Advanced Data Management (CSCI 490/680)

Data Fusion

Dr. David Koop

Databases

- Databases:
 - Have been around for years
 - Organize data by tables, allow powerful queries
 - Most support concurrency: allowing multiple users to work with the database at once
 - Provide many features to ensure data integrity, security
- Database Management Systems (DBMS): software that manages databases and facilitates adding, updating, and removing data as well as queries over the data
- Main language used to interact with databases: Structured Query Language (SQL)

Football Game Data

- Have each game store the id of the home team and the id of the away team (one-toone)
- Have each player store the id of the team he plays on (many-to-one)

D. Koop, CSCI 680/490, Spring 2021

3

Concatenation

- Take two data frames with the same columns and add more rows
- pd.concat([data-frame-1, data-frame-2, ...])
- Default is to add rows (axis=0), but can also add columns (axis=1)
- Can also concatenate Series into a data frame.
- concat preserves the index so this can be confusing if you have two default indices (0,1,2,3...)—they will appear twice
 - Use ignore_index=True to get a 0,1,2...

e columns and add more rows ta-frame-2, ...])

Merges (aka Joins)

- Want to join the two tables based on the location and date
- Location and date are the keys for the join
- Merges are ordered: there is a left and a right side

Game

Id	Location	Date	Home	Away	
0	Boston	9/2	1	15	
1	Boston	9/9	1	7	
2	Cleveland	9/16	12	1	
3	San Diego	9/23	21	1	

No data for San Diego

D. Koop, CSCI 680/490, Spring 2021

Weather

wld	City	Date	Temp
0	Boston	9/2	72
1	Boston	9/3	68
7	Boston	9/9	75
21	Boston	9/23	54
36	Cleveland	9/16	81

Types of Joins

- Inner: intersection of keys (match on both sides)
- Outer: union of keys (if there is no match on other side, still include with NaN to indicate missing data)
- Left: always have rows from left table (no unmatched right data) • Right: like left, but with no unmatched left data

Data Merging in Pandas

- pd.merge(left, right, ...)
- Default merge: join on matching column names • Better: specify the column name(s) to join on via on kwarg - If column names differ, use left on and right on
- - Multiple keys: use a list
- how kwarg specifies type of join ("inner", "outer", "left", "right") • Can add suffixes to column names when they appear in both tables, but are
- not being joined on
- Can also merge using the index by setting left index Or right index to True

Data Integration

select title, startTime from Movie, Plays where Movie.title=Plays.movie AND location="New York" AND director="Ava DuVernay"

Sources S1 and S3 are relevant, sources S4 and S5 are irrelevant, and source S2 is relevant but possibly redundant.

D. Koop, CSCI 680/490, Spring 2021

Movie: Title, director, year, genre Actors: title, actor **Plays**: movie, location, startTime **Reviews**: title, rating, description

S3	S4	S5
emas in NYC:	Cinemas in SF:	Reviews:
inema, title,	location, movie,	title, date
startTime	startingTime	grade, review

Data Integration

- Lots of data sources, how do we answer questions where we need to access data from more than one?
- Schema matching
- Problem of heterogeneity
- Al-Complete problem: difficulty is the same as making computers as intelligent as people
- Two techniques:
 - Mediation
 - Data Warehouses

Data Integration Application: Biomedical

D. Koop, CSCI 680/490, Spring 2021

Northern Illinois University

NIU

Data Warehouses: Offline Replication

- Determine physical schema
- Define a database with this schema
- Define procedural mappings in an "ETL tool" to import the data and clean it.
- Periodically copy all of the data from the data sources
 - Note that the sources and the warehouse are basically independent at this point

11

Virtual Data Warehouses

D. Koop, CSCI 680/490, Spring 2021

12

Integrated Schema Example

Why is Data Integration Hard?

- Systems-level reasons:
 - Managing different platforms
 - SQL across multiple systems is not so simple
 - Distributed query processing
- Logical reasons:
 - Schema (and data) heterogeneity
- 'Social' reasons:
 - Locating and capturing relevant data in the enterprise.
 - Convincing people to share (data fieldoms)
 - Security, privacy and performance implications

<u>Assignment 3</u>

- Same Info Wanted data
- Data wrangling with
 - Trifacta Wrangler
 - pandas
- For place, date extraction: 2 regexs, don't try to standardize anything, CS680 need to extract place details, date is EC
- Trifacta # of Rows Issue
- Due Wednesday, March 3

#	recid	~	#	order	~	#	date	~	ABC place	~	P	state
								_	lu		I	
1 - 41.2	23k		1 - 5			1 - 1.87k			5,431 Categories		44 Categ	jories
		38575			1			null	MA, BROOKLINE		MA	
		34452			1			1857	NY, ·NYC·		NY	
		34453			1			1857	NY, ·NYC·		NY	
		34454			1			1857	NY, ·NYC·		NY	
		35259			1			1855	OH, CINCINATTI		OH	
		37781			1			1864	MA, ABINGTON		MA	
		37781			2		(95/67	MA, BOSTON		MA	
		37781			3			null	CA		CA	
		39120			1			null	TX, MILLICAN		ТХ	
		34455			1			null	AUSTRALIA		null	
		34776			1			null	IL, CHICAGO		IL	
		34881			1			64	NY, BINGHAMPTON, BROOME CO.		NY	
		35309			1			1860	IL·		IL	
		35537			1			1861	MA, BOSTON		MA	
		34757			1			null	TN, NASHVILLE		TN	
		38439			1			null	MA, BOSTON		MA	
		38439			2			null	CA, SAN FRANCISCO		CA	
		41070			2			null	CINCINNATI		null	
		33438			1			1862	MA, BOSTON		MA	
		33478			1			10/64	AL, MOBILE		AL	
		33478			2			null	IL, ST. TRELIA		IL	
		33940			1			1857	NC ·		NC	
		34331			1		e	02/65	MA, · BOSTON ·		MA	
		33693			1			null	NY		NY	
		33693			2			null	CANADAS		null	
		34306			1		(02/65	MA, · BOSTON ·		MA	
		36900			1			null	PA, PHILADELPHIA		PA	
		37541			1			null	AUSTRALIA, SIDNEY		null	
		33485			1			1858	MA, · NEW · BEDFORD ·		MA	

Quiz

- Login to Blackboard (webcourses.niu.edu)
- Quiz is under Tests & Quizzes
- Reading Quiz 2021-02-24

D. Koop, CSCI 680/490, Spring 2021

• You have five (5) minutes to answer the five (5) multiple choice questions

Record Linkage Motivation

- Often data from different sources need to be integrated and linked
 - To allow data analyses that are impossible on individual databases
 - To improve data quality
 - To enrich data with additional information
- Lack of unique entity identifiers means that linking is often based on personal information
- confidentiality is vital
- privacy concerns

When databases are linked across organisations, maintaining privacy and

• The linking of databases is challenged by **data quality**, **database size**, and

17

Motivating Example

- Preventing the outbreak of epidemics requires monitoring of occurrences of unusual patterns of symptoms, ideally in real time
- Data from many different sources will need to be collected (including travel and immigration records; doctors, emergency and hospital admissions; drug purchases; social network and location data; and possibly even animal health data)

[P. Christen, 2019], image: [Pharexia, Wikipedia]

Northern Illinois University

Record Linkage

P. Christen

Record Linkage Process

Record Linkage Techniques

- Deterministic matching
 - Rule-based matching (complex to build and maintain)
- Probabilistic record linkage [Fellegi and Sunter, 1969]
 - Use available attributes for linking (often personal information, like names, addresses, dates of birth, etc.)
 - Calculate match weights for attributes
- "Computer science" approaches
 - Based on machine learning, data mining, database, or information retrieval techniques
 - Supervised classification: Requires training data (true matches) - Unsupervised: Clustering, collective, and graph based

Data Matching & Data Fusion

- <u>Google Thinks I'm Dead</u> (I know otherwise.) [R. Abrams, NYTimes, 2017]
- Not only Google, but also Alexa:
 - "Alexa replies that Rachel Abrams is a sprinter from the Northern Mariana Islands (which is true of someone else)."
 - "He asks if Rachel Abrams is deceased, and Alexa responds yes, citing information in the Knowledge Graph panel."

Northern Illinois University

Data Integration and Data Fusion

- Data Integration: focus on integrating data from different sources • When sources are orthogonal, no problems
- What happens when two sources provide the same type of information and they conflict?
- Data Fusion: create a single object while resolving conflicting values

Data Fusion — Resolving Data Conflicts in Integration

X. L. Dong and F. Naumann

Data Fusion Summary

- Conflict resolution strategies
- "Truth-discovery" techniques
 - Accuracy
 - Freshness
 - Dependence
- Fusion Issues
 - Accuracy
 - Efficiency
 - Usability
 - How fusion fits with the rest of data integration?

Data Conflicts

D. Koop, CSCI 680/490, Spring 2021

Northern Illinois University

Information Integration

Information Integration

Data Fusion

- Problem: Given a duplicate, create a single object representation while resolving conflicting data values.
- Difficulties:
 - Null values: Subsumption and complementation
 - Contradictions in data values
 - process
 - Metadata: Preferences, recency, correctness
 - Lineage: Keep original values and their origin
 - Implementation in DBMS: SQL, extended SQL, UDFs, etc.

- Uncertainty & truth: Discover the true value and model uncertainty in this

Conflict Resolution Strategies

Integrating Conflicting Data: The Role of Source Dependence

X. L. Dong, L. Berti-Equille, and D. Srivastava

