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2.1. Data structure

Most statistical datasets are rectangular tables made up of rows and columns. The columns
are almost always labelled and the rows are sometimes labelled. Table 1 provides some data
about an imaginary experiment in a format commonly seen in the wild. The table has two
columns and three rows, and both rows and columns are labelled.

treatmenta treatmentb

John Smith — 2
Jane Doe 16 11
Mary Johnson 3 1

Table 1: Typical presentation dataset.

There are many ways to structure the same underlying data. Table 2 shows the same data
as Table 1, but the rows and columns have been transposed. The data is the same, but the
layout is di↵erent. Our vocabulary of rows and columns is simply not rich enough to describe
why the two tables represent the same data. In addition to appearance, we need a way to
describe the underlying semantics, or meaning, of the values displayed in table.

John Smith Jane Doe Mary Johnson

treatmenta — 16 3
treatmentb 2 11 1

Table 2: The same data as in Table 1 but structured di↵erently.

2.2. Data semantics

A dataset is a collection of values, usually either numbers (if quantitative) or strings (if
qualitative). Values are organised in two ways. Every value belongs to a variable and an
observation. A variable contains all values that measure the same underlying attribute (like
height, temperature, duration) across units. An observation contains all values measured on
the same unit (like a person, or a day, or a race) across attributes.

Table 3 reorganises Table 1 to make the values, variables and obserations more clear. The
dataset contains 18 values representing three variables and six observations. The variables
are:

1. person, with three possible values (John, Mary, and Jane).

2. treatment, with two possible values (a and b).

3. result, with five or six values depending on how you think of the missing value (-, 16,
3, 2, 11, 1).

The experimental design tells us more about the structure of the observations. In this exper-
iment, every combination of of person and treatment was measured, a completely crossed
design. The experimental design also determines whether or not missing values can be safely
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4 Tidy Data

dropped. In this experiment, the missing value represents an observation that should have
been made, but wasn’t, so it’s important to keep it. Structural missing values, which represent
measurements that can’t be made (e.g., the count of pregnant males) can be safely removed.

name trt result

John Smith a —
Jane Doe a 16
Mary Johnson a 3
John Smith b 2
Jane Doe b 11
Mary Johnson b 1

Table 3: The same data as in Table 1 but with variables in columns and observations in rows.

For a given dataset, it’s usually easy to figure out what are observations and what are variables,
but it is surprisingly di�cult to precisely define variables and observations in general. For
example, if the columns in the Table 1 were height and weight we would have been happy
to call them variables. If the columns were height and width, it would be less clear cut, as
we might think of height and width as values of a dimension variable. If the columns were
home phone and work phone, we could treat these as two variables, but in a fraud detection
environment we might want variables phone number and number type because the use of one
phone number for multiple people might suggest fraud. A general rule of thumb is that it is
easier to describe functional relationships between variables (e.g., z is a linear combination
of x and y, density is the ratio of weight to volume) than between rows, and it is easier
to make comparisons between groups of observations (e.g., average of group a vs. average of
group b) than between groups of columns.

In a given analysis, there may be multiple levels of observation. For example, in a trial of new
allergy medication we might have three observational types: demographic data collected from
each person (age, sex, race), medical data collected from each person on each day (number
of sneezes, redness of eyes), and meterological data collected on each day (temperature,
pollen count).

2.3. Tidy data

Tidy data is a standard way of mapping the meaning of a dataset to its structure. A dataset is
messy or tidy depending on how rows, columns and tables are matched up with observations,
variables and types. In tidy data:

1. Each variable forms a column.

2. Each observation forms a row.

3. Each type of observational unit forms a table.

This is Codd’s 3rd normal form (Codd 1990), but with the constraints framed in statistical
language, and the focus put on a single dataset rather than the many connected datasets
common in relational databases. Messy data is any other other arrangement of the data.

Initial Data

Transpose

Tidy Data



Tidy Data Principles
• Tidy Data: Codd's 3rd Normal Form (Databases) 
1. Each variable forms a column 
2. Each observation forms a row 
3. Each type of observational unit forms a table (DataFrame) 

• Other structures are messy data 
• Benefits: 
- Easy for analyst to extract variables 
- Works well for vectorized programming 

• Organize variables by their role 
- Fixed variables: describe experimental design, known in advance 
- Measured variables: what is measured in study
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Stack and Unstack
• stack: pivots from the columns into rows (may produce a Series!) 
• unstack: pivots from rows into columns 
• unstacking may add missing data 
• stacking filters out missing data (unless dropna=False) 
• can unstack at a different level by passing it (e.g. 0), defaults to innermost 

level
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2  5   4  10
3  3   6  14
4  7   8 NaN

Reshaping and Pivoting
There are a number of fundamental operations for rearranging tabular data. These are
alternatingly referred to as reshape or pivot operations.

Reshaping with Hierarchical Indexing
Hierarchical indexing provides a consistent way to rearrange data in a DataFrame.
There are two primary actions:

• stack: this “rotates” or pivots from the columns in the data to the rows

• unstack: this pivots from the rows into the columns

I’ll illustrate these operations through a series of examples. Consider a small DataFrame
with string arrays as row and column indexes:

In [94]: data = DataFrame(np.arange(6).reshape((2, 3)),
   ....:                  index=pd.Index(['Ohio', 'Colorado'], name='state'),
   ....:                  columns=pd.Index(['one', 'two', 'three'], name='number'))

In [95]: data
Out[95]: 
number    one  two  three
state                    
Ohio        0    1      2
Colorado    3    4      5

Using the stack method on this data pivots the columns into the rows, producing a
Series:

In [96]: result = data.stack()

In [97]: result
Out[97]: 
state     number
Ohio      one       0
          two       1
          three     2
Colorado  one       3
          two       4
          three     5
dtype: int64

From a hierarchically-indexed Series, you can rearrange the data back into a DataFrame
with unstack:

In [98]: result.unstack()
Out[98]: 
number    one  two  three
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state                    
Ohio        0    1      2
Colorado    3    4      5

By default the innermost level is unstacked (same with stack). You can unstack a dif-
ferent level by passing a level number or name:

In [99]: result.unstack(0)        In [100]: result.unstack('state')
Out[99]:                          Out[100]:                        
state   Ohio  Colorado            state   Ohio  Colorado           
number                            number                           
one        0         3            one        0         3           
two        1         4            two        1         4           
three      2         5            three      2         5 

Unstacking might introduce missing data if all of the values in the level aren’t found in
each of the subgroups:

In [101]: s1 = Series([0, 1, 2, 3], index=['a', 'b', 'c', 'd'])

In [102]: s2 = Series([4, 5, 6], index=['c', 'd', 'e'])

In [103]: data2 = pd.concat([s1, s2], keys=['one', 'two'])

In [104]: data2.unstack()
Out[104]: 
      a   b  c  d   e
one   0   1  2  3 NaN
two NaN NaN  4  5   6

Stacking filters out missing data by default, so the operation is easily invertible:

In [105]: data2.unstack().stack()      In [106]: data2.unstack().stack(dropna=False)
Out[105]:                              Out[106]:                                    
one  a    0                            one  a     0                                 
     b    1                                 b     1                                 
     c    2                                 c     2                                 
     d    3                                 d     3                                 
two  c    4                                 e   NaN                                 
     d    5                            two  a   NaN                                 
     e    6                                 b   NaN                                 
dtype: float64                              c     4                                 
                                            d     5                                 
                                            e     6                                 
                                       dtype: float64

When unstacking in a DataFrame, the level unstacked becomes the lowest level in the
result:

In [107]: df = DataFrame({'left': result, 'right': result + 5},
   .....:                columns=pd.Index(['left', 'right'], name='side'))

In [108]: df
Out[108]: 
side             left  right
state    number             
Ohio     one        0      5

Reshaping and Pivoting | 189

stack

unstack

unstack(0)

T



Pivot
• Sometimes, we have data that is given in "long" format and we would like 

"wide" format 
• Long format: column names are data values… 
• Wide format: more like spreadsheet format 
• Example:
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         two        1      6
         three      2      7
Colorado one        3      8
         two        4      9
         three      5     10

In [109]: df.unstack('state')                In [110]: df.unstack('state').stack('side')
Out[109]:                                    Out[110]:                                  
side    left            right                state         Ohio  Colorado               
state   Ohio  Colorado   Ohio  Colorado      number side                                
number                                       one    left      0         3               
one        0         3      5         8             right     5         8               
two        1         4      6         9      two    left      1         4               
three      2         5      7        10             right     6         9               
                                             three  left      2         5               
                                                    right     7        10

Pivoting “long” to “wide” Format
A common way to store multiple time series in databases and CSV is in so-called long
or stacked format:

data = pd.read_csv('ch07/macrodata.csv')
periods = pd.PeriodIndex(year=data.year, quarter=data.quarter, name='date')
data = DataFrame(data.to_records(),
                 columns=pd.Index(['realgdp', 'infl', 'unemp'], name='item'),
                 index=periods.to_timestamp('D', 'end'))

ldata = data.stack().reset_index().rename(columns={0: 'value'})

In [116]: ldata[:10]
Out[116]: 
        date     item     value
0 1959-03-31  realgdp  2710.349
1 1959-03-31     infl     0.000
2 1959-03-31    unemp     5.800
3 1959-06-30  realgdp  2778.801
4 1959-06-30     infl     2.340
5 1959-06-30    unemp     5.100
6 1959-09-30  realgdp  2775.488
7 1959-09-30     infl     2.740
8 1959-09-30    unemp     5.300
9 1959-12-31  realgdp  2785.204

Data is frequently stored this way in relational databases like MySQL as a fixed schema
(column names and data types) allows the number of distinct values in the item column
to increase or decrease as data is added or deleted in the table. In the above example
date and item would usually be the primary keys (in relational database parlance),
offering both relational integrity and easier joins and programmatic queries in many
cases. The downside, of course, is that the data may not be easy to work with in long
format; you might prefer to have a DataFrame containing one column per distinct
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item value indexed by timestamps in the date column. DataFrame’s pivot method per-
forms exactly this transformation:

In [117]: pivoted = ldata.pivot('date', 'item', 'value')

In [118]: pivoted.head()
Out[118]: 
item        infl   realgdp  unemp
date                             
1959-03-31  0.00  2710.349    5.8
1959-06-30  2.34  2778.801    5.1
1959-09-30  2.74  2775.488    5.3
1959-12-31  0.27  2785.204    5.6
1960-03-31  2.31  2847.699    5.2

The first two values passed are the columns to be used as the row and column index,
and finally an optional value column to fill the DataFrame. Suppose you had two value
columns that you wanted to reshape simultaneously:

In [119]: ldata['value2'] = np.random.randn(len(ldata))

In [120]: ldata[:10]
Out[120]: 
        date     item     value    value2
0 1959-03-31  realgdp  2710.349  1.669025
1 1959-03-31     infl     0.000 -0.438570
2 1959-03-31    unemp     5.800 -0.539741
3 1959-06-30  realgdp  2778.801  0.476985
4 1959-06-30     infl     2.340  3.248944
5 1959-06-30    unemp     5.100 -1.021228
6 1959-09-30  realgdp  2775.488 -0.577087
7 1959-09-30     infl     2.740  0.124121
8 1959-09-30    unemp     5.300  0.302614
9 1959-12-31  realgdp  2785.204  0.523772

By omitting the last argument, you obtain a DataFrame with hierarchical columns:

In [121]: pivoted = ldata.pivot('date', 'item')

In [122]: pivoted[:5]
Out[122]: 
            value                     value2                    
item         infl   realgdp  unemp      infl   realgdp     unemp
date                                                            
1959-03-31   0.00  2710.349    5.8 -0.438570  1.669025 -0.539741
1959-06-30   2.34  2778.801    5.1  3.248944  0.476985 -1.021228
1959-09-30   2.74  2775.488    5.3  0.124121 -0.577087  0.302614
1959-12-31   0.27  2785.204    5.6  0.000940  0.523772  1.343810
1960-03-31   2.31  2847.699    5.2 -0.831154 -0.713544 -2.370232

In [123]: pivoted['value'][:5]
Out[123]: 
item        infl   realgdp  unemp
date                             
1959-03-31  0.00  2710.349    5.8
1959-06-30  2.34  2778.801    5.1
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row a b c

A 1 4 7
B 2 5 8
C 3 6 9

(a) Raw data

row column value

A a 1
B a 2
C a 3
A b 4
B b 5
C b 6
A c 7
B c 8
C c 9

(b) Molten data

Table 5: A simple example of melting. (a) is melted with one colvar, row, yielding the molten dataset
(b). The information in each table is exactly the same, just stored in a di↵erent way.

religion income freq

Agnostic <$10k 27
Agnostic $10-20k 34
Agnostic $20-30k 60
Agnostic $30-40k 81
Agnostic $40-50k 76
Agnostic $50-75k 137
Agnostic $75-100k 122
Agnostic $100-150k 109
Agnostic >150k 84
Agnostic Don’t know/refused 96

Table 6: The first ten rows of the tidied Pew survey dataset on income and religion. The column has
been renamed to income, and value to freq.

Melt
• Turn columns into rows 
• One or more columns become rows 

under a new column (column) 
• Values become a new column 

(value) 
• After melt, data is molten 
• Inverse of pivot
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id year month element d1 d2 d3 d4 d5 d6 d7 d8

MX17004 2010 1 tmax — — — — — — — —
MX17004 2010 1 tmin — — — — — — — —
MX17004 2010 2 tmax — 27.3 24.1 — — — — —
MX17004 2010 2 tmin — 14.4 14.4 — — — — —
MX17004 2010 3 tmax — — — — 32.1 — — —
MX17004 2010 3 tmin — — — — 14.2 — — —
MX17004 2010 4 tmax — — — — — — — —
MX17004 2010 4 tmin — — — — — — — —
MX17004 2010 5 tmax — — — — — — — —
MX17004 2010 5 tmin — — — — — — — —

Table 11: Original weather dataset. There is a column for each possible day in the month. Columns
d9 to d31 have been omitted to conserve space.

id date element value

MX17004 2010-01-30 tmax 27.8
MX17004 2010-01-30 tmin 14.5
MX17004 2010-02-02 tmax 27.3
MX17004 2010-02-02 tmin 14.4
MX17004 2010-02-03 tmax 24.1
MX17004 2010-02-03 tmin 14.4
MX17004 2010-02-11 tmax 29.7
MX17004 2010-02-11 tmin 13.4
MX17004 2010-02-23 tmax 29.9
MX17004 2010-02-23 tmin 10.7

(a) Molten data

id date tmax tmin

MX17004 2010-01-30 27.8 14.5
MX17004 2010-02-02 27.3 14.4
MX17004 2010-02-03 24.1 14.4
MX17004 2010-02-11 29.7 13.4
MX17004 2010-02-23 29.9 10.7
MX17004 2010-03-05 32.1 14.2
MX17004 2010-03-10 34.5 16.8
MX17004 2010-03-16 31.1 17.6
MX17004 2010-04-27 36.3 16.7
MX17004 2010-05-27 33.2 18.2

(b) Tidy data

Table 12: (a) Molten weather dataset. This is almost tidy, but instead of values, the element column
contains names of variables. Missing values are dropped to conserve space. (b) Tidy weather dataset.
Each row represents the meteorological measurements for a single day. There are two measured
variables, minimum (tmin) and maximum (tmax) temperature; all other variables are fixed.

Problem: Variables stored in both rows & columns
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(b) Tidy data

Table 12: (a) Molten weather dataset. This is almost tidy, but instead of values, the element column
contains names of variables. Missing values are dropped to conserve space. (b) Tidy weather dataset.
Each row represents the meteorological measurements for a single day. There are two measured
variables, minimum (tmin) and maximum (tmax) temperature; all other variables are fixed.

Solution: Melting + Pivot
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Assignment 3
• Same Info Wanted data 
• Data wrangling with 
- Trifacta Wrangler 
- pandas 

• For place, date extraction: 2 regexs, 
don't try to standardize anything, 
CS680 need to extract place details, 
date is EC 

• Start now! 
• Due Wednesday, March 3

9D. Koop, CSCI 680/490, Spring 2021
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Outline
• Combining Data 
• Data Integration 
• Data Matching (Entity Resolution) 
• Data Fusion (Wednesday) 
- Integrating Conflicting Data: The Role of Source Dependence, 

X. L. Dong et al., 2009 
- Quiz at the beginning of class

10D. Koop, CSCI 680/490, Spring 2021
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Databases
• Databases: 
- Have been around for years 
- Organize data by tables, allow powerful queries 
- Most support concurrency: allowing multiple users to work with the 

database at once  
- Provide many features to ensure data integrity, security 

• Database Management Systems (DBMS): software that manages databases 
and facilitates adding, updating, and removing data as well as queries over 
the data 

• Main language used to interact with databases:  
Structured Query Language (SQL)
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Relational Databases
• A specific model for databases [Codd, 1969] 
• Extremely popular, supported by most major DBMS (IBM DB2, SQLServer, 

mySQL, etc.) 
• Consists of relations (tables) made up of tuples (rows) 
• Relations reference each other! 
- Types of relationships: one-to-one, many-to-one, many-to-many 

• Each tuple has a key; to reference a tuple in another relation, use a foreign 
key in the current relation

12D. Koop, CSCI 680/490, Spring 2021



Example: Football Game Data
• Data about football games, teams, & players
- Game is between two Teams
- Each Team has Players

• For each game, we could specify every 
player and all of their information… why is 
this bad?
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Example: Football Game Data
• Data about football games, teams, & players
- Game is between two Teams
- Each Team has Players

• For each game, we could specify every 
player and all of their information… why is 
this bad?

• Normalization: reduce redundancy, keep 
information that doesn't change separate

• 3 Relations: Team, Player, Game
• Each relation only encodes the data specific 

to what it represents
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Id Name Height Weight

Player

Id Name Wins Losses

Team

Id Location Date

Game



Example: Football Game Data
• Have each game store the id of the home 

team and the id of the away team (one-to-
one) 

• Have each player store the id of the team he 
plays on (many-to-one) 

• What happens if a player plays on 2+ teams?

14D. Koop, CSCI 680/490, Spring 2021

Id Name Height Weight TeamId

Player

Id Name Wins Losses

Team

Id Location Date Home Away

Game



How does this relate to pandas?
• DataFrames in pandas are ~relations (tables) 
• We may wish to normalize data in a similar manner in pandas 
• However, operating on 2+ DataFrames at the same time can be unwieldy, 

can we merge them together? 
• Two potential operations: 
- Have football game data (just the Game table) from 2013, 2014, and 2015 

and wish to merge the data into one data frame 
- Have football game data and wish to find the average temperature of the 

cities where the games were played
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Concatenation
• Take two data frames with the same columns and add more rows 
• pd.concat([data-frame-1, data-frame-2, …]) 

• Default is to add rows (axis=0), but can also add columns (axis=1) 
• Can also concatenate Series into a data frame. 
• concat preserves the index so this can be confusing if you have two default 

indices (0,1,2,3…)—they will appear twice 
- Use ignore_index=True to get a 0,1,2…
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Merges (aka Joins)
• Need to merge data from one DataFrame with data from another DataFrame 
• Example: Football game data merged with temperature data

17D. Koop, CSCI 680/490, Spring 2021

Id Location Date Home Away
0 Boston 9/2 1 15
1 Boston 9/9 1 7
2 Cleveland 9/16 12 1
3 San Diego 9/23 21 1

Game
wId City Date Temp
0 Boston 9/2 72
1 Boston 9/3 68
… … … …
7 Boston 9/9 75
… … … …
21 Boston 9/23 54
… … … …
36 Cleveland 9/16 81

Weather

No data for San Diego



Merges (aka Joins)
• Want to join the two tables based on the location and date 
• Location and date are the keys for the join 
• What happens when we have missing data? 
• Merges are ordered: there is a left and a right side 
• Four types of joins: 
- Inner: intersection of keys (match on both sides) 
- Outer: union of keys (if there is no match on other side, still include with NaN 

to indicate missing data) 
- Left: always have rows from left table (no unmatched right data) 
- Right: like left, but with no unmatched left data
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Inner Strategy
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Id Location Date Home Away Temp wId
0 Boston 9/2 1 15 72 0
1 Boston 9/9 1 7 75 7
2 Cleveland 9/16 12 1 81 36

Merged

No San Diego entry



Outer Strategy
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Id Location Date Home Away Temp wId
0 Boston 9/2 1 15 72 0

NaN Boston 9/3 NaN NaN 68 1
… … … … … … …
1 Boston 9/9 1 7 75 7

NaN Boston 9/10 NaN NaN 76 8
… … … … … … …

NaN Cleveland 9/2 NaN NaN 61 22
… … … … … … …
2 Cleveland 9/16 12 1 81 36
… … … … … … …
3 San Diego 9/23 21 1 NaN NaN

Merged



Left Strategy
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Id Location Date Home Away Temp wId
0 Boston 9/2 1 15 72 0
1 Boston 9/9 1 7 75 7
2 Cleveland 9/16 12 1 81 36
3 San Diego 9/23 21 1 NaN NaN

Merged



Right Strategy
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Id Location Date Home Away Temp wId
0 Boston 9/2 1 15 72 0

NaN Boston 9/3 NaN NaN 68 1
… … … … … … …
1 Boston 9/9 1 7 75 7

NaN Boston 9/10 NaN NaN 76 8
… … … … … … …

NaN Cleveland 9/2 NaN NaN 61 22
… … … … … … …
2 Cleveland 9/16 12 1 81 36
… … … … … … …

Merged

No San Diego entry



Data Merging in Pandas
• pd.merge(left, right, …) or left.merge(right, …) 

• Default merge: join on matching column names 
• Better: specify the column name(s) to join on via on kwarg 
- If column names differ, use left_on and right_on 
- Multiple keys: use a list 

• how kwarg specifies type of join ("inner", "outer", "left", "right") 
• Can add suffixes to column names when they appear in both tables, but are 

not being joined on 
• Can also merge using the index by setting 
left_index or right_index to True
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Table 8-2. merge function arguments
Argument Description
left DataFrame to be merged on the left side.
right DataFrame to be merged on the right side.
how One of 'inner', 'outer', 'left', or 'right'; defaults to 'inner'.
on Column names to join on. Must be found in both DataFrame objects. If not speci!ed and no other join keys

given, will use the intersection of the column names in left and right as the join keys.
left_on Columns in left DataFrame to use as join keys.
right_on Analogous to left_on for left DataFrame.
left_index Use row index in left as its join key (or keys, if a MultiIndex).
right_index Analogous to left_index.
sort Sort merged data lexicographically by join keys; True by default (disable to get better performance in

some cases on large datasets).
suffixes Tuple of string values to append to column names in case of overlap; defaults to ('_x', '_y') (e.g., if

'data' in both DataFrame objects, would appear as 'data_x' and 'data_y' in result).
copy If False, avoid copying data into resulting data structure in some exceptional cases; by default always

copies.
indicator Adds a special column _merge that indicates the source of each row; values will be 'left_only',

'right_only', or 'both' based on the origin of the joined data in each row.

Merging on Index
In some cases, the merge key(s) in a DataFrame will be found in its index. In this
case, you can pass left_index=True or right_index=True (or both) to indicate that
the index should be used as the merge key:

In [56]: left1 = pd.DataFrame({'key': ['a', 'b', 'a', 'a', 'b', 'c'],
   ....:                       'value': range(6)})

In [57]: right1 = pd.DataFrame({'group_val': [3.5, 7]}, index=['a', 'b'])

In [58]: left1
Out[58]: 
  key  value
0   a      0
1   b      1
2   a      2
3   a      3
4   b      4
5   c      5

In [59]: right1
Out[59]: 
   group_val
a        3.5
b        7.0
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Merge Arguments
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Outline
• Combining Data 
• Data Integration 
• Data Matching (Entity Resolution) 
• Data Fusion (next Tuesday) 
- Reading Response 
- Integrating Conflicting Data: The Role of Source Dependence, 

X. L. Dong et al., 2009
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http://www.lunadong.com/publication/dependence_vldb.pdf


Introduction to Data Integration

A. Doan, A. Halevy, and Z. Ives
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http://research.cs.wisc.edu/dibook/slides/Chapter_1.ppt


Data Integration
select title, startTime 
from Movie, Plays 
where Movie.title=Plays.movie AND 
           location=“New York”  AND 
           director=“Woody Allen” 

Sources S1 and S3 are relevant, sources S4 and S5 are irrelevant, and 
source S2 is relevant but possibly redundant.
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Cinemas: 
place, movie, 

start

Reviews: 
title, date

grade, review

Movies: 
 name, actors,  
director, genre

Cinemas in NYC: 
cinema, title, 

startTime

Cinemas in SF: 
location, movie, 

startingTime

Movie: Title, director, year, genre 
Actors: title, actor 
Plays: movie, location, startTime 
Reviews: title, rating, description

S1 S2 S3 S4 S5



Data Matching & Data Fusion
• Google Thinks I’m Dead 

(I know otherwise.) [R. Abrams, 
NYTimes, 2017] 

• Not only Google, but also Alexa: 
- "Alexa replies that Rachel Abrams is 

a sprinter from the Northern 
Mariana Islands (which is true of 
someone else)." 

- "He asks if Rachel Abrams is 
deceased, and Alexa responds yes, 
citing information in the Knowledge 
Graph panel."
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http://www.apple.com
http://www.apple.com


Data Integration, Data Matching, & Data Fusion
• Data Integration: focus on integrating data from different sources 
• Data Matching (aka Entity Resolution aka Record Linkage):  

want to know that two entities (often in different sources) are the same "real" 
entity 

• When sources are orthogonal, no problems 
• What happens when two sources provide the same type of information and 

they conflict? 
• Data Fusion: create a single object while resolving conflicting values 
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Record Linkage

P. Christen  
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http://users.cecs.anu.edu.au/~Peter.Christen/publications/christen2019csic-tutorial-slides.pdf


Outline
• Combining Data 
• Data Integration 
• Data Matching (Entity Resolution) 
• Data Fusion (Wednesday) 
- Integrating Conflicting Data: The Role of Source Dependence, 

X. L. Dong et al., 2009 
- Quiz at the beginning of class
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