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Studying Data Availability
• Who mandates data sharing, and what is the impact? 
- Government 
- Funding agencies 
- Institutions 
- Journals 

• How does the age of a publication/data item affect availability? 
- If not curated, how to locate? 
- What factors influence this?
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Since this is a logistic model, we can readily calculate
the effect that the different policy types have on the like-
lihood that the data will be available. We explore these
odds for each type of policy below, using “no policy” as the
baseline.

Having a “recommend archiving” policy made it 3.6
times more likely that the data were online compared to
having no policy. However, the 95% CI overlapped with 1
(0.96–13.6); hence, this increase in the odds is not
significant. Overall, recommending data archiving is only
marginally more effective than having no policy at all.

The data were 17 times more likely to be available
online for journals that had adopted a mandatory data
archiving policy but did not require a data accessibility
statement in the manuscript. This odds ratio was signif-
icantly !1 (95% CI: 3.7–79.6).

For “mandate archiving” journals where a data accessi-
bility statement is required in the manuscript, the odds of
finding the data online were 974 times higher compared
to having no policy. The 95% CI on these odds is very
wide (97.9–9698.8), but nonetheless shows that the com-
bination of a mandatory policy and an accessibility state-
ment is much more effective than any other policy type.

REQUESTING DATA DIRECTLY FROM AUTHORS

A number of the “recommend archiving” policies state
that the data should also be freely available from the
authors by request (see the Journal Policies file at doi:
10.5061/dryad.6bs31); hence, we wanted to evaluate
whether obtaining data directly from authors is an
effective approach. Part of the dataset collection for
our reproducibility study (5) involved e-mailing authors

of papers from two of the “recommend archiving”
journals (BMC Evolutionary Biology and PLoS One) and
requesting their structure input files. Here, we exam-
ine how often these requests led to us obtaining the
data. We did not e-mail the authors of articles where
the data were already available online. A detailed
description of our data request process appears on
Dryad (doi: 10.5061/dryad.6bs31), but we essentially
contacted corresponding and senior authors of each
article up to 3 times over a 3-wk period, and recorded
if and when the data were received.

We obtained data directly from the authors for 7 of the
12 eligible articles in BMC Evolutionary Biology, and 27
datasets from 45 articles from PLoS One (Table 1). All
seven of the BMC Evolutionary Biology datasets arrived
between 8 and 14 d after our initial request. Ten of the
PLoS One datasets came within 1 wk, 13 came between 8
and 14 d, and 4 arrived between 15 and 21 d. Unlike the
online data, which could generally be obtained within a
few minutes, the requested datasets took a mean of 7.7 d
to arrive, with one author responding that the dataset had
been lost in the year since publication. More than one
e-mail had to be sent to the corresponding and/or senior
author for 53% of papers, and the authors of 29% of the
papers did not respond to any of our requests. No data
were received !21 d after our initial request. We also note
that requesting data via e-mail did upset some authors,
particularly when they were reminded of the journal’s
data archiving policy or when multiple e-mails were sent.

Our average return of 59% in an average of 7.7 d is
markedly better than has been reported in similar studies:
Wicherts et al. (8) received only 26% of requested datasets
after 6 mo of effort with authors of 141 psychology
articles, and Savage and Vickers (9) received only 1 of 10
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Figure 1. Percentage of eligible papers published in 2011 that made their data available online, by journal. Number of eligible
papers is shown above each column. Within the “mandate archiving” group, “data statement” denotes the journals that require
a data accessibility statement in the manuscript, and “no data statement” denotes those that do not.
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Discussion

We found a strong effect of article age on the availability of
data from these 516 studies. The decline in data availability
could arise because the authors of older papers were less
likely to respond, but this was not supported by the data.
Instead, researchers were equally likely to respond (Figure 1B)
and to indicate the status of their data (Figure 1C) across the
entire range of article ages.

The major cause of the reduced data availability for older
papers was the rapid increase in the proportion of data sets
reported as either lost or on inaccessible storage media. For
papers where authors reported the status of their data, the
odds of the data being extant decreased by 17% per year (Fig-
ure 1D). There was a continuum of author responses between
the data being reported lost and being stored on inaccessible
media, and they seemed to vary with the amount of time and
effort involved in retrieving the data. Responses included

authors being sure that the data were lost (e.g., on a stolen
computer) or thinking that theymight be stored in somedistant
location (e.g., their parent’s attic) to authors having some de-
gree of certainty that the data are on a Zip or floppy disk in their
possession but no longer having the appropriate hardware to
access it. In the latter two cases, the authors would have to
devote hours or days to retrieving the data. Our reason for
needing the data (a reproducibility study) was not especially
compelling for authors, and we may have received more of
these inaccessible data sets if we had offered authorship on
the subsequent paper or said that the data were needed for
an important medical or conservation project.
The odds that we were able to find an apparently working

e-mail address (either in the paper or by searching online)
for any of the contacted authors did decrease by about 7%
per year. This decrease was partly driven by a dearth of
e-mail addresses in articles published before 2000 (0.38 per
paper on average for 1991–1999) compared with those

Table 1. Breakdown of Data Availability by Year of Publication

Year
No Working
E-Mail

No Response
to E-Mail

Response Did Not
Give Status of Data Data Lost

Data Exist, Unwilling
to Share

Data
Received

Data Extant (Unwilling to
Share + Received)

Number of
Papers

1991 9 (35%) 9 (35%) 2 (8%) 4 (15%) 1 (4%) 1 (4%) 2 (8%) 26
1993 14 (39%) 11 (31%) 3 (8%) 7 (19%) 0 (0%) 1 (3%) 1 (3%) 36
1995 11 (31%) 9 (26%) 0 (0%) 7 (20%) 2 (6%) 6 (17%) 8 (23%) 35
1997 11 (37%) 9 (30%) 1 (3%) 2 (7%) 3 (10%) 4 (13%) 7 (23%) 30
1999 19 (48%) 13 (32%) 1 (2%) 1 (2%) 0 (0%) 6 (15%) 6 (15%) 40
2001 13 (30%) 15 (35%) 3 (7%) 4 (9%) 0 (0%) 8 (19%) 8 (19%) 43
2003 9 (20%) 20 (43%) 4 (9%) 2 (4%) 0 (0%) 11 (24%) 11 (24%) 46
2005 11 (24%) 14 (31%) 6 (13%) 1 (2%) 0 (0%) 13 (29%) 13 (29%) 45
2007 12 (18%) 31 (47%) 2 (3%) 4 (6%) 1 (2%) 16 (24%) 17 (26%) 66
2009 9 (13%) 34 (49%) 3 (4%) 5 (7%) 6 (9%) 12 (17%) 18 (26%) 69
2011 13 (16%) 29 (36%) 8 (10%) 0 (0%) 7 (9%) 23 (29%) 30 (38%) 80

Totals 131 (25%) 194 (38%) 33 (6%) 37 (7%) 20 (4%) 101 (19%) 121 (23%) 516

Data are displayed as n (%); the percentages are calculated by rows.
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Figure 1. The Effect of Article Age on Four Obsta-
cles to Receiving Data from the Authors

(A) Predicted probability that the paper had at
least one apparently working e-mail.
(B) Predicted probability of receiving a response,
given that at least one e-mail was apparently
working.
(C) Predicted probability of receiving a response
giving the status of the data, given that we
received a response.
(D) Predicted probability that the data were
extant (either ‘‘shared’’ or ‘‘exist but unwilling to
share’’) given that we received a useful response.
In all panels, the line indicates the predicted
probability from the logistic regression, the gray
area shows the 95% CI of this estimate, and the
red dots indicate the actual proportions from
the data.
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Please cite this article in press as: Vines et al., The Availability of Research Data Declines Rapidly with Article Age, Current Biology
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Why Share Data? Increased Citations
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funded by 
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grant
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impact 
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What Factors Impact Sharing?
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Campbell et al.  JAMA 2002.  

sharing is too much effort

want student or jr faculty to publish more

they themselves want to publish more

cost

industrial sponsor

confidentiality

commercial value of results

0% 20% 40% 60% 80%

Self‐reported reasons for data 
withholding
Why not data sharing? (self-reported)
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Joint Declaration of Data Citation Principles
• Precursor to FAIR 
• Importance: data is legitimate, citations should have importance 
• Credit and Attribution: scholarly credit to all contributors 
• Evidence: when data is relied on, it should be cited  
• Unique Identification: machine-actionable, globally unique, and widely used 
• Access: data, metadata, etc. is findable and usable 
• Persistence: identifiers, metadata persist regardless of whether data does 
• Specificity and Verifiability: provenance, fixity, granularity 
• Interoperability and Flexibility: allow for variability across communities

8D. Koop, CSCI 680/490, Spring 2021



Generic Data Citation
• Author(s), Year, Dataset Title, Global Persistent Identifier, Data Repository or 

Archive, version or subset 
• Authors, repository → Principle 2 
• Year and title → not related to principle but consistent with other citations 
• Global Persistent Identifier: Principle 4 and 6

9D. Koop, CSCI 680/490, Spring 2021



Computational Data Citation
• Given a database D and a query Q, generate an appropriate citation.  
• Automatic Citation requires the answers to two questions: 
- Does the citation depend on both Q and D or just on the data Q(D) 

extracted by Q from D?  
- If we have appropriate citations for some queries, can we use them to 

construct citations for other queries? 
• If the data is an image or numbers, cannot expect the citation to live in that 

data 
• If the query returns an empty dataset, we still may wish to cite that 
• People know how to cite certain parts of a dataset but not all…

10D. Koop, CSCI 680/490, Spring 2021
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contributed articles

authors, or publishers of a database 
have good ideas about how their data 
should be cited. However, it is unlikely 
that they will know how to associate a 
citation with some complex SQL query, 
and even less likely that the user of the 
data, whose query was generated by 
some user interface, will understand 
what is wanted. In order to extract the 
citation automatically from the query 
Q and the database D, two questions 

need to be answered: 
 ! Does the citation depend on both Q 

and D or just on the data Q(D) extracted 
by Q from D? 

 ! If we have appropriate citations for 
some queries, can we use them to con-
struct citations for other queries? 

If the retrieved data is simply a 
number or an image, one cannot 
expect to find the citation in the re-
trieved data. Moreover, even if the 
query returns nothing, it may be wor-
thy of citation, but what citation is as-
sociated with the empty set? We need 
at least context information; so we 
need both Q and D. 

The answer to the second question 
is important because authors and pub-
lishers frequently have ideas as to how 
to cite certain parts of the database; 
that is, they can provide citations for 
certain queries but do not know what 
to do about other queries. 

Numerous organizations2,6,12,16 have 
advocated data citation and developed 
principles2–4,7,8,12,13,15 that refine and 
standardize the notion.1,3,4,8,9,18 The 
purpose of these standards is mostly 
to prescribe the information in a cita-
tion—the snippets—and also to define 
its structure. 

A major, but not the only, purpose 
of a citation is to identify the cited ma-
terial, and citation is often linked to 

database? Here, we use the term “data-
base” in a broad sense and “query” to 
mean any mechanism used to extract 
the data, such as a set of file names, an 
SQL query, a URL, or a special-purpose 
GUI. The computational problem this 
poses can be broadly and simply for-
mulated as: 

Given a database D and a query Q, 
generate an appropriate citation. 

It is often the case that the curators, 

Figure 1. GtoPdb family and introductory pages with independent citations. 

Figure 2. The MODIS grid, with highlighted tiles (red) of spatial extent for California 
(green), with citation. Views and Citable Units

• Views describe "areas of 
responsibility" for parts of a database 

• Use views to create "citable units" 
• Determine which view V answers a 

particular query Q and generate a 
citation for the view 

• What happens if two different views 
can answer the same query?

11
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contributed articles

FAMILY table in which the primary key 
is a target family identifier FID. For any 
value x of TID, and for any table that 
has FID as a foreign key, we select the 
rows that contain x. However, we also 
include in this view the union of tables 
of subfamilies of FID or (in the case of 
lowest-level families), the union of tar-
get tables contained in FID. Each value 
of FID defines a distinct “family” view. 

So the question of which citation to 
use for a relational query boils down to 
whether it can be answered using one 
of these relational views. Unfortunate-
ly, while simple to state, the problem 
of rewriting a query using views is non-
trivial; it has been studied extensively 
in the context of query optimization, 
maintenance of physical data indepen-
dence, and data integration.10,14,17 The 
general problem is no simpler than 
program equivalence, which is unde-
cidable; but for answering “conjunc-
tive queries over conjunctive views” 
the problem is NP-complete with prac-
tically efficient solutions. However, 
even in the restricted situation where 
the problem is solvable, there may be 
no views that support a given query; 
more than one candidate view; or the 
query may be expressible as a function 
on two or more candidate views, as in 
Q(D) = Q′(V1(D),V2(D)). 

In spite of these issues, the formula-
tion is useful in many practical cases, 
in particular when the views form a 
hierarchy that allows the choice of a 
“best” view from a candidate set. 

Hierarchies of views. A hierarchy 
of views is formed by a view refine-
ment (subview) relationship: Given two 
views W and V of the same database, W 
is a subview of view V if there is a view 
W′ such that W(D) = W′(V (D)) for all in-
stances D of the database. Trivially, each 
view of the database is a subview of the 
view returning the database itself. The 
natural citation is the smallest view V 
for which Q is a subview. 

In GtoPdb, there is a natural view 
hierarchy; the view for target TID is a 
subview of any family view that con-
tains the target TID. In the hierarchi-
cal view of the data, as in Figure 3, the 
tree for TID is a subtree of the tree for 
FID; in the relational representation, 
each table in TID is a subset of the cor-
responding table in FID. Each view cor-
responds to a simple SQL conjunctive 
query over the relational representa-

tion, and, for such views, it is possible 
to determine whether a query can be 
answered using a view. 

To specify simple views in a hier-
archical structure, a path language 
(such as XPathii) suffices. For exam-
ple, in GtoPdb there are three classes 
of view: one for the family page, one 
for the family introduction page, and 
one for the target page. They are speci-
fied as follows: 

Family view: 
/Root/Family[FamilyName=$$f]

Introduction view:   
/Root/Family[FamilyName=$$f]/
Introduction

Target view:  
/Root/Family[FamilyName=$$f]/
Target[TargetName=$$t] 

Each of them specifies a class of 
views, parameterized by variables 
indicated by $$. For the Family and 
Introduction view, each value of $$f 
gives a view (a node in the tree) and for 
the target view both $$f and $$t are 
needed. We refer to these views as “pa-
rameterized” views. 

In the Web interface to GtoPdb, 
each page is specified by a path from 
the root, as in: 

/Root/
Family[FamilyName=“Melatonin”]/
Target[TargetName=“MT1”]/
LigandTable 

i http://www.w3.org/TR/xpath/

This can be answered using the Tar-
get view defined earlier. It can also be 
answered by following the link in the 
Family view to “MT1”; however, the for-
mer is more specific and would there-
fore be the preferred citable unit. Re-
call that the citations for the two views 
could be different, as illustrated by the 
gray boxes in Figure 3. 

Equally, suppose someone had 
queried the underlying database with 
a simple selection on the Family table 
with Name = “Calcitonin”. Given 
that each citable view in GtoPdb is a set 
of conjunctive queries, it is possible—
and in this case easy—to determine 
that this could be answered using the 
Family view for Calcitonin. 

As we mentioned, it is possible that 
a query could be answered in two ways, 
perhaps through the union of several 
Target views or through one Family 
view. This could be resolved through a 
policy specified by the data publisher or 
by presenting the alternatives to whoev-
er wants to construct the citation. 

Generating citations. Having set up a 
basis for identifying an appropriate cita-
tion, how do we generate one automati-
cally? Here, we show how a simple rule-
based language iusing XPath-like syntax 
can be used to produce an appropriate ci-
tation when the views form a hierarchy. 
In particular, XPath syntax is used to de-
fine patterns that are matched against a 
hierarchy (the body of the rule) to pro-
duce the required citation (the head of 
the rule). Figure 4 shows a simple rule 
for generating a citation, together with 
a citation that is generated by that rule. 
The right-hand side of the rule is an 

Figure 3. The GtoPdb hierarchy showing the citable views and some partial citations. 

families

root

introduction

tables

tuples

…

…

…

…

URI: .../target/1234
Contributors: Miller, Drucker, Salvatori

URI: .../intro/987
Contributors: Miller, Drucker

URI: .../family/1234
Collaborators: Harmar, Sharman, Miller

targetsintroductiontargets

Citable Views and Partial Citations
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Next Class's Reading Response
• Spanner: Google's Globally-Distributed Database 
• Reading Response for Monday:  
- Focus on main concepts in the paper 
- Submit to Blackboard

13D. Koop, CSCI 680/490, Spring 2021

https://research.google.com/archive/spanner-osdi2012.pdf


Assignment 4
• World Education Data 
• Collected/collated by UNESCO, World Bank, and OECD 
• Transform World Bank Data 
• Impute missing year data 
• Integrate teacher and student numbers 
• Fuse three datasets

14D. Koop, CSCI 680/490, Spring 2021

http://faculty.cs.niu.edu/~dakoop/cs680-2021sp/assignment4.html
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144 Introduction

Fig. 1.1 Main components of a DBMS.

a well-understood point of reference for new extensions and revolutions
in database systems that may arise in the future. As a result, we focus
on relational database systems throughout this paper.

At heart, a typical RDBMS has five main components, as illustrated
in Figure 1.1. As an introduction to each of these components and the
way they fit together, we step through the life of a query in a database
system. This also serves as an overview of the remaining sections of the
paper.

Consider a simple but typical database interaction at an airport, in
which a gate agent clicks on a form to request the passenger list for a
flight. This button click results in a single-query transaction that works
roughly as follows:

1. The personal computer at the airport gate (the “client”) calls
an API that in turn communicates over a network to estab-
lish a connection with the Client Communications Manager
of a DBMS (top of Figure 1.1). In some cases, this connection

Relational Database Architecture

16
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170 Parallel Architecture: Processes and Memory Coordination

3.3 Shared-Disk

A shared-disk parallel system (Figure 3.3) is one in which all processors
can access the disks with about the same performance, but are unable
to access each other’s RAM. This architecture is quite common with
two prominent examples being Oracle RAC and DB2 for zSeries SYS-
PLEX. Shared-disk has become more common in recent years with the
increasing popularity of Storage Area Networks (SAN). A SAN allows
one or more logical disks to be mounted by one or more host systems
making it easy to create shared disk configurations.

One potential advantage of shared-disk over shared-nothing systems
is their lower cost of administration. DBAs of shared-disk systems do
not have to consider partitioning tables across machines in order to
achieve parallelism. But very large databases still typically do require
partitioning so, at this scale, the difference becomes less pronounced.
Another compelling feature of the shared-disk architecture is that the
failure of a single DBMS processing node does not affect the other
nodes’ ability to access the entire database. This is in contrast to both
shared-memory systems that fail as a unit, and shared-nothing sys-
tems that lose access to at least some data upon a node failure (unless
some alternative data redundancy scheme is used). However, even with
these advantages, shared-disk systems are still vulnerable to some single

Fig. 3.3 Shared-disk architecture.

Parallel DB Architecture: Shared Disk

18
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Parallel DB Architecture: Shared Disk
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166 Parallel Architecture: Processes and Memory Coordination

Fig. 3.1 Shared-memory architecture.

buying a smaller number of large, very expensive systems is sometimes
viewed to be an acceptable trade-off.1

Multi-core processors support multiple processing cores on a sin-
gle chip and share some infrastructure such as caches and the memory
bus. This makes them quite similar to a shared-memory architecture in
terms of their programming model. Today, nearly all serious database
deployments involve multiple processors, with each processor having
more than one CPU. DBMS architectures need to be able to fully
exploit this potential parallelism. Fortunately, all three of the DBMS
architectures described in Section 2 run well on modern shared-memory
hardware architectures.

The process model for shared-memory machines follows quite
naturally from the uniprocessor approach. In fact, most database
systems evolved from their initial uniprocessor implementations to
shared-memory implementations. On shared-memory machines, the OS
typically supports the transparent assignment of workers (processes or

1 The dominant cost for DBMS customers is typically paying qualified people to adminis-
ter high-end systems. This includes Database Administrators (DBAs) who configure and
maintain the DBMS, and System Administrators who configure and maintain the hard-
ware and operating systems.

Parallel DB Architecture: Shared Memory

19
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Figure 3: Representation of Tile Rendering Server
instances (virtual or physical machines), where each
instance contains a Tra�cDB data store shared
across several application processes.

potentially become the system’s bottleneck. Therefore, no
central process is utilised to translate the application queries
into database-specific queries; instead, the application pro-
cesses are directly “connected” to the shared memory data
store.

4.1 Shared Memory Storage
Tra�cDB was designed for fast read access; directly ac-

cessing the memory location of stored objects is crucial for
the performance of applications, such as the Route Plan-
ning Service. Therefore, data must be stored in a region
of RAM that can be shared and e�ciently accessed by sev-
eral di↵erent application processes. POSIX [13] provides a
standardised API that allows processes to communicate by
sharing a region of memory. Figure 4 shows the interaction
between the shared memory region that stores the data and
the application processes using it. The daemon is a back-
ground process responsible for managing the shared memory
region, which includes creating, updating and deleting the
entire data store. Being the core of Tra�cDB, the daemon
is connected to an external service that injects new tra�c
content. It is the only process allowed to update the data
store.

Figure 4: Representation of the shared-memory
data store updated by the daemon process and ac-
cessed by application processes.

In the further discussion, the word “lock” is not used in
the traditional sense, rather it will be used to mean two
things: attaching shared memory segments into process vir-
tual address space and increasing the kernel’s internal counter
of attached processes. The latter is preventing the kernel
from destroying shared memory until it is closed (detached).
With a producer – consumer approach (deamon – appli-

cation process respectively), when a consumer performs a
set of queries, the data store must be locked for reading,
so updates (done by producer) must wait until all the op-
erations are performed in order to gain write access. This
prevents the data from being modified whilst reading is in
progress and creating possible inconsistencies, but limiting
concurrent access to the data store by the application pro-
cesses and the daemon. This is not to mention that possible
starvation and performance degradation could occur due to
lock contention, because the update process can take a few
seconds and during this time no consumer cannot access the
database.
To solve the above mentioned problem, Tra�cDB was

designed to take advantage of the double bu↵ering scheme
widely used on rendering graphics [12]. Moreover, Tra�cDB
utilises the Linux kernel’s Shared Memory Object Manage-
ment for automatic management of the objects lifetime. The
daemon allocates a main segment in shared memory referred
to as the header. The singleton header contains meta-data,
such as the capacity and size of internal data structures, and
any static tra�c information that is known not to change
(e.g. street geometry). Exluding information regarding the
active object, only data appending inside header is allowed.
There is also another Shared Memory Object – the Tra�c
Object (object for short). The object contains the actual
tra�c conditions for a given moment. It contains all the
dynamic content, everything that may change periodically
as the real-time tra�c conditions change. Having separate
shared memory objects to store the dynamic content, al-
lows one object to be constantly available for the application
processes to read and another for the daemon process to up-
date. Both, header and objects are allocated to the full size
upon creation of shared memory, thus eliminating memory
fragmentation or a need for memory reallocation and copy-
ing.

4.1.1 Daemon

When the daemon starts for the first time the database
does not exist. The daemon will create the header segment
and allocate its internal data structures; loading any static
data according to the database settings. If the header al-
ready exists, it attaches to it. Then the daemon enters an
internal loop, waiting for tra�c data updates. Whenever
new tra�c data is available, a new Tra�c Object is created
and the database is updated. Since only the daemon has ac-
cess to this newly created object, it can write data without
need for synchronisation mechanisms. The same applies to
the header. Since new static information is appended and
required only by the newly created object, updates can hap-
pen directly. Moreover, setting proper access rights (write
for daemon, read-only for others ), prevents application pro-
cesses from writing to shared memory. Additional perfor-
mance enhancements could also be achieved by using shared
memory with huge pages support (SHM HUGETLB) en-
abled [21]. Once the update stage is completed the daemon
updates the active object field in the header meta-data with
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TrafficDB: Shared-Memory Data Store
• Traffic-aware route planning 
• Want up-to-date data for all 
• Thousands of requests per second 
- High-Frequency Reads 
- Low-Frequency Writes 

• "Data must be stored in a region of 
RAM that can be shared and 
efficiently accessed by several 
different application processes"
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threads) across the processors, and the shared data structures continue
to be accessible to all. All three models run well on these systems and
support the execution of multiple, independent SQL requests in paral-
lel. The main challenge is to modify the query execution layers to take
advantage of the ability to parallelize a single query across multiple
CPUs; we defer this to Section 5.

3.2 Shared-Nothing

A shared-nothing parallel system (Figure 3.2) is made up of a cluster
of independent machines that communicate over a high-speed network
interconnect or, increasingly frequently, over commodity networking
components. There is no way for a given system to directly access the
memory or disk of another system.

Shared-nothing systems provide no hardware sharing abstractions,
leaving coordination of the various machines entirely in the hands of the
DBMS. The most common technique employed by DBMSs to support
these clusters is to run their standard process model on each machine,
or node, in the cluster. Each node is capable of accepting client SQL

Fig. 3.2 Shared-nothing architecture.

Parallel DB Architecture: Shared Nothing
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Sharding
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Relational Databases: One size fits all?
• Lots of work goes into relational database development: 
- B-trees 
- Cost-based query optimizers 
- ACID (Atomicity, Consistency, Isolation, Durability)  

• Vendors have stuck with this model since the 1980s 
• Having different systems leads to business problems: 
- cost problem 
- compatibility problem 
- sales problem 
- marketing problem

23
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ACID Transactions
• Make sure that transactions are processed reliably 
• Atomicity: leave the database as is if some part of the transaction fails (e.g. 

don't add/remove only part of the data) using rollbacks 
• Consistency: database moves from one valid state to another 
• Isolation: concurrent execution matches serial execution 
• Durability: endure hardware failures, make sure changes hit disk

24D. Koop, CSCI 680/490, Spring 2021



Stonebraker: The End of an Architectural Era
• "RDBMSs were designed for the business data processing market, which is 

their sweet spot" 
• "They can be beaten handily in most any other market of significant enough 

size to warrant the investment in a specialized engine" 
• Changes in markets (science), necessary features (scalability), and 

technology (amount of memory) 
• RDBMS Overhead: Logging, Latching, and Locking 
• Relational model is not necessarily the answer 
• SQL is not necessarily the answer

25D. Koop, CSCI 680/490, Spring 2021
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Typical Table

id scientist death_by movie_name

1 Reinhardt Crew The Black Hole

2 Tyrell Roy Batty Blade Runner

3 Hammond Dinosaur Jurassic Park

4 Soong Lore Star Trek: TNG

5 Morbius The machine Forbidden Planet

6 Dyson SWAT Terminator 2: Judgment Day

Primary Key

Row

Row Stores
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OLTP vs. OLAP
• Online Transactional Processing (OLTP) often used in business applications, 

data entry and retrieval transactions 
• OLTP Examples: 
- Add customer's shopping cart to the database of orders 
- Find me all information about John Hammond's death 

• OLTP is focused on the day-to-day operations while Online Analytical 
Processing (OLAP) is focused on analyzing that data for trends, etc. 

• OLAP Examples: 
- Find the average amount spent by each customer 
- Find which year had the most movies with scientists dying

27D. Koop, CSCI 680/490, Spring 2021
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Row stores can waste IO

6 15 on_hold 247 122 9 72 76 5 66

select sum(metric) as the_sum from fact

247

1. Storage engine gets a whole row from the table

2. SQL interface extracts only requested portion, adds it to “the_sum”

3. IF all rows scanned, send results to client, else GOTO 1

Inefficiency in Row Stores for OLAP
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Simple column store on disk

Genre

Comedy
Horror
Horror
Drama
Comedy
Drama

id

1
2
3
4
5
6

Title

Mrs. Doubtfire
Jaws
The Fly
Steel Magnolias
The Birdcage
Erin Brokovitch

Person

Robin Williams
Roy Scheider
Jeff Goldblum
Dolly Parton
Nathan Lane
Julia Roberts

row id = 1

row id = 6

Each column has a file or segment on disk

Column Stores
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Horizontal Partitioning vs. Vertical Partitioning
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Horizontal Partitioning vs. Vertical Partitioning
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Problems with Relational Databases
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NoSQL: Key-Value Databases
• Always use primary-key access 
• Operations: 
- Get/put value for key 
- Delete key 

• Examples 
- Memcached 
- Amazon DynamoDB 
- Project Voldemort 
- Couchbase

33
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NoSQL: Document Databases
• Documents are the main entity 
- Self-describing 
- Hierarchical 
- Do not have to be the same 

• Could be XML, JSON, etc. 
• Key-value stores where values are 

"examinable" 
• Can have query language and 

indices overlaid 
• Examples: MongoDB, CouchDB, 

Terrastore
34
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NoSQL: Column Stores
• Instead of having rows grouped/sharded, we group columns 
• …or families of columns 
• Put similar columns together 
• Examples: Cassandra, HBase
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NoSQL: Graph Databases
• Focus on entities and relationships 
• Edges may have properties 
• Relational databases required a set 

traversal 
• Traversals in Graph DBs are faster 
• Examples:  
- Neo4j 
- Pregel

36
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Distributing Data
• Aggregate-oriented databases 
• Sharding (horizontal partitioning): Sharding distributes different data across 

multiple servers, so each server acts as the single source for a subset of data 
• Replication: Replication copies data across multiple servers, so each bit of 

data can be found in multiple places. Replication comes in two forms, 
- Source-replica replication makes one node the authoritative copy that 

handles writes, replica synchronizes with the source and may handle reads. 
- Peer-to-peer replication allows writes to any node; the nodes coordinate to 

synchronize their copies of the data.
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CAP Theorem

38

[E. Brewer]
D. Koop, CSCI 680/490, Spring 2021



CAP Theorem
• Consistency: every read would get you the most recent write 
• Availability: every node (if not failed) always executes queries 
• Partition tolerance: system continues to work even if nodes are down 
• Theorem (Brewer): It is impossible for a distributed data store to 

simultaneously provide more than two of Consistency, Availability, and 
Partition Tolerance
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Cassandra:  
A Decentralized Structured Storage System

A. Lakshman and P. Malik
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What is Cassandra?
• Fast Distributed (Column Family NoSQL) Database 
- High availability 
- Linear Scalability 
- High Performance  

• Fault tolerant on Commodity Hardware 
• Multi-Data Center Support 
• Easy to operate 
• Proven: CERN, Netflix, eBay, GitHub, Instagram, Reddit 
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HIGH AVAILABILITY: CAP THEOREM AND CASSANDRA

6

Partition 
Tolerance

Availability

Consistency 
(ACID)

RDBMS

Atomicity 
Consistency 
Isolation 
Durability

Cassandra and CAP
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HIGH AVAILABILITY: THE RING

7

NO MASTER NO SLAVE

PEER TO 
PEER

go
ssi

p

gossip

I'm online!

Cassandra: Ring for High Availability
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Slides: Introduction to Cassandra
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Next Class's Reading Response
• Spanner: Google's Globally-Distributed Database 
• Reading Response for Monday:  
- Focus on main concepts in the paper 
- Submit to Blackboard
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