 2021

- s - s.shift(1, 'd')

- 2017-11-30 NaN
2017-12-01 NaN
2017-12-02 NaN
2017-12-03 -1.0
2017-12-04 4.0
2017-12-05 NaN

Resampling
• Could be
- downsample: higher frequency to lower frequency
- upsample: lower frequency to higher frequency
- neither: e.g. Wednesdays to Fridays

• resample method: e.g. ts.resample('M').mean()

14

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 680/490, Spring 2021

2000-01 -0.165893
2000-02 0.078606
2000-03 0.223811
2000-04 -0.063643
Freq: M, dtype: float64

resample is a flexible and high-performance method that can be used to process very
large time series. The examples in the following sections illustrate its semantics and
use. Table 11-5 summarizes some of its options.

Table 11-5. Resample method arguments
Argument Description
freq String or DateO!set indicating desired resampled frequency (e.g., ‘M', ’5min', or Second(15))
axis Axis to resample on; default axis=0
fill_method How to interpolate when upsampling, as in 'ffill' or 'bfill'; by default does no interpolation
closed In downsampling, which end of each interval is closed (inclusive), 'right' or 'left'
label In downsampling, how to label the aggregated result, with the 'right' or 'left' bin edge (e.g., the

9:30 to 9:35 "ve-minute interval could be labeled 9:30 or 9:35)
loffset Time adjustment to the bin labels, such as '-1s' / Second(-1) to shift the aggregate labels one

second earlier
limit When forward or backward "lling, the maximum number of periods to "ll
kind Aggregate to periods ('period') or timestamps ('timestamp'); defaults to the type of index the

time series has
convention When resampling periods, the convention ('start' or 'end') for converting the low-frequency period

to high frequency; defaults to 'end'

Downsampling
Aggregating data to a regular, lower frequency is a pretty normal time series task. The
data you’re aggregating doesn’t need to be fixed frequently; the desired frequency
defines bin edges that are used to slice the time series into pieces to aggregate. For
example, to convert to monthly, 'M' or 'BM', you need to chop up the data into one-
month intervals. Each interval is said to be half-open; a data point can only belong to
one interval, and the union of the intervals must make up the whole time frame.
There are a couple things to think about when using resample to downsample data:

• Which side of each interval is closed
• How to label each aggregated bin, either with the start of the interval or the end

To illustrate, let’s look at some one-minute data:
In [213]: rng = pd.date_range('2000-01-01', periods=12, freq='T')

In [214]: ts = pd.Series(np.arange(12), index=rng)

11.6 Resampling and Frequency Conversion | 349

Reading Critique
• Read VisTrails and Reproducibility paper
• Write critique as before
• Due Monday before class

15D. Koop, CSCI 680/490, Spring 2021

Assignment 5
• Four parts
- Loading Data
- Spatial Analysis
- Graph Analysis
- Temporal Analysis (more to be filled in)

• Due at the end of the semester (April 22, 2021)
• Start now!

16D. Koop, CSCI 680/490, Spring 2021

http://faculty.cs.niu.edu/~dakoop/cs680-2021sp/assignment5.html

17

geopandas and neo4j

D. Koop, CSCI 680/490, Spring 2021

Rolling Window Calculations

18D. Koop, CSCI 680/490, Spring 2021

12 8 7 4 9 13 4 11 3 8

Rolling Window Calculations

18D. Koop, CSCI 680/490, Spring 2021

12 8 7 4 9 13 4 11 3 8

7.8

Rolling Window Calculations

18D. Koop, CSCI 680/490, Spring 2021

12 8 7 4 9 13 4 11 3 8

7.8

Rolling Window Calculations

18D. Koop, CSCI 680/490, Spring 2021

12 8 7 4 9 13 4 11 3 8

7.8 7.0

Rolling Window Calculations

18D. Koop, CSCI 680/490, Spring 2021

12 8 7 4 9 13 4 11 3 8

7.8 7.0

Rolling Window Calculations

18D. Koop, CSCI 680/490, Spring 2021

12 8 7 4 9 13 4 11 3 8

7.8 7.0 8.3

Window Functions
• Idea: want to aggregate over a window of time, calculate the answer, and

then slide that window ahead. Repeat.
• rolling: smooth out data
• Specify the window size in rolling, then an aggregation method
• Result is set to the right edge of window (change with center=True)
• Example:

- df.rolling('180D').mean()

- df.rolling('90D').sum()

19D. Koop, CSCI 680/490, Spring 2021

Interpolation
• Fill in the missing values with computed best estimates using various types of

algorithms
• Apply after resample

20D. Koop, CSCI 680/490, Spring 2021

Sales Data by Month

21D. Koop, CSCI 680/490, Spring 2021

Resampled Sales Data (ffill)

22D. Koop, CSCI 680/490, Spring 2021

Resampled with Linear Interpolation (Default)

23D. Koop, CSCI 680/490, Spring 2021

Resampled with Cubic Interpolation

24D. Koop, CSCI 680/490, Spring 2021

Piecewise Cubic Hermite Interpolating Polynomial

25D. Koop, CSCI 680/490, Spring 2021

90-Day Rolling Window (Mean)

26D. Koop, CSCI 680/490, Spring 2021

180-Day Rolling Window (Mean)

27D. Koop, CSCI 680/490, Spring 2021

28

Provenance

D. Koop, CSCI 680/490, Spring 2021

29

What actually happened in a
computational experiment?

D. Koop, CSCI 680/490, Spring 2021

Provenance in Art
Rembrandt van Rijn
Dutch, 1606 - 1669

Self-Portrait, 1659
oil on canvas

Andrew W. Mellon Collection

1937.1.72

Provenance

George, 3rd Duke of Montagu and 4th Earl of Cardigan [d. 1790], by 1767;[1] by inheritance to his daughter, Lady
Elizabeth, wife of Henry, 3rd Duke of Buccleuch of Montagu House, London; John Charles, 7th Duke of Buccleuch;
(P. & D. Colnaghi & Co., New York, 1928); (M. Knoedler & Co., New York); sold January 1929 to Andrew W. Mellon,
Pittsburgh and Washington, D.C.; deeded 28 December 1934 to The A.W. Mellon Educational and Charitable Trust,
Pittsburgh; gift 1937 to NGA.

[1] This early provenance is established by presence of a mezzotint after the portrait by R. Earlom (1743-1822),
dated 1767. See John Charrington, A Catalogue of the Mezzotints After, or Said to Be After, Rembrandt, Cambridge,
1923, no. 49.

Associated Names
• Buccleuch, Henry, 3rd Duke of

• Buccleuch, John Charles, 7th Duke of

• Colnaghi & Co., Ltd., P. & D.

• Knoedler & Company, M.

• Mellon, Andrew W.

• Mellon Educational and Charitable Trust, The A.W.

• Montagu, and 4th Earl of Cardigan, George, 3rd Duke of

30

[National Gallery of Art]
D. Koop, CSCI 680/490, Spring 2021

http://www.nga.gov/cgi-bin/tsearch?ownerid=22007
http://www.nga.gov/cgi-bin/tsearch?ownerid=22008
http://www.nga.gov/cgi-bin/tsearch?ownerid=703
http://www.nga.gov/cgi-bin/tsearch?ownerid=789
http://www.nga.gov/cgi-bin/tsearch?ownerid=8416
http://www.nga.gov/cgi-bin/tsearch?ownerid=427
http://www.nga.gov/cgi-bin/tsearch?ownerid=22006

Provenance in Art
Rembrandt van Rijn
Dutch, 1606 - 1669

Self-Portrait, 1659
oil on canvas

Andrew W. Mellon Collection

1937.1.72

Provenance

George, 3rd Duke of Montagu and 4th Earl of Cardigan [d. 1790], by 1767;[1] by inheritance to his daughter, Lady
Elizabeth, wife of Henry, 3rd Duke of Buccleuch of Montagu House, London; John Charles, 7th Duke of Buccleuch;
(P. & D. Colnaghi & Co., New York, 1928); (M. Knoedler & Co., New York); sold January 1929 to Andrew W. Mellon,
Pittsburgh and Washington, D.C.; deeded 28 December 1934 to The A.W. Mellon Educational and Charitable Trust,
Pittsburgh; gift 1937 to NGA.

[1] This early provenance is established by presence of a mezzotint after the portrait by R. Earlom (1743-1822),
dated 1767. See John Charrington, A Catalogue of the Mezzotints After, or Said to Be After, Rembrandt, Cambridge,
1923, no. 49.

Associated Names
• Buccleuch, Henry, 3rd Duke of

• Buccleuch, John Charles, 7th Duke of

• Colnaghi & Co., Ltd., P. & D.

• Knoedler & Company, M.

• Mellon, Andrew W.

• Mellon Educational and Charitable Trust, The A.W.

• Montagu, and 4th Earl of Cardigan, George, 3rd Duke of

30

[National Gallery of Art]
D. Koop, CSCI 680/490, Spring 2021

http://www.nga.gov/cgi-bin/tsearch?ownerid=22007
http://www.nga.gov/cgi-bin/tsearch?ownerid=22008
http://www.nga.gov/cgi-bin/tsearch?ownerid=703
http://www.nga.gov/cgi-bin/tsearch?ownerid=789
http://www.nga.gov/cgi-bin/tsearch?ownerid=8416
http://www.nga.gov/cgi-bin/tsearch?ownerid=427
http://www.nga.gov/cgi-bin/tsearch?ownerid=22006

Provenance in Science
• Provenance: the lineage of data, a

computation, or a visualization
• Provenance is as (or more) important as

the result!
• Old solution:
- Lab notebooks

• New problems:
- Large volumes of data
- Complex analyses
- Writing notes doesn’t scale

31

[DNA Recombination, Lederberg]
D. Koop, CSCI 680/490, Spring 2021

Provenance in Science
• Provenance: the lineage of data, a

computation, or a visualization
• Provenance is as (or more) important as

the result!
• Old solution:
- Lab notebooks

• New problems:
- Large volumes of data
- Complex analyses
- Writing notes doesn’t scale

31

[DNA Recombination, Lederberg]
D. Koop, CSCI 680/490, Spring 2021

Date

Annotations

Observed Data

Provenance in Computational Science

32D. Koop, CSCI 680/490, Spring 2021

Fig. 7: Using the blog to document processes: A visualization expert
created a series of blog posts to explain the problems found when gen-
erating the visualizations for CMOP.

ACKNOWLEDGMENTS

Our research has been funded by the National Science Foun-
dation (grants IIS-0905385, IIS-0746500, ATM-0835821, IIS-
0844546, CNS-0751152, IIS-0713637, OCE-0424602, IIS-0534628,
CNS-0514485, IIS-0513692, CNS-0524096, CCF-0401498, OISE-
0405402, CCF-0528201, CNS-0551724), the Department of En-
ergy SciDAC (VACET and SDM centers), and IBM Faculty Awards
(2005, 2006, 2007, and 2008). E. Santos is partially supported by a
CAPES/Fulbright fellowship.

REFERENCES

[1] L. Bavoil, S. Callahan, P. Crossno, J. Freire, C. Scheidegger, C. Silva, and
H. Vo. VisTrails: Enabling Interactive Multiple-View Visualizations. In
IEEE Visualization 2005, pages 135–142, 2005.

[2] S. P. Callahan, J. Freire, C. E. Scheidegger, C. T. Silva, and H. T. Vo.
Towards provenance-enabling paraview. pages 120–127, 2008.

[3] Chemical blogspace. http://cb.openmolecules.net/.
[4] NSF Center for Coastal Margin Observation and Prediction (CMOP).

http://www.stccmop.org.
[5] S. B. Davidson and J. Freire. Provenance and scientific workflows: chal-

lenges and opportunities. In Proceedings of SIGMOD, pages 1345–1350,
2008.

[6] R. T. Fielding. Architectural Styles and the Design of Network-based Soft-
ware Architectures. PhD thesis, University of California, Irvine, 2000.

[7] S. Fomel and J. Claerbout. Guest editors’ introduction: Reproducible
research. Computing in Science Engineering, 11(1):5 –7, jan.-feb. 2009.

Fig. 8: Visualizing a binary star system simulation. This
is an image that was generated by embedding a workflow di-
rectly in the text. The original workflow is available at
http://www.crowdlabs.org/vistrails/workflows/details/119/.

[8] J. Freire, D. Koop, E. Santos, and C. T. Silva. Provenance for computa-
tional tasks: A survey. Computing in Science & Engineering, 10(3):11–
21, May-June 2008.

[9] J. Freire, C. Silva, S. Callahan, E. Santos, C. Scheidegger, and H. Vo.
Managing rapidly-evolving scientific workflows. In International Prove-
nance and Annotation Workshop (IPAW), LNCS 4145, pages 10–18.
Springer Verlag, 2006.

[10] R. Hoffmann. A wiki for the life sciences where authorship matters. Na-
ture Genetics, 40(9):1047–1051, 2008.

[11] IBM. OpenDX. http://www.research.ibm.com/dx.
[12] Kitware. Paraview. http://www.paraview.org.
[13] Kitware. The visualization toolkit. http://www.vtk.org.
[14] Many Eyes Wikified. http://wikified.researchlabs.ibm.com.
[15] M. McKeon. Harnessing the Web Information Ecosystem with Wiki-

based Visualization Dashboards. IEEE Transactions on Visualization and
Computer Graphics, 15(6):1081–1088, 2009.

[16] A. R. Pico, T. Kelder, M. P. van Iersel, K. Hanspers, B. R. Conklin, and
C. Evelo. WikiPathways: Pathway editing for the people. PLoS Biology,
6(7), 2008.

[17] D. D. Roure, C. Goble, and R. Stevens. The design and realisation of
the virtual research environment for social sharing of workflows. Future
Generation Computer Systems, 25(5):561 – 567, 2009.

[18] E. Santos, L. Lins, J. Ahrens, J. Freire, and C. Silva. Vismashup: Stream-
lining the creation of custom visualization applications. IEEE Transac-
tions on Visualization and Computer Graphics, 15(6):1539–1546, 2009.

[19] Swivel. http://www.swivel.com.
[20] J. Tohline and E. Santos. Visualizing a Journal that Serves the Computa-

tional Sciences Community. Computing in Science & Engineering, 12(3),
2010. To appear.

[21] J. E. Tohline. Scientific Visualization: A Necessary Chore. Computing
in Science & Engineering, 9(6):76–81, 2007.

[22] C. Upson, J. Thomas Faulhaber, D. Kamins, D. H. Laidlaw, D. Schlegel,
J. Vroom, R. Gurwitz, and A. van Dam. The Application Visualiza-
tion System: A Computational Environment for Scientific Visualization.
IEEE Computer Graphics and Applications, 9(4):30–42, 1989.

[23] F. B. Viegas, M. Wattenberg, F. van Ham, J. Kriss, and M. McKeon.
ManyEyes: A site for visualization at internet scale. IEEE Transactions
on Visualization and Computer Graphics, 13(6):1121–1128, 2007.

[24] VisIt Visualization Tool. https://wci.llnl.gov/codes/visit.
[25] The VisTrails Project. http://www.vistrails.org.

DATA DATA

Data Management

Computation

Visualization

Publishing

Provenance

Evolution of Publication
• Publish paper
• Publish code
• Publish computational experiments/tests
• Publish provenance (what actually happens during your runs)

33D. Koop, CSCI 680/490, Spring 2021

Provenance-Rich Publication

34

[Freedman et al., 2012]
D. Koop, CSCI 680/490, Spring 2021

5

0 0.1 0.2 0.3 0.4 0.5
inverse system size 1/L

0 0

0.08 0.08

0.16 0.16

0.24 0.24

0.32 0.32

0.4 0.4

0.48 0.48

0.56 0.56

fi
n

it
e-

si
ze

 g
ap

 ∆

(L
)

/
J p

width W = 2
width W = 3

a) honeycomb

0 0.05 0.1 0.15 0.2 0.25
inverse system size 1/L

0 0

0.08 0.08

0.16 0.16

0.24 0.24

0.32 0.32

fi
n

it
e-

si
ze

 g
ap

 ∆

(L
)

/
J p

b) ladder

FIG. 4. (color online) Scaling of the finite-size gap �(L) (in units
of Jp) with linear system size for the Hermitian projector model
H

herm on two different lattice geometries: the honeycomb lattice
with L⇥W plaquettes (top panel) and 2-leg ladder systems of length
L (bottom panel).

↵

�

�

�

a b

cd

FIG. 5. Edge labeling for a plaquette of the ladder lattice.

The quasi-one dimensional geometry allows to numerically
diagonalize systems up to linear system size L = 13. The
finite-size gap of the Hermitian model Hherm is again found
to vanish in the thermodynamic limit, showing a linear de-
pendence on the inverse system size as shown in Fig. 4b). To
further demonstrate the fragility of these gapless ground states
against local perturbations we add a string tension18

Hpert = Jr

X

rungs r

�l(r),⌧ (13)

favoring the trivial label l(r) = 1 on each rung of the ladder.
We parameterize the couplings of the competing plaquette and

rung terms as

Jr = sin ✓ and Jp = cos ✓ ,

where ✓ = 0 corresponds to the unperturbed Hamiltonian.
The phase diagrams as a function of ✓ have been mapped out
for both the DFib model18 and the DYL model,4 respectively.

Directly probing the topological order in the DYL model
and its Hermitian counterpart we show the lifting of their re-
spective ground-state degeneracies in Figs. 6 and 7 when in-
cluding a string tension. We find a striking qualitative dif-
ference between these two models: For the DYL model the
lifting of the ground-state degeneracy is exponentially sup-
pressed with increasing system size – characteristic of a topo-
logical phase. For the Hermitian model, on the other hand, we
find a splitting of the ground-state degeneracy proportional to
JrL. The linear increase with both system size and coupling
can be easily understood by the different matrix elements of
the string tension term on a single rung for the two degener-
ate ground-states of the unperturbed model. Plotting the low-
energy spectrum in Fig. 7 clearly shows that the two-fold de-
generacy of the unperturbed Hermitian model arises from a
(fine-tuned) level crossing. Similar behavior is found in the
honeycomb lattice model (not shown).

Considering the model in a wider range of couplings, as
shown in Fig. 8, further striking differences between the non-
Hermitian DYL model and its Hermitian counterpart are re-
vealed: The DYL model exhibits two extended topological
phases around ✓ = 0 and ✓ = ⇡/2 (with two and four de-
generate ground states, respectively), which are separated by
a conformal critical point at precisely ✓c = ⇡/4 as discussed
extensively in Refs. 4 and 18. In contrast, the Hermitian model
Hherm exhibits no topological phase anywhere, and the inter-
mediate coupling ✓ = ⇡/4 does not stand out.

-0.1 -0.05 0 0.05 0.1
coupling parameter θ / π

0 0

1 1

2 2

3 3

g
ro

u
n
d
-s

ta
te

 d
eg

en
er

ac
ry

 s
p
li

tt
in

g

 (

E
1
-E

0
)

x
 1

0
0
0

L = 4
L = 6
L = 8
L = 10

non-Hermitian DYL model

FIG. 6. (color online) Ground-state degeneracy splitting of the non-
Hermitian doubled Yang-Lee model when perturbed by a string ten-
sion (✓ 6= 0).

Galois Conjugates of Topological Phases

M. H. Freedman,1 J. Gukelberger,2 M. B. Hastings,1 S. Trebst,1 M. Troyer,2 and Z. Wang1

1Microsoft Research, Station Q, University of California, Santa Barbara, CA 93106, USA
2Theoretische Physik, ETH Zurich, 8093 Zurich, Switzerland

(Dated: July 6, 2011)

Galois conjugation relates unitary conformal field theories (CFTs) and topological quantum field theories
(TQFTs) to their non-unitary counterparts. Here we investigate Galois conjugates of quantum double models,
such as the Levin-Wen model. While these Galois conjugated Hamiltonians are typically non-Hermitian, we find
that their ground state wave functions still obey a generalized version of the usual code property (local operators
do not act on the ground state manifold) and hence enjoy a generalized topological protection. The key question
addressed in this paper is whether such non-unitary topological phases can also appear as the ground states of
Hermitian Hamiltonians. Specific attempts at constructing Hermitian Hamiltonians with these ground states
lead to a loss of the code property and topological protection of the degenerate ground states. Beyond this we
rigorously prove that no local change of basis (IV.5) can transform the ground states of the Galois conjugated
doubled Fibonacci theory into the ground states of a topological model whose Hermitian Hamiltonian satisfies
Lieb-Robinson bounds. These include all gapped local or quasi-local Hamiltonians. A similar statement holds
for many other non-unitary TQFTs. One consequence is that the “Gaffnian” wave function cannot be the ground
state of a gapped fractional quantum Hall state.

PACS numbers: 05.30.Pr, 73.43.-f

I. INTRODUCTION

Galois conjugation, by definition, replaces a root of a poly-
nomial by another one with identical algebraic properties. For
example, i and �i are Galois conjugate (consider z2 + 1 = 0)
as are � = 1+

p
5

2 and � 1
� = 1�

p
5

2 (consider z2 � z� 1 = 0),
as well as 3

p
2, 3

p
2e2⇡i/3, and 3

p
2e�2⇡i/3 (consider z3 � 2 =

0). In physics Galois conjugation can be used to convert non-
unitary conformal field theories (CFTs) to unitary ones, and
vice versa. One famous example is the non-unitary Yang-Lee
CFT, which is Galois conjugate to the Fibonacci CFT (G2)1,
the even (or integer-spin) subset of su(2)3.

In statistical mechanics non-unitary conformal field theo-
ries have a venerable history.1,2 However, it has remained less
clear if there exist physical situations in which non-unitary
models can provide a useful description of the low energy
physics of a quantum mechanical system – after all, Galois
conjugation typically destroys the Hermitian property of the
Hamiltonian. Some non-Hermitian Hamiltonians, which sur-
prisingly have totally real spectrum, have been found to arise
in the study of PT -invariant one-particle systems3 and in
some Galois conjugate many-body systems4 and might be
seen to open the door a crack to the physical use of such
models. Another situation, which has recently attracted some
interest, is the question whether non-unitary models can de-
scribe 1D edge states of certain 2D bulk states (the edge holo-
graphic for the bulk). In particular, there is currently a discus-
sion on whether or not the “Gaffnian” wave function could be
the ground state for a gapped fractional quantum Hall (FQH)
state albeit with a non-unitary “Yang-Lee” CFT describing its
edge.5–7 We conclude that this is not possible, further restrict-
ing the possible scope of non-unitary models in quantum me-
chanics.

We reach this conclusion quite indirectly. Our main thrust
is the investigation of Galois conjugation in the simplest non-

Abelian Levin-Wen model.8 This model, which is also called
“DFib”, is a topological quantum field theory (TQFT) whose
states are string-nets on a surface labeled by either a triv-
ial or “Fibonacci” anyon. From this starting point, we give
a rigorous argument that the “Gaffnian” ground state cannot
be locally conjugated to the ground state of any topological
phase, within a Hermitian model satisfying Lieb-Robinson
(LR) bounds9 (which includes but is not limited to gapped
local and quasi-local Hamiltonians).

Lieb-Robinson bounds are a technical tool for local lattice
models. In relativistically invariant field theories, the speed of
light is a strict upper bound to the velocity of propagation. In
lattice theories, the LR bounds provide a similar upper bound
by a velocity called the LR velocity, but in contrast to the rel-
ativistic case there can be some exponentially small “leakage”
outside the light-cone in the lattice case. The Lieb-Robinson
bounds are a way of bounding the leakage outside the light-
cone. The LR velocity is set by microscopic details of the
Hamiltonian, such as the interaction strength and range. Com-
bining the LR bounds with the spectral gap enables us to prove
locality of various correlation and response functions. We will
call a Hamiltonian a Lieb-Robinson Hamiltonian if it satisfies
LR bounds.

We work primarily with a single example, but it should be
clear that the concept of Galois conjugation can be widely ap-
plied to TQFTs. The essential idea is to retain the particle
types and fusion rules of a unitary theory but when one comes
to writing down the algebraic form of the F -matrices (also
called 6j symbols), the entries are now Galois conjugated. A
slight complication, which is actually an asset, is that writing
an F -matrix requires a gauge choice and the most convenient
choice may differ before and after Galois conjugation.

Our method is not restricted to Galois conjugated DFibG

and its factors FibG and FibG , but can be generalized to in-
finitely many non-unitary TQFTs, showing that they will not
arise as low energy models for a gapped 2D quantum mechan-

ar
X

iv
:1

10
6.

32
67

v3
 [

co
nd

-m
at

.st
r-

el
]

5
Ju

l 2
01

1

Benefits of Provenance-Rich Publications
• Produce more knowledge–not just text
• Allow scientists to stand on the shoulders of giants (and their own)
• Science can move faster!
• Higher-quality publications
• Authors will be more careful
• Many eyes to check results
• Describe more of the discovery process: people only describe successes,

can we learn from mistakes?
• Expose users to different techniques and tools: expedite their training; and

potentially reduce their time to insight

35D. Koop, CSCI 680/490, Spring 2021

Provenance Definitions
• Dictionary: "the source or origin of an object; its history and pedigree; a

record of the ultimate derivation and passage of an item through its various
owners."

• Focus on causality—the sequence of steps that detail how a result was
generated and/or derivation—what data a result depended on

• Provenance itself is data, this list of steps along with metadata for each step:
when it occurred, who initiated it, notes about it

• Can be used to preserve information about an experiment and to answer
many questions

36D. Koop, CSCI 680/490, Spring 2021

Workflows
• Abstract computation
• Computational modules connected through

input and output ports
• Data flows along the connections

37D. Koop, CSCI 680/490, Spring 2021

vtkActor

VTKCell

vtkRenderer

vtkContourFilter

vtkStructuredPointsReader

vtkDataSetMapper

vtkCamera

DATA

IMAGE

������������

����������

��������������������������

��������������

�������������

�������������������

��������������

�������������

�������������������

��������������

�����������������

������������

��������������

�����������

�����������

��������������

���������

��������������

��������������

��������

����������

��������������

����

�������������� �������������������

����

�������������� �������������������

����

�������������� �������������������

����

�������������� �������������������

���� ����

�������������� �������������������

�������������� �������������������

����

�������������� �������������������

Provenance Graph

38

������������

����������

��������������������������

��������������

�������������

�������������������

��������������

�������������

�������������������

��������������

�����������������

������������

��������������

�����������

�����������

��������������

���������

��������������

��������������

��������

����������

��������������

����

�������������� �������������������

����

�������������� �������������������

����

�������������� �������������������

����

�������������� �������������������

���� ����

�������������� �������������������

�������������� �������������������

����

�������������� �������������������

D. Koop, CSCI 680/490, Spring 2021

Provenance Questions
• What process led to the output image?
• What input datasets contributed to the

output image?
• What workflows create an isosurface with

isovalue 57?
• Who create this data product?
• When was this data file created?
• Why was vtkCamera used?
• Why do two output images differ?

39D. Koop, CSCI 680/490, Spring 2021

vtkActor

VTKCell

vtkRenderer

vtkContourFilter

vtkStructuredPointsReader

vtkDataSetMapper

vtkCamera

DATA

IMAGE

Questions about Provenance	
• How does one capture provenance?
• How does one manage provenance for later use?
• How do we answer questions about our provenance?
• How do we use provenance for good?

40D. Koop, CSCI 680/490, Spring 2021

Provenance Management
• Provenance can be generated from tasks/programs/scripts/etc.
• Properties of provenance are related to the computational model
- a specific application with a graphical interface
- a script that automates the use of several command-line tools
- a scientific workflow that combines several tools

41D. Koop, CSCI 680/490, Spring 2021

Provenance & Causality
• Knowing what data/steps influenced other data/steps is important!
• Data dependencies: this output file depended on this input file
• Data-process dependencies: this output figure depended on these

processes
• Causality can often be represented as a graph where connections represent

dependencies

42D. Koop, CSCI 680/490, Spring 2021

User-defined provenance
• Goal: capture lots of provenance automatically based on what steps are

executed
• Problem: not everything can be captured automatically
• Annotations offer ability to keep notes about processes
• Users might also specify known causal links that cannot be automatically

determined (e.g. a step depends on three system files that were not specified
as inputs in the workflow)

43D. Koop, CSCI 680/490, Spring 2021

Provenance Management
• What is needed to capture, store, and use provenance?
1.Capture mechanism
2.Model for representing provenance
3.Tools to store, query, and analyze provenance

44D. Koop, CSCI 680/490, Spring 2021

Provenance Capture Mechanisms
• Workflow-based: Since workflow execution is controlled, keep track of all

the workflow modules, parameters, etc. as they are executed
• Process-based: Each process is required to write out its own provenance

information (not centralized like workflow-based)
• OS-based: The OS or filesystem is modified so that any activity it does it

monitored and the provenance subsystem organizes it
• Tradeoffs:
- Workflow- and process-based have better abstraction
- OS-based requires minimal user effort once installed and can capture

"hidden dependencies"

45D. Koop, CSCI 680/490, Spring 2021

Provenance Granularity
• How detailed should our provenance be?
- Coarse: "This program ran with inputs x, y, z and produced outputs a, b, c"
- Fine: "Input x was read into register 4, input y was read in register 5, add

operation was performed using registers 4 and 5, …"
• More queries are possible with fine-grained provenance, but…
- Storage concerns
- Performance concerns

• Abstraction can help here

46D. Koop, CSCI 680/490, Spring 2021

vtkActor

VTKCell

vtkRenderer

vtkContourFilter

vtkStructuredPointsReader

vtkDataSetMapper

vtkCamera

Abstraction: Script, Workflow, Abstract Workflow
data = vtk.vtkStructuredPointsReader()
data.SetFileName(../examples/data/head.120.vtk)

contour = vtk.vtkContourFilter()
contour.SetInput(data.GetOutput())
contour.SetValue(0, 67)

mapper = vtk.vtkPolyDataMapper()
mapper.SetInput(contour.GetOutput())
mapper.ScalarVisibilityOff()

actor = vtk.vtkActor()
actor.SetMapper(mapper)

cam = vtk.vtkCamera()
cam.SetViewUp(0,0,-1)
cam.SetPosition(745,-453,369)
cam.SetFocalPoint(135,135,150)
cam.ComputeViewPlaneNormal()

ren = vtk.vtkRenderer()
ren.AddActor(actor)
ren.SetActiveCamera(cam)
ren.ResetCamera()
renwin = vtk.vtkRenderWindow()
renwin.AddRenderer(ren)

style = vtk.vtkInteractorStyleTrackballCamera()
iren = vtk.vtkRenderWindowInteractor()
iren.SetRenderWindow(renwin)
iren.SetInteractorStyle(style)
iren.Initialize()
iren.Start()

47D. Koop, CSCI 680/490, Spring 2021

ViewUp (0,0,-1)
Position (745,-453,369)

FocalPoint (-135,135,150)

FileName .../head.120.vtk

Value (0,67)

vtkActor

VTKCell

vtkRenderer

vtkContourFilter

vtkStructuredPointsReader

vtkDataSetMapper

vtkCamera

Abstraction: Script, Workflow, Abstract Workflow
data = vtk.vtkStructuredPointsReader()
data.SetFileName(../examples/data/head.120.vtk)

contour = vtk.vtkContourFilter()
contour.SetInput(data.GetOutput())
contour.SetValue(0, 67)

mapper = vtk.vtkPolyDataMapper()
mapper.SetInput(contour.GetOutput())
mapper.ScalarVisibilityOff()

actor = vtk.vtkActor()
actor.SetMapper(mapper)

cam = vtk.vtkCamera()
cam.SetViewUp(0,0,-1)
cam.SetPosition(745,-453,369)
cam.SetFocalPoint(135,135,150)
cam.ComputeViewPlaneNormal()

ren = vtk.vtkRenderer()
ren.AddActor(actor)
ren.SetActiveCamera(cam)
ren.ResetCamera()
renwin = vtk.vtkRenderWindow()
renwin.AddRenderer(ren)

style = vtk.vtkInteractorStyleTrackballCamera()
iren = vtk.vtkRenderWindowInteractor()
iren.SetRenderWindow(renwin)
iren.SetInteractorStyle(style)
iren.Initialize()
iren.Start()

47D. Koop, CSCI 680/490, Spring 2021

ViewUp (0,0,-1)
Position (745,-453,369)

FocalPoint (-135,135,150)

FileName .../head.120.vtk

Value (0,67)

Read File

Extract
Isosurface

Render

Visualization

������������

����������

��������������������������

��������������

�������������

�������������������

��������������

�������������

�������������������

��������������

�����������������

������������

��������������

�����������

�����������

��������������

���������

��������������

��������������

��������

����������

��������������

����

�������������� �������������������

����

�������������� �������������������

����

�������������� �������������������

����

�������������� �������������������

���� ����

�������������� �������������������

�������������� �������������������

����

�������������� �������������������

Abstraction: Provenance Views

48

������������

����������

�����������

��������������

�������������

��������������������

��������������

��������

����������������������

��������������

����

�������������� �������������������

����

�������������� �������������������

����

�������������� �������������������

D. Koop, CSCI 680/490, Spring 2021

Abstract

