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Recent History in Databases
• Early 2000s: Commercial DBs dominated, Open-source DBs missing features 
• Mid 2000s: MySQL adopted by web companies 
• Late 2000s: NoSQL dos scale horizontally out of the box 
• Early 2010s: New DBMSs that can scale across multiple machines natively 

and provide ACID guarantees
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NewSQL
• 451 Group’s Definition: 
- A DBMS that delivers the scalability and flexibility promised by NoSQL while 

retaining the support for SQL queries and/or ACID, or to improve 
performance for appropriate workloads.  

• Stonebraker's Definition: 
- SQL as the primary interface 
- ACID support for transactions 
- Non-locking concurrency control 
- High per-node performance 
- Parallel, shared-nothing architecture
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Workload Characterization
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Ideal OLTP System
• Main Memory Only 
• No Multi-processor Overhead 
• High Scalability 
• High Availability 
• Autonomic Configuration
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Spanner Overview
• Focus on scaling databases focused on OLTP (not OLAP) 
• Since OLTP, focus is on sharding rows 
• Tries to satisfy CAP (which is impossible per CAP Theorem) by not worrying 

about 100% availability 
• External consistency using multi-version concurrency control through timestamps 
• ACID is important 
• Structured: universe with zones with zone masters and then spans with span 

masters 
• SQL-like (updates allow SQL to be used with Spanner)
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HIGH AVAILABILITY: CAP THEOREM AND CASSANDRA
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Spanner and the CAP Theorem
• Which type of system is Spanner? 
- C: consistency, which implies a 

single value for shared data 
- A: 100% availability, for both reads 

and updates 
- P: tolerance to network partitions 

• Which two? 
- CA: close, but not totally available 
- So actually CP
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External Consistency
• Traditional DB solution: two-phase locking—no writes while client reads 
• "The system behaves as if all transactions were executed sequentially, even 

though Spanner actually runs them across multiple servers (and possibly in 
multiple datacenters) for higher performance and availability" [Google] 

• Semantically indistinguishable from a single-machine database 
• Uses multi-version concurrency control (MVCC) using timestamps 
• Spanner uses TrueTime to generate monotonically increasing timestamps 

across all nodes of the system

9D. Koop, CSCI 680/490, Spring 2021

https://cloud.google.com/spanner/docs/true-time-external-consistency


Cloud Spanner: The best of the relational and NoSQL worlds

CLOUD SPANNER TRADITIONAL RELATIONAL TRADITIONAL NON-RELATIONAL

Schema ! Yes ! Yes " No

SQL ! Yes ! Yes " No

Consistency ! Strong ! Strong " Eventual

Availability ! High " Failover ! High

Scalability ! Horizontal " Vertical ! Horizontal

Replication ! Automatic # ConBgurable # ConBgurable

businesses

Building consistent systems for transactions and inventory management in the

Bnancial services and retail industries

Supporting high-volume systems that require low latency and high throughput

in the advertising and media industries

Rely on Strong Consistency, Scale, and Performance

Google Cloud Spanner: NewSQL
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Spanner as "Effectively CA"
• Criteria for being "effectively CA" 
1. At a minimum it must have very high availability in practice (so that users 

can ignore exceptions), and  
2. As this is about partitions it should also have a low fraction of those 

outages due to partitions. 
• Spanner meets both of these criteria 
• Spanner relies on Google's network (private links between data centers) 
• TrueTime helps create consistent snapshots, sometimes have a commit 

wait
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Throughput: Spanner vs. MySQL
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Assignment 4
• World Education Data 
• Collected/collated by UNESCO, World Bank, and OECD 
• Transform World Bank Data 
• Impute missing year data 
• Integrate teacher and student numbers 
• Fuse three datasets 
• Think about how to integrate based on country 
• Last part: country name can be any (consider 'first' aggregation option) 
• Due Monday
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Graphs: Social Networks
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What is a Graph?
• An abstract representation of a set of objects where some pairs are 

connected by links. 
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What is a Graph?
• In computing, a graph is an abstract data 

structure that represents set objects and 
their relationships as vertices and edges/
links, and supports a number of graph-
related operations 

• Objects (nodes): {A,B,C,D} 
• Relationships (edges):  
{(D,B),(D,A),(B,C),(B,A),(C,A)} 

• Operation: shortest path from D to A
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Different Kinds of Graphs
• Undirected Graph 

• Directed Graph 

• Pseudo Graph  

• Multi Graph 

• Hyper Graph 
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Graphs with Properties
• Each vertex or edge may have properties associated with it 
• May include identifiers or classes
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roles = ['Forrest']

Person

name = 'Robert Zemeckis'
born = 1951
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Types of Graph Operations
• Connectivity Operations: 
- number of vertices/edges, in- and out-degrees of vertices 
- histogram of degrees can be useful in comparing graphs 

• Path Operations: cycles, reachability, shortest path, minimum spanning tree 
• Community Operations: clusters (cohesion and separation) 
• Centrality Operations: degree, vulnerability, PageRank 
• Pattern Matching: subgraph isomorphism 
- can use properties 
- useful in fraud/threat detection, social network suggestions
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What is a Graph Database?
• A database with an explicit graph structure 
• Each node knows its adjacent nodes 
• As the number of nodes increases, the cost of a local step (or hop) remains 

the same  
• Plus an Index for lookups
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RDBMS

Living in a NOSQL World
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How do Graph Databases Compare?
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Compared to Relational Databases

Optimized for aggregation Optimized for connections

Graph Databases Compared to Relational Databases
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Compared to Key Value Stores

Optimized for simple look-ups Optimized for traversing connected data

Graph Databases Compared to Key-Value Stores
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Compared to Key Value Stores

Optimized for “trees” of data Optimized for seeing the forest and the 
trees, and the branches, and the trunks

Graph Databases Compared to Document Stores

25

[M. De Marzi, 2012] 
D. Koop, CSCI 680/490, Spring 2021

https://www.slideshare.net/maxdemarzi/introduction-to-graph-databases-12735789


Graph Databases

D. Lembo and R. Rosati  
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Why Graph Database Models?
• Graphs has been long ago recognized as one of the most simple, natural and 

intuitive knowledge representation systems  
• Graph data structures allow for a natural modeling when data has graph 

structure  
• Queries can address direct and explicitly this graph structure  
• Implementation-wise, graph databases may provide special graph storage 

structures, and take advantage of efficient graph algorithms available for 
implementing specific graph operations over the data
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Figure 1: Example of a genealogy expressed in the relational model (i.e. as
tables on the left) and a diagram of its scheme on the right.

of node, by allowing nesting graphs inside nodes. As drawbacks, both mod-
els use complex data structures which make it less intuitive their use and
implementation.

Regarding simplicity, one of the most popularized models is the semistruc-
tured model, which use the most simple version of a graph, namely a tree,
the most common and intuitive way or organizing our data (e.g. directories)
Finally, the most common models are slightly enhanced version of the plain
graphs. One of them, the RDF model, gives a light typing to nodes, and
considers edges as nodes, giving uniformity to the information objects in the
model. The other, the property graph model, allows to adds properties to
edges and nodes.

Next, we will present these models and show a paradigmatic example of
each. We will use the genealogy toy example modeled as tables and a simple
schema in Figure 1.

3.1 The basics: Labeled graphs

The most basic data structure for graph database models is a directed graph
with nodes and edges labeled by some vocabulary. A good example is Gram
[37], a graph data model motivated by hypertext querying.

A schema in Gram is a directed labeled multigraph, where each node
is labeled with a symbol called a type, which has associated a domain of
values. In the same way, each edge has assigned a label representing a
relation between types (see example in Figure 2). A feature of Gram is the
use of regular expressions for explicit definition of paths called walks. An
alternating sequence of nodes and edges represent a walk, which combined
with other walks conforms other special objects called hyperwalks.

For querying the model (particularly path-like queries), an algebraic lan-
guage based on regular expressions is proposed. For this purpose a hyper-

8
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Basic Labeled Model (Gram)
• Directed graph with nodes and edges labeled by some vocabulary 
• Gram is a directed labeled multigraph  
- Each node is labeled with a symbol called a type  
- Each edge has assigned a label representing a relation between types 
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Figure 2: Gram. At the schema level we use generalized names for definition
of entities and relations. At the instance level, we create instance labels (e.g.
PERSON 1) to represent entities, and use the edges (defined in the schema)
to express relations between data and entities.

walk algebra is defined, which presents unary operations (projection, selec-
tion, renaming) and binary operations (join, concatenation, set operations),
all closed under the set of hyperwalks.

3.2 Complex relations: The Hypergraph model

The notion of hypergraph is a generalization of graphs where the notion of
edge is extended to hyperedge, which relates an arbitrary set of nodes [45].
Hypergraphs allow the definition of complex objects (using undirected hy-
peredges), functional dependencies (using directed hyperedges), object-ID
and (multiple) structural inheritance.

A good representative case is GROOVY (Graphically Represented Object-
Oriented data model with Values [105]), an object-oriented data model which
is formalized using hypergraphs. An example of hypergraph schema and in-
stance is presented in Figure 3.

The model defines a set of structures for an object data model: value
schemas, objects over value schemas, value functional dependencies, object
schemas, objects over object schemas and class schemas. The model shows
that these structures can be defined in terms of hypergraphs.

Groovy also includes a hypergraph manipulation language (HML) for
querying and updating hypergraphs. It has two operators for querying hy-
pergraphs by identifier or by value, and eight operators for manipulation
(insertion and deletion) of hypergraphs and hyperedges.
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Hypergraph Model (Groovy)
• Notion of edge is extended to hyperedge, which relates an arbitrary set of 

nodes 
• Hypergraphs allow the definition of complex objects (undirected), functional 

dependencies (directed), object-ID and (multiple) structural inheritance

30

[R. Angles  and C. Gutierrez, 2017] 

D. Koop, CSCI 680/490, Spring 2021

Ana

PERSON

NAME LASTNAME

PARENTS

CHILD−PARENT

PERSON

2

PARENTS

LASTNAMENAME

James Deville

PERSON

4

PARENTS

LASTNAMENAME DevilleMary

PERSON

6

PARENTS

VAL(3)

Stone

Schema

CHILD−PARENT

Instance

NAME LASTNAME

George

PARENTS

1

PERSON

Jones

NAME LASTNAME

VAL(2)VAL(1)

PARENTS

3

PERSON

JonesJulia

NAME LASTNAME
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Figure 3: GROOVY. At the schema level (left), we model an object
PERSON as an hypergraph that relates the attributes NAME, LAST-
NAME and PARENTS. Note the value functional dependency (VDF)
NAME,LASTNAME ! PARENTS logically represented by the directed
hyperedge ({NAME,LASTNAME} {PARENTS}). This VFD asserts that
NAME and LASTNAME uniquely determine the set of PARENTS.

3.3 Nested graphs: The Hypernode model

A hypernode is a directed graph whose nodes can themselves be graphs
(or hypernodes), allowing nesting of graphs. Hypernodes can be used to
represent simple (flat) and complex objects (hierarchical, composite, and
cyclic) as well as mappings and records. A key feature is its inherent ability
to encapsulate information.

The hypernode model which we will use as example was introduced by
Levene and Poulovassilis [104]. They defined the model and a declarative
logic-based language structured as a sequence of instructions (hypernode
programs), used for querying and updating hypernodes. A more elaborated
version [123] includes the notion of schema and type checking, introduced
via the idea of types (primitive and complex), that are also represented
by nested graphs (See an example in Figure 4). It also includes a rule-
based query language called Hyperlog, which can support both querying and
browsing with derivations as well as database updates, and is intractable
in the general case. A third version of the model [102] discusses a set of
constraints (entity, referential and semantic) over hypernode databases. In
addition it presents another query and update language called HNQL, which
use compounded statements to produce HNQL programs.
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Hypernode Model
• Hypernode is a directed graph whose nodes can themselves be graphs (or 

hypernodes), allowing nesting of graphs  
• Encapsulates information
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Figure 4: Hypernode Model. The schema (left) defines a person as a complex
object with the properties name and lastname of type string, and parent of
type person (recursively defined). The instance (on the right) shows the
relations in the genealogy among di↵erent instances of person.

Summarizing, the main features of the Hypernode model are: a nested
graph structure which is simple and formal; the ability to model arbitrary
complex objects in a straightforward manner; underlying data structure of
an object-oriented data model; enhancement of the usability of a complex
objects database system via a graph-based user interface.

3.4 Trees: The Semistructured model (JSON, OEM, XML)

The semistructured model was designed to describe data together with its
schema in one place, also called “self-describing” data. Technically they are
trees, the most simple version of a graph, but could describe, via references,
general graphs.

The semistructured model was designed to overcome the limitation of
both, structured data (fixed schema and format, precise rules) and unstruc-
tured data (loose schema, no format, little predictability). The early moti-
vations were the modeling of documents (whose structure can be viewed as
trees), data on the Web and data integration at Web scale [50, 33].

Among its advantages are the simple way to integrate new data, to model
incomplete data, and the flexibility to query it without prior knowledge
of schema. The drawbacks are mainly in the area of optimization, which
becomes much harder as the structure of the data is not necessarily known
in advance.

An early proposal in this direction was the data model OEM [74, 120]
which proposed an extremely simple and elegant model of objects with iden-
tifiers and “links” to other objects , with a simple syntax (see Figure 5) which
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Semistructured (Tree) Model: (OEM Graph)
• "Self-describing" data like JSON and XML 
• OEM uses pointers to data in the tree
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Figure 5: Object Exchange Model (OEM). Schema and instance are mixed.
The data is modeled beginning in a root node &pp, with children person
nodes, each of them identified by an Object-ID (e.g. &p2). These nodes have
children that contain data (name and lastname) or references to other nodes
(parent). Referencing permits to establish relations between distinct hierar-
chical levels. Note the tree structure obtained if one forgets the pointers to
OIDs, a characteristic of semistructured data.

today we can recognize in JSON.
The most popular and elaborated version of the semi-structured model

is the XML model. It comprises a rich and flexible data structure [?], a
suite of highly refined and standardized query and transformation languages
(XPath, XQuery, XSLT)1 and several other features, that have much to
teach graph query language designers.

3.5 Uniform graphs: The RDF model

The Resource Description Framework (RDF) [96] is a recommendation of the
W3C designed originally to represent metadata. One of the main advantages
(features) of the RDF model is its ability to interconnect resources in an
extensible way using graph-like structure for data.

One of the main advantages of RDF is its dual nature. In fact, there
are two possible reading of the model. From a knowledge representation

1 XPath Language www.w3.org/TR/xpath/
XQuery Language www.w3.org/TR/xquery/
XSLT Transformations www.w3.org/TR/xslt20/
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RDF (Triple) Model
• Interconnect resources in an extensible way using graph-like structure for data  
• Schema and instance are mixed together  
• SPAQL to query 
• Semantic web
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together. The edges labeled type disconnect the instance from the schema.
The instance is built by the subgraphs obtained by instantiating the nodes of
the schema, and establishing the corresponding parent edges between these
subgraphs.

perspective, an atomic RDF expression is triple consisting of a subject (the
resource being described), a predicate (the property) and an object (the
property value). Each triple represents a logical statement of a relationship
between the subject and the object, and one could enhance this basic logic by
adding rules and ontologies over it (e.g. RDFS and OWL) A general RDF
expression is a set of such triples called an RDF Graph (see example in
Figure 6), which can be intuitively considered as a semantic network. From
the second perspective, the RDF model is the most general representation
of a graph, where edges are also considered nodes. In this sense, formally
is not a traditional graph [84]. This allows to self-references, reification
(i.e. making statements over statements), and essentially be self-contained.
The drawback of all this niceties are the complexity that come with this
generalization, particularly for e�cient implementation.

SPARQL [124] is the standard query language for RDF. It is able to
express complex graph patterns by means of a collection of triple patterns
whose solutions can be combined and restricted by using several operators
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Property Graph Model (Cypher in neo4j)
• Directed, labelled, attributed multigraph  
• Properties are key/value pairs that represent metadata for nodes and edges 
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Figure 7: Property graph data model. The main characteristic of this model
is the occurrence of properties in nodes and edges. Each property is repre-
sented as a pair property-name = “property-value”.

(i.e. AND, UNION, OPTIONAL, and FILTER). The latest version of the
language, SPARQL 1.1 [71], includes explicit operators to express negation of
graph patterns, arbitrary length path matching (i.e. reachability), aggregate
operators (e.g. COUNT), subqueries, and query federation.

3.6 Nodes, edges and properties: The Property graph model

A property graph is a directed, labelled, attributed multigraph. That is,
a graph where the edges are directed, both nodes and edges are labeled
and can have any number of properties (or attributes), and there can be
multiple edges between any two vertices [128]. Properties are key/value
pairs that represent metadata for nodes and edges. In practice, each vertex
of a property graph has an identifier (unique within the graph) and zero
or more labels. Node labels could be associated to node typing in order to
provide schema-based restrictions. Additionally, each (directed) edge has a
unique identifier and one or more labels. An example of property graph is
shown in Figure 7.

Property graphs are used extensively in computing as they are more
expressive2 than the simplified mathematical objects studied in theory. In
fact, the property graph model can express other types of graph models by
simply abandoning or adding particular bits and pieces [128].

There is no standard query language for property graphs although some
proposals are available. Blueprints [11] was one of the first libraries created

2Note that the expressiveness of a model is defined by ease of use, not by the limits of
what can be modeled.
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Types of Graph Queries
• Adjacency queries (neighbors or neighborhoods) 
• Pattern matching queries (related to graph mining) 
- Graph patterns with structural extension or restrictions 
- Complex graph patterns  
- Semantic matching  
- Inexact matching 
- Approximate matching 

• Reachability queries (connectivity)
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Types of Graph Queries (continued)
• Analytical queries 
- Summarization queries  
- Complex analytical queries (PageRank, characteristic path length, 

connected components, community detection, clustering coefficient)
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Figure 8: Evolution of graph query languages: G [63], G+ [64], Graphlog
[61], HPQL [104], THQL [141], GRE [142], Gram [37], Hyperlog [123],
HNQL [103], PORL [72], SLQL [52], HQL [137], PRPQ [107], GraphQL
[85], SPARQL [124], RLV [132], Cypher [14], ECRPQ [43], PDQL [41], GX-
Path [106], SPARQL 1.1 [71] and RQ [127].

For the sake of space we will not present a complete review of graph query
languages. Instead we describe some of the languages we consider relevant
and useful to show the developments in the area. Moreover, we restrict
our review to “pure” GQLs, that is those languages specifically designed to
work with graph data models. Figure 8 presents this subset of languages in
chronological order.

As we mentioned before, Cruz et al. [63] proposed the query language
G. This language introduced the notion of graphical query as a set of query
graphs. A query graph (pattern) is a labeled directed multigraph in which
the node labels may be either variables or constants, and the edge labels
can be regular expressions combining variables and constants. The result
of a graphical query Q with respect to a graph database G is the union of
all query graphs of Q which match subgraphs of G. For instance, Figure
9 presents a example of graphical query containing two query graphs, Q1

and Q2. This query finds the first and last cities visited in all round trips
from Toronto (“Tor”), in which the first and last flights are with Air Canada
(“AC”) and all other flights (if any) are with the same airline. Note that the
last condition is expressed by the edge labeled with regular expression w+.
Thanks to the inclusion of regular expressions, G is able to express recursive
queries more general than transitive closure. However, the evaluation of
queries in G is of high computational complexity due to its semantics based
on simple paths.

G evolved into a more powerful language called G+ [64]. The notion
of graphical query proposed by G is extended in G+ to define a summary
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Cypher
• Implemented by neo4j system 
• Expresses reachability queries via path expressions 

- p = (a)-[:knows*]->(b): nodes from a to b following knows edges 
• START x=node:person(name="John")  
MATCH (x)-[:friend]->(y) 
RETURN y.name

38

[R. Angles  and C. Gutierrez, 2017] 

D. Koop, CSCI 680/490, Spring 2021



SPARQL (RDF)
• Uses SELECT-FROM-WHERE pattern like SQL 
• SELECT ?N 
FROM <http://example.org/data.rdf> 
WHERE { ?X rdf:type voc:Person . ?X voc:name ?N } 
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modify the schema of the database by adding, changing, or
deleting its objects; the Data Manipulation Language, which
allows to insert, delete and update data in the database; and
the Query Language, which allows to retrieve data by using
a query expression. Data operation and manipulation features
are summarized in Table II.

In comparison with the traditional approach in databases,
where high-level languages for data operation and manipu-
lation are provided, the most common mechanism in graph
databases is the use of APIs. It means several advantages:
standard vocabulary (for functions and procedures), easy de-
velopment of applications, and an unlimited power for query-
ing data. However, it also brings serious problems: lower level
of abstraction (for the general user), programming language
restrictions, implementation-dependent efficiency, and decid-
ability problems.

An important feature, not included in Table I, is the support
to import and export data in different data formats. Although
there exists some data formats for encoding graphs (e.g,
GraphML and TGV) none of them has been selected as
the standard one. This issue is particularly relevant for data
exchange and sharing.

TABLE I
DATA STORING FEATURES

Graph Main External Backend Indexes
Database memory memory Storage

AllegroGraph • • •
DEX • • •

Filament • •
G-Store •

HyperGraphDB • • • •
InfiniteGraph • •

Neo4j • • •
Sones • •

vertexDB • •

TABLE II
OPERATION AND MANIPULATION FEATURES

Data Data Query API GUI
Graph Definition Manipulat. Language

Database Language Language
AllegroGraph • • • • •

DEX •
Filament •
G-Store • • •

HyperGraphDB •
InfiniteGraph •

Neo4j •
Sones • • • • •

vertexDB •

A. Graph data structures
The data structures refer to the types of entities or objects

that can be used to model data. In the case of graph databases,
the data structure is naturally defined around the notions of
graphs, nodes and edges (see Table III).

We consider four graph data structures: simple graphs,
hypergraphs, nested graphs and attributed graphs. The basic
structure is a simple flat graph defined as a set of nodes
(or vertices) connected by edges (i.e., a binary relation over
the set of nodes). An Hypergraph extends this notion by
allowing an edge to relate an arbitrary set of nodes (called
an hyperedge). A nested graph is a graph whose nodes can
be themselves graphs (called hypernodes). Attributed graphs
are graphs where nodes and edges can contain attributes for
describing their properties [32]. Additionally, over the above
types of graphs, we consider directed or undirected edges,
labeled or unlabeled nodes/edges, and attributed nodes/edges
(i.e., edges between edges are possible).

Note that most graph databases are based on simple graphs
or attributed graphs. Only two support hypergraphs and no
one nested graphs. We can remark that hypergraphs and
attributed graphs can be modeled by nested graphs. In contrast,
the multilevel nesting provided by nested graphs cannot be
modeled by any of the other structures [2].

In comparison with past graph database models, the in-
clusion of attributes for nodes and edges is a particular
feature in current proposals. The introduction of attributes is
oriented to improve the speed of retrieval for the data directly
related to a given node. This feature shows the influence of
implementation issues in the selection and definition of the
data structures (and consequently of the data model).

TABLE III
GRAPH DATA STRUCTURES
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AllegroGraph • • • •
DEX • • • • • •

Filament • • • •
G-Store • • • •

HyperGraphDB • • • •
InfiniteGraph • • • • • •

Neo4j • • • • • •
Sones • • • • • • •

vertexDB • • • •

The expressive power for data modeling can be analyzed by
comparing the support for representing entities, properties and
relations at both instance and schema levels. This evaluation
is shown in Table IV.

At the schema level we found that models support the defini-
tion of node, attribute and relation types. We also evaluate the
support for several nodes and relations at the instance level: an
object node, identified by an object-ID, represents an instance
of a node type; a value node represents an entity identified
by a primitive value (i.e., its name); a complex node can
represent an special complex entity, for example a tuple or a
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allowing an edge to relate an arbitrary set of nodes (called
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describing their properties [32]. Additionally, over the above
types of graphs, we consider directed or undirected edges,
labeled or unlabeled nodes/edges, and attributed nodes/edges
(i.e., edges between edges are possible).

Note that most graph databases are based on simple graphs
or attributed graphs. Only two support hypergraphs and no
one nested graphs. We can remark that hypergraphs and
attributed graphs can be modeled by nested graphs. In contrast,
the multilevel nesting provided by nested graphs cannot be
modeled by any of the other structures [2].

In comparison with past graph database models, the in-
clusion of attributes for nodes and edges is a particular
feature in current proposals. The introduction of attributes is
oriented to improve the speed of retrieval for the data directly
related to a given node. This feature shows the influence of
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The expressive power for data modeling can be analyzed by
comparing the support for representing entities, properties and
relations at both instance and schema levels. This evaluation
is shown in Table IV.

At the schema level we found that models support the defini-
tion of node, attribute and relation types. We also evaluate the
support for several nodes and relations at the instance level: an
object node, identified by an object-ID, represents an instance
of a node type; a value node represents an entity identified
by a primitive value (i.e., its name); a complex node can
represent an special complex entity, for example a tuple or a
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modify the schema of the database by adding, changing, or
deleting its objects; the Data Manipulation Language, which
allows to insert, delete and update data in the database; and
the Query Language, which allows to retrieve data by using
a query expression. Data operation and manipulation features
are summarized in Table II.

In comparison with the traditional approach in databases,
where high-level languages for data operation and manipu-
lation are provided, the most common mechanism in graph
databases is the use of APIs. It means several advantages:
standard vocabulary (for functions and procedures), easy de-
velopment of applications, and an unlimited power for query-
ing data. However, it also brings serious problems: lower level
of abstraction (for the general user), programming language
restrictions, implementation-dependent efficiency, and decid-
ability problems.

An important feature, not included in Table I, is the support
to import and export data in different data formats. Although
there exists some data formats for encoding graphs (e.g,
GraphML and TGV) none of them has been selected as
the standard one. This issue is particularly relevant for data
exchange and sharing.

TABLE I
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Graph Main External Backend Indexes
Database memory memory Storage

AllegroGraph • • •
DEX • • •

Filament • •
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HyperGraphDB • • • •
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A. Graph data structures
The data structures refer to the types of entities or objects

that can be used to model data. In the case of graph databases,
the data structure is naturally defined around the notions of
graphs, nodes and edges (see Table III).

We consider four graph data structures: simple graphs,
hypergraphs, nested graphs and attributed graphs. The basic
structure is a simple flat graph defined as a set of nodes
(or vertices) connected by edges (i.e., a binary relation over
the set of nodes). An Hypergraph extends this notion by
allowing an edge to relate an arbitrary set of nodes (called
an hyperedge). A nested graph is a graph whose nodes can
be themselves graphs (called hypernodes). Attributed graphs
are graphs where nodes and edges can contain attributes for
describing their properties [32]. Additionally, over the above
types of graphs, we consider directed or undirected edges,
labeled or unlabeled nodes/edges, and attributed nodes/edges
(i.e., edges between edges are possible).

Note that most graph databases are based on simple graphs
or attributed graphs. Only two support hypergraphs and no
one nested graphs. We can remark that hypergraphs and
attributed graphs can be modeled by nested graphs. In contrast,
the multilevel nesting provided by nested graphs cannot be
modeled by any of the other structures [2].

In comparison with past graph database models, the in-
clusion of attributes for nodes and edges is a particular
feature in current proposals. The introduction of attributes is
oriented to improve the speed of retrieval for the data directly
related to a given node. This feature shows the influence of
implementation issues in the selection and definition of the
data structures (and consequently of the data model).
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The expressive power for data modeling can be analyzed by
comparing the support for representing entities, properties and
relations at both instance and schema levels. This evaluation
is shown in Table IV.

At the schema level we found that models support the defini-
tion of node, attribute and relation types. We also evaluate the
support for several nodes and relations at the instance level: an
object node, identified by an object-ID, represents an instance
of a node type; a value node represents an entity identified
by a primitive value (i.e., its name); a complex node can
represent an special complex entity, for example a tuple or a

set; an object relation, identified by a relation-ID, is an instance
of a relation type; a simple relation represents a node-edge-
node instance; a complex relation is a relation with special
semantics, for example grouping, derivation, and inheritance.

Value nodes and simple relations are supported by all the
models. The reason is that both conform the most basic and
simple model for representing graph data. The inclusion of
object-oriented concepts (e.g., IDs for objects) for representing
entities and relations reflects the use of APIs as the favorite
high-level interface for the database. Note that this issue is not
new in graph databases. In fact, it was naturally introduced by
the so called graph object-oriented data models [2].

Finally, the use of objects (for both nodes and relations)
is different of using values. For example, an object node
represents an entity identified by an object-ID, but it does
not represent the value-name of the entity. In this case, it is
necessary to introduce an explicit property or relation “name”
in order to specify the name of the entity. The same applies for
relations. This issue generates an unnatural form of modeling
graph data.
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vertexDB • •

B. Query languages

A query language is a collection of operators or inference
rules that can be applied to any valid instance of the database,
this with the objective of manipulating and querying data in
any combination desired [2]. As is shown in Table III, query
languages are not frequent in current graph databases. In fact,
there is not proposal for a standard one.

AllegroGraph supports SPARQL, the standard query lan-
guage for RDF. SPARQL is based on graph pattern matching
but is not oriented to querying the graph structure of RDF
data. Neo4j is developing Cypher, a query language for
property graphs. G-Store and Sones include SQL-based query
languages with special instructions for querying graphs. To the
best of our knowledge, there is not a formal definition of the
semantics for the above query languages, making a systematic
study of their complexity and expressive power difficult.

Data retrieval is the main objective in current graph
databases. AllegroGraph supports reasoning via its Prolog
implementation. Data analysis is supported in terms of special
functions (e.g., shortest path) for querying graph properties.

The lack of a standard query language is a disadvantage
of current graph databases. Recall that in mature databases
the operation of the database is performed via standard and
well-defined database languages. Instead, the focus in current
graph databases is to provide APIs for popular programming
languages. Hence, the selection is hardly determined by the
programmer skills or by application requirements.

TABLE V
COMPARISON OF QUERY FACILITIES (• INDICATES SUPPORT, AND �
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C. Integrity constraints

Integrity constraints are general statements and rules that
define the set of consistent database states, or changes of state,
or both [2]. Table VI shows that integrity constraints are poorly
studied in graph databases. In fact, there are not important
variations of the notions studied in the past.

We consider several integrity constraints: types checking,
to test the consistency of an instance with respect to the
definitions in the schema; node/edge identity, to verify that
an entity or relation can be identified by either a value (e.g.,
name or ID) or the values of its attributes (e.g., neighborhood
identification); referential integrity, to test that only existing
entities are referenced; cardinality checking, to verify unique-
ness of properties or relations; functional dependency, to test
that an element in the graph determines the value of another;
and graph pattern constraints, to verify an structural restriction
(e.g., path constraints).

The support for evolving schemas is a characteristic of graph
databases that is commonly used to justify the lack of integrity
constraints. We aim that is not a valid argument assuming that
data consistency in a database is equal or even more important
than a flexible schema. Moreover, an evolving schema can be
supported by allowing flexible structures in the schema (as in
semi-structure data models). For example, the definition of a
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set; an object relation, identified by a relation-ID, is an instance
of a relation type; a simple relation represents a node-edge-
node instance; a complex relation is a relation with special
semantics, for example grouping, derivation, and inheritance.

Value nodes and simple relations are supported by all the
models. The reason is that both conform the most basic and
simple model for representing graph data. The inclusion of
object-oriented concepts (e.g., IDs for objects) for representing
entities and relations reflects the use of APIs as the favorite
high-level interface for the database. Note that this issue is not
new in graph databases. In fact, it was naturally introduced by
the so called graph object-oriented data models [2].

Finally, the use of objects (for both nodes and relations)
is different of using values. For example, an object node
represents an entity identified by an object-ID, but it does
not represent the value-name of the entity. In this case, it is
necessary to introduce an explicit property or relation “name”
in order to specify the name of the entity. The same applies for
relations. This issue generates an unnatural form of modeling
graph data.
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B. Query languages

A query language is a collection of operators or inference
rules that can be applied to any valid instance of the database,
this with the objective of manipulating and querying data in
any combination desired [2]. As is shown in Table III, query
languages are not frequent in current graph databases. In fact,
there is not proposal for a standard one.

AllegroGraph supports SPARQL, the standard query lan-
guage for RDF. SPARQL is based on graph pattern matching
but is not oriented to querying the graph structure of RDF
data. Neo4j is developing Cypher, a query language for
property graphs. G-Store and Sones include SQL-based query
languages with special instructions for querying graphs. To the
best of our knowledge, there is not a formal definition of the
semantics for the above query languages, making a systematic
study of their complexity and expressive power difficult.

Data retrieval is the main objective in current graph
databases. AllegroGraph supports reasoning via its Prolog
implementation. Data analysis is supported in terms of special
functions (e.g., shortest path) for querying graph properties.

The lack of a standard query language is a disadvantage
of current graph databases. Recall that in mature databases
the operation of the database is performed via standard and
well-defined database languages. Instead, the focus in current
graph databases is to provide APIs for popular programming
languages. Hence, the selection is hardly determined by the
programmer skills or by application requirements.
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C. Integrity constraints

Integrity constraints are general statements and rules that
define the set of consistent database states, or changes of state,
or both [2]. Table VI shows that integrity constraints are poorly
studied in graph databases. In fact, there are not important
variations of the notions studied in the past.

We consider several integrity constraints: types checking,
to test the consistency of an instance with respect to the
definitions in the schema; node/edge identity, to verify that
an entity or relation can be identified by either a value (e.g.,
name or ID) or the values of its attributes (e.g., neighborhood
identification); referential integrity, to test that only existing
entities are referenced; cardinality checking, to verify unique-
ness of properties or relations; functional dependency, to test
that an element in the graph determines the value of another;
and graph pattern constraints, to verify an structural restriction
(e.g., path constraints).

The support for evolving schemas is a characteristic of graph
databases that is commonly used to justify the lack of integrity
constraints. We aim that is not a valid argument assuming that
data consistency in a database is equal or even more important
than a flexible schema. Moreover, an evolving schema can be
supported by allowing flexible structures in the schema (as in
semi-structure data models). For example, the definition of a
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manipulating and querying the data) and notions of integrity
constraints (for preserving the consistency of the database).

As future work we plan to develop an empirical evaluation
of current graph databases; this oriented to make a quantita-
tive and qualitative analysis of their support for storing and
querying graph data.
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