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Split-Apply-Combine
• Coined by H. Wickham, 2011 
• Similar to Map (split+apply) Reduce (combine) paradigm 
• The Pattern: 
1. Split the data by some grouping variable 
2. Apply some function to each group independently 
3. Combine the data into some output dataset 

• The apply step is usually one of : 
- Aggregate 
- Transform 
- Filter
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Aggregation of time series data, a special use case of groupby, is referred
to as resampling in this book and will receive separate treatment in
Chapter 10.

GroupBy Mechanics
Hadley Wickham, an author of many popular packages for the R programming lan-
guage, coined the term split-apply-combine for talking about group operations, and I
think that’s a good description of the process. In the first stage of the process, data
contained in a pandas object, whether a Series, DataFrame, or otherwise, is split into
groups based on one or more keys that you provide. The splitting is performed on a
particular axis of an object. For example, a DataFrame can be grouped on its rows
(axis=0) or its columns (axis=1). Once this is done, a function is applied to each group,
producing a new value. Finally, the results of all those function applications are com-
bined into a result object. The form of the resulting object will usually depend on what’s
being done to the data. See Figure 9-1 for a mockup of a simple group aggregation.

Figure 9-1. Illustration of a group aggregation

Each grouping key can take many forms, and the keys do not have to be all of the same
type:

• A list or array of values that is the same length as the axis being grouped

• A value indicating a column name in a DataFrame
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Split-Apply-Combine
• df.groupby('Island')[['Culmen Length (mm)',  
                      'Culmen Depth (mm)']].mean() 

• df.groupby('Island').agg({'Culmen Length (mm)': 'mean',  
                          'Culmen Depth (mm)': 'mean'}) 

• df.groupby('Island').agg( 
    cul_length=('Culmen Length (mm)', 'mean'), 
    cul_depth=('Culmen Depth (mm)', 'mean'))

4D. Koop, CSCI 680/490, Spring 2021



Transform Example
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12.2 Advanced GroupBy Use
While we’ve already discussed using the groupby method for Series and DataFrame in
depth in Chapter 10, there are some additional techniques that you may find of use.

Group Transforms and “Unwrapped” GroupBys
In Chapter 10 we looked at the apply method in grouped operations for performing
transformations. There is another built-in method called transform, which is similar
to apply but imposes more constraints on the kind of function you can use:

• It can produce a scalar value to be broadcast to the shape of the group
• It can produce an object of the same shape as the input group
• It must not mutate its input

Let’s consider a simple example for illustration:
In [75]: df = pd.DataFrame({'key': ['a', 'b', 'c'] * 4,
   ....:                    'value': np.arange(12.)})

In [76]: df
Out[76]: 
   key  value
0    a    0.0
1    b    1.0
2    c    2.0
3    a    3.0
4    b    4.0
5    c    5.0
6    a    6.0
7    b    7.0
8    c    8.0
9    a    9.0
10   b   10.0
11   c   11.0

Here are the group means by key:
In [77]: g = df.groupby('key').value

In [78]: g.mean()
Out[78]: 
key
a    4.5
b    5.5
c    6.5
Name: value, dtype: float64
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Suppose instead we wanted to produce a Series of the same shape as df['value'] but
with values replaced by the average grouped by 'key'. We can pass the function
lambda x: x.mean() to transform:

In [79]: g.transform(lambda x: x.mean())
Out[79]: 
0     4.5
1     5.5
2     6.5
3     4.5
4     5.5
5     6.5
6     4.5
7     5.5
8     6.5
9     4.5
10    5.5
11    6.5
Name: value, dtype: float64

For built-in aggregation functions, we can pass a string alias as with the GroupBy agg
method:

In [80]: g.transform('mean')
Out[80]: 
0     4.5
1     5.5
2     6.5
3     4.5
4     5.5
5     6.5
6     4.5
7     5.5
8     6.5
9     4.5
10    5.5
11    6.5
Name: value, dtype: float64

Like apply, transform works with functions that return Series, but the result must be
the same size as the input. For example, we can multiply each group by 2 using a
lambda function:

In [81]: g.transform(lambda x: x * 2)
Out[81]: 
0      0.0
1      2.0
2      4.0
3      6.0
4      8.0
5     10.0
6     12.0
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Crosstabs and Pivot Tables
• pd.crosstab([tips.time, tips.day], tips.smoker, 
margins=True) 

• or… tips.pivot_table('total_bill',index=['time', 'day'], 
columns=['smoker'], aggfunc='count', margins=True, 
fill_value=0)

6D. Koop, CSCI 680/490, Spring 2021

In [45]:

In [53]:

In [ ]:

Out[45]: smoker No Yes All

time day

Dinner

Fri 3 9 12

Sat 45 42 87

Sun 57 19 76

Thur 1 0 1

Lunch
Fri 1 6 7

Thur 44 17 61

All 151 93 244

Out[53]: smoker No Yes All

time day

Dinner

Fri 3.0 9.0 12.0

Sat 45.0 42.0 87.0

Sun 57.0 19.0 76.0

Thur 1.0 0.0 1.0

Lunch
Fri 1.0 6.0 7.0

Thur 44.0 17.0 61.0

All 151.0 93.0 244.0

pd.crosstab([tips.time, tips.day], tips.smoker, margins=True)

# can mimic crosstab using a pivot_table
# doesn't matter what the data (first argument) is
tips.pivot_table('total_bill',index=['time', 'day'], columns=['smoker'], 



What is time series data?
• Technically, it's normal tabular data with a timestamp attached 
• But… we have observations of the same values over time, usually in order 
• This allows more analysis 
• Example: Web site database that tracks the last time a user logged in 
- 1: Keep an attribute lastLogin that is overwritten every time user logs in 
- 2: Add a new row with login information every time the user logs in 
- Option 2 takes more storage, but we can also do a lot more analysis!

7D. Koop, CSCI 680/490, Spring 2021



Time Series Data
• Metrics: measurements at regular intervals 
• Events: measurements that are not gathered at regular intervals

8
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https://www.influxdata.com/what-is-time-series-data/


Time Series Databases
• Most time series data is heavy inserts, few updates 
• Also analysis tends to be on ordered data with trends, prediction, etc. 
• Can also consider stream processing 
• Focus on time series allows databases to specialize 
• Examples: 
- InfluxDB (noSQL) 
- TimescaleDB (SQL-based)

9D. Koop, CSCI 680/490, Spring 2021



Time Series Patterns
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Pandas Support for Datetime
• pd.to_datetime: 
- convenience method 
- can convert an entire column to datetime 

• Has a NaT to indicate a missing time value  
• Stores in a numpy.datetime64 format 
• pd.Timestamp: a wrapper for the datetime64 objects

11D. Koop, CSCI 680/490, Spring 2021



Python, Pandas, and Time Zones
• Time series in pandas are time zone native 
• The pytz module keeps track of all of the time zone parameters 
- even Daylight Savings Time 

• Localize a timestamp using tz_localize 
- ts = pd.Timestamp("1 Dec 2016 12:30 PM") 
ts = ts.tz_localize("US/Eastern") 

• Convert a timestamp using tz_convert 
- ts.tz_convert("Europe/Budapest") 

• Operations involving timestamps from different time zones become UTC

12D. Koop, CSCI 680/490, Spring 2021



Shifting Time Series
• Data: 

    [('2017-11-30', 48), ('2017-12-02', 45), 
   ('2017-12-03', 44), ('2017-12-04', 48)] 

• Compute day-to-day difference in high temperature: 
- s - s.shift(1) (same as s.diff()) 
- 2017-11-30    NaN 
2017-12-02   -3.0 
2017-12-03   -1.0 
2017-12-04    4.0

13D. Koop, CSCI 680/490, Spring 2021

- s - s.shift(1, 'd') 

- 2017-11-30    NaN 
2017-12-01    NaN 
2017-12-02    NaN 
2017-12-03   -1.0 
2017-12-04    4.0 
2017-12-05    NaN



Resampling
• Could be 
- downsample: higher frequency to lower frequency  
- upsample: lower frequency to higher frequency 
- neither: e.g. Wednesdays to Fridays 

• resample method: e.g. ts.resample('M').mean()

14
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2000-01   -0.165893
2000-02    0.078606
2000-03    0.223811
2000-04   -0.063643
Freq: M, dtype: float64

resample is a flexible and high-performance method that can be used to process very
large time series. The examples in the following sections illustrate its semantics and
use. Table 11-5 summarizes some of its options.

Table 11-5. Resample method arguments
Argument Description
freq String or DateO!set indicating desired resampled frequency (e.g., ‘M', ’5min', or Second(15))
axis Axis to resample on; default axis=0
fill_method How to interpolate when upsampling, as in 'ffill' or 'bfill'; by default does no interpolation
closed In downsampling, which end of each interval is closed (inclusive), 'right' or 'left'
label In downsampling, how to label the aggregated result, with the 'right' or 'left' bin edge (e.g., the

9:30 to 9:35 "ve-minute interval could be labeled 9:30 or 9:35)
loffset Time adjustment to the bin labels, such as '-1s' / Second(-1) to shift the aggregate labels one

second earlier
limit When forward or backward "lling, the maximum number of periods to "ll
kind Aggregate to periods ('period') or timestamps ('timestamp'); defaults to the type of index the

time series has
convention When resampling periods, the convention ('start' or 'end') for converting the low-frequency period

to high frequency; defaults to 'end'

Downsampling
Aggregating data to a regular, lower frequency is a pretty normal time series task. The
data you’re aggregating doesn’t need to be fixed frequently; the desired frequency
defines bin edges that are used to slice the time series into pieces to aggregate. For
example, to convert to monthly, 'M' or 'BM', you need to chop up the data into one-
month intervals. Each interval is said to be half-open; a data point can only belong to
one interval, and the union of the intervals must make up the whole time frame.
There are a couple things to think about when using resample to downsample data:

• Which side of each interval is closed
• How to label each aggregated bin, either with the start of the interval or the end

To illustrate, let’s look at some one-minute data:
In [213]: rng = pd.date_range('2000-01-01', periods=12, freq='T')

In [214]: ts = pd.Series(np.arange(12), index=rng)

11.6 Resampling and Frequency Conversion | 349



Reading Critique
• Read VisTrails and Reproducibility paper 
• Write critique as before 
• Due Monday before class
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Assignment 5
• Four parts 
- Loading Data 
- Spatial Analysis 
- Graph Analysis 
- Temporal Analysis (more to be filled in) 

• Due at the end of the semester (April 22, 2021) 
• Start now!

16D. Koop, CSCI 680/490, Spring 2021
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Rolling Window Calculations
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Window Functions
• Idea: want to aggregate over a window of time, calculate the answer, and 

then slide that window ahead. Repeat. 
• rolling: smooth out data 
• Specify the window size in rolling, then an aggregation method 
• Result is set to the right edge of window (change with center=True) 
• Example: 

- df.rolling('180D').mean() 

- df.rolling('90D').sum()

19D. Koop, CSCI 680/490, Spring 2021



Interpolation
• Fill in the missing values with computed best estimates using various types of 

algorithms 
• Apply after resample

20D. Koop, CSCI 680/490, Spring 2021



Sales Data by Month
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Resampled Sales Data (ffill)
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Resampled with Linear Interpolation (Default)
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Resampled with Cubic Interpolation
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Piecewise Cubic Hermite Interpolating Polynomial
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90-Day Rolling Window (Mean)
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180-Day Rolling Window (Mean)
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What actually happened in a  
computational experiment?
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Provenance in Art
Rembrandt van Rijn 
Dutch, 1606 - 1669

Self-Portrait, 1659 
oil on canvas

Andrew W. Mellon Collection

1937.1.72 


Provenance

George, 3rd Duke of Montagu and 4th Earl of Cardigan [d. 1790], by 1767;[1] by inheritance to his daughter, Lady 
Elizabeth, wife of Henry, 3rd Duke of Buccleuch of Montagu House, London; John Charles, 7th Duke of Buccleuch; 
(P. & D. Colnaghi & Co., New York, 1928); (M. Knoedler & Co., New York); sold January 1929 to Andrew W. Mellon, 
Pittsburgh and Washington, D.C.; deeded 28 December 1934 to The A.W. Mellon Educational and Charitable Trust, 
Pittsburgh; gift 1937 to NGA.


[1] This early provenance is established by presence of a mezzotint after the portrait by R. Earlom (1743-1822), 
dated 1767. See John Charrington, A Catalogue of the Mezzotints After, or Said to Be After, Rembrandt, Cambridge, 
1923, no. 49.


Associated Names 
• Buccleuch, Henry, 3rd Duke of

• Buccleuch, John Charles, 7th Duke of

• Colnaghi & Co., Ltd., P. & D.

• Knoedler & Company, M.

• Mellon, Andrew W.

• Mellon Educational and Charitable Trust, The A.W.
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Provenance in Art
Rembrandt van Rijn 
Dutch, 1606 - 1669

Self-Portrait, 1659 
oil on canvas

Andrew W. Mellon Collection

1937.1.72 


Provenance

George, 3rd Duke of Montagu and 4th Earl of Cardigan [d. 1790], by 1767;[1] by inheritance to his daughter, Lady 
Elizabeth, wife of Henry, 3rd Duke of Buccleuch of Montagu House, London; John Charles, 7th Duke of Buccleuch; 
(P. & D. Colnaghi & Co., New York, 1928); (M. Knoedler & Co., New York); sold January 1929 to Andrew W. Mellon, 
Pittsburgh and Washington, D.C.; deeded 28 December 1934 to The A.W. Mellon Educational and Charitable Trust, 
Pittsburgh; gift 1937 to NGA.


[1] This early provenance is established by presence of a mezzotint after the portrait by R. Earlom (1743-1822), 
dated 1767. See John Charrington, A Catalogue of the Mezzotints After, or Said to Be After, Rembrandt, Cambridge, 
1923, no. 49.
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• Buccleuch, Henry, 3rd Duke of

• Buccleuch, John Charles, 7th Duke of
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• Knoedler & Company, M.

• Mellon, Andrew W.

• Mellon Educational and Charitable Trust, The A.W.

• Montagu, and 4th Earl of Cardigan, George, 3rd Duke of
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Provenance in Science
• Provenance: the lineage of data, a 

computation, or a visualization 
• Provenance is as (or more) important as 

the result! 
• Old solution:  
- Lab notebooks 

• New problems: 
- Large volumes of data 
- Complex analyses 
- Writing notes doesn’t scale
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- Lab notebooks 
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- Large volumes of data 
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Provenance in Computational Science
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Fig. 7: Using the blog to document processes: A visualization expert
created a series of blog posts to explain the problems found when gen-
erating the visualizations for CMOP.
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Evolution of Publication
• Publish paper 
• Publish code 
• Publish computational experiments/tests 
• Publish provenance (what actually happens during your runs)
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Provenance-Rich Publication
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FIG. 4. (color online) Scaling of the finite-size gap �(L) (in units
of Jp) with linear system size for the Hermitian projector model
H

herm on two different lattice geometries: the honeycomb lattice
with L⇥W plaquettes (top panel) and 2-leg ladder systems of length
L (bottom panel).

↵

�

�

�

a b

cd

FIG. 5. Edge labeling for a plaquette of the ladder lattice.

The quasi-one dimensional geometry allows to numerically
diagonalize systems up to linear system size L = 13. The
finite-size gap of the Hermitian model Hherm is again found
to vanish in the thermodynamic limit, showing a linear de-
pendence on the inverse system size as shown in Fig. 4b). To
further demonstrate the fragility of these gapless ground states
against local perturbations we add a string tension18

Hpert = Jr

X

rungs r

�l(r),⌧ (13)

favoring the trivial label l(r) = 1 on each rung of the ladder.
We parameterize the couplings of the competing plaquette and

rung terms as

Jr = sin ✓ and Jp = cos ✓ ,

where ✓ = 0 corresponds to the unperturbed Hamiltonian.
The phase diagrams as a function of ✓ have been mapped out
for both the DFib model18 and the DYL model,4 respectively.

Directly probing the topological order in the DYL model
and its Hermitian counterpart we show the lifting of their re-
spective ground-state degeneracies in Figs. 6 and 7 when in-
cluding a string tension. We find a striking qualitative dif-
ference between these two models: For the DYL model the
lifting of the ground-state degeneracy is exponentially sup-
pressed with increasing system size – characteristic of a topo-
logical phase. For the Hermitian model, on the other hand, we
find a splitting of the ground-state degeneracy proportional to
JrL. The linear increase with both system size and coupling
can be easily understood by the different matrix elements of
the string tension term on a single rung for the two degener-
ate ground-states of the unperturbed model. Plotting the low-
energy spectrum in Fig. 7 clearly shows that the two-fold de-
generacy of the unperturbed Hermitian model arises from a
(fine-tuned) level crossing. Similar behavior is found in the
honeycomb lattice model (not shown).

Considering the model in a wider range of couplings, as
shown in Fig. 8, further striking differences between the non-
Hermitian DYL model and its Hermitian counterpart are re-
vealed: The DYL model exhibits two extended topological
phases around ✓ = 0 and ✓ = ⇡/2 (with two and four de-
generate ground states, respectively), which are separated by
a conformal critical point at precisely ✓c = ⇡/4 as discussed
extensively in Refs. 4 and 18. In contrast, the Hermitian model
Hherm exhibits no topological phase anywhere, and the inter-
mediate coupling ✓ = ⇡/4 does not stand out.
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FIG. 6. (color online) Ground-state degeneracy splitting of the non-
Hermitian doubled Yang-Lee model when perturbed by a string ten-
sion (✓ 6= 0).

Galois Conjugates of Topological Phases

M. H. Freedman,1 J. Gukelberger,2 M. B. Hastings,1 S. Trebst,1 M. Troyer,2 and Z. Wang1
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2Theoretische Physik, ETH Zurich, 8093 Zurich, Switzerland
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Galois conjugation relates unitary conformal field theories (CFTs) and topological quantum field theories
(TQFTs) to their non-unitary counterparts. Here we investigate Galois conjugates of quantum double models,
such as the Levin-Wen model. While these Galois conjugated Hamiltonians are typically non-Hermitian, we find
that their ground state wave functions still obey a generalized version of the usual code property (local operators
do not act on the ground state manifold) and hence enjoy a generalized topological protection. The key question
addressed in this paper is whether such non-unitary topological phases can also appear as the ground states of
Hermitian Hamiltonians. Specific attempts at constructing Hermitian Hamiltonians with these ground states
lead to a loss of the code property and topological protection of the degenerate ground states. Beyond this we
rigorously prove that no local change of basis (IV.5) can transform the ground states of the Galois conjugated
doubled Fibonacci theory into the ground states of a topological model whose Hermitian Hamiltonian satisfies
Lieb-Robinson bounds. These include all gapped local or quasi-local Hamiltonians. A similar statement holds
for many other non-unitary TQFTs. One consequence is that the “Gaffnian” wave function cannot be the ground
state of a gapped fractional quantum Hall state.

PACS numbers: 05.30.Pr, 73.43.-f

I. INTRODUCTION

Galois conjugation, by definition, replaces a root of a poly-
nomial by another one with identical algebraic properties. For
example, i and �i are Galois conjugate (consider z2 + 1 = 0)
as are � = 1+

p
5

2 and � 1
� = 1�

p
5

2 (consider z2 � z� 1 = 0),
as well as 3

p
2, 3

p
2e2⇡i/3, and 3

p
2e�2⇡i/3 (consider z3 � 2 =

0). In physics Galois conjugation can be used to convert non-
unitary conformal field theories (CFTs) to unitary ones, and
vice versa. One famous example is the non-unitary Yang-Lee
CFT, which is Galois conjugate to the Fibonacci CFT (G2)1,
the even (or integer-spin) subset of su(2)3.

In statistical mechanics non-unitary conformal field theo-
ries have a venerable history.1,2 However, it has remained less
clear if there exist physical situations in which non-unitary
models can provide a useful description of the low energy
physics of a quantum mechanical system – after all, Galois
conjugation typically destroys the Hermitian property of the
Hamiltonian. Some non-Hermitian Hamiltonians, which sur-
prisingly have totally real spectrum, have been found to arise
in the study of PT -invariant one-particle systems3 and in
some Galois conjugate many-body systems4 and might be
seen to open the door a crack to the physical use of such
models. Another situation, which has recently attracted some
interest, is the question whether non-unitary models can de-
scribe 1D edge states of certain 2D bulk states (the edge holo-
graphic for the bulk). In particular, there is currently a discus-
sion on whether or not the “Gaffnian” wave function could be
the ground state for a gapped fractional quantum Hall (FQH)
state albeit with a non-unitary “Yang-Lee” CFT describing its
edge.5–7 We conclude that this is not possible, further restrict-
ing the possible scope of non-unitary models in quantum me-
chanics.

We reach this conclusion quite indirectly. Our main thrust
is the investigation of Galois conjugation in the simplest non-

Abelian Levin-Wen model.8 This model, which is also called
“DFib”, is a topological quantum field theory (TQFT) whose
states are string-nets on a surface labeled by either a triv-
ial or “Fibonacci” anyon. From this starting point, we give
a rigorous argument that the “Gaffnian” ground state cannot
be locally conjugated to the ground state of any topological
phase, within a Hermitian model satisfying Lieb-Robinson
(LR) bounds9 (which includes but is not limited to gapped
local and quasi-local Hamiltonians).

Lieb-Robinson bounds are a technical tool for local lattice
models. In relativistically invariant field theories, the speed of
light is a strict upper bound to the velocity of propagation. In
lattice theories, the LR bounds provide a similar upper bound
by a velocity called the LR velocity, but in contrast to the rel-
ativistic case there can be some exponentially small “leakage”
outside the light-cone in the lattice case. The Lieb-Robinson
bounds are a way of bounding the leakage outside the light-
cone. The LR velocity is set by microscopic details of the
Hamiltonian, such as the interaction strength and range. Com-
bining the LR bounds with the spectral gap enables us to prove
locality of various correlation and response functions. We will
call a Hamiltonian a Lieb-Robinson Hamiltonian if it satisfies
LR bounds.

We work primarily with a single example, but it should be
clear that the concept of Galois conjugation can be widely ap-
plied to TQFTs. The essential idea is to retain the particle
types and fusion rules of a unitary theory but when one comes
to writing down the algebraic form of the F -matrices (also
called 6j symbols), the entries are now Galois conjugated. A
slight complication, which is actually an asset, is that writing
an F -matrix requires a gauge choice and the most convenient
choice may differ before and after Galois conjugation.

Our method is not restricted to Galois conjugated DFibG

and its factors FibG and FibG , but can be generalized to in-
finitely many non-unitary TQFTs, showing that they will not
arise as low energy models for a gapped 2D quantum mechan-
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Benefits of Provenance-Rich Publications
• Produce more knowledge–not just text 
• Allow scientists to stand on the shoulders of giants (and their own) 
• Science can move faster! 
• Higher-quality publications 
• Authors will be more careful 
• Many eyes to check results 
• Describe more of the discovery process: people only describe successes, 

can we learn from mistakes? 
• Expose users to different techniques and tools: expedite their training; and 

potentially reduce their time to insight
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Provenance Definitions
• Dictionary: "the source or origin of an object; its history and pedigree; a 

record of the ultimate derivation and passage of an item through its various 
owners." 

• Focus on causality—the sequence of steps that detail how a result was 
generated and/or derivation—what data a result depended on 

• Provenance itself is data, this list of steps along with metadata for each step: 
when it occurred, who initiated it, notes about it 

• Can be used to preserve information about an experiment and to answer 
many questions 

36D. Koop, CSCI 680/490, Spring 2021



Workflows
• Abstract computation 
• Computational modules connected through 

input and output ports 
• Data flows along the connections

37D. Koop, CSCI 680/490, Spring 2021
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Provenance Graph
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Provenance Questions
• What process led to the output image? 
• What input datasets contributed to the 

output image? 
• What workflows create an isosurface with 

isovalue 57? 
• Who create this data product? 
• When was this data file created? 
• Why was vtkCamera used? 
• Why do two output images differ?

39D. Koop, CSCI 680/490, Spring 2021
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Questions about Provenance	
• How does one capture provenance? 
• How does one manage provenance for later use? 
• How do we answer questions about our provenance? 
• How do we use provenance for good?

40D. Koop, CSCI 680/490, Spring 2021



Provenance Management
• Provenance can be generated from tasks/programs/scripts/etc. 
• Properties of provenance are related to the computational model 
- a specific application with a graphical interface 
- a script that automates the use of several command-line tools 
- a scientific workflow that combines several tools

41D. Koop, CSCI 680/490, Spring 2021



Provenance & Causality
• Knowing what data/steps influenced other data/steps is important! 
• Data dependencies: this output file depended on this input file 
• Data-process dependencies: this output figure depended on these 

processes 
• Causality can often be represented as a graph where connections represent 

dependencies
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User-defined provenance
• Goal: capture lots of provenance automatically based on what steps are 

executed 
• Problem: not everything can be captured automatically 
• Annotations offer ability to keep notes about processes 
• Users might also specify known causal links that cannot be automatically 

determined (e.g. a step depends on three system files that were not specified 
as inputs in the workflow)
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Provenance Management
• What is needed to capture, store, and use provenance? 
1.Capture mechanism 
2.Model for representing provenance 
3.Tools to store, query, and analyze provenance
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Provenance Capture Mechanisms
• Workflow-based: Since workflow execution is controlled, keep track of all 

the workflow modules, parameters, etc. as they are executed 
• Process-based: Each process is required to write out its own provenance 

information (not centralized like workflow-based) 
• OS-based: The OS or filesystem is modified so that any activity it does it 

monitored and the provenance subsystem organizes it 
• Tradeoffs: 
- Workflow- and process-based have better abstraction 
- OS-based requires minimal user effort once installed and can capture 

"hidden dependencies"
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Provenance Granularity
• How detailed should our provenance be? 
- Coarse: "This program ran with inputs x, y, z and produced outputs a, b, c" 
- Fine: "Input x was read into register 4, input y was read in register 5, add 

operation was performed using registers 4 and 5, …" 
• More queries are possible with fine-grained provenance, but… 
- Storage concerns 
- Performance concerns 

• Abstraction can help here
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vtkActor

VTKCell

vtkRenderer

vtkContourFilter

vtkStructuredPointsReader

vtkDataSetMapper

vtkCamera

Abstraction: Script, Workflow, Abstract Workflow
data = vtk.vtkStructuredPointsReader() 
data.SetFileName(../examples/data/head.120.vtk) 

contour = vtk.vtkContourFilter() 
contour.SetInput(data.GetOutput()) 
contour.SetValue(0, 67) 

mapper = vtk.vtkPolyDataMapper() 
mapper.SetInput(contour.GetOutput()) 
mapper.ScalarVisibilityOff() 

actor = vtk.vtkActor() 
actor.SetMapper(mapper) 

cam = vtk.vtkCamera() 
cam.SetViewUp(0,0,-1) 
cam.SetPosition(745,-453,369) 
cam.SetFocalPoint(135,135,150) 
cam.ComputeViewPlaneNormal() 

ren = vtk.vtkRenderer() 
ren.AddActor(actor) 
ren.SetActiveCamera(cam) 
ren.ResetCamera() 
renwin = vtk.vtkRenderWindow() 
renwin.AddRenderer(ren) 

style = vtk.vtkInteractorStyleTrackballCamera() 
iren = vtk.vtkRenderWindowInteractor() 
iren.SetRenderWindow(renwin) 
iren.SetInteractorStyle(style) 
iren.Initialize() 
iren.Start()
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ViewUp (0,0,-1)
Position (745,-453,369)

FocalPoint (-135,135,150)

FileName .../head.120.vtk
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Abstraction: Script, Workflow, Abstract Workflow
data = vtk.vtkStructuredPointsReader() 
data.SetFileName(../examples/data/head.120.vtk) 

contour = vtk.vtkContourFilter() 
contour.SetInput(data.GetOutput()) 
contour.SetValue(0, 67) 

mapper = vtk.vtkPolyDataMapper() 
mapper.SetInput(contour.GetOutput()) 
mapper.ScalarVisibilityOff() 

actor = vtk.vtkActor() 
actor.SetMapper(mapper) 

cam = vtk.vtkCamera() 
cam.SetViewUp(0,0,-1) 
cam.SetPosition(745,-453,369) 
cam.SetFocalPoint(135,135,150) 
cam.ComputeViewPlaneNormal() 

ren = vtk.vtkRenderer() 
ren.AddActor(actor) 
ren.SetActiveCamera(cam) 
ren.ResetCamera() 
renwin = vtk.vtkRenderWindow() 
renwin.AddRenderer(ren) 

style = vtk.vtkInteractorStyleTrackballCamera() 
iren = vtk.vtkRenderWindowInteractor() 
iren.SetRenderWindow(renwin) 
iren.SetInteractorStyle(style) 
iren.Initialize() 
iren.Start()
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ViewUp (0,0,-1)
Position (745,-453,369)

FocalPoint (-135,135,150)

FileName .../head.120.vtk

Value (0,67)

Read File

Extract 
Isosurface

Render

Visualization
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Abstraction: Provenance Views
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