Advanced Data Management (CSCI 490/680)

Data Transformation

Dr. David Koop

Regular Expressions

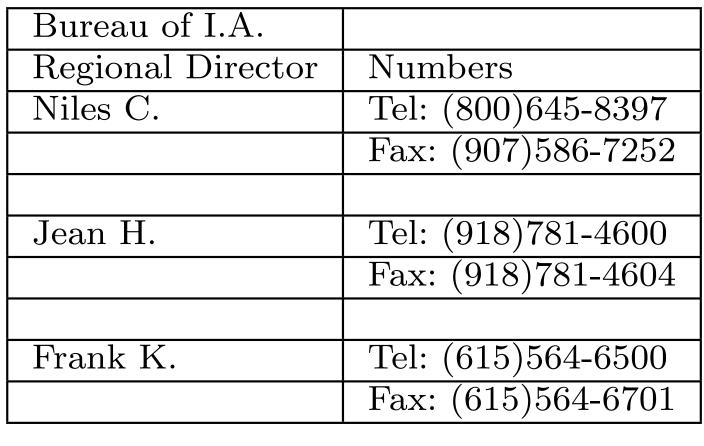
Finding matches:

```
- date = 'this was last year: 12/31/2020 a/b/c'
- match = re.match(r'\d+/\d+/\d+',date)
- match = re.search(r'\d+/\d+/\d+',date)
- results = re.findall(r'\d+/\d+/\d+',date)
```

Capture:

```
- match = re.search(r'(\d+)/(\d+)/(\d+)), date)

- match.groups() # ('12', '31', '2020')
```


Substitution:

```
- result = re.sub(r'(\d+)/(\d+)/(\d+)',r'\3-\1-\2',date)
- # 'this was last year: 2020-12-31 a/b/c'
```

Foofah's Goal

- Focus on data transformation
- Data transformation tools suffer usability issues:
 - High Skill: familiarity with operations and the effect or their order
 - High Effort: user effort increases as the program becomes longer
- Repetitive and tedious
- Goal: minimize a user's effort and reduce the required background knowledge for data transformation tasks

Getting Lost in Transformations

	Tel	Fax
Niles C.	(800)645-8397	
		(615)564-6701
Jean H.	(918)781-4600	
Frank K.	(615)564-6500	

Original Table

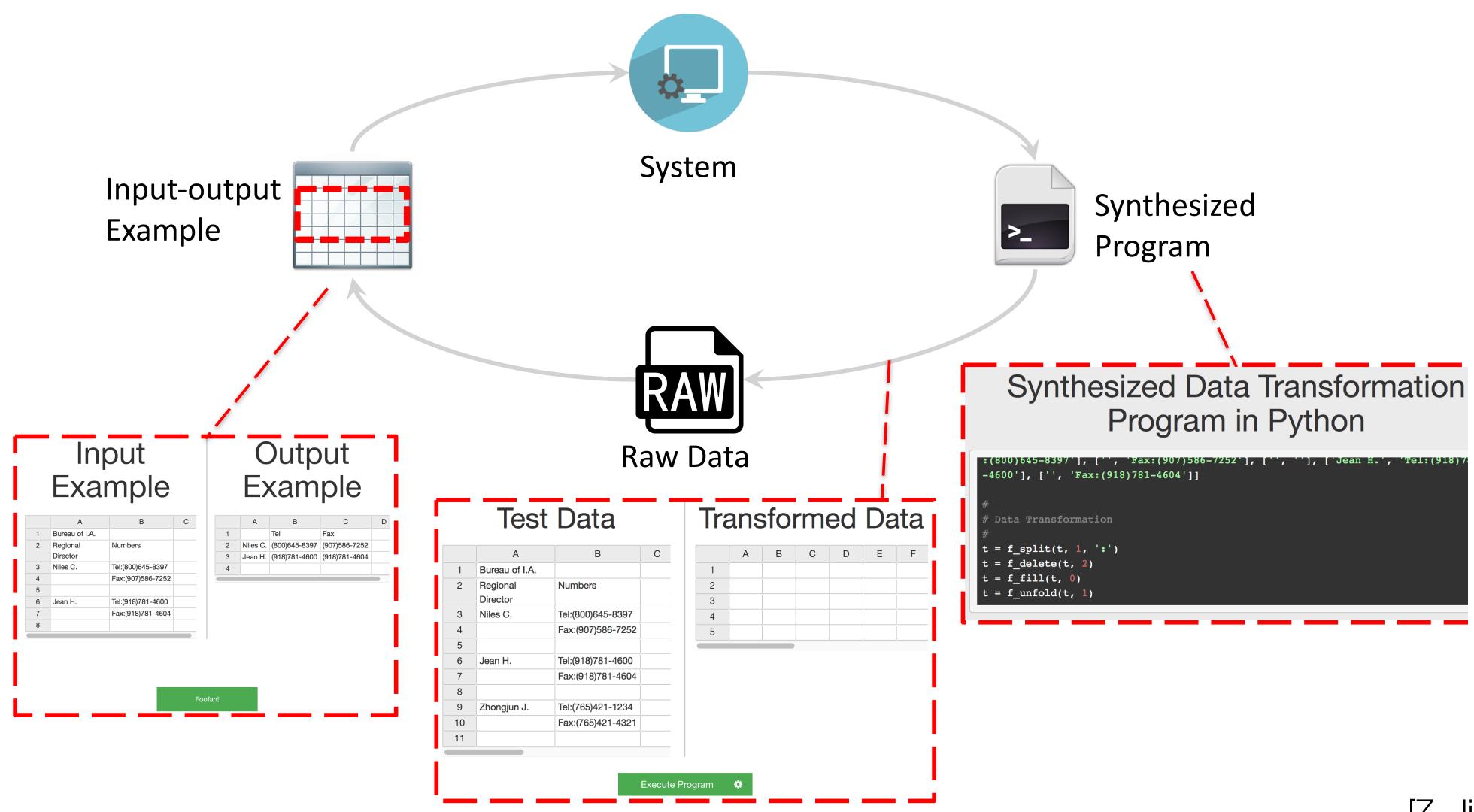
Split+Delete

Niles C.	Tel	(800)645-8397
	Fax	(907)586-7252
Jean H.	Tel	(918)781-4600
	Fax	(918)781-4604
Frank K.	Tel	(615)564-6500
	Fax	(615)564-6701

Intermediate Table

Problem Table
Unfold

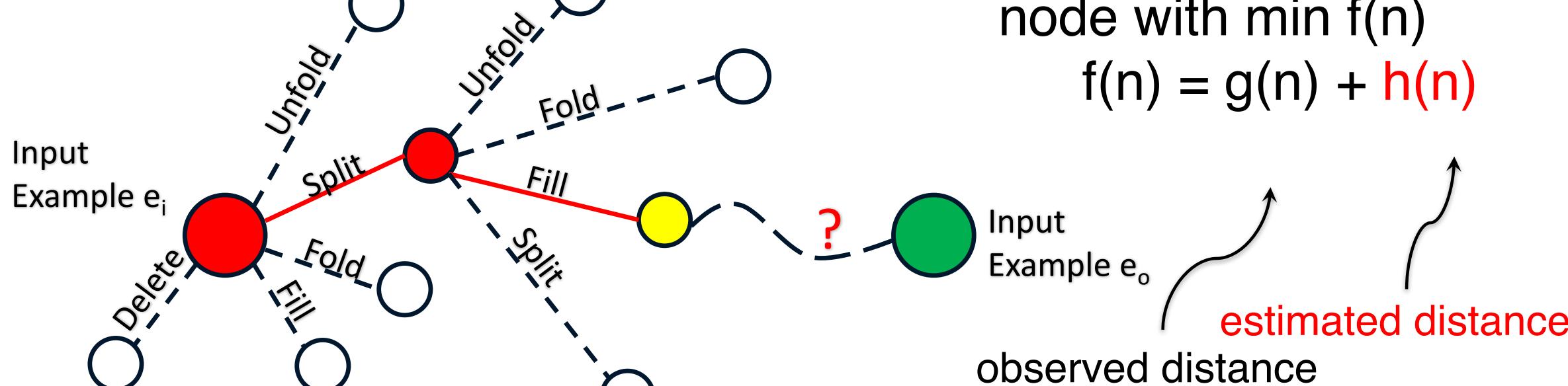
Fill+


Unfold

	Tel	Fax
Niles C.	(800)645-8397	(907)586-7252
Jean H.	(918)781-4600	(918)781-4604
Frank K.	(615)564-6500	(615)564-6701

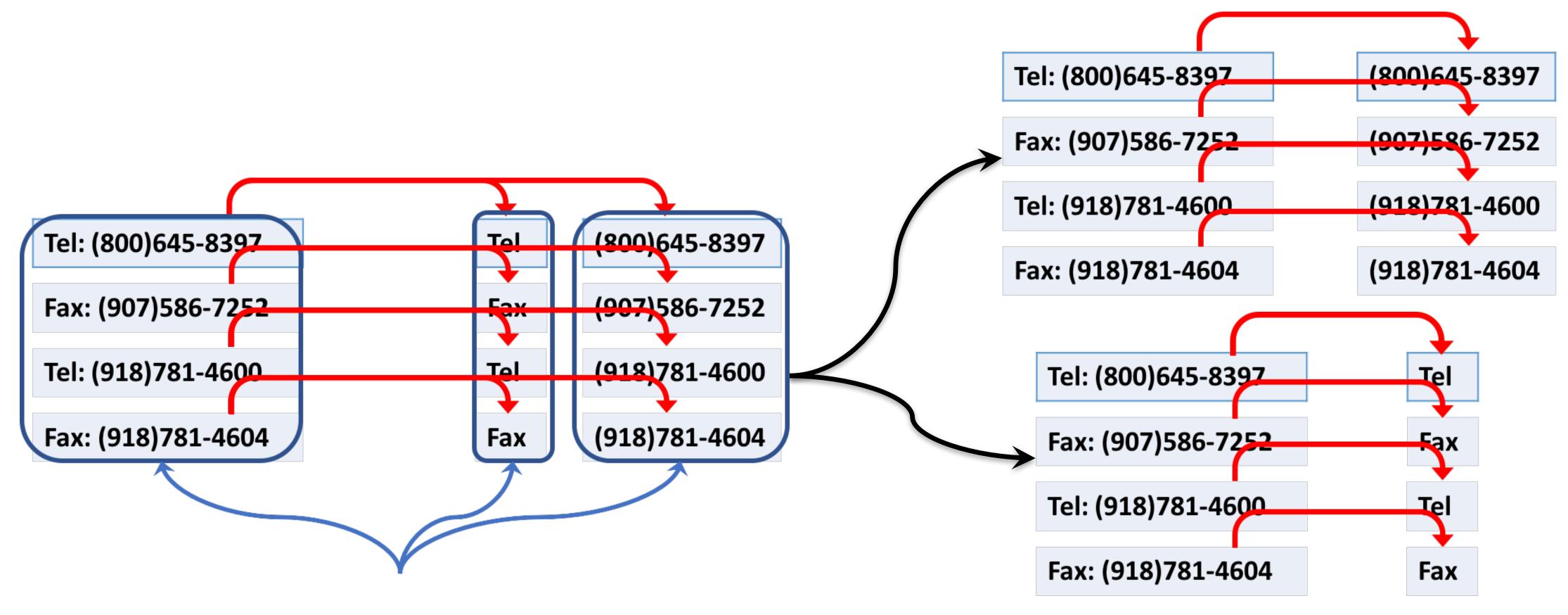
Desired Solution

Foofah Design: Programming by Example


Foofah Solution

A search problem solved by A* algorithm edges: operation

nodes: different views of the data


A* search: iteratively explore the

node with min f(n)

Table Edit Distance Batch

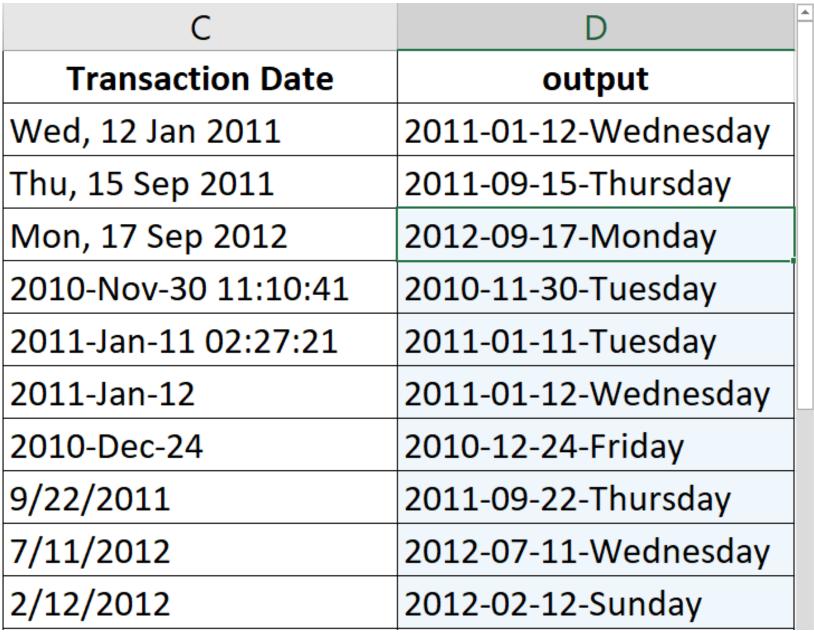
Batch the geometrically-adjacent cell-level operations of the same type

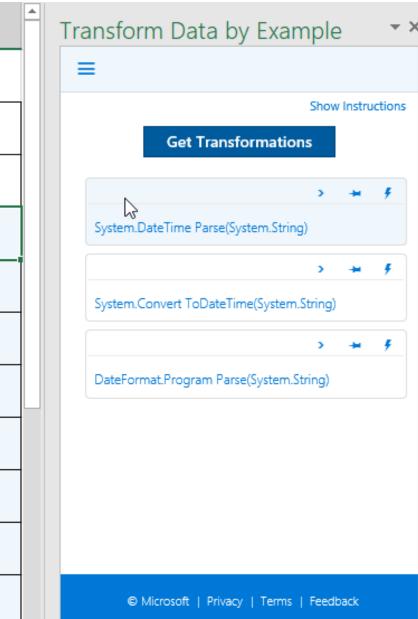
8 Transform operations

2 "batched" Transform operations

User Study Results

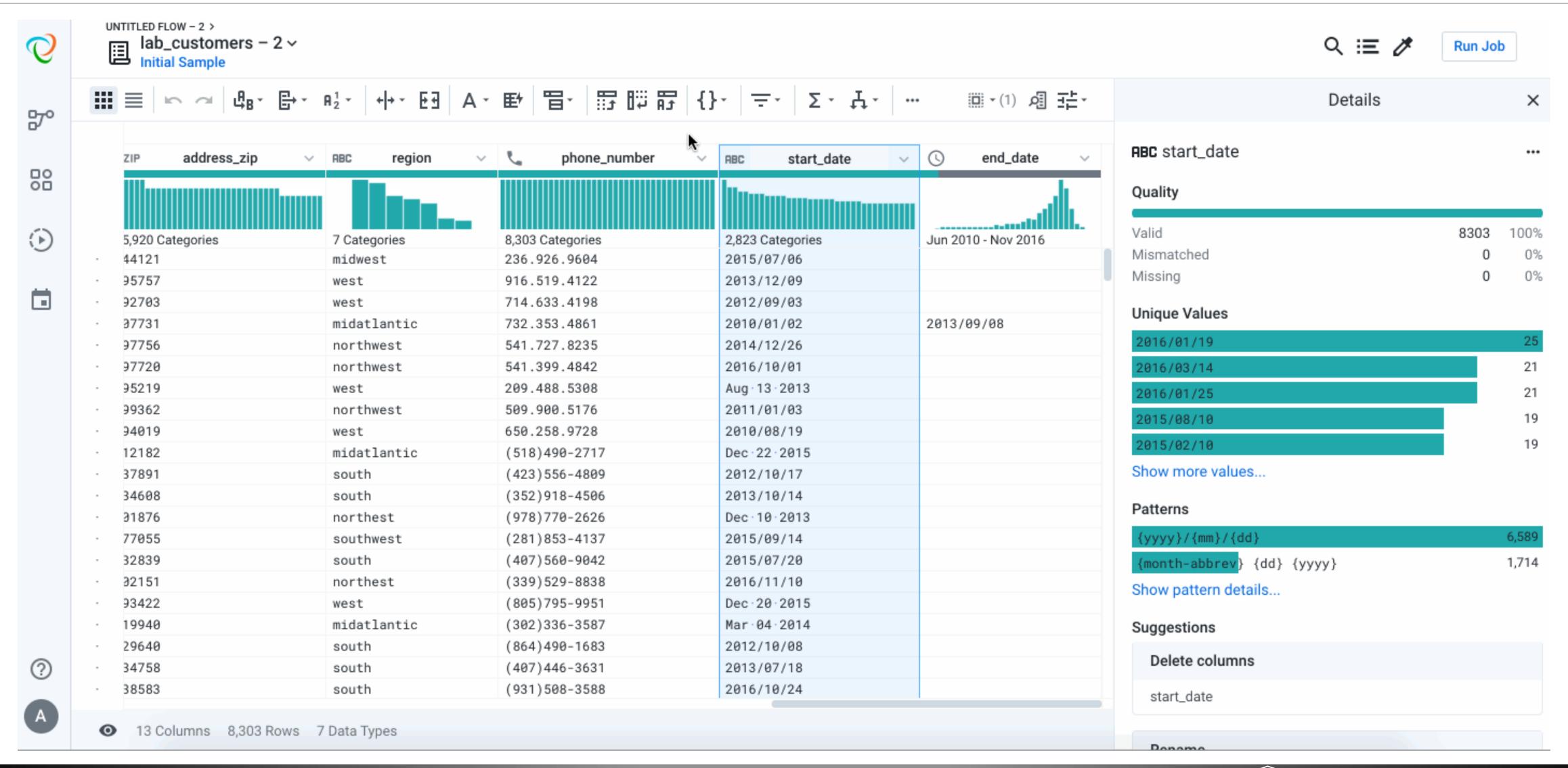

			Wrangler		FOOFAH			
Test	Complex	$\geq 4 \text{ Ops}$	Time	Mouse	Key	Time vs Wrangler	Mouse	Key
PW1	No	No	$\boldsymbol{104.2}$	17.8	11.6	$49.4 \mathbf{\searrow} 52.6\%$	20.8	22.6
PW3 (modified)	No	No	96.4	28.8	26.6	$38.6 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	14.2	23.6
ProgFromEx13	Yes	No	263.6	59.0	16.2	$145.8 \searrow 44.7\%$	43.6	78.4
PW5	Yes	No	$\boldsymbol{242.0}$	52.0	15.2	$58.8 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	31.4	32.4
ProgFromEx17	No	Yes	72.4	18.8	11.6	$48.6 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	18.2	15.2
PW7	No	Yes	141.0	41.8	12.2	44.4 > 68.5%	19.6	35.8
Proactive1	Yes	Yes	324.2	60.0	13.8	$104.2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	41.4	57.0
Wrangler3	Yes	Yes	590.6	133.2	29.6	$137.0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	58.6	99.8

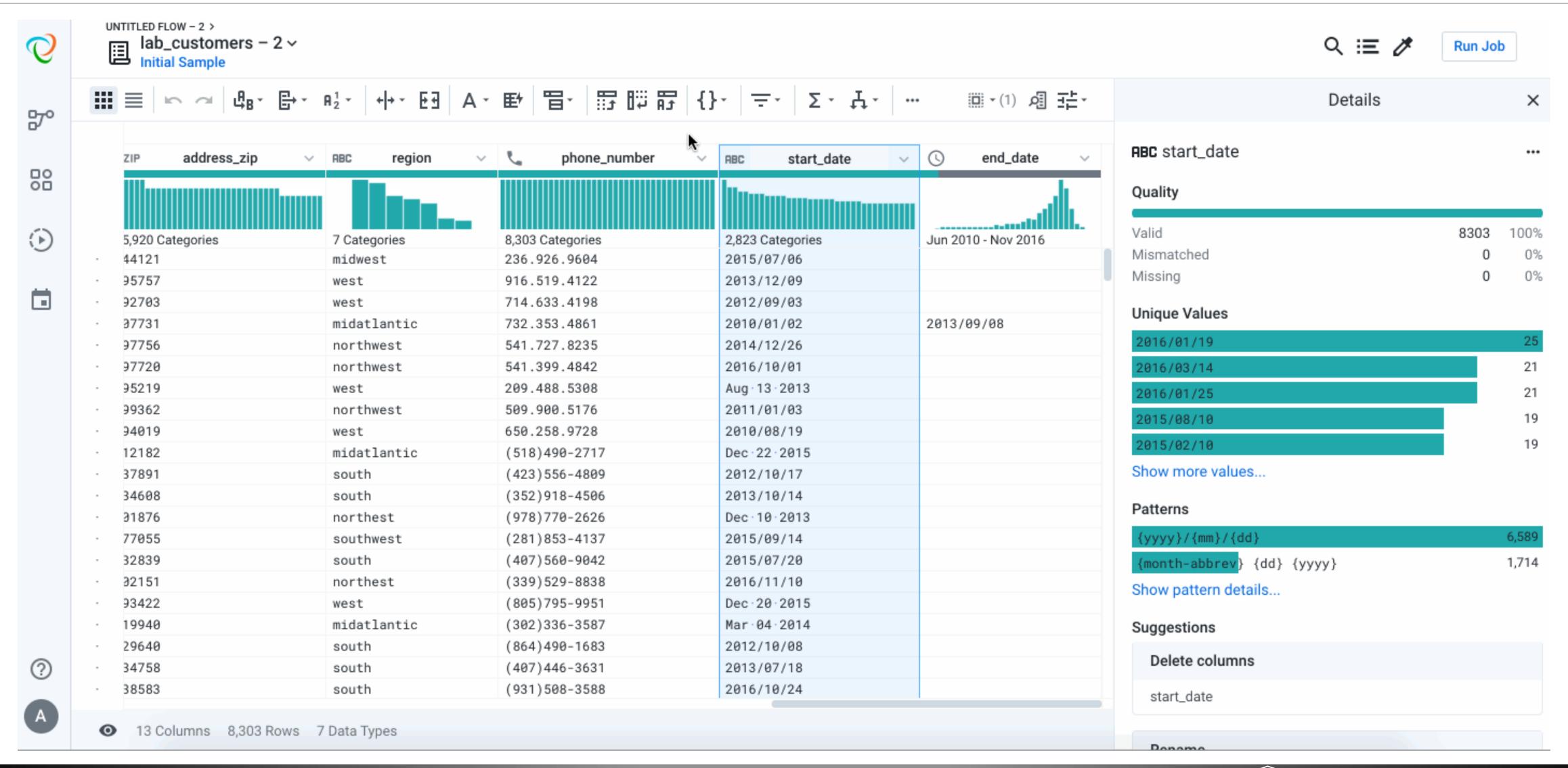

TDE: Transform Data by Example


- Row-to-row translation only
- Search System, GitHub, and StackOverflow for functions
- Given dataset with examples
 - Use L1 from library
 - Compose synthesized programs (L2)
 - Rank best transformations

TDE: Transform Data by Example

С	D
Transaction Date	output
Wed, 12 Jan 2011	2011-01-12-Wednesday
Thu, 15 Sep 2011	2011-09-15-Thursday
Mon, 17 Sep 2012	
2010-Nov-30 11:10:41	
2011-Jan-11 02:27:21	
2011-Jan-12	
2010-Dec-24	
9/22/2011	
7/11/2012	
2/12/2012	





[Y. He et al., 2018]

Trifacta Transform by Example

Trifacta Transform by Example

Assignment 3

- Almost ready
- Data cleaning, same Info Wanted dataset as A2
- Complete same tasks using Trifacta and pandas
 - Fix dates, ages in original table
 - Transform location fields to tidy data

Test 1

- Wednesday, February 17, 3:30pm-4:45pm Online (Blackboard)
- Includes much of the python content we have covered plus data, data cleaning, data transformation topics (content through Wednesday's lecture)
- Format:
 - Multiple Choice
 - Free Response (see web page for examples)
 - CS680 students will have additional questions
- Coding questions will focus on broad syntax not your memorization of every pandas function
- Concept questions can include discussions of the research papers

Pandas Transformations

- Split: str.split
- Fold/Unfold: stack/unstack
- Merge, join, and concatenate documentation:
 - https://pandas.pydata.org/pandas-docs/stable/merging.html

Tidy Data

- Dataset contain values: quantitative and categorical/qualitative
- Value is either:
 - variable: all values that measure the same underlying attribute
 - observation: all values measured on the same unit across attributes

Three Ways to Present the Same Data

	treatmenta	treatmentb
John Smith		2
Jane Doe	16	11
Mary Johnson	3	1

Initial Data

	John Smith	Jane Doe	Mary Johnson
treatmenta		16	3
treatmentb	2	11	1

Transpose

name	trt	result
John Smith	a	
Jane Doe	\mathbf{a}	16
Mary Johnson	\mathbf{a}	3
John Smith	b	2
Jane Doe	b	11
Mary Johnson	b	1

Tidy Data

Tidy Data Principles

- Tidy Data: Codd's 3rd Normal Form (Databases)
 - 1. Each variable forms a column
 - 2. Each observation forms a row
 - 3. Each type of observational unit forms a table (DataFrame)
- Other structures are messy data

Tidy Data

- Benefits:
 - Easy for analyst to extract variables
 - Works well for vectorized programming
- Organize variables by their role
 - Fixed variables: describe experimental design, known in advance
 - Measured variables: what is measured in study
- Variables also known as dimensions and measures

Messy Dataset Problems

- Column headers are values, not variable names
- Multiple variables are stored in one column
- Variables are stored in both rows and columns
- Multiple types of observational units are stored in the same table
- A single observational unit is stored in multiple tables

Problem: Column Headers are Values

	integrate date in telligioni, i evv i erani					
religion	<\$10k	\$10-20k	\$20-30k	\$30-40k	\$40-50k	\$50-75k
Agnostic	27	34	60	81	76	137
Atheist	12	27	37	52	35	70
Buddhist	27	21	30	34	33	58
Catholic	418	617	732	670	638	1116
Don't know/refused	15	14	15	11	10	35
Evangelical Prot	575	869	1064	982	881	1486
Hindu	1	9	7	9	11	34
Historically Black Prot	228	244	236	238	197	223
Jehovah's Witness	20	27	24	24	21	30
Jewish	19	19	25	25	30	95

Problem: Column Headers are Values

Income and Religion, Pew Forum

religion	<\$10k	\$10-20k	\$20-30k	\$30-40k	\$40-50k	\$50-75k
Agnostic	27	34	60	81	76	137
Atheist	12	27	37	52	35	70
Buddhist	27	21	30	34	33	58
Catholic	418	617	732	670	638	1116
Don't know/refused	15	14	15	11	10	35
Evangelical Prot	575	869	1064	982	881	1486
Hindu	1	9	7	9	11	34
Historically Black Prot	228	244	236	238	197	223
Jehovah's Witness	20	27	24	24	21	30
Jewish	19	19	25	25	30	95

Variables: religion, income, frequency

Solution: Melt Data

- Turn columns into rows
- One or more columns become rows under a new column (column)
- Values become a new column (value)
- After melt, data is molten
- AKA pivot_longer
- Inverse of pivot

row	a	b	c
A	1	4	7
В	2	5	8
\mathbf{C}	3	6	9

(a) Raw data

row	column	value
A	\mathbf{a}	1
В	\mathbf{a}	2
\mathbf{C}	\mathbf{a}	3
A	b	4
В	b	5
\mathbf{C}	b	6
A	\mathbf{c}	7
В	\mathbf{c}	8
\mathbf{C}	\mathbf{c}	9

(b) Molten data

Solution: Molten Data

religion	<\$10k	\$10-20k	\$20-30k	\$30-40k	\$40-50k	\$50-75k	religion	income	freq
Agnostic	27	34	60	81	76	137	Agnostic	<\$10k	27
Atheist	12	27	37	52	35	70	Agnostic	\$10-20k	34
Buddhist	27	21	30	34	33	58	Agnostic	\$20-30k	60
Catholic	418	617	732	670	638	1116	Agnostic	\$30-40k	81
Don't know/refused	15	14	15	11	10	35	Agnostic	\$40-50k	76
Evangelical Prot	575	869	1064	982	881	1486	Agnostic	\$50-75k	137
Hindu	1	9	7	9	11	34	Agnostic	\$75-100k	122
Historically Black Prot	228	244	236	238	197	223	Agnostic	\$100-150k	109
Jehovah's Witness	20	27	24	24	21	30	Agnostic	> 150 k	84
Jewish	19	19	25	25	30	95	Agnostic	Don't know/refused	96

Molten (first 10 rows)

Melting: Billboard Top Hits

year	artist	track	time	date.entered	wk1	wk2	wk3
2000	2 Pac	Baby Don't Cry	4:22	2000-02-26	87	82	72
2000	2Ge+her	The Hardest Part Of	3:15	2000-09-02	91	87	92
2000	3 Doors Down	Kryptonite	3:53	2000-04-08	81	70	68
2000	98^0	Give Me Just One Nig	3:24	2000-08-19	51	39	34
2000	A*Teens	Dancing Queen	3:44	2000-07-08	97	97	96
2000	Aaliyah	I Don't Wanna	4:15	2000-01-29	84	62	51
2000	Aaliyah	Try Again	4:03	2000-03-18	59	53	38
2000	Adams, Yolanda	Open My Heart	5:30	2000-08-26	76	76	74

Table 7: The first eight Billboard top hits for 2000. Other columns not shown are wk4, wk5, ..., wk75.

year	artist	time	track	date	week	rank
2000	2 Pac	4:22	Baby Don't Cry	2000-02-26	1	87
2000	2 Pac	4:22	Baby Don't Cry	2000-03-04	2	82
2000	2 Pac	4:22	Baby Don't Cry	2000-03-11	3	72
2000	2 Pac	4:22	Baby Don't Cry	2000-03-18	4	77
2000	2 Pac	4:22	Baby Don't Cry	2000-03-25	5	87
2000	2 Pac	4:22	Baby Don't Cry	2000-04-01	6	94
2000	2 Pac	4:22	Baby Don't Cry	2000-04-08	7	99
2000	2Ge+her	3:15	The Hardest Part Of	2000-09-02	1	91
2000	2Ge+her	3:15	The Hardest Part Of	2000-09-09	2	87
2000	2Ge+her	3:15	The Hardest Part Of	2000-09-16	3	92
2000	3 Doors Down	3:53	Kryptonite	2000-04-08	1	81
2000	3 Doors Down	3:53	Kryptonite	2000-04-15	2	70
2000	3 Doors Down	3:53	Kryptonite	2000-04-22	3	68
2000	3 Doors Down	3:53	Kryptonite	2000-04-29	4	67
2000	3 Doors Down	3:53	Kryptonite	2000-05-06	5	66

Melting

Pandas also has a melt function:

```
In [41]: cheese = pd.DataFrame({'first': ['John', 'Mary'],
                                'last' : ['Doe', 'Bo'],
   • • • • •
                                'height' : [5.5, 6.0],
   • • • • •
                                'weight' : [130, 150]})
   • • • • •
   • • • • •
In [42]: cheese
Out[42]:
 first height last weight
  John
            5.5 Doe
                         130
                         150
            6.0
1 Mary
                 Во
In [43]: cheese.melt(id_vars=['first', 'last'])
Out[43]:
 first last variable value
              height
                         5.5
  John
        Doe
              height
                         6.0
  Mary
         Во
   John
               weight 130.0
        Doe
         Во
               weight 150.0
  Mary
In [44]: cheese.melt(id_vars=['first', 'last'], var_name='quantity')
Out[44]:
  first last quantity value
  John Doe
              height
  Mary
               height
   John
               weight 130.0
         Doe
         Во
              weight 150.0
  Mary
```

Problem: Multiple variables stored in one column

Tuberculosis Data, World Health Organization

country	year	m014	m1524	m2534	m3544	m4554	m5564	m65	mu	f014
AD	2000	0	0	1	0	0	0	0		
AE	2000	2	4	4	6	5	12	10		3
AF	2000	52	228	183	149	129	94	80		93
AG	2000	0	0	0	0	0	0	1		1
AL	2000	2	19	21	14	24	19	16		3
AM	2000	2	152	130	131	63	26	21		1
AN	2000	0	0	1	2	0	0	0		0
AO	2000	186	999	1003	912	482	312	194		247
AR	2000	97	278	594	402	419	368	330		121
AS	2000					1	1			

Problem: Multiple variables stored in one column

Tuberculosis Data, World Health Organization

country	year	m014	m1524	m2534	m3544	m4554	m5564	m65	mu	f014
AD	2000	0	0	1	0	0	0	0		
AE	2000	2	4	4	6	5	12	10		3
AF	2000	52	228	183	149	129	94	80		93
AG	2000	0	0	0	0	0	0	1		1
AL	2000	2	19	21	14	24	19	16		3
AM	2000	2	152	130	131	63	26	21		1
AN	2000	0	0	1	2	0	0	0		0
AO	2000	186	999	1003	912	482	312	194		247
AR	2000	97	278	594	402	419	368	330		121
AS	2000					1	1			

Two variables in columns: age and sex

Solution: Melting + Splitting

				ı					
country	year	column	cases		country	year	sex	age	cases
$\overline{\mathrm{AD}}$	2000	m014	0		AD	2000	m	0-14	0
AD	2000	m1524	0		AD	2000	m	15 - 24	0
AD	2000	m2534	1		AD	2000	m	25 - 34	1
AD	2000	m3544	0		AD	2000	m	35 - 44	0
AD	2000	m4554	0		AD	2000	m	45 - 54	0
AD	2000	m5564	0		AD	2000	m	55 - 64	0
AD	2000	m65	0		AD	2000	m	65+	0
AE	2000	m014	2		AE	2000	m	0 - 14	2
AE	2000	m1524	4		AE	2000	m	15 - 24	4
AE	2000	m2534	4		AE	2000	m	25 - 34	4
AE	2000	m3544	6		AE	2000	m	35-44	6
AE	2000	m4554	5		AE	2000	m	45 - 54	5
AE	2000	m5564	12		AE	2000	m	55 - 64	12
AE	2000	m65	10		AE	2000	m	65 +	10
AE	2000	f014	3		AE	2000	f	0 - 14	3
				1					

⁽a) Molten data

(b) Tidy data

Problem: Variables stored in both rows & columns

			,								
id	year	month	element	d1	d2	d3	d4	d5	d6	d7	d8
MX17004	2010	1	tmax								
MX17004	2010	1	tmin								
MX17004	2010	2	tmax		27.3	24.1					
MX17004	2010	2	tmin		14.4	14.4					
MX17004	2010	3	tmax					32.1			
MX17004	2010	3	tmin					14.2			
MX17004	2010	4	tmax								
MX17004	2010	4	tmin								
MX17004	2010	5	tmax		·						
MX17004	2010	5	tmin								

Problem: Variables stored in both rows & columns

Mexico Weather, Global Historical Climatology Network

id	year	month	element	d1	d2	d3	d4	d5	d6	d7	d8
MX17004	2010	1	tmax								
MX17004	2010	1	tmin								
MX17004	2010	2	tmax		27.3	24.1					
MX17004	2010	2	tmin		14.4	14.4					
MX17004	2010	3	tmax					32.1			
MX17004	2010	3	tmin					14.2			
MX17004	2010	4	tmax								
MX17004	2010	4	tmin								
MX17004	2010	5	tmax								
MX17004	2010	5	tmin								

Variable in columns: day; Variable in rows: tmax/tmin

Pivot

- Sometimes, we have data that is given in "long" format and we would like "wide" format (AKA pivot_wider)
- Long format: column names are data values...
- Wide format: more like spreadsheet format
- Example:

date	item	value	.pivot('date', 'it	em', 'value')
0 1959-03-31	realgdp	2710.349		,
1 1959-03-31	infl	0.000	item infl	realgdp unemp
2 1959-03-31	unemp	5.800	date	
3 1959-06-30	realgdp	2778.801	1959-03-31 0.00	2710.349 5.8
4 1959-06-30	infl	2.340	1959-06-30 2.34	2778.801 5.1
5 1959-06-30	unemp	5.100	1959-09-30 2.74	2775.488 5.3
6 1959-09-30	realgdp	2775.488	1959-12-31 0.27	2785.204 5.6
7 1959-09-30	infl	2.740	1960-03-31 2.31	2847.699 5.2
8 1959-09-30	unemp	5.300		
9 1959-12-31	realgdp	2785.204		

[W. McKinney, Python for Data Analysis]

Solution: Melting + Pivot

id	date	element	value	id	date	tmax	tmin
MX17004	2010-01-30	tmax	27.8	MX17004	2010-01-30	27.8	14.5
MX17004	2010-01-30	tmin	14.5	MX17004	2010-02-02	27.3	14.4
MX17004	2010-02-02	tmax	27.3	MX17004	2010-02-03	24.1	14.4
MX17004	2010-02-02	tmin	14.4	MX17004	2010-02-11	29.7	13.4
MX17004	2010-02-03	tmax	24.1	MX17004	2010 - 02 - 23	29.9	10.7
MX17004	2010-02-03	tmin	14.4	MX17004	2010-03-05	32.1	14.2
MX17004	2010-02-11	tmax	29.7	MX17004	2010-03-10	34.5	16.8
MX17004	2010 - 02 - 11	tmin	13.4	MX17004	2010-03-16	31.1	17.6
MX17004	2010 - 02 - 23	tmax	29.9	MX17004	2010 - 04 - 27	36.3	16.7
MX17004	2010-02-23	tmin	10.7	MX17004	2010-05-27	33.2	18.2

(a) Molten data

Tidy data

Problem: Multiple types in one table

3illboar
Top
Hits

		. •		7 .	7	1
year	artist	time	track	date	week	rank
2000	2 Pac	4:22	Baby Don't Cry	2000-02-26	1	87
2000	2 Pac	4:22	Baby Don't Cry	2000 - 03 - 04	2	82
2000	2 Pac	4:22	Baby Don't Cry	2000 - 03 - 11	3	72
2000	2 Pac	4:22	Baby Don't Cry	2000-03-18	4	77
2000	2 Pac	4:22	Baby Don't Cry	2000 - 03 - 25	5	87
2000	2 Pac	4:22	Baby Don't Cry	2000-04-01	6	94
2000	2 Pac	4:22	Baby Don't Cry	2000-04-08	7	99
2000	2Ge+her	3:15	The Hardest Part Of	2000-09-02	1	91
2000	2Ge+her	3:15	The Hardest Part Of	2000-09-09	2	87
2000	2Ge+her	3:15	The Hardest Part Of	2000-09-16	3	92
2000	3 Doors Down	3:53	Kryptonite	2000-04-08	1	81
2000	3 Doors Down	3:53	Kryptonite	2000 - 04 - 15	2	70
2000	3 Doors Down	3:53	Kryptonite	2000 - 04 - 22	3	68
2000	3 Doors Down	3:53	Kryptonite	2000-04-29	4	67
2000	3 Doors Down	3:53	Kryptonite	2000-05-06	5	66

Problem: Multiple types in one table

Billboard	year	artist	time	track	date	week	rank
Top	2000	2 Pac	4:22	Baby Don't Cry	2000-02-26	1	87
Hits	2000	2 Pac	4:22	Baby Don't Cry	2000-03-04	2	82
	2000	2 Pac	4:22	Baby Don't Cry	2000-03-11	3	72
	2000	2 Pac	4:22	Baby Don't Cry	2000-03-18	4	77
	2000	2 Pac	4:22	Baby Don't Cry	2000 - 03 - 25	5	87
	2000	2 Pac	4:22	Baby Don't Cry	2000-04-01	6	94
	2000	2 Pac	4:22	Baby Don't Cry	2000-04-08	7	99
	2000	2Ge+her	3:15	The Hardest Part Of	2000-09-02	1	91
Repeated	2000	2Ge+her	3:15	The Hardest Part Of	2000-09-09	2	87
Information	2000	2Ge+her	3:15	The Hardest Part Of	2000-09-16	3	92
11 11 011110001011	2000	3 Doors Down	3:53	Kryptonite	2000-04-08	1	81
	2000	3 Doors Down	3:53	Kryptonite	2000 - 04 - 15	2	70
	2000	3 Doors Down	3:53	Kryptonite	2000 - 04 - 22	3	68
	2000	3 Doors Down	3:53	Kryptonite	2000-04-29	4	67
	2000	3 Doors Down	3:53	Kryptonite	2000-05-06	5	66
-							ГІ

Solution: Normalization

id	artist	track	time	id	date	rank
1	2 Pac	Baby Don't Cry	4:22	1	2000-02-26	87
2	2Ge+her	The Hardest Part Of	3:15	1	2000-03-04	82
3	3 Doors Down	Kryptonite	3:53	1	2000 - 03 - 11	72
4	3 Doors Down	Loser	4:24	1	2000-03-18	77
5	504 Boyz	Wobble Wobble	3:35	1	2000 - 03 - 25	87
6	98^0	Give Me Just One Nig	3:24	1	2000-04-01	94
7	A*Teens	Dancing Queen	3:44	1	2000-04-08	99
8	Aaliyah	I Don't Wanna	4:15	2	2000-09-02	91
9	Aaliyah	Try Again	4:03	2	2000-09-09	87
10	Adams, Yolanda	Open My Heart	5:30	2	2000-09-16	92
11	Adkins, Trace	More	3:05	3	2000-04-08	81
12	Aguilera, Christina	Come On Over Baby	3:38	3	2000-04-15	70
13	Aguilera, Christina	I Turn To You	4:00	3	2000-04-22	68
14	Aguilera, Christina	What A Girl Wants	3:18	3	2000-04-29	67
15	Alice Deejay	Better Off Alone	6:50	3	2000-05-06	66

Important: Analysis may require merging!

Problem: One type in many tables

Baby Names, Social Security Administration

Popularity in 2016

		•	004	
$P \cap \cap \Gamma$	larit\/	ın	・ノロ	
Popu	iaiity	11 1		

Rank	Male name	Female name
1	Noah	Emma
2	Liam	Olivia
3	William	Ava
4	Mason	Sophia
5	James	Isabella
6	Benjamin	Mia
7	Jacob	Charlotte
8	Michael	Abigail
9	Elijah	Emily
10	Ethan	Harper

Rank	Male name	Female name
1	Noah	Emma
2	Liam	Olivia
3	Mason	Sophia
4	Jacob	Ava
5	William	Isabella
6	Ethan	Mia
7	James	Abigail
8	Alexander	Abigail Emily
9	Michael	Charlotte
10	Benjamin	Harper

[Social Security Administration]

Solution: Melt and Concatenation

Rank	Year	Sex	Name
1	2016	Female	Emma
1	2016	Male	Noah
2	2016	Female	Olivia
2	2016	Male	Liam
3	2016	Female	Ava
3	2016	Male	William

Rank	Year	Sex	Name
1	2015	Female	Emma
1	2015	Male	Noah
2	2015	Female	Olivia
2	2015	Male	Liam
3	2015	Female	Sophia
3	2015	Male	Mason

Melt 2015 and 2016

Rank	Year	Sex	Name
1	2015	Female	Emma
1	2015	Male	Noah
1	2016	Female	Emma
1	2016	Male	Noah
2	2015	Female	Olivia
2	2015	Male	Liam
2	2016	Female	Olivia
2	2016	Male	Liam
3	2015	Female	Sophia
3	2015	Male	Mason
3	2016	Female	Ava
3	2016	Male	William

Concatenate

Using Tidy Data

- Sorting (sort_values, sort_index)
- Transformation (e.g. Fahrenheit to Celsius)
- Filtering (use Boolean indexing)
- Aggregation

Hierarchical Indexing (Multiple Keys)

- We might have multiple keys to identify a single piece of data
- Example: Football records for each team over multiple years
 - Identify a specific row by both the team name and the year
 - Can think about this as a tuple (<team_name>, <year>)
- pandas supports this via hierarchical indexing (MultiIndex)
- display mirrors the hierarchical nature of the data

Example

```
\bullet data = [{"W": 11, "L": 5},
          {"W": 6, "L": 10},
          {"W": 12, "L": 4},
                                            Team
                                                    Year
           {"W": 8, "L": 8},
                                                      2007
          {"W": 2, "L": 14}]
                                            Boston
                                                      2008
 index = [["Boston", "Boston",
             "San Diego", "San Diego",
                                                      2007
                                            San Diego
            "Cleveland"],
                                                      2008
            [2007, 2008, 2007,
                                            Cleveland
                                                      2007
            2008, 2007]]
 df = pd.DataFrame (data,
                      columns=["W", "L"],
                      index=pd.MultiIndex.from arrays (
                          index, names=('Team', 'Year'))
```

W

11

6

12

10

14

How do we access a row? or slice?

Multilndex Row Access and Slicing

- df.loc["Boston", 2007]
- Remember that loc uses the index values, iloc uses integers
- Note: df.iloc[0] gets the first row, not df.iloc[0,0]
- Can get a subset of the data using partial indices
 - df.loc["Boston"] returns both 2007 and 2008 data
- What about slicing?
 - df.loc["Boston": "Cleveland"] \rightarrow ERROR! (Need sorted data)
 - df = df.sort index()
 - df.loc["Boston":"Cleveland"] → inclusive!
 - df.loc[(slice("Boston", "Cleveland"), 2007),:]

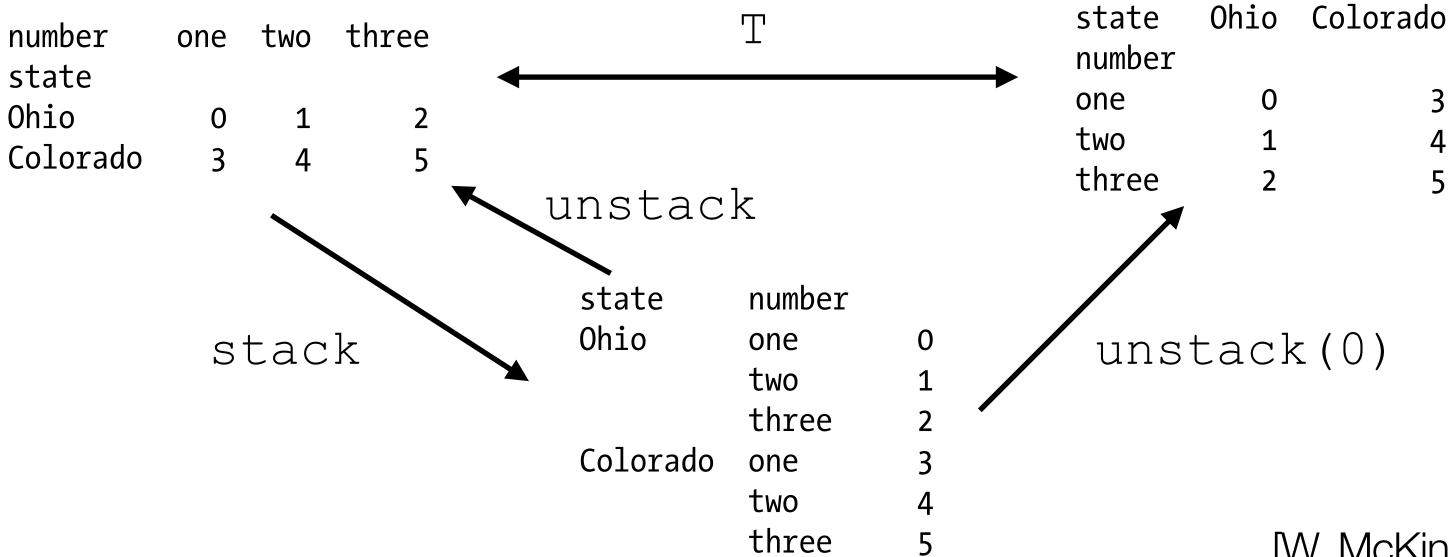
Reorganizing the MultiIndex

- swaplevel: switch the order of the levels
 - df = df.swaplevel("Year", "Team")
 - df.sort index()
- Can do summary statistics by level
 - df.sum(level="Team")
- Reset the index (back to numbers)
 - df.reset index()
- Promote columns to be the indices
 - df.set_index(["Team", "Year"])

		W	L
Team	Year		
Poston	2007	11	5
Boston	2008	6	10
Con Diogo	2007	12	4
San Diego	2008	8	8
Cleveland	2007	2	14

Reshaping Data

- Reshape/pivoting are fundamental operations
- Can have a nested index in pandas
- Example: Congressional Districts (Ohio's 1st, 2nd, 3rd, Colorado's 1st, 2nd, 3rd) and associated representative rankings
- Could write this in different ways:


number state	one	two	three	state number	Ohio	Colorad
Ohio	0	1	2	one	0	
Colorado		_	5	two	1	
COTOTAGO	J	7	<i>J</i>	three	2	

state	number	
Ohio	one	0
	two	1
	three	2
Colorado	one	3
	two	4
	three	5

Stack and Unstack

- stack: pivots from the columns into rows (may produce a Series!)
- unstack: pivots from rows into columns
- unstacking may add missing data
- stacking filters out missing data (unless dropna=False)
- can unstack at a different level by passing it (e.g. 0), defaults to innermost

level

[W. McKinney, Python for Data Analysis]

Pivot

- Sometimes, we have data that is given in "long" format and we would like "wide" format
- Long format: column names are data values...
- Wide format: more like spreadsheet format
- Example:

date	item	value	.pivot('	date',	'it	em', '	ralue')
0 1959-03-31	realgdp	2710.349		,		,	,
1 1959-03-31	infl	0.000	ite	: m	infl	realgdp	unemp
2 1959-03-31	unemp	5.800	dat	e			
3 1959-06-30	realgdp	2778.801	195	9-03-31	0.00	2710.349	5.8
4 1959-06-30	infl	2.340	195	9-06-30	2.34	2778.801	5.1
5 1959-06-30	unemp	5.100	195	9-09-30	2.74	2775.488	5.3
6 1959-09-30	realgdp	2775.488	195	9-12-31	0.27	2785.204	5.6
7 1959-09-30	infl	2.740	196	0-03-31	2.31	2847.699	5.2
8 1959-09-30	unemp	5.300					
9 1959-12-31	realgdp	2785.204					

[W. McKinney, Python for Data Analysis]

Baby Names Example