
Advanced Data Management (CSCI 490/680)

Data Transformation

Dr. David Koop

D. Koop, CSCI 680/490, Spring 2021

Regular Expressions
• Finding matches:

- date = 'this was last year: 12/31/2020 a/b/c'

- match = re.match(r'\d+/\d+/\d+',date)

- match = re.search(r'\d+/\d+/\d+',date)

- results = re.findall(r'\d+/\d+/\d+',date)

• Capture:
- match = re.search(r'(\d+)/(\d+)/(\d+)',date)

- match.groups() # ('12', '31', '2020')

• Substitution:
- result = re.sub(r'(\d+)/(\d+)/(\d+)',r'\3-\1-\2',date)

- # 'this was last year: 2020-12-31 a/b/c'

2D. Koop, CSCI 680/490, Spring 2021

Foofah's Goal
• Focus on data transformation
• Data transformation tools suffer usability issues:
- High Skill: familiarity with operations and the effect or their order
- High Effort: user effort increases as the program becomes longer

• Repetitive and tedious
• Goal: minimize a user's effort and reduce the required background

knowledge for data transformation tasks

3D. Koop, CSCI 680/490, Spring 2021

Getting Lost in Transformations

4

[Z. Jin et al., 2017]
D. Koop, CSCI 680/490, Spring 2021

Foofah: Transforming Data By Example

Zhongjun Jin Michael R. Anderson Michael Cafarella H. V. Jagadish
University of Michigan, Ann Arbor

{markjin,mrander,michjc,jag}@umich.edu

ABSTRACT
Data transformation is a critical first step in modern data
analysis: before any analysis can be done, data from a va-
riety of sources must be wrangled into a uniform format
that is amenable to the intended analysis and analytical
software package. This data transformation task is tedious,
time-consuming, and often requires programming skills be-
yond the expertise of data analysts. In this paper, we develop
a technique to synthesize data transformation programs by
example, reducing this burden by allowing the analyst to de-
scribe the transformation with a small input-output example
pair, without being concerned with the transformation steps
required to get there. We implemented our technique in a
system, Foofah, that e�ciently searches the space of pos-
sible data transformation operations to generate a program
that will perform the desired transformation. We experimen-
tally show that data transformation programs can be created
quickly with Foofah for a wide variety of cases, with 60%
less user e↵ort than the well-known Wrangler system.

Keywords
Data Transformation; Program Synthesis; Programming By
Example; A* algorithm; Heuristic

1. INTRODUCTION
The many fields that depend on data for decision making

have at least one thing in common: raw data is often in a non-
relational or poorly structured form, possibly with extraneous
information, and cannot be directly used by a downstream
information system, like a database or visualization system.
Figure 1 from [16] is a good example of such raw data.
In modern data analytics, data transformation (or data
wrangling) is usually a crucial first step that reorganizes
raw data into a more desirable format that can be easily
consumed by other systems. Figure 2 showcases a relational
form obtained by transforming Figure 1.

Traditionally, domain experts handwrite task specific scripts
to transform unstructured data—a task that is often labor-

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD’17, May 14-19, 2017, Chicago, IL, USA

c� 2017 ACM. ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3064034

Bureau of I.A.
Regional Director Numbers
Niles C. Tel: (800)645-8397

Fax: (907)586-7252

Jean H. Tel: (918)781-4600
Fax: (918)781-4604

Frank K. Tel: (615)564-6500
Fax: (615)564-6701

. . .
Figure 1: A spreadsheet of business contact information

Tel Fax
Niles C. (800)645-8397 (907)586-7252
Jean H. (918)781-4600 (918)781-4604
Frank K. (615)564-6500 (615)564-6701

. . .
Figure 2: A relational form of Figure 1

intensive and tedious. The requirement for programming
hamstrings data users that are capable analysts but have
limited coding skills. Even worse, these scripts are tailored to
particular data sources and cannot adapt when new sources
are acquired. People normally spend more time preparing
data than analyzing it; up to 80% of a data scientist’s time
can be spent on transforming data into a usable state [28].

Recent research into automated and assisted data transfor-
mation systems have tried to reduce the need of a program-
ming background for users, with some success [19, 22, 41].
These tools help users generate reusable data transformation
programs, but they still require users to know which data
transformation operations are needed and in what order they
should be applied. Current tools still require some level of im-
perative programming, placing a significant burden on data
users. Take Wrangler [22], for example, where a user must
select the correct operators and parameters to complete a
data transformation task. This is often challenging if the user
has no experience in data transformation or programming.

In general, existing data transformation tools are di�cult
to use due to two usability issues:

• High Skill : Users must be familiar with the often compli-
cated transformation operations and then decide which
operations to use and in what order.

• High E↵ort : The amount of user e↵ort increases as the
data transformation program gets lengthy.

To resolve the above usability issues, we envision a data
transformation program synthesizer that can be successfully
used by people without a programming background and that
requires minimal user e↵ort. Unlike Wrangler, which asks

the user for procedural hints, this system should allow the
user to specify a desired transformation simply by providing
an input-output example: the user only needs to know how
to describe the transformed data, as opposed to knowing any
particular transformation operation that must be performed.

Our Approach — In this paper, we solve the data trans-
formation program synthesis problem using a Programming
By Example (PBE) approach. Our proposed technique aims
to help an unsophisticated user easily generate a quality
data transformation program using purely input-output ex-
amples. The synthesized program is designed to be easy-to-
understand (it is a straight-line program comprised of simple
primitives), so an unsophisticated user can understand the
semantics of the program and validate it. Because it is often
infeasible to examine and approve a very large transformed
dataset synthesizing a readable transformation program is
preferred over performing an opaque transformation.

We model program synthesis as a search problem in a state
space graph and use a heuristic search approach based on
the classic A* algorithm to synthesize the program. A major
challenge in applying A* to program synthesis is to create a
heuristic function estimating the cost of any proposed par-
tial solution. Unlike robotic path planning, where a metric
like Euclidean distance naturally serves as a good heuristic
function, there is no straightforward heuristic for data trans-
formation. In this work, we define an e↵ective A* heuristic
for data transformation, as well as lossless pruning rules that
significantly reduce the size of the search space. We have im-
plemented our methods in a prototype data transformation
program synthesizer called Foofah.

Organization — After motivating our problem with an
example in Section 2 and formally defining the problem in
Section 3, we discuss the following contributions:

• We present a PBE data transformation program syn-
thesis technique backed by an e�cient heuristic-search-
based algorithm inspired by the A* algorithm. It has a
novel, operator-independent heuristic, Table Edit Dis-
tance Batch, along with pruning rules designed specifi-
cally for data transformation (Section 4).

• We prototype our method in a system, Foofah, and
evaluate it with a comprehensive set of benchmark test
scenarios that show it is both e↵ective and e�cient in
synthesizing data transformation programs. We also
present a user study that shows Foofah requires about
60% less user e↵ort than Wrangler(Section 5).

We explore Related Work in Section 6 and finish with a
discussion of future work in Section 7

2. MOTIVATING EXAMPLE
Data transformation can be a tedious task involving the

application of complex operations that may be di�cult for
a näıve user to understand, as illustrated by the following
simple but realistic scenario:

Example 1. Bob wants to load a spreadsheet of business
contact information (Figure 1) into a database system. Un-
fortunately, the raw data cannot be loaded in its original
format, so Bob hopes to transform it into a relational format
(Figure 2). Manually transforming the data record-by-record
would be tedious and error-prone, so he uses the interactive
data cleaning tool Wrangler [22].

Niles C. Tel (800)645-8397
Fax (907)586-7252

Jean H. Tel (918)781-4600
Fax (918)781-4604

Frank K. Tel (615)564-6500
Fax (615)564-6701

Figure 3: Intermediate table state

Tel Fax
Niles C. (800)645-8397

(615)564-6701
Jean H. (918)781-4600
Frank K. (615)564-6500

Figure 4: Perform Unfold before Fill

Bob first removes the rows of irrelevant data (rows 1 and
2) and empty rows (rows 5, 8, and more). He then splits the
cells containing phone numbers on “:”, extracting the phone
numbers into a new column. Now that almost all the cells from
the desired table exist in the intermediate table (Figure 3),
Bob intends to perform a cross-tabulation operation that
tabulates phone numbers of each category against the human
names. He looks through Wrangler’s provided operations
and finally decides that Unfold should be used. But Unfold
does not transform the intermediate table correctly, since
there are missing values in the column of names, resulting
in “null” being the unique identifier for all rows without a
human name (Figure 4). Bob backtracks and performs a Fill
operation to fill in the empty cells with the appropriate names
before finally performing the Unfold operation. The final data
transformation program is shown in Figure 5.

The usability issues described in Section 1 have occurred in
this example. Lines 1–3 in Figure 5 are lengthy and repetitive
(High E↵ort). Lines 5–6 require a good understanding of the
Unfold operation, causing di�culty for the näıve user (High
Skill). Note that Deletes in Lines 1–2 are di↵erent from the
Delete in Line 3 in that the latter could apply to the entire file.
Non-savvy users may find such conditional usage of Delete
di�cult to discover, further illustrating the High Skill issue.
Consider another scenario where the same task becomes

much easier for Bob, our data analyst:

Example 2. Bob decides to use an alternative data transfor-
mation system, Foofah. To use Foofah, Bob simply needs
to choose a small sample of the raw data (Figure 1) and
describe what this sample should be after being transformed
(Figure 2). Foofah automatically infers the data transfor-
mation program in Figure 6 (which is semantically the same
as Figure 5, and even more succinct). Bob takes this inferred
program and executes it on the entire raw dataset and finds
that raw data are transformed exactly as desired.

The motivating example above gives an idea of the real-
world data transformation tasks our proposed technique
is designed to address. In general, we aim to transform a
poorly-structured grid of values (e.g., a spreadsheet table) to
a relational table with coherent rows and columns. Such a
transformation can be a combination of the following chores:

1. changing the structure of the table

2. removing unnecessary data fields

3. filling in missing values

4. extracting values from cells

5. creating new cell values out of several cell values

the user for procedural hints, this system should allow the
user to specify a desired transformation simply by providing
an input-output example: the user only needs to know how
to describe the transformed data, as opposed to knowing any
particular transformation operation that must be performed.

Our Approach — In this paper, we solve the data trans-
formation program synthesis problem using a Programming
By Example (PBE) approach. Our proposed technique aims
to help an unsophisticated user easily generate a quality
data transformation program using purely input-output ex-
amples. The synthesized program is designed to be easy-to-
understand (it is a straight-line program comprised of simple
primitives), so an unsophisticated user can understand the
semantics of the program and validate it. Because it is often
infeasible to examine and approve a very large transformed
dataset synthesizing a readable transformation program is
preferred over performing an opaque transformation.

We model program synthesis as a search problem in a state
space graph and use a heuristic search approach based on
the classic A* algorithm to synthesize the program. A major
challenge in applying A* to program synthesis is to create a
heuristic function estimating the cost of any proposed par-
tial solution. Unlike robotic path planning, where a metric
like Euclidean distance naturally serves as a good heuristic
function, there is no straightforward heuristic for data trans-
formation. In this work, we define an e↵ective A* heuristic
for data transformation, as well as lossless pruning rules that
significantly reduce the size of the search space. We have im-
plemented our methods in a prototype data transformation
program synthesizer called Foofah.

Organization — After motivating our problem with an
example in Section 2 and formally defining the problem in
Section 3, we discuss the following contributions:

• We present a PBE data transformation program syn-
thesis technique backed by an e�cient heuristic-search-
based algorithm inspired by the A* algorithm. It has a
novel, operator-independent heuristic, Table Edit Dis-
tance Batch, along with pruning rules designed specifi-
cally for data transformation (Section 4).

• We prototype our method in a system, Foofah, and
evaluate it with a comprehensive set of benchmark test
scenarios that show it is both e↵ective and e�cient in
synthesizing data transformation programs. We also
present a user study that shows Foofah requires about
60% less user e↵ort than Wrangler(Section 5).

We explore Related Work in Section 6 and finish with a
discussion of future work in Section 7

2. MOTIVATING EXAMPLE
Data transformation can be a tedious task involving the

application of complex operations that may be di�cult for
a näıve user to understand, as illustrated by the following
simple but realistic scenario:

Example 1. Bob wants to load a spreadsheet of business
contact information (Figure 1) into a database system. Un-
fortunately, the raw data cannot be loaded in its original
format, so Bob hopes to transform it into a relational format
(Figure 2). Manually transforming the data record-by-record
would be tedious and error-prone, so he uses the interactive
data cleaning tool Wrangler [22].

Niles C. Tel (800)645-8397
Fax (907)586-7252

Jean H. Tel (918)781-4600
Fax (918)781-4604

Frank K. Tel (615)564-6500
Fax (615)564-6701

Figure 3: Intermediate table state

Tel Fax
Niles C. (800)645-8397

(615)564-6701
Jean H. (918)781-4600
Frank K. (615)564-6500

Figure 4: Perform Unfold before Fill

Bob first removes the rows of irrelevant data (rows 1 and
2) and empty rows (rows 5, 8, and more). He then splits the
cells containing phone numbers on “:”, extracting the phone
numbers into a new column. Now that almost all the cells from
the desired table exist in the intermediate table (Figure 3),
Bob intends to perform a cross-tabulation operation that
tabulates phone numbers of each category against the human
names. He looks through Wrangler’s provided operations
and finally decides that Unfold should be used. But Unfold
does not transform the intermediate table correctly, since
there are missing values in the column of names, resulting
in “null” being the unique identifier for all rows without a
human name (Figure 4). Bob backtracks and performs a Fill
operation to fill in the empty cells with the appropriate names
before finally performing the Unfold operation. The final data
transformation program is shown in Figure 5.

The usability issues described in Section 1 have occurred in
this example. Lines 1–3 in Figure 5 are lengthy and repetitive
(High E↵ort). Lines 5–6 require a good understanding of the
Unfold operation, causing di�culty for the näıve user (High
Skill). Note that Deletes in Lines 1–2 are di↵erent from the
Delete in Line 3 in that the latter could apply to the entire file.
Non-savvy users may find such conditional usage of Delete
di�cult to discover, further illustrating the High Skill issue.
Consider another scenario where the same task becomes

much easier for Bob, our data analyst:

Example 2. Bob decides to use an alternative data transfor-
mation system, Foofah. To use Foofah, Bob simply needs
to choose a small sample of the raw data (Figure 1) and
describe what this sample should be after being transformed
(Figure 2). Foofah automatically infers the data transfor-
mation program in Figure 6 (which is semantically the same
as Figure 5, and even more succinct). Bob takes this inferred
program and executes it on the entire raw dataset and finds
that raw data are transformed exactly as desired.

The motivating example above gives an idea of the real-
world data transformation tasks our proposed technique
is designed to address. In general, we aim to transform a
poorly-structured grid of values (e.g., a spreadsheet table) to
a relational table with coherent rows and columns. Such a
transformation can be a combination of the following chores:

1. changing the structure of the table

2. removing unnecessary data fields

3. filling in missing values

4. extracting values from cells

5. creating new cell values out of several cell values

Foofah: Transforming Data By Example

Zhongjun Jin Michael R. Anderson Michael Cafarella H. V. Jagadish
University of Michigan, Ann Arbor

{markjin,mrander,michjc,jag}@umich.edu

ABSTRACT
Data transformation is a critical first step in modern data
analysis: before any analysis can be done, data from a va-
riety of sources must be wrangled into a uniform format
that is amenable to the intended analysis and analytical
software package. This data transformation task is tedious,
time-consuming, and often requires programming skills be-
yond the expertise of data analysts. In this paper, we develop
a technique to synthesize data transformation programs by
example, reducing this burden by allowing the analyst to de-
scribe the transformation with a small input-output example
pair, without being concerned with the transformation steps
required to get there. We implemented our technique in a
system, Foofah, that e�ciently searches the space of pos-
sible data transformation operations to generate a program
that will perform the desired transformation. We experimen-
tally show that data transformation programs can be created
quickly with Foofah for a wide variety of cases, with 60%
less user e↵ort than the well-known Wrangler system.

Keywords
Data Transformation; Program Synthesis; Programming By
Example; A* algorithm; Heuristic

1. INTRODUCTION
The many fields that depend on data for decision making

have at least one thing in common: raw data is often in a non-
relational or poorly structured form, possibly with extraneous
information, and cannot be directly used by a downstream
information system, like a database or visualization system.
Figure 1 from [16] is a good example of such raw data.
In modern data analytics, data transformation (or data
wrangling) is usually a crucial first step that reorganizes
raw data into a more desirable format that can be easily
consumed by other systems. Figure 2 showcases a relational
form obtained by transforming Figure 1.

Traditionally, domain experts handwrite task specific scripts
to transform unstructured data—a task that is often labor-

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD’17, May 14-19, 2017, Chicago, IL, USA

c� 2017 ACM. ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3064034

Bureau of I.A.
Regional Director Numbers
Niles C. Tel: (800)645-8397

Fax: (907)586-7252

Jean H. Tel: (918)781-4600
Fax: (918)781-4604

Frank K. Tel: (615)564-6500
Fax: (615)564-6701

. . .
Figure 1: A spreadsheet of business contact information

Tel Fax
Niles C. (800)645-8397 (907)586-7252
Jean H. (918)781-4600 (918)781-4604
Frank K. (615)564-6500 (615)564-6701

. . .
Figure 2: A relational form of Figure 1

intensive and tedious. The requirement for programming
hamstrings data users that are capable analysts but have
limited coding skills. Even worse, these scripts are tailored to
particular data sources and cannot adapt when new sources
are acquired. People normally spend more time preparing
data than analyzing it; up to 80% of a data scientist’s time
can be spent on transforming data into a usable state [28].

Recent research into automated and assisted data transfor-
mation systems have tried to reduce the need of a program-
ming background for users, with some success [19, 22, 41].
These tools help users generate reusable data transformation
programs, but they still require users to know which data
transformation operations are needed and in what order they
should be applied. Current tools still require some level of im-
perative programming, placing a significant burden on data
users. Take Wrangler [22], for example, where a user must
select the correct operators and parameters to complete a
data transformation task. This is often challenging if the user
has no experience in data transformation or programming.

In general, existing data transformation tools are di�cult
to use due to two usability issues:

• High Skill : Users must be familiar with the often compli-
cated transformation operations and then decide which
operations to use and in what order.

• High E↵ort : The amount of user e↵ort increases as the
data transformation program gets lengthy.

To resolve the above usability issues, we envision a data
transformation program synthesizer that can be successfully
used by people without a programming background and that
requires minimal user e↵ort. Unlike Wrangler, which asks

Original Table

Intermediate Table

Problem Table

Desired Solution

Split+Delete

Unfold

Fill+
Unfold

D. Koop, CSCI 490/680, Spring 2020

FOOFAH: A Programming-By-Example System for
Synthesizing Data Transformation Program

Zhongjun Jin, Michael R. Anderson, Michael Cafarella, H. V. Jagadish
University of Michigan

Most real-world data is unstructured and must be transformed
into a structured form to be used. Manual transformation (e.g.,
using Excel) requires too much user effort. Traditional
transformation often requires good programming skills beyond
most of the users. Data transformation tools, like Data
Wranger [1], often require repetitive and tedious work and a
depth of data transformation knowledge from the user.
Our goal: minimize a user's effort and reduce the required
background knowledge for data transformation tasks.

Motivation

Design of FOOFAH

Related Work

markjin@umich.edu w https://markjin1990.github.io w SIGMOD 2017

Our Solution

Proposed Heuristic Function

1. Kandel,	Sean,	et	al.	“Wrangler:	Interactive	visual	specification	of	data	transformation	scripts.” CHI,	2011.
2. V.	Raman	and	J.	M.	Hellerstein.	“Potter’s	Wheel:	An	interactive	data	cleaning	system”.	VLDB,	2001.
3. Gulwani,	Sumit.	"Automating	string	processing	in	spreadsheets	using	input-output	examples." ACM	SIGPLAN	Notices.	

Vol.	46.	No.	1.	ACM,	2011.
4. Harris,	William	R.,	and	Sumit Gulwani.	"Spreadsheet	table	transformations	from	examples." ACM	SIGPLAN	Notices.	Vol.	

46.	No.	6.	ACM,	2011.
5. Barowy,	Daniel	W.,	et	al.	"FlashRelate:	extracting	relational	data	from	semi-structured	spreadsheets	using	

examples." ACM	SIGPLAN	Notices.	Vol.	50.	No.	6.	ACM,	2015.
6. Guo,	Philip	J.,	et	al.	"Proactive	wrangling:	mixed-initiative	end-user	programming	of	data	transformation	

scripts." Proceedings	of	the	24th	annual	ACM	symposium	on	User	interface	software	and	technology.	ACM,	2011.

User Study

Our PBE technique prototype
FOOFAH:
1. can handle most test cases from

the benchmarks.
2. requires little user effort
3. generally efficient (low system

runtime)

Benchmark Tests

Tasks: 8 tasks from
benchmarks covering both
simple and complex tasks
Comparisons: Wrangler

• FOOFAH on average requires 60% less user effort than Wrangler

0
100
200
300
400
500
600

Task	completion	time:	Wrangler	vs	Foofah

Wrangler

Foofah

50.00% 40.00%

10.00%
0%

20%
40%
60%
80%

100%

1 2 Failure
#	OF	RECORDS

Sizes	of	input-output	examples	required	
for	benchmark	tests

74.00%
86.00% 88.00%

0%
20%
40%
60%
80%

100%

≤	1	sec ≤	5	sec ≤	30	secPE
RC

EN
T	
O
F	
TE
ST
	S
CE

N
A
RI
O
S

Worst-case	system	runtime	for	each	
synthesis	

Tasks: 50 test scenarios selected
from [1,2,4,6]
Test Approach: lazy approach [4]
Comparison: [1,3,4,5]

Input	
Example	ei Input	

Example	eo
?

A search problem
solved by A* algorithm

edges: operation
nodes: different views of the data
A* search: iteratively explore the

node with min f(n)
f(n) = g(n) + h(n)

observed distance
estimated distance

Intuition: Most data transformation operations can be seen as many
cell-level transformation operations

Solution: Table Edit Distance as the heuristic function

Table Edit Distance (TED) Definition:
The cost of transforming Table T1 to Table T2 using the cell-level
operators Add/Remove/Move/Transform cell.

TED $%, $' = min,-,… ,	,0 ∈2 3-,	34
56789 :;
<

;=>
• P(T1, T2): Set of all “paths” transforming T1 to T2 using cell-level operators

Batching: a remedy for Table Edit Distance to scale down heuristic

Batch the geometrically-adjacent cell-level operations of the same type

8 Transform operations 2 “batched” Transform operations

88.40% 97.70%
74.40%

55.80%

0%
20%
40%
60%
80%

100%

Success	rates	on pure layout
transformation	benchmark tasks

Foofah FlashRelate ProgFromEx Wrangler

100.00%

0.00% 0.00%

85.70%

0%
20%
40%
60%
80%

100%

Success	rates	on benchmark	tasks
requiring syntactic transformations

Foofah FlashRelate ProgFromEx Wrangler

Program to synthesize:
• A loop-free Potter’s Wheel [2] program

System
Input-output	
Example

Synthesized	
Program

Raw	Data

Programming-By-Example interaction model: User provides input-
output examples rather than demonstrating correct operations

Note:	Ideally,	Wrangler	should	be	able	
to	handle	same	tasks	as	FOOFAH

User Input:
• Sample from raw data
• Transformed view of the sample

Raw Data:
• A grid of values, i.e., spreadsheets
• “Somewhat” structured - must have some

regular structure or is automatically generated.

Transformations Targeted:
1. Layout transformation 2. String transformation

05/16/2017

05/17/2017

…

05-16-2017

05-17-2017

…

Foofah Design: Programming by Example

5

[Z. Jin et al., 2017]

D. Koop, CSCI 490/680, Spring 2020

FOOFAH: A Programming-By-Example System for
Synthesizing Data Transformation Program

Zhongjun Jin, Michael R. Anderson, Michael Cafarella, H. V. Jagadish
University of Michigan

Most real-world data is unstructured and must be transformed
into a structured form to be used. Manual transformation (e.g.,
using Excel) requires too much user effort. Traditional
transformation often requires good programming skills beyond
most of the users. Data transformation tools, like Data
Wranger [1], often require repetitive and tedious work and a
depth of data transformation knowledge from the user.
Our goal: minimize a user's effort and reduce the required
background knowledge for data transformation tasks.

Motivation

Design of FOOFAH

Related Work

markjin@umich.edu w https://markjin1990.github.io w SIGMOD 2017

Our Solution

Proposed Heuristic Function

1. Kandel,	Sean,	et	al.	“Wrangler:	Interactive	visual	specification	of	data	transformation	scripts.” CHI,	2011.
2. V.	Raman	and	J.	M.	Hellerstein.	“Potter’s	Wheel:	An	interactive	data	cleaning	system”.	VLDB,	2001.
3. Gulwani,	Sumit.	"Automating	string	processing	in	spreadsheets	using	input-output	examples." ACM	SIGPLAN	Notices.	

Vol.	46.	No.	1.	ACM,	2011.
4. Harris,	William	R.,	and	Sumit Gulwani.	"Spreadsheet	table	transformations	from	examples." ACM	SIGPLAN	Notices.	Vol.	

46.	No.	6.	ACM,	2011.
5. Barowy,	Daniel	W.,	et	al.	"FlashRelate:	extracting	relational	data	from	semi-structured	spreadsheets	using	

examples." ACM	SIGPLAN	Notices.	Vol.	50.	No.	6.	ACM,	2015.
6. Guo,	Philip	J.,	et	al.	"Proactive	wrangling:	mixed-initiative	end-user	programming	of	data	transformation	

scripts." Proceedings	of	the	24th	annual	ACM	symposium	on	User	interface	software	and	technology.	ACM,	2011.

User Study

Our PBE technique prototype
FOOFAH:
1. can handle most test cases from

the benchmarks.
2. requires little user effort
3. generally efficient (low system

runtime)

Benchmark Tests

Tasks: 8 tasks from
benchmarks covering both
simple and complex tasks
Comparisons: Wrangler

• FOOFAH on average requires 60% less user effort than Wrangler

0
100
200
300
400
500
600

Task	completion	time:	Wrangler	vs	Foofah

Wrangler

Foofah

50.00% 40.00%

10.00%
0%

20%
40%
60%
80%

100%

1 2 Failure
#	OF	RECORDS

Sizes	of	input-output	examples	required	
for	benchmark	tests

74.00%
86.00% 88.00%

0%
20%
40%
60%
80%

100%

≤	1	sec ≤	5	sec ≤	30	secPE
RC

EN
T	
O
F	
TE
ST
	S
CE

N
A
RI
O
S

Worst-case	system	runtime	for	each	
synthesis	

Tasks: 50 test scenarios selected
from [1,2,4,6]
Test Approach: lazy approach [4]
Comparison: [1,3,4,5]

Input	
Example	ei Input	

Example	eo
?

A search problem
solved by A* algorithm

edges: operation
nodes: different views of the data
A* search: iteratively explore the

node with min f(n)
f(n) = g(n) + h(n)

observed distance
estimated distance

Intuition: Most data transformation operations can be seen as many
cell-level transformation operations

Solution: Table Edit Distance as the heuristic function

Table Edit Distance (TED) Definition:
The cost of transforming Table T1 to Table T2 using the cell-level
operators Add/Remove/Move/Transform cell.

TED $%, $' = min,-,… ,	,0 ∈2 3-,	34
56789 :;
<

;=>
• P(T1, T2): Set of all “paths” transforming T1 to T2 using cell-level operators

Batching: a remedy for Table Edit Distance to scale down heuristic

Batch the geometrically-adjacent cell-level operations of the same type

8 Transform operations 2 “batched” Transform operations

88.40% 97.70%
74.40%

55.80%

0%
20%
40%
60%
80%

100%

Success	rates	on pure layout
transformation	benchmark tasks

Foofah FlashRelate ProgFromEx Wrangler

100.00%

0.00% 0.00%

85.70%

0%
20%
40%
60%
80%

100%

Success	rates	on benchmark	tasks
requiring syntactic transformations

Foofah FlashRelate ProgFromEx Wrangler

Program to synthesize:
• A loop-free Potter’s Wheel [2] program

System
Input-output	
Example

Synthesized	
Program

Raw	Data

Programming-By-Example interaction model: User provides input-
output examples rather than demonstrating correct operations

Note:	Ideally,	Wrangler	should	be	able	
to	handle	same	tasks	as	FOOFAH

User Input:
• Sample from raw data
• Transformed view of the sample

Raw Data:
• A grid of values, i.e., spreadsheets
• “Somewhat” structured - must have some

regular structure or is automatically generated.

Transformations Targeted:
1. Layout transformation 2. String transformation

05/16/2017

05/17/2017

…

05-16-2017

05-17-2017

…

Foofah Solution

6

[Z. Jin et al., 2017]

D. Koop, CSCI 490/680, Spring 2020

FOOFAH: A Programming-By-Example System for
Synthesizing Data Transformation Program

Zhongjun Jin, Michael R. Anderson, Michael Cafarella, H. V. Jagadish
University of Michigan

Most real-world data is unstructured and must be transformed
into a structured form to be used. Manual transformation (e.g.,
using Excel) requires too much user effort. Traditional
transformation often requires good programming skills beyond
most of the users. Data transformation tools, like Data
Wranger [1], often require repetitive and tedious work and a
depth of data transformation knowledge from the user.
Our goal: minimize a user's effort and reduce the required
background knowledge for data transformation tasks.

Motivation

Design of FOOFAH

Related Work

markjin@umich.edu w https://markjin1990.github.io w SIGMOD 2017

Our Solution

Proposed Heuristic Function

1. Kandel,	Sean,	et	al.	“Wrangler:	Interactive	visual	specification	of	data	transformation	scripts.” CHI,	2011.
2. V.	Raman	and	J.	M.	Hellerstein.	“Potter’s	Wheel:	An	interactive	data	cleaning	system”.	VLDB,	2001.
3. Gulwani,	Sumit.	"Automating	string	processing	in	spreadsheets	using	input-output	examples." ACM	SIGPLAN	Notices.	

Vol.	46.	No.	1.	ACM,	2011.
4. Harris,	William	R.,	and	Sumit Gulwani.	"Spreadsheet	table	transformations	from	examples." ACM	SIGPLAN	Notices.	Vol.	

46.	No.	6.	ACM,	2011.
5. Barowy,	Daniel	W.,	et	al.	"FlashRelate:	extracting	relational	data	from	semi-structured	spreadsheets	using	

examples." ACM	SIGPLAN	Notices.	Vol.	50.	No.	6.	ACM,	2015.
6. Guo,	Philip	J.,	et	al.	"Proactive	wrangling:	mixed-initiative	end-user	programming	of	data	transformation	

scripts." Proceedings	of	the	24th	annual	ACM	symposium	on	User	interface	software	and	technology.	ACM,	2011.

User Study

Our PBE technique prototype
FOOFAH:
1. can handle most test cases from

the benchmarks.
2. requires little user effort
3. generally efficient (low system

runtime)

Benchmark Tests

Tasks: 8 tasks from
benchmarks covering both
simple and complex tasks
Comparisons: Wrangler

• FOOFAH on average requires 60% less user effort than Wrangler

0
100
200
300
400
500
600

Task	completion	time:	Wrangler	vs	Foofah

Wrangler

Foofah

50.00% 40.00%

10.00%
0%

20%
40%
60%
80%

100%

1 2 Failure
#	OF	RECORDS

Sizes	of	input-output	examples	required	
for	benchmark	tests

74.00%
86.00% 88.00%

0%
20%
40%
60%
80%

100%

≤	1	sec ≤	5	sec ≤	30	secPE
RC

EN
T	
O
F	
TE
ST
	S
CE

N
A
RI
O
S

Worst-case	system	runtime	for	each	
synthesis	

Tasks: 50 test scenarios selected
from [1,2,4,6]
Test Approach: lazy approach [4]
Comparison: [1,3,4,5]

Input	
Example	ei Input	

Example	eo
?

A search problem
solved by A* algorithm

edges: operation
nodes: different views of the data
A* search: iteratively explore the

node with min f(n)
f(n) = g(n) + h(n)

observed distance
estimated distance

Intuition: Most data transformation operations can be seen as many
cell-level transformation operations

Solution: Table Edit Distance as the heuristic function

Table Edit Distance (TED) Definition:
The cost of transforming Table T1 to Table T2 using the cell-level
operators Add/Remove/Move/Transform cell.

TED $%, $' = min,-,… ,	,0 ∈2 3-,	34
56789 :;
<

;=>
• P(T1, T2): Set of all “paths” transforming T1 to T2 using cell-level operators

Batching: a remedy for Table Edit Distance to scale down heuristic

Batch the geometrically-adjacent cell-level operations of the same type

8 Transform operations 2 “batched” Transform operations

88.40% 97.70%
74.40%

55.80%

0%
20%
40%
60%
80%

100%

Success	rates	on pure layout
transformation	benchmark tasks

Foofah FlashRelate ProgFromEx Wrangler

100.00%

0.00% 0.00%

85.70%

0%
20%
40%
60%
80%

100%

Success	rates	on benchmark	tasks
requiring syntactic transformations

Foofah FlashRelate ProgFromEx Wrangler

Program to synthesize:
• A loop-free Potter’s Wheel [2] program

System
Input-output	
Example

Synthesized	
Program

Raw	Data

Programming-By-Example interaction model: User provides input-
output examples rather than demonstrating correct operations

Note:	Ideally,	Wrangler	should	be	able	
to	handle	same	tasks	as	FOOFAH

User Input:
• Sample from raw data
• Transformed view of the sample

Raw Data:
• A grid of values, i.e., spreadsheets
• “Somewhat” structured - must have some

regular structure or is automatically generated.

Transformations Targeted:
1. Layout transformation 2. String transformation

05/16/2017

05/17/2017

…

05-16-2017

05-17-2017

…

Table Edit Distance Batch

7

[Z. Jin et al., 2017]

D. Koop, CSCI 490/680, Spring 2020

Wrangler Foofah

Test Complex � 4 Ops Time Mouse Key Time vs Wrangler Mouse Key

PW1 No No 104.2 17.8 11.6 49.4 &52.6% 20.8 22.6

PW3 (modified) No No 96.4 28.8 26.6 38.6 &60.0% 14.2 23.6

ProgFromEx13 Yes No 263.6 59.0 16.2 145.8 &44.7% 43.6 78.4

PW5 Yes No 242.0 52.0 15.2 58.8 &75.7% 31.4 32.4

ProgFromEx17 No Yes 72.4 18.8 11.6 48.6 &32.9% 18.2 15.2

PW7 No Yes 141.0 41.8 12.2 44.4 &68.5% 19.6 35.8

Proactive1 Yes Yes 324.2 60.0 13.8 104.2 &67.9% 41.4 57.0

Wrangler3 Yes Yes 590.6 133.2 29.6 137.0 &76.8% 58.6 99.8

Table 5: User study experiment results

use both Wrangler and Foofah with documentation and
a complex running example. During the experiment, each
participant was given four randomly selected tasks, covering
complex, easy, lengthy, and short tasks, to complete on both
systems. Each task had a 10 minute time limit.

Evaluation Metrics — To quantify the amount of user
e↵ort on both systems, we measured the time a user spends
to finish each user study task. In addition to time, we also
measured the number of user mouse clicks and key strokes.

Results — Table 5 presents the measurement of the average
user e↵orts on both Wrangler and Foofah over our 8
user study tasks. The percentages of time saving in each test
is presented to the right of the time statistics of Foofah.
The timing results show that Foofah required 60% less
interaction time in every test on average. Foofah also saved
more time on complex tasks. On these tasks, Foofah took
one third as much interaction time as Wrangler. On the
lengthy and complex“Wrangler3”case, 4 of 5 test takers could
not find a solution within 10 minutes using Wrangler, but
all found a solution within 3 minutes using Foofah.
Additionally, in Table 5 we see that Foofah required an

equal or smaller number of mouse clicks than Wrangler.
This partially explains why Foofah required less interaction
time and user e↵ort. Table 5 also shows that Foofah required
more typing than Wrangler, mainly due to Foofah’s in-
teraction model. Typing can be unavoidable when specifying
examples, while Wrangler often only requires mouse clicks.

Another observation from the user study was that partici-
pants often felt frustrated after 5 minutes and became less
willing to continue if they could not find a solution, which
justifies our view that a Programming By Demonstration
data transformation tool can be hard to use for näıve users.

5.7 Comparison with Other Systems
Foofah is not the first PBE data transformation system.

There are two other closely related pieces of previous work:
ProgFromEx [17] and FlashRelate [4]. In general, both
ProgFromEx and FlashRelate are less expressive than
Foofah; they are limited to layout transformations and
cannot handle syntactic transformations. Further, in practice,
both systems are likely to require more user e↵ort and to be
less e�cient than Foofah on complex tasks.

Source code and full implementation details for these sys-
tems are not available. However, their published experimental
benchmarks overlap with our own, allowing us to use their
published results in some cases and hand-simulate their re-
sults in other cases. As a result, we can compare our system’s
success rate to that of ProgFromEx and FlashRelate on
at least some tasks, as seen in Table 6. Note that syntactic
transformation tasks may also entail layout transformation
steps, but the reverse is not true.

5.7.1 ProgFromEx

The ProgFromEx project employs the same usage model
as Foofah: the user gives an “input” grid of values, plus a
desired “output” grid, and the system formulates a program
to transform the input into the output. A ProgFromEx
program consists of a set of component programs. Each com-
ponent program takes in the input table and yields a map,
a set of input-output cell coordinate pairs that copies cells
from the input table to some location in the output table.

A component program can be either a filter program or an
associative program. A filter program consists of a mapping
condition (in the form of a conjunction of cell predicates) plus
a sequencer (a geometric summary of where to place data in
the output table). To execute a filter program, ProgFromEx
tests each cell in the input table, finds all cells that match
the mapping condition, and lets the sequencer decide the
coordinates in the output table to which the matching cells
are mapped. An associative program takes a component
program and applies an additional transformation function
to the output cell coordinates, allowing the user to produce
output tables using copy patterns that are not strictly one-
to-one (e.g., a single cell from the input might be copied to
multiple distinct locations in the output).

Expressiveness — The biggest limitation of ProgFromEx
is that it cannot describe syntactic transformations. It is de-
signed to move values from an input grid cell to an output
grid cell; there is no way to perform operations like Split or
Merge to modify existing values. Moreover, it is not clear how
to integrate such operators into their cell mapping framework.
In contrast, our system successfully synthesizes programs for
100% of our benchmark syntactic transformation tasks, as
well as 90% of the layout transformation tasks (see Table 6).
(Other systems can handle these critical syntactic transfor-
mation tasks [16,22,34], but Foofah is the first PBE system
to do so that we know of). ProgFromEx handles slightly
more layout transformations in the benchmark suite than
our current Foofah prototype, but ProgFromEx’s perfor-
mance comes at a price: the system administrator or the user
must pre-define a good set of cell mapping conditions. If the
user were willing to do a similar amount of work on Foofah
by adding operators, we could obtain a comparable result.

User E↵ort and E�ciency — For the subset of our bench-
mark suite that both systems handle successfully (i.e., cases
without any syntactic transformations), ProgFromEx and
Foofah require roughly equal amounts of user e↵ort. As
we describe in Section 5.1, 37 of our 50 benchmark test sce-
narios are borrowed from the benchmarks of ProgFromEx.
For each of these 37 benchmarks, both ProgFromEx and
Foofah can construct a successful program with three or
fewer user-provided examples. Both systems yielded wait
times under 10 seconds for most cases.

User Study Results

8

[Z. Jin et al., 2017]

TDE: Transform Data by Example
• Row-to-row translation only
• Search System, GitHub, and StackOverflow for functions
• Given dataset with examples
- Use L1 from library
- Compose synthesized programs (L2)
- Rank best transformations

9D. Koop, CSCI 680/490, Spring 2021

D. Koop, CSCI 490/680, Spring 2020

Figure 2: TDE transformation for date-time. (Left): user provides two desired output examples in column-D,
for the input data in column-C. (Right): After clicking on the “Get Transformation” button, TDE synthesizes
programs consistent with the given examples, and return them as a ranked list within a few seconds. Hovering
over the first program (using System.DateTime.Parse) gives a preview of all results (shaded in green).

Figure 3: (Left): transformation for names. The first three values in column-D are provided as output
examples. The desired first-names and last-names are marked in bold for ease of reading. A composed
program using library CSharpNameParser from GitHub is returned. (Right): transformations for addresses.
The first two values are provided as output examples to produce city, state, and zip-code. Note that some of
these info are missing from the input. A program invoking Bing Maps API is returned as the top result.

entered. For instance, in the first column dates are rep-
resented in many di↵erent formats. In the second column,
some customer names have first-name followed by last-name,
while others are last-name followed by comma, then first-
name, with various salutations (Mr., Dr., etc.) and su�xes
(II, Jr., etc.). Phone numbers are also inconsistent, with
various international calling codes (+1) and extensions (ext
2001), etc. Addresses in the last column are also not clean,
often with missing state and zip-code information.

This data in Figure 1 is clearly not ready for analysis
yet – an analyst wanting to figure out which day-of-the-
week has the most sales, for instance, cannot find it out
by executing a SQL query: the date column needs to be
transformed to day-of-the-week first, which however is non-
trivial even for programmers. Similarly the analyst may
want to analyze sales by area-code (which can be extracted
from phone-numbers), or by zip-code (from addresses), both
of which again require non-trivial data transformations.

In a separate scenario, suppose one would like identified
possible duplicate customer records in Figure 1, by first stan-
dardizing customer names into a format with only last and
first names (e.g., both the first two records will convert into
“Doe, John”). This again requires complex transformations.

Data transformation is clearly di�cult. However, our ob-
servation is that these domain-specific transformation prob-
lems like name parsing and address standardization are re-
ally not new – for decades developers have built custom
code libraries to solve them in a variety of domains, and
shared their code in places like GitHub. In a recent crawl,
we obtained over 1.8M functions extracted from code li-
braries crawled from GitHub, and over 2M code snippets
from StackOverflow, some of which specifically written to
handle data transformations in a variety of domains.

Transform-Data-by-Example. The overarching goal of
the project is to build a search engine for end-users to eas-
ily reuse code for transformations from existing sources.
Specifically, we adopt the by-example paradigm and build a
production-quality system called Transform-Data-by-Example
(TDE). The front-end of TDE is an Excel add-in, currently
in beta and available from O�ce Store [7]. From the Excel
add-in, users can find transformations by providing a few in-
put/output examples. In Figure 2(left), a user provides two
output examples to specify the desired output. Once she
clicks on the “Get Suggestions” button, the front-end talks
to the TDE back-end service running on Microsoft Azure
cloud, which searches over thousands of indexed functions,
to on-the-fly synthesize new programs consistent with all
examples. In the right part of Figure 2, a ranked list of pro-
grams are returned based on program complexity. The top-
ranked program uses the System.DateTime.Parse() func-
tion from the .Net system library to generate correct output
for all input. Figure 3 shows additional examples for trans-
forming names and addresses using the data in Figure 1.
TDE has a number of unique features, which we believe

are important first steps towards realizing self-service data
transformation.
• Search-by-Example. TDE works like a search engine, which
allows end-users to search transformations by just a few ex-
amples, a paradigm known as program-by-example (PBE) [23]
that was also used by FlashFill [16] for data transformation
with much success. Compared to existing PBE systems such
as FlashFill that compose a small number of string primi-
tives predefined in a Domain Specific Language (DSL), TDE
synthesizes programs from a much larger search space (tens
of thousands of functions). We develop novel algorithms to
make it possible at an interactive speed.

1166

TDE: Transform Data by Example

10

[Y. He et al., 2018]

Trifacta Transform by Example

11D. Koop, CSCI 680/490, Spring 2021

Trifacta Transform by Example

11D. Koop, CSCI 680/490, Spring 2021

Assignment 3
• Almost ready
• Data cleaning, same Info Wanted dataset as A2
• Complete same tasks using Trifacta and pandas
- Fix dates, ages in original table
- Transform location fields to tidy data

12D. Koop, CSCI 680/490, Spring 2021

Test 1
• Wednesday, February 17, 3:30pm-4:45pm Online (Blackboard)
• Includes much of the python content we have covered plus data, data

cleaning, data transformation topics (content through Wednesday's lecture)
• Format:
- Multiple Choice
- Free Response (see web page for examples)
- CS680 students will have additional questions

• Coding questions will focus on broad syntax not your memorization of every
pandas function

• Concept questions can include discussions of the research papers

13D. Koop, CSCI 680/490, Spring 2021

http://faculty.cs.niu.edu/~dakoop/cs680-2021sp/test1.html

Pandas Transformations
• Split: str.split
• Fold/Unfold: stack/unstack
• Merge, join, and concatenate documentation:
- https://pandas.pydata.org/pandas-docs/stable/merging.html

14D. Koop, CSCI 680/490, Spring 2021

https://pandas.pydata.org/pandas-docs/stable/merging.html

Tidy Data
• Dataset contain values: quantitative and categorical/qualitative
• Value is either:
- variable: all values that measure the same underlying attribute
- observation: all values measured on the same unit across attributes

15

[H. Wickham, 2014]
D. Koop, CSCI 680/490, Spring 2021

Three Ways to Present the Same Data

16

[H. Wickham, 2014]
D. Koop, CSCI 680/490, Spring 2021

Journal of Statistical Software 3

2.1. Data structure

Most statistical datasets are rectangular tables made up of rows and columns. The columns
are almost always labelled and the rows are sometimes labelled. Table 1 provides some data
about an imaginary experiment in a format commonly seen in the wild. The table has two
columns and three rows, and both rows and columns are labelled.

treatmenta treatmentb

John Smith — 2
Jane Doe 16 11
Mary Johnson 3 1

Table 1: Typical presentation dataset.

There are many ways to structure the same underlying data. Table 2 shows the same data
as Table 1, but the rows and columns have been transposed. The data is the same, but the
layout is di↵erent. Our vocabulary of rows and columns is simply not rich enough to describe
why the two tables represent the same data. In addition to appearance, we need a way to
describe the underlying semantics, or meaning, of the values displayed in table.

John Smith Jane Doe Mary Johnson

treatmenta — 16 3
treatmentb 2 11 1

Table 2: The same data as in Table 1 but structured di↵erently.

2.2. Data semantics

A dataset is a collection of values, usually either numbers (if quantitative) or strings (if
qualitative). Values are organised in two ways. Every value belongs to a variable and an
observation. A variable contains all values that measure the same underlying attribute (like
height, temperature, duration) across units. An observation contains all values measured on
the same unit (like a person, or a day, or a race) across attributes.

Table 3 reorganises Table 1 to make the values, variables and obserations more clear. The
dataset contains 18 values representing three variables and six observations. The variables
are:

1. person, with three possible values (John, Mary, and Jane).

2. treatment, with two possible values (a and b).

3. result, with five or six values depending on how you think of the missing value (-, 16,
3, 2, 11, 1).

The experimental design tells us more about the structure of the observations. In this exper-
iment, every combination of of person and treatment was measured, a completely crossed
design. The experimental design also determines whether or not missing values can be safely

Journal of Statistical Software 3

2.1. Data structure

Most statistical datasets are rectangular tables made up of rows and columns. The columns
are almost always labelled and the rows are sometimes labelled. Table 1 provides some data
about an imaginary experiment in a format commonly seen in the wild. The table has two
columns and three rows, and both rows and columns are labelled.

treatmenta treatmentb

John Smith — 2
Jane Doe 16 11
Mary Johnson 3 1

Table 1: Typical presentation dataset.

There are many ways to structure the same underlying data. Table 2 shows the same data
as Table 1, but the rows and columns have been transposed. The data is the same, but the
layout is di↵erent. Our vocabulary of rows and columns is simply not rich enough to describe
why the two tables represent the same data. In addition to appearance, we need a way to
describe the underlying semantics, or meaning, of the values displayed in table.

John Smith Jane Doe Mary Johnson

treatmenta — 16 3
treatmentb 2 11 1

Table 2: The same data as in Table 1 but structured di↵erently.

2.2. Data semantics

A dataset is a collection of values, usually either numbers (if quantitative) or strings (if
qualitative). Values are organised in two ways. Every value belongs to a variable and an
observation. A variable contains all values that measure the same underlying attribute (like
height, temperature, duration) across units. An observation contains all values measured on
the same unit (like a person, or a day, or a race) across attributes.

Table 3 reorganises Table 1 to make the values, variables and obserations more clear. The
dataset contains 18 values representing three variables and six observations. The variables
are:

1. person, with three possible values (John, Mary, and Jane).

2. treatment, with two possible values (a and b).

3. result, with five or six values depending on how you think of the missing value (-, 16,
3, 2, 11, 1).

The experimental design tells us more about the structure of the observations. In this exper-
iment, every combination of of person and treatment was measured, a completely crossed
design. The experimental design also determines whether or not missing values can be safely

4 Tidy Data

dropped. In this experiment, the missing value represents an observation that should have
been made, but wasn’t, so it’s important to keep it. Structural missing values, which represent
measurements that can’t be made (e.g., the count of pregnant males) can be safely removed.

name trt result

John Smith a —
Jane Doe a 16
Mary Johnson a 3
John Smith b 2
Jane Doe b 11
Mary Johnson b 1

Table 3: The same data as in Table 1 but with variables in columns and observations in rows.

For a given dataset, it’s usually easy to figure out what are observations and what are variables,
but it is surprisingly di�cult to precisely define variables and observations in general. For
example, if the columns in the Table 1 were height and weight we would have been happy
to call them variables. If the columns were height and width, it would be less clear cut, as
we might think of height and width as values of a dimension variable. If the columns were
home phone and work phone, we could treat these as two variables, but in a fraud detection
environment we might want variables phone number and number type because the use of one
phone number for multiple people might suggest fraud. A general rule of thumb is that it is
easier to describe functional relationships between variables (e.g., z is a linear combination
of x and y, density is the ratio of weight to volume) than between rows, and it is easier
to make comparisons between groups of observations (e.g., average of group a vs. average of
group b) than between groups of columns.

In a given analysis, there may be multiple levels of observation. For example, in a trial of new
allergy medication we might have three observational types: demographic data collected from
each person (age, sex, race), medical data collected from each person on each day (number
of sneezes, redness of eyes), and meterological data collected on each day (temperature,
pollen count).

2.3. Tidy data

Tidy data is a standard way of mapping the meaning of a dataset to its structure. A dataset is
messy or tidy depending on how rows, columns and tables are matched up with observations,
variables and types. In tidy data:

1. Each variable forms a column.

2. Each observation forms a row.

3. Each type of observational unit forms a table.

This is Codd’s 3rd normal form (Codd 1990), but with the constraints framed in statistical
language, and the focus put on a single dataset rather than the many connected datasets
common in relational databases. Messy data is any other other arrangement of the data.

Initial Data

Transpose

Tidy Data

Tidy Data Principles
• Tidy Data: Codd's 3rd Normal Form (Databases)
1. Each variable forms a column
2. Each observation forms a row
3. Each type of observational unit forms a table (DataFrame)

• Other structures are messy data

17

[H. Wickham, 2014]
D. Koop, CSCI 680/490, Spring 2021

Tidy Data
• Benefits:
- Easy for analyst to extract variables
- Works well for vectorized programming

• Organize variables by their role
- Fixed variables: describe experimental design, known in advance
- Measured variables: what is measured in study

• Variables also known as dimensions and measures

18

[H. Wickham, 2014]
D. Koop, CSCI 680/490, Spring 2021

Messy Dataset Problems
• Column headers are values, not variable names
• Multiple variables are stored in one column
• Variables are stored in both rows and columns
• Multiple types of observational units are stored in the same table
• A single observational unit is stored in multiple tables

19D. Koop, CSCI 680/490, Spring 2021

D. Koop, CSCI 490/680, Spring 2020

6 Tidy Data

I would call this arrangement messy, in some cases it can be extremely useful. It provides
e�cient storage for completely crossed designs, and it can lead to extremely e�cient compu-
tation if desired operations can be expressed as matrix operations. This issue is discussed in
depth in Section 6.

Table 4 shows a subset of a typical dataset of this form. This dataset explores the relationship
between income and religion in the US. It comes from a report1 produced by the Pew Research
Center, an American think-tank that collects data on attitudes to topics ranging from religion
to the internet, and produces many reports that contain datasets in this format.

religion <$10k $10-20k $20-30k $30-40k $40-50k $50-75k

Agnostic 27 34 60 81 76 137
Atheist 12 27 37 52 35 70
Buddhist 27 21 30 34 33 58
Catholic 418 617 732 670 638 1116
Don’t know/refused 15 14 15 11 10 35
Evangelical Prot 575 869 1064 982 881 1486
Hindu 1 9 7 9 11 34
Historically Black Prot 228 244 236 238 197 223
Jehovah’s Witness 20 27 24 24 21 30
Jewish 19 19 25 25 30 95

Table 4: The first ten rows of data on income and religion from the Pew Forum. Three columns,
$75-100k, $100-150k and >150k, have been omitted

This dataset has three variables, religion, income and frequency. To tidy it, we need
to melt, or stack it. In other words, we need to turn columns into rows. While this is
often described as making wide datasets long or tall, I will avoid those terms because they are
imprecise. Melting is parameterised by a list of columns that are already variables, or colvars
for short. The other columns are converted into two variables: a new variable called column

that contains repeated column headings and a new variable called value that contains the
concatenated data values from the previously separate columns. This is illustrated in Table 5
with a toy dataset. The result of melting is a molten dataset.

The Pew dataset has one colvar, religion, and melting yields Table 6. To better reflect
their roles in this dataset, the variable column has been renamed to income, and the value
column to freq. This form is tidy because each column represents a variable and each row
represents an observation, in this case a demographic unit corresponding to a combination of
religion and income.

Another common use of this data format is to record regularly spaced observations over time.
For example, the Billboard dataset shown in Table 7 records the date a song first entered the
Billboard Top 100. It has variables for artist, track, date.entered, rank and week. The
rank in each week after it enters the top 100 is recorded in 75 columns, wk1 to wk75. If a song
is in the Top 100 for less than 75 weeks the remaining columns are filled with missing values.
This form of storage is not tidy, but it is useful for data entry. It reduces duplication since

1http://religions.pewforum.org/pdf/comparison-Income%20Distribution%20of%20Religious%
20Traditions.pdf

Problem: Column Headers are Values

20

[H. Wickham, 2014]

Income and Religion, Pew Forum

D. Koop, CSCI 490/680, Spring 2020

6 Tidy Data

I would call this arrangement messy, in some cases it can be extremely useful. It provides
e�cient storage for completely crossed designs, and it can lead to extremely e�cient compu-
tation if desired operations can be expressed as matrix operations. This issue is discussed in
depth in Section 6.

Table 4 shows a subset of a typical dataset of this form. This dataset explores the relationship
between income and religion in the US. It comes from a report1 produced by the Pew Research
Center, an American think-tank that collects data on attitudes to topics ranging from religion
to the internet, and produces many reports that contain datasets in this format.

religion <$10k $10-20k $20-30k $30-40k $40-50k $50-75k

Agnostic 27 34 60 81 76 137
Atheist 12 27 37 52 35 70
Buddhist 27 21 30 34 33 58
Catholic 418 617 732 670 638 1116
Don’t know/refused 15 14 15 11 10 35
Evangelical Prot 575 869 1064 982 881 1486
Hindu 1 9 7 9 11 34
Historically Black Prot 228 244 236 238 197 223
Jehovah’s Witness 20 27 24 24 21 30
Jewish 19 19 25 25 30 95

Table 4: The first ten rows of data on income and religion from the Pew Forum. Three columns,
$75-100k, $100-150k and >150k, have been omitted

This dataset has three variables, religion, income and frequency. To tidy it, we need
to melt, or stack it. In other words, we need to turn columns into rows. While this is
often described as making wide datasets long or tall, I will avoid those terms because they are
imprecise. Melting is parameterised by a list of columns that are already variables, or colvars
for short. The other columns are converted into two variables: a new variable called column

that contains repeated column headings and a new variable called value that contains the
concatenated data values from the previously separate columns. This is illustrated in Table 5
with a toy dataset. The result of melting is a molten dataset.

The Pew dataset has one colvar, religion, and melting yields Table 6. To better reflect
their roles in this dataset, the variable column has been renamed to income, and the value
column to freq. This form is tidy because each column represents a variable and each row
represents an observation, in this case a demographic unit corresponding to a combination of
religion and income.

Another common use of this data format is to record regularly spaced observations over time.
For example, the Billboard dataset shown in Table 7 records the date a song first entered the
Billboard Top 100. It has variables for artist, track, date.entered, rank and week. The
rank in each week after it enters the top 100 is recorded in 75 columns, wk1 to wk75. If a song
is in the Top 100 for less than 75 weeks the remaining columns are filled with missing values.
This form of storage is not tidy, but it is useful for data entry. It reduces duplication since

1http://religions.pewforum.org/pdf/comparison-Income%20Distribution%20of%20Religious%
20Traditions.pdf

Problem: Column Headers are Values

20

[H. Wickham, 2014]

Income and Religion, Pew Forum

Variables: religion, income, frequency

Journal of Statistical Software 7

row a b c

A 1 4 7
B 2 5 8
C 3 6 9

(a) Raw data

row column value

A a 1
B a 2
C a 3
A b 4
B b 5
C b 6
A c 7
B c 8
C c 9

(b) Molten data

Table 5: A simple example of melting. (a) is melted with one colvar, row, yielding the molten dataset
(b). The information in each table is exactly the same, just stored in a di↵erent way.

religion income freq

Agnostic <$10k 27
Agnostic $10-20k 34
Agnostic $20-30k 60
Agnostic $30-40k 81
Agnostic $40-50k 76
Agnostic $50-75k 137
Agnostic $75-100k 122
Agnostic $100-150k 109
Agnostic >150k 84
Agnostic Don’t know/refused 96

Table 6: The first ten rows of the tidied Pew survey dataset on income and religion. The column has
been renamed to income, and value to freq.

Solution: Melt Data
• Turn columns into rows
• One or more columns become rows

under a new column (column)
• Values become a new column

(value)
• After melt, data is molten
• AKA pivot_longer
• Inverse of pivot

21

[H. Wickham, 2014]
D. Koop, CSCI 680/490, Spring 2021

Solution: Molten Data

22

[H. Wickham, 2014]
D. Koop, CSCI 680/490, Spring 2021

6 Tidy Data

I would call this arrangement messy, in some cases it can be extremely useful. It provides
e�cient storage for completely crossed designs, and it can lead to extremely e�cient compu-
tation if desired operations can be expressed as matrix operations. This issue is discussed in
depth in Section 6.

Table 4 shows a subset of a typical dataset of this form. This dataset explores the relationship
between income and religion in the US. It comes from a report1 produced by the Pew Research
Center, an American think-tank that collects data on attitudes to topics ranging from religion
to the internet, and produces many reports that contain datasets in this format.

religion <$10k $10-20k $20-30k $30-40k $40-50k $50-75k

Agnostic 27 34 60 81 76 137
Atheist 12 27 37 52 35 70
Buddhist 27 21 30 34 33 58
Catholic 418 617 732 670 638 1116
Don’t know/refused 15 14 15 11 10 35
Evangelical Prot 575 869 1064 982 881 1486
Hindu 1 9 7 9 11 34
Historically Black Prot 228 244 236 238 197 223
Jehovah’s Witness 20 27 24 24 21 30
Jewish 19 19 25 25 30 95

Table 4: The first ten rows of data on income and religion from the Pew Forum. Three columns,
$75-100k, $100-150k and >150k, have been omitted

This dataset has three variables, religion, income and frequency. To tidy it, we need
to melt, or stack it. In other words, we need to turn columns into rows. While this is
often described as making wide datasets long or tall, I will avoid those terms because they are
imprecise. Melting is parameterised by a list of columns that are already variables, or colvars
for short. The other columns are converted into two variables: a new variable called column

that contains repeated column headings and a new variable called value that contains the
concatenated data values from the previously separate columns. This is illustrated in Table 5
with a toy dataset. The result of melting is a molten dataset.

The Pew dataset has one colvar, religion, and melting yields Table 6. To better reflect
their roles in this dataset, the variable column has been renamed to income, and the value
column to freq. This form is tidy because each column represents a variable and each row
represents an observation, in this case a demographic unit corresponding to a combination of
religion and income.

Another common use of this data format is to record regularly spaced observations over time.
For example, the Billboard dataset shown in Table 7 records the date a song first entered the
Billboard Top 100. It has variables for artist, track, date.entered, rank and week. The
rank in each week after it enters the top 100 is recorded in 75 columns, wk1 to wk75. If a song
is in the Top 100 for less than 75 weeks the remaining columns are filled with missing values.
This form of storage is not tidy, but it is useful for data entry. It reduces duplication since

1http://religions.pewforum.org/pdf/comparison-Income%20Distribution%20of%20Religious%
20Traditions.pdf

Journal of Statistical Software 7

row a b c

A 1 4 7
B 2 5 8
C 3 6 9

(a) Raw data

row column value

A a 1
B a 2
C a 3
A b 4
B b 5
C b 6
A c 7
B c 8
C c 9

(b) Molten data

Table 5: A simple example of melting. (a) is melted with one colvar, row, yielding the molten dataset
(b). The information in each table is exactly the same, just stored in a di↵erent way.

religion income freq

Agnostic <$10k 27
Agnostic $10-20k 34
Agnostic $20-30k 60
Agnostic $30-40k 81
Agnostic $40-50k 76
Agnostic $50-75k 137
Agnostic $75-100k 122
Agnostic $100-150k 109
Agnostic >150k 84
Agnostic Don’t know/refused 96

Table 6: The first ten rows of the tidied Pew survey dataset on income and religion. The column has
been renamed to income, and value to freq.Original Molten (first 10 rows)

Melting: Billboard Top Hits

23

[Wickham, 2014]
D. Koop, CSCI 680/490, Spring 2021

8 Tidy Data

otherwise each song in each week would need its own row, and song metadata like title and
artist would need to be repeated. This issue will be discussed in more depth in Section 3.4.

year artist track time date.entered wk1 wk2 wk3

2000 2 Pac Baby Don’t Cry 4:22 2000-02-26 87 82 72
2000 2Ge+her The Hardest Part Of ... 3:15 2000-09-02 91 87 92
2000 3 Doors Down Kryptonite 3:53 2000-04-08 81 70 68
2000 98^0 Give Me Just One Nig... 3:24 2000-08-19 51 39 34
2000 A*Teens Dancing Queen 3:44 2000-07-08 97 97 96
2000 Aaliyah I Don’t Wanna 4:15 2000-01-29 84 62 51
2000 Aaliyah Try Again 4:03 2000-03-18 59 53 38
2000 Adams, Yolanda Open My Heart 5:30 2000-08-26 76 76 74

Table 7: The first eight Billboard top hits for 2000. Other columns not shown are wk4, wk5, ..., wk75.

This dataset has colvars year, artist, track, time, and date.entered. Melting yields
Table 8. I have also done a little cleaning as well as tidying: column has been converted to
week by extracting the number, and date has been computed from date.entered and week.

year artist time track date week rank

2000 2 Pac 4:22 Baby Don’t Cry 2000-02-26 1 87
2000 2 Pac 4:22 Baby Don’t Cry 2000-03-04 2 82
2000 2 Pac 4:22 Baby Don’t Cry 2000-03-11 3 72
2000 2 Pac 4:22 Baby Don’t Cry 2000-03-18 4 77
2000 2 Pac 4:22 Baby Don’t Cry 2000-03-25 5 87
2000 2 Pac 4:22 Baby Don’t Cry 2000-04-01 6 94
2000 2 Pac 4:22 Baby Don’t Cry 2000-04-08 7 99
2000 2Ge+her 3:15 The Hardest Part Of ... 2000-09-02 1 91
2000 2Ge+her 3:15 The Hardest Part Of ... 2000-09-09 2 87
2000 2Ge+her 3:15 The Hardest Part Of ... 2000-09-16 3 92
2000 3 Doors Down 3:53 Kryptonite 2000-04-08 1 81
2000 3 Doors Down 3:53 Kryptonite 2000-04-15 2 70
2000 3 Doors Down 3:53 Kryptonite 2000-04-22 3 68
2000 3 Doors Down 3:53 Kryptonite 2000-04-29 4 67
2000 3 Doors Down 3:53 Kryptonite 2000-05-06 5 66

Table 8: First fifteen rows of the tidied billboard dataset. The date column does not appear in the
original table, but can be computed from date.entered and week.

3.2. Multiple variables stored in one column

After melting, the column variable names often becomes a combination of multiple underlying
variable names. This is illustrated by the tuberculosis (TB) dataset, a sample of which is
shown in Table 9. This dataset comes from the World Health Organisation, and records
the counts of confirmed tuberculosis cases by country, year, and demographic group. The
demographic groups are broken down by sex (m, f) and age (0–14, 15–25, 25–34, 35–44,

8 Tidy Data

otherwise each song in each week would need its own row, and song metadata like title and
artist would need to be repeated. This issue will be discussed in more depth in Section 3.4.

year artist track time date.entered wk1 wk2 wk3

2000 2 Pac Baby Don’t Cry 4:22 2000-02-26 87 82 72
2000 2Ge+her The Hardest Part Of ... 3:15 2000-09-02 91 87 92
2000 3 Doors Down Kryptonite 3:53 2000-04-08 81 70 68
2000 98^0 Give Me Just One Nig... 3:24 2000-08-19 51 39 34
2000 A*Teens Dancing Queen 3:44 2000-07-08 97 97 96
2000 Aaliyah I Don’t Wanna 4:15 2000-01-29 84 62 51
2000 Aaliyah Try Again 4:03 2000-03-18 59 53 38
2000 Adams, Yolanda Open My Heart 5:30 2000-08-26 76 76 74

Table 7: The first eight Billboard top hits for 2000. Other columns not shown are wk4, wk5, ..., wk75.

This dataset has colvars year, artist, track, time, and date.entered. Melting yields
Table 8. I have also done a little cleaning as well as tidying: column has been converted to
week by extracting the number, and date has been computed from date.entered and week.

year artist time track date week rank

2000 2 Pac 4:22 Baby Don’t Cry 2000-02-26 1 87
2000 2 Pac 4:22 Baby Don’t Cry 2000-03-04 2 82
2000 2 Pac 4:22 Baby Don’t Cry 2000-03-11 3 72
2000 2 Pac 4:22 Baby Don’t Cry 2000-03-18 4 77
2000 2 Pac 4:22 Baby Don’t Cry 2000-03-25 5 87
2000 2 Pac 4:22 Baby Don’t Cry 2000-04-01 6 94
2000 2 Pac 4:22 Baby Don’t Cry 2000-04-08 7 99
2000 2Ge+her 3:15 The Hardest Part Of ... 2000-09-02 1 91
2000 2Ge+her 3:15 The Hardest Part Of ... 2000-09-09 2 87
2000 2Ge+her 3:15 The Hardest Part Of ... 2000-09-16 3 92
2000 3 Doors Down 3:53 Kryptonite 2000-04-08 1 81
2000 3 Doors Down 3:53 Kryptonite 2000-04-15 2 70
2000 3 Doors Down 3:53 Kryptonite 2000-04-22 3 68
2000 3 Doors Down 3:53 Kryptonite 2000-04-29 4 67
2000 3 Doors Down 3:53 Kryptonite 2000-05-06 5 66

Table 8: First fifteen rows of the tidied billboard dataset. The date column does not appear in the
original table, but can be computed from date.entered and week.

3.2. Multiple variables stored in one column

After melting, the column variable names often becomes a combination of multiple underlying
variable names. This is illustrated by the tuberculosis (TB) dataset, a sample of which is
shown in Table 9. This dataset comes from the World Health Organisation, and records
the counts of confirmed tuberculosis cases by country, year, and demographic group. The
demographic groups are broken down by sex (m, f) and age (0–14, 15–25, 25–34, 35–44,

Melting
• Pandas also has a melt function:

In [41]: cheese = pd.DataFrame({'first' : ['John', 'Mary'],
 : 'last' : ['Doe', 'Bo'],
 : 'height' : [5.5, 6.0],
 : 'weight' : [130, 150]})
 :

In [42]: cheese
Out[42]:
 first height last weight
0 John 5.5 Doe 130
1 Mary 6.0 Bo 150

In [43]: cheese.melt(id_vars=['first', 'last'])
Out[43]:
 first last variable value
0 John Doe height 5.5
1 Mary Bo height 6.0
2 John Doe weight 130.0
3 Mary Bo weight 150.0

In [44]: cheese.melt(id_vars=['first', 'last'], var_name='quantity')
Out[44]:
 first last quantity value
0 John Doe height 5.5
1 Mary Bo height 6.0
2 John Doe weight 130.0
3 Mary Bo weight 150.0

24D. Koop, CSCI 680/490, Spring 2021

D. Koop, CSCI 490/680, Spring 2020

Journal of Statistical Software 9

45–54, 55–64, unknown).

country year m014 m1524 m2534 m3544 m4554 m5564 m65 mu f014

AD 2000 0 0 1 0 0 0 0 — —
AE 2000 2 4 4 6 5 12 10 — 3
AF 2000 52 228 183 149 129 94 80 — 93
AG 2000 0 0 0 0 0 0 1 — 1
AL 2000 2 19 21 14 24 19 16 — 3
AM 2000 2 152 130 131 63 26 21 — 1
AN 2000 0 0 1 2 0 0 0 — 0
AO 2000 186 999 1003 912 482 312 194 — 247
AR 2000 97 278 594 402 419 368 330 — 121
AS 2000 — — — — 1 1 — — —

Table 9: Original TB dataset. Corresponding to each ‘m’ column for males, there is also an ‘f’ column
for females, f1524, f2534 and so on. These are not shown to conserve space. Note the mixture of 0s
and missing values (—). This is due to the data collection process and the distinction is important for
this dataset.

Column headers in this format are often separated by some character (., -, _, :). While the
string can be broken into pieces using that character as a divider, in other cases, such as for
this dataset, more careful string processing is required. For example, the variable names can
be matched to a lookup table that converts single compound value into multiple component
values.

Table 10(a) shows the results of melting the TB dataset, and Table 10(b) shows the results
of splitting the single column column into two real variables: age and sex.

Storing the values in this form resolves another problem in the original data. We want to
compare rates, not counts. But to compute rates, we need to know the population. In the
original format, there is no easy way to add a population variable. It has to be stored in a
separate table, which makes it hard to correctly match populations to counts. In tidy form,
adding variables for population and rate is easy. They are just additional columns.

3.3. Variables are stored in both rows and columns

The most complicated form of messy data occurs when variables are stored in both rows and
columns. Table 11 shows daily weather data from the Global Historical Climatology Network
for one weather station (MX17004) in Mexico for five months in 2010. It has variables in
individual columns (id, year, month), spread across columns (day, d1–d31) and across rows
(tmin, tmax) (minimum and maximum temperature). Months with less than 31 days have
structural missing values for the last day(s) of the month. The element column is not a
variable; it stores the names of variables.

To tidy this dataset we first melt it with colvars id, year, month and the column that contains
variable names, element. This yields Table 12(a). For presentation, we have dropped the
missing values, making them implicit rather than explicit. This is permissible because we know
how many days are in each month and can easily reconstruct the explicit missing values.

This dataset is mostly tidy, but we have two variables stored in rows: tmin and tmax, the

Problem: Multiple variables stored in one column

25

[H. Wickham, 2014]

Tuberculosis Data, World Health Organization

D. Koop, CSCI 490/680, Spring 2020

Journal of Statistical Software 9

45–54, 55–64, unknown).

country year m014 m1524 m2534 m3544 m4554 m5564 m65 mu f014

AD 2000 0 0 1 0 0 0 0 — —
AE 2000 2 4 4 6 5 12 10 — 3
AF 2000 52 228 183 149 129 94 80 — 93
AG 2000 0 0 0 0 0 0 1 — 1
AL 2000 2 19 21 14 24 19 16 — 3
AM 2000 2 152 130 131 63 26 21 — 1
AN 2000 0 0 1 2 0 0 0 — 0
AO 2000 186 999 1003 912 482 312 194 — 247
AR 2000 97 278 594 402 419 368 330 — 121
AS 2000 — — — — 1 1 — — —

Table 9: Original TB dataset. Corresponding to each ‘m’ column for males, there is also an ‘f’ column
for females, f1524, f2534 and so on. These are not shown to conserve space. Note the mixture of 0s
and missing values (—). This is due to the data collection process and the distinction is important for
this dataset.

Column headers in this format are often separated by some character (., -, _, :). While the
string can be broken into pieces using that character as a divider, in other cases, such as for
this dataset, more careful string processing is required. For example, the variable names can
be matched to a lookup table that converts single compound value into multiple component
values.

Table 10(a) shows the results of melting the TB dataset, and Table 10(b) shows the results
of splitting the single column column into two real variables: age and sex.

Storing the values in this form resolves another problem in the original data. We want to
compare rates, not counts. But to compute rates, we need to know the population. In the
original format, there is no easy way to add a population variable. It has to be stored in a
separate table, which makes it hard to correctly match populations to counts. In tidy form,
adding variables for population and rate is easy. They are just additional columns.

3.3. Variables are stored in both rows and columns

The most complicated form of messy data occurs when variables are stored in both rows and
columns. Table 11 shows daily weather data from the Global Historical Climatology Network
for one weather station (MX17004) in Mexico for five months in 2010. It has variables in
individual columns (id, year, month), spread across columns (day, d1–d31) and across rows
(tmin, tmax) (minimum and maximum temperature). Months with less than 31 days have
structural missing values for the last day(s) of the month. The element column is not a
variable; it stores the names of variables.

To tidy this dataset we first melt it with colvars id, year, month and the column that contains
variable names, element. This yields Table 12(a). For presentation, we have dropped the
missing values, making them implicit rather than explicit. This is permissible because we know
how many days are in each month and can easily reconstruct the explicit missing values.

This dataset is mostly tidy, but we have two variables stored in rows: tmin and tmax, the

Problem: Multiple variables stored in one column

25

[H. Wickham, 2014]

Tuberculosis Data, World Health Organization

Two variables in columns: age and sex

D. Koop, CSCI 490/680, Spring 2020

10 Tidy Data

country year column cases

AD 2000 m014 0
AD 2000 m1524 0
AD 2000 m2534 1
AD 2000 m3544 0
AD 2000 m4554 0
AD 2000 m5564 0
AD 2000 m65 0
AE 2000 m014 2
AE 2000 m1524 4
AE 2000 m2534 4
AE 2000 m3544 6
AE 2000 m4554 5
AE 2000 m5564 12
AE 2000 m65 10
AE 2000 f014 3

(a) Molten data

country year sex age cases

AD 2000 m 0-14 0
AD 2000 m 15-24 0
AD 2000 m 25-34 1
AD 2000 m 35-44 0
AD 2000 m 45-54 0
AD 2000 m 55-64 0
AD 2000 m 65+ 0
AE 2000 m 0-14 2
AE 2000 m 15-24 4
AE 2000 m 25-34 4
AE 2000 m 35-44 6
AE 2000 m 45-54 5
AE 2000 m 55-64 12
AE 2000 m 65+ 10
AE 2000 f 0-14 3

(b) Tidy data

Table 10: Tidying the TB dataset requires first melting, and then splitting the column column into
two variables: sex and age.

type of observation. Not shown in this example are the other meteorological variables prcp
(precipitation) and snow (snowfall). Fixing this requires the cast, or unstack, operation. This
performs the inverse of melting by rotating the element variable back out into the columns
(Table 12(b)). This form is tidy. There is one variable in each column, and each row represents
a day’s observations. The cast operation is described in depth in Wickham (2007).

3.4. Multiple types in one table

Datasets often involve values collected at multiple levels, on di↵erent types of observational
units. During tidying, each type of observational unit should be stored in its own table. This
is closely related to the idea of database normalisation, where each fact is expressed in only
one place. If this is not done, it’s possible for inconsistencies to occur.

The Billboard dataset described in Table 8 actually contains observations on two types of
observational units: the song and its rank in each week. This manifests itself through the
duplication of facts about the song: artist and time are repeated for every song in each
week. The billboard dataset needs to be broken down into two datasets: a song dataset
which stores artist, song name and time, and a ranking dataset which gives the rank of
the song in each week. Table 13 shows these two datasets. You could also imagine a week
dataset which would record background information about the week, maybe the total number
of songs sold or similar demographic information.

Normalisation is useful for tidying and eliminating inconsistencies. However, there are few
data analysis tools that work directly with relational data, so analysis usually also requires
denormalisation or the merging the datasets back into one table.

Solution: Melting + Splitting

26

[H. Wickham, 2014]

D. Koop, CSCI 490/680, Spring 2020

Journal of Statistical Software 11

id year month element d1 d2 d3 d4 d5 d6 d7 d8

MX17004 2010 1 tmax — — — — — — — —
MX17004 2010 1 tmin — — — — — — — —
MX17004 2010 2 tmax — 27.3 24.1 — — — — —
MX17004 2010 2 tmin — 14.4 14.4 — — — — —
MX17004 2010 3 tmax — — — — 32.1 — — —
MX17004 2010 3 tmin — — — — 14.2 — — —
MX17004 2010 4 tmax — — — — — — — —
MX17004 2010 4 tmin — — — — — — — —
MX17004 2010 5 tmax — — — — — — — —
MX17004 2010 5 tmin — — — — — — — —

Table 11: Original weather dataset. There is a column for each possible day in the month. Columns
d9 to d31 have been omitted to conserve space.

id date element value

MX17004 2010-01-30 tmax 27.8
MX17004 2010-01-30 tmin 14.5
MX17004 2010-02-02 tmax 27.3
MX17004 2010-02-02 tmin 14.4
MX17004 2010-02-03 tmax 24.1
MX17004 2010-02-03 tmin 14.4
MX17004 2010-02-11 tmax 29.7
MX17004 2010-02-11 tmin 13.4
MX17004 2010-02-23 tmax 29.9
MX17004 2010-02-23 tmin 10.7

(a) Molten data

id date tmax tmin

MX17004 2010-01-30 27.8 14.5
MX17004 2010-02-02 27.3 14.4
MX17004 2010-02-03 24.1 14.4
MX17004 2010-02-11 29.7 13.4
MX17004 2010-02-23 29.9 10.7
MX17004 2010-03-05 32.1 14.2
MX17004 2010-03-10 34.5 16.8
MX17004 2010-03-16 31.1 17.6
MX17004 2010-04-27 36.3 16.7
MX17004 2010-05-27 33.2 18.2

(b) Tidy data

Table 12: (a) Molten weather dataset. This is almost tidy, but instead of values, the element column
contains names of variables. Missing values are dropped to conserve space. (b) Tidy weather dataset.
Each row represents the meteorological measurements for a single day. There are two measured
variables, minimum (tmin) and maximum (tmax) temperature; all other variables are fixed.

Problem: Variables stored in both rows & columns

27

[H. Wickham, 2014]

Mexico Weather, Global Historical Climatology Network

D. Koop, CSCI 490/680, Spring 2020

Journal of Statistical Software 11

id year month element d1 d2 d3 d4 d5 d6 d7 d8

MX17004 2010 1 tmax — — — — — — — —
MX17004 2010 1 tmin — — — — — — — —
MX17004 2010 2 tmax — 27.3 24.1 — — — — —
MX17004 2010 2 tmin — 14.4 14.4 — — — — —
MX17004 2010 3 tmax — — — — 32.1 — — —
MX17004 2010 3 tmin — — — — 14.2 — — —
MX17004 2010 4 tmax — — — — — — — —
MX17004 2010 4 tmin — — — — — — — —
MX17004 2010 5 tmax — — — — — — — —
MX17004 2010 5 tmin — — — — — — — —

Table 11: Original weather dataset. There is a column for each possible day in the month. Columns
d9 to d31 have been omitted to conserve space.

id date element value

MX17004 2010-01-30 tmax 27.8
MX17004 2010-01-30 tmin 14.5
MX17004 2010-02-02 tmax 27.3
MX17004 2010-02-02 tmin 14.4
MX17004 2010-02-03 tmax 24.1
MX17004 2010-02-03 tmin 14.4
MX17004 2010-02-11 tmax 29.7
MX17004 2010-02-11 tmin 13.4
MX17004 2010-02-23 tmax 29.9
MX17004 2010-02-23 tmin 10.7

(a) Molten data

id date tmax tmin

MX17004 2010-01-30 27.8 14.5
MX17004 2010-02-02 27.3 14.4
MX17004 2010-02-03 24.1 14.4
MX17004 2010-02-11 29.7 13.4
MX17004 2010-02-23 29.9 10.7
MX17004 2010-03-05 32.1 14.2
MX17004 2010-03-10 34.5 16.8
MX17004 2010-03-16 31.1 17.6
MX17004 2010-04-27 36.3 16.7
MX17004 2010-05-27 33.2 18.2

(b) Tidy data

Table 12: (a) Molten weather dataset. This is almost tidy, but instead of values, the element column
contains names of variables. Missing values are dropped to conserve space. (b) Tidy weather dataset.
Each row represents the meteorological measurements for a single day. There are two measured
variables, minimum (tmin) and maximum (tmax) temperature; all other variables are fixed.

Problem: Variables stored in both rows & columns

27

[H. Wickham, 2014]

Mexico Weather, Global Historical Climatology Network

Variable in columns: day; Variable in rows: tmax/tmin

Pivot
• Sometimes, we have data that is given in "long" format and we would like

"wide" format (AKA pivot_wider)
• Long format: column names are data values…
• Wide format: more like spreadsheet format
• Example:

28

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 680/490, Spring 2021

 two 1 6
 three 2 7
Colorado one 3 8
 two 4 9
 three 5 10

In [109]: df.unstack('state') In [110]: df.unstack('state').stack('side')
Out[109]: Out[110]:
side left right state Ohio Colorado
state Ohio Colorado Ohio Colorado number side
number one left 0 3
one 0 3 5 8 right 5 8
two 1 4 6 9 two left 1 4
three 2 5 7 10 right 6 9
 three left 2 5
 right 7 10

Pivoting “long” to “wide” Format
A common way to store multiple time series in databases and CSV is in so-called long
or stacked format:

data = pd.read_csv('ch07/macrodata.csv')
periods = pd.PeriodIndex(year=data.year, quarter=data.quarter, name='date')
data = DataFrame(data.to_records(),
 columns=pd.Index(['realgdp', 'infl', 'unemp'], name='item'),
 index=periods.to_timestamp('D', 'end'))

ldata = data.stack().reset_index().rename(columns={0: 'value'})

In [116]: ldata[:10]
Out[116]:
 date item value
0 1959-03-31 realgdp 2710.349
1 1959-03-31 infl 0.000
2 1959-03-31 unemp 5.800
3 1959-06-30 realgdp 2778.801
4 1959-06-30 infl 2.340
5 1959-06-30 unemp 5.100
6 1959-09-30 realgdp 2775.488
7 1959-09-30 infl 2.740
8 1959-09-30 unemp 5.300
9 1959-12-31 realgdp 2785.204

Data is frequently stored this way in relational databases like MySQL as a fixed schema
(column names and data types) allows the number of distinct values in the item column
to increase or decrease as data is added or deleted in the table. In the above example
date and item would usually be the primary keys (in relational database parlance),
offering both relational integrity and easier joins and programmatic queries in many
cases. The downside, of course, is that the data may not be easy to work with in long
format; you might prefer to have a DataFrame containing one column per distinct

190 | Chapter 7: Data Wrangling: Clean, Transform, Merge, Reshape

item value indexed by timestamps in the date column. DataFrame’s pivot method per-
forms exactly this transformation:

In [117]: pivoted = ldata.pivot('date', 'item', 'value')

In [118]: pivoted.head()
Out[118]:
item infl realgdp unemp
date
1959-03-31 0.00 2710.349 5.8
1959-06-30 2.34 2778.801 5.1
1959-09-30 2.74 2775.488 5.3
1959-12-31 0.27 2785.204 5.6
1960-03-31 2.31 2847.699 5.2

The first two values passed are the columns to be used as the row and column index,
and finally an optional value column to fill the DataFrame. Suppose you had two value
columns that you wanted to reshape simultaneously:

In [119]: ldata['value2'] = np.random.randn(len(ldata))

In [120]: ldata[:10]
Out[120]:
 date item value value2
0 1959-03-31 realgdp 2710.349 1.669025
1 1959-03-31 infl 0.000 -0.438570
2 1959-03-31 unemp 5.800 -0.539741
3 1959-06-30 realgdp 2778.801 0.476985
4 1959-06-30 infl 2.340 3.248944
5 1959-06-30 unemp 5.100 -1.021228
6 1959-09-30 realgdp 2775.488 -0.577087
7 1959-09-30 infl 2.740 0.124121
8 1959-09-30 unemp 5.300 0.302614
9 1959-12-31 realgdp 2785.204 0.523772

By omitting the last argument, you obtain a DataFrame with hierarchical columns:

In [121]: pivoted = ldata.pivot('date', 'item')

In [122]: pivoted[:5]
Out[122]:
 value value2
item infl realgdp unemp infl realgdp unemp
date
1959-03-31 0.00 2710.349 5.8 -0.438570 1.669025 -0.539741
1959-06-30 2.34 2778.801 5.1 3.248944 0.476985 -1.021228
1959-09-30 2.74 2775.488 5.3 0.124121 -0.577087 0.302614
1959-12-31 0.27 2785.204 5.6 0.000940 0.523772 1.343810
1960-03-31 2.31 2847.699 5.2 -0.831154 -0.713544 -2.370232

In [123]: pivoted['value'][:5]
Out[123]:
item infl realgdp unemp
date
1959-03-31 0.00 2710.349 5.8
1959-06-30 2.34 2778.801 5.1

Reshaping and Pivoting | 191

.pivot('date', 'item', 'value')

D. Koop, CSCI 490/680, Spring 2020

Journal of Statistical Software 11

id year month element d1 d2 d3 d4 d5 d6 d7 d8

MX17004 2010 1 tmax — — — — — — — —
MX17004 2010 1 tmin — — — — — — — —
MX17004 2010 2 tmax — 27.3 24.1 — — — — —
MX17004 2010 2 tmin — 14.4 14.4 — — — — —
MX17004 2010 3 tmax — — — — 32.1 — — —
MX17004 2010 3 tmin — — — — 14.2 — — —
MX17004 2010 4 tmax — — — — — — — —
MX17004 2010 4 tmin — — — — — — — —
MX17004 2010 5 tmax — — — — — — — —
MX17004 2010 5 tmin — — — — — — — —

Table 11: Original weather dataset. There is a column for each possible day in the month. Columns
d9 to d31 have been omitted to conserve space.

id date element value

MX17004 2010-01-30 tmax 27.8
MX17004 2010-01-30 tmin 14.5
MX17004 2010-02-02 tmax 27.3
MX17004 2010-02-02 tmin 14.4
MX17004 2010-02-03 tmax 24.1
MX17004 2010-02-03 tmin 14.4
MX17004 2010-02-11 tmax 29.7
MX17004 2010-02-11 tmin 13.4
MX17004 2010-02-23 tmax 29.9
MX17004 2010-02-23 tmin 10.7

(a) Molten data

id date tmax tmin

MX17004 2010-01-30 27.8 14.5
MX17004 2010-02-02 27.3 14.4
MX17004 2010-02-03 24.1 14.4
MX17004 2010-02-11 29.7 13.4
MX17004 2010-02-23 29.9 10.7
MX17004 2010-03-05 32.1 14.2
MX17004 2010-03-10 34.5 16.8
MX17004 2010-03-16 31.1 17.6
MX17004 2010-04-27 36.3 16.7
MX17004 2010-05-27 33.2 18.2

(b) Tidy data

Table 12: (a) Molten weather dataset. This is almost tidy, but instead of values, the element column
contains names of variables. Missing values are dropped to conserve space. (b) Tidy weather dataset.
Each row represents the meteorological measurements for a single day. There are two measured
variables, minimum (tmin) and maximum (tmax) temperature; all other variables are fixed.

Solution: Melting + Pivot

29

[H. Wickham, 2014]

D. Koop, CSCI 490/680, Spring 2020

8 Tidy Data

otherwise each song in each week would need its own row, and song metadata like title and
artist would need to be repeated. This issue will be discussed in more depth in Section 3.4.

year artist track time date.entered wk1 wk2 wk3

2000 2 Pac Baby Don’t Cry 4:22 2000-02-26 87 82 72
2000 2Ge+her The Hardest Part Of ... 3:15 2000-09-02 91 87 92
2000 3 Doors Down Kryptonite 3:53 2000-04-08 81 70 68
2000 98^0 Give Me Just One Nig... 3:24 2000-08-19 51 39 34
2000 A*Teens Dancing Queen 3:44 2000-07-08 97 97 96
2000 Aaliyah I Don’t Wanna 4:15 2000-01-29 84 62 51
2000 Aaliyah Try Again 4:03 2000-03-18 59 53 38
2000 Adams, Yolanda Open My Heart 5:30 2000-08-26 76 76 74

Table 7: The first eight Billboard top hits for 2000. Other columns not shown are wk4, wk5, ..., wk75.

This dataset has colvars year, artist, track, time, and date.entered. Melting yields
Table 8. I have also done a little cleaning as well as tidying: column has been converted to
week by extracting the number, and date has been computed from date.entered and week.

year artist time track date week rank

2000 2 Pac 4:22 Baby Don’t Cry 2000-02-26 1 87
2000 2 Pac 4:22 Baby Don’t Cry 2000-03-04 2 82
2000 2 Pac 4:22 Baby Don’t Cry 2000-03-11 3 72
2000 2 Pac 4:22 Baby Don’t Cry 2000-03-18 4 77
2000 2 Pac 4:22 Baby Don’t Cry 2000-03-25 5 87
2000 2 Pac 4:22 Baby Don’t Cry 2000-04-01 6 94
2000 2 Pac 4:22 Baby Don’t Cry 2000-04-08 7 99
2000 2Ge+her 3:15 The Hardest Part Of ... 2000-09-02 1 91
2000 2Ge+her 3:15 The Hardest Part Of ... 2000-09-09 2 87
2000 2Ge+her 3:15 The Hardest Part Of ... 2000-09-16 3 92
2000 3 Doors Down 3:53 Kryptonite 2000-04-08 1 81
2000 3 Doors Down 3:53 Kryptonite 2000-04-15 2 70
2000 3 Doors Down 3:53 Kryptonite 2000-04-22 3 68
2000 3 Doors Down 3:53 Kryptonite 2000-04-29 4 67
2000 3 Doors Down 3:53 Kryptonite 2000-05-06 5 66

Table 8: First fifteen rows of the tidied billboard dataset. The date column does not appear in the
original table, but can be computed from date.entered and week.

3.2. Multiple variables stored in one column

After melting, the column variable names often becomes a combination of multiple underlying
variable names. This is illustrated by the tuberculosis (TB) dataset, a sample of which is
shown in Table 9. This dataset comes from the World Health Organisation, and records
the counts of confirmed tuberculosis cases by country, year, and demographic group. The
demographic groups are broken down by sex (m, f) and age (0–14, 15–25, 25–34, 35–44,

Problem: Multiple types in one table

30

[H. Wickham, 2014]

Billboard
Top
Hits

D. Koop, CSCI 490/680, Spring 2020

8 Tidy Data

otherwise each song in each week would need its own row, and song metadata like title and
artist would need to be repeated. This issue will be discussed in more depth in Section 3.4.

year artist track time date.entered wk1 wk2 wk3

2000 2 Pac Baby Don’t Cry 4:22 2000-02-26 87 82 72
2000 2Ge+her The Hardest Part Of ... 3:15 2000-09-02 91 87 92
2000 3 Doors Down Kryptonite 3:53 2000-04-08 81 70 68
2000 98^0 Give Me Just One Nig... 3:24 2000-08-19 51 39 34
2000 A*Teens Dancing Queen 3:44 2000-07-08 97 97 96
2000 Aaliyah I Don’t Wanna 4:15 2000-01-29 84 62 51
2000 Aaliyah Try Again 4:03 2000-03-18 59 53 38
2000 Adams, Yolanda Open My Heart 5:30 2000-08-26 76 76 74

Table 7: The first eight Billboard top hits for 2000. Other columns not shown are wk4, wk5, ..., wk75.

This dataset has colvars year, artist, track, time, and date.entered. Melting yields
Table 8. I have also done a little cleaning as well as tidying: column has been converted to
week by extracting the number, and date has been computed from date.entered and week.

year artist time track date week rank

2000 2 Pac 4:22 Baby Don’t Cry 2000-02-26 1 87
2000 2 Pac 4:22 Baby Don’t Cry 2000-03-04 2 82
2000 2 Pac 4:22 Baby Don’t Cry 2000-03-11 3 72
2000 2 Pac 4:22 Baby Don’t Cry 2000-03-18 4 77
2000 2 Pac 4:22 Baby Don’t Cry 2000-03-25 5 87
2000 2 Pac 4:22 Baby Don’t Cry 2000-04-01 6 94
2000 2 Pac 4:22 Baby Don’t Cry 2000-04-08 7 99
2000 2Ge+her 3:15 The Hardest Part Of ... 2000-09-02 1 91
2000 2Ge+her 3:15 The Hardest Part Of ... 2000-09-09 2 87
2000 2Ge+her 3:15 The Hardest Part Of ... 2000-09-16 3 92
2000 3 Doors Down 3:53 Kryptonite 2000-04-08 1 81
2000 3 Doors Down 3:53 Kryptonite 2000-04-15 2 70
2000 3 Doors Down 3:53 Kryptonite 2000-04-22 3 68
2000 3 Doors Down 3:53 Kryptonite 2000-04-29 4 67
2000 3 Doors Down 3:53 Kryptonite 2000-05-06 5 66

Table 8: First fifteen rows of the tidied billboard dataset. The date column does not appear in the
original table, but can be computed from date.entered and week.

3.2. Multiple variables stored in one column

After melting, the column variable names often becomes a combination of multiple underlying
variable names. This is illustrated by the tuberculosis (TB) dataset, a sample of which is
shown in Table 9. This dataset comes from the World Health Organisation, and records
the counts of confirmed tuberculosis cases by country, year, and demographic group. The
demographic groups are broken down by sex (m, f) and age (0–14, 15–25, 25–34, 35–44,

Problem: Multiple types in one table

30

[H. Wickham, 2014]

Billboard
Top
Hits

Repeated
Information

D. Koop, CSCI 490/680, Spring 2020

12 Tidy Data

id artist track time

1 2 Pac Baby Don’t Cry 4:22
2 2Ge+her The Hardest Part Of ... 3:15
3 3 Doors Down Kryptonite 3:53
4 3 Doors Down Loser 4:24
5 504 Boyz Wobble Wobble 3:35
6 98^0 Give Me Just One Nig... 3:24
7 A*Teens Dancing Queen 3:44
8 Aaliyah I Don’t Wanna 4:15
9 Aaliyah Try Again 4:03
10 Adams, Yolanda Open My Heart 5:30
11 Adkins, Trace More 3:05
12 Aguilera, Christina Come On Over Baby 3:38
13 Aguilera, Christina I Turn To You 4:00
14 Aguilera, Christina What A Girl Wants 3:18
15 Alice Deejay Better O↵ Alone 6:50

id date rank

1 2000-02-26 87
1 2000-03-04 82
1 2000-03-11 72
1 2000-03-18 77
1 2000-03-25 87
1 2000-04-01 94
1 2000-04-08 99
2 2000-09-02 91
2 2000-09-09 87
2 2000-09-16 92
3 2000-04-08 81
3 2000-04-15 70
3 2000-04-22 68
3 2000-04-29 67
3 2000-05-06 66

Table 13: Normalised billboard dataset split up into song dataset (left) and rank dataset (right). First
15 rows of each dataset shown; genre omitted from song dataset, week omitted from rank dataset.

3.5. One type in multiple tables

It’s also common to find data values about a single type of observational unit spread out over
multiple tables or files. These tables and files are often split up by another variable, so that
each represents a single year, person, or location. As long as the format for individual records
is consistent, this is an easy problem to fix:

1. Read the files into a list of tables.

2. For each table, add a new column that records the original file name (because the file
name is often the value of an important variable).

3. Combine all tables into a single table.

The plyr package makes this a straightforward task in R. The following code generates a
vector of file names in a directory (data/) which match a regular expression (ends in .csv).
Next we name each element of the vector with the name of the file. We do this because plyr
will preserve the names in the following step, ensuring that each row in the final data frame
is labelled with its source. Finally, ldply() loops over each path, reading in the csv file and
combining the results into a single data frame.

R> paths <- dir("data", pattern = "\\.csv$", full.names = TRUE)

R> names(paths) <- basename(paths)

R> ldply(paths, read.csv, stringsAsFactors = FALSE)

Once you have a single table, you can perform additional tidying as needed. An example of
this type of cleaning can be found at https://github.com/hadley/data-baby-names which

Solution: Normalization

31

[H. Wickham, 2014]
Important: Analysis may require merging!

Problem: One type in many tables

32

[Social Security Administration]
D. Koop, CSCI 680/490, Spring 2021

Rank Male name Female name
1 Noah Emma
2 Liam Olivia
3 William Ava
4 Mason Sophia
5 James Isabella
6 Benjamin Mia
7 Jacob Charlotte
8 Michael Abigail
9 Elijah Emily

10 Ethan Harper

Popularity in 2016
Rank Male name Female name

1 Noah Emma
2 Liam Olivia
3 Mason Sophia
4 Jacob Ava
5 William Isabella
6 Ethan Mia
7 James Abigail
8 Alexander Emily
9 Michael Charlotte

10 Benjamin Harper

Popularity in 2015

Baby Names, Social Security Administration

https://www.ssa.gov/OACT/babynames/

Solution: Melt and Concatenation

33D. Koop, CSCI 680/490, Spring 2021

Rank Year Sex Name
1 2015 Female Emma
1 2015 Male Noah
1 2016 Female Emma
1 2016 Male Noah
2 2015 Female Olivia
2 2015 Male Liam
2 2016 Female Olivia
2 2016 Male Liam
3 2015 Female Sophia
3 2015 Male Mason
3 2016 Female Ava
3 2016 Male William

Rank Year Sex Name
1 2016 Female Emma
1 2016 Male Noah
2 2016 Female Olivia
2 2016 Male Liam
3 2016 Female Ava
3 2016 Male William

Rank Year Sex Name
1 2015 Female Emma
1 2015 Male Noah
2 2015 Female Olivia
2 2015 Male Liam
3 2015 Female Sophia
3 2015 Male Mason

Melt 2015 and 2016 Concatenate

Using Tidy Data
• Sorting (sort_values, sort_index)
• Transformation (e.g. Fahrenheit to Celsius)
• Filtering (use Boolean indexing)
• Aggregation

34D. Koop, CSCI 680/490, Spring 2021

Hierarchical Indexing (Multiple Keys)
• We might have multiple keys to identify a single piece of data
• Example: Football records for each team over multiple years
- Identify a specific row by both the team name and the year
- Can think about this as a tuple (<team_name>, <year>)

• pandas supports this via hierarchical indexing (MultiIndex)
• display mirrors the hierarchical nature of the data

35D. Koop, CSCI 680/490, Spring 2021

Example
• data = [{"W": 11, "L": 5},
 {"W": 6, "L": 10},
 {"W": 12, "L": 4},
 {"W": 8, "L": 8},
 {"W": 2, "L": 14}]
index = [["Boston", "Boston",
 "San Diego", "San Diego",
 "Cleveland"],
 [2007, 2008, 2007,
 2008, 2007]]
df = pd.DataFrame(data,
 columns=["W", "L"],
 index=pd.MultiIndex.from_arrays(
 index, names=('Team', 'Year')))

36D. Koop, CSCI 680/490, Spring 2021

W L

Team Year

Boston
2007 11 5

2008 6 10

San Diego
2007 12 4

2008 8 8

Cleveland 2007 2 14

37

How do we access a row? or slice?

D. Koop, CSCI 680/490, Spring 2021

MultiIndex Row Access and Slicing
• df.loc["Boston", 2007]

• Remember that loc uses the index values, iloc uses integers
• Note: df.iloc[0] gets the first row, not df.iloc[0,0]
• Can get a subset of the data using partial indices

- df.loc["Boston"] returns both 2007 and 2008 data
• What about slicing?

- df.loc["Boston":"Cleveland"] → ERROR! (Need sorted data)
- df = df.sort_index()

- df.loc["Boston":"Cleveland"] → inclusive!
- df.loc[(slice("Boston","Cleveland"),2007),:]

38D. Koop, CSCI 680/490, Spring 2021

Reorganizing the MultiIndex
• swaplevel: switch the order of the levels

- df = df.swaplevel("Year","Team")

- df.sort_index()

• Can do summary statistics by level
- df.sum(level="Team")

• Reset the index (back to numbers)
- df.reset_index()

• Promote columns to be the indices
- df.set_index(["Team", "Year"])

39D. Koop, CSCI 680/490, Spring 2021

W L

Team Year

Boston
2007 11 5

2008 6 10

San Diego
2007 12 4

2008 8 8

Cleveland 2007 2 14

Reshaping Data
• Reshape/pivoting are fundamental operations
• Can have a nested index in pandas
• Example: Congressional Districts (Ohio's 1st, 2nd, 3rd, Colorado's 1st, 2nd,

3rd) and associated representative rankings
• Could write this in different ways:

40D. Koop, CSCI 680/490, Spring 2021

2 5 4 10
3 3 6 14
4 7 8 NaN

Reshaping and Pivoting
There are a number of fundamental operations for rearranging tabular data. These are
alternatingly referred to as reshape or pivot operations.

Reshaping with Hierarchical Indexing
Hierarchical indexing provides a consistent way to rearrange data in a DataFrame.
There are two primary actions:

• stack: this “rotates” or pivots from the columns in the data to the rows

• unstack: this pivots from the rows into the columns

I’ll illustrate these operations through a series of examples. Consider a small DataFrame
with string arrays as row and column indexes:

In [94]: data = DataFrame(np.arange(6).reshape((2, 3)),
 : index=pd.Index(['Ohio', 'Colorado'], name='state'),
 : columns=pd.Index(['one', 'two', 'three'], name='number'))

In [95]: data
Out[95]:
number one two three
state
Ohio 0 1 2
Colorado 3 4 5

Using the stack method on this data pivots the columns into the rows, producing a
Series:

In [96]: result = data.stack()

In [97]: result
Out[97]:
state number
Ohio one 0
 two 1
 three 2
Colorado one 3
 two 4
 three 5
dtype: int64

From a hierarchically-indexed Series, you can rearrange the data back into a DataFrame
with unstack:

In [98]: result.unstack()
Out[98]:
number one two three

188 | Chapter 7: Data Wrangling: Clean, Transform, Merge, Reshape

2 5 4 10
3 3 6 14
4 7 8 NaN

Reshaping and Pivoting
There are a number of fundamental operations for rearranging tabular data. These are
alternatingly referred to as reshape or pivot operations.

Reshaping with Hierarchical Indexing
Hierarchical indexing provides a consistent way to rearrange data in a DataFrame.
There are two primary actions:

• stack: this “rotates” or pivots from the columns in the data to the rows

• unstack: this pivots from the rows into the columns

I’ll illustrate these operations through a series of examples. Consider a small DataFrame
with string arrays as row and column indexes:

In [94]: data = DataFrame(np.arange(6).reshape((2, 3)),
 : index=pd.Index(['Ohio', 'Colorado'], name='state'),
 : columns=pd.Index(['one', 'two', 'three'], name='number'))

In [95]: data
Out[95]:
number one two three
state
Ohio 0 1 2
Colorado 3 4 5

Using the stack method on this data pivots the columns into the rows, producing a
Series:

In [96]: result = data.stack()

In [97]: result
Out[97]:
state number
Ohio one 0
 two 1
 three 2
Colorado one 3
 two 4
 three 5
dtype: int64

From a hierarchically-indexed Series, you can rearrange the data back into a DataFrame
with unstack:

In [98]: result.unstack()
Out[98]:
number one two three

188 | Chapter 7: Data Wrangling: Clean, Transform, Merge, Reshape

state
Ohio 0 1 2
Colorado 3 4 5

By default the innermost level is unstacked (same with stack). You can unstack a dif-
ferent level by passing a level number or name:

In [99]: result.unstack(0) In [100]: result.unstack('state')
Out[99]: Out[100]:
state Ohio Colorado state Ohio Colorado
number number
one 0 3 one 0 3
two 1 4 two 1 4
three 2 5 three 2 5

Unstacking might introduce missing data if all of the values in the level aren’t found in
each of the subgroups:

In [101]: s1 = Series([0, 1, 2, 3], index=['a', 'b', 'c', 'd'])

In [102]: s2 = Series([4, 5, 6], index=['c', 'd', 'e'])

In [103]: data2 = pd.concat([s1, s2], keys=['one', 'two'])

In [104]: data2.unstack()
Out[104]:
 a b c d e
one 0 1 2 3 NaN
two NaN NaN 4 5 6

Stacking filters out missing data by default, so the operation is easily invertible:

In [105]: data2.unstack().stack() In [106]: data2.unstack().stack(dropna=False)
Out[105]: Out[106]:
one a 0 one a 0
 b 1 b 1
 c 2 c 2
 d 3 d 3
two c 4 e NaN
 d 5 two a NaN
 e 6 b NaN
dtype: float64 c 4
 d 5
 e 6
 dtype: float64

When unstacking in a DataFrame, the level unstacked becomes the lowest level in the
result:

In [107]: df = DataFrame({'left': result, 'right': result + 5},
 : columns=pd.Index(['left', 'right'], name='side'))

In [108]: df
Out[108]:
side left right
state number
Ohio one 0 5

Reshaping and Pivoting | 189

Stack and Unstack
• stack: pivots from the columns into rows (may produce a Series!)
• unstack: pivots from rows into columns
• unstacking may add missing data
• stacking filters out missing data (unless dropna=False)
• can unstack at a different level by passing it (e.g. 0), defaults to innermost

level

41

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 680/490, Spring 2021

2 5 4 10
3 3 6 14
4 7 8 NaN

Reshaping and Pivoting
There are a number of fundamental operations for rearranging tabular data. These are
alternatingly referred to as reshape or pivot operations.

Reshaping with Hierarchical Indexing
Hierarchical indexing provides a consistent way to rearrange data in a DataFrame.
There are two primary actions:

• stack: this “rotates” or pivots from the columns in the data to the rows

• unstack: this pivots from the rows into the columns

I’ll illustrate these operations through a series of examples. Consider a small DataFrame
with string arrays as row and column indexes:

In [94]: data = DataFrame(np.arange(6).reshape((2, 3)),
 : index=pd.Index(['Ohio', 'Colorado'], name='state'),
 : columns=pd.Index(['one', 'two', 'three'], name='number'))

In [95]: data
Out[95]:
number one two three
state
Ohio 0 1 2
Colorado 3 4 5

Using the stack method on this data pivots the columns into the rows, producing a
Series:

In [96]: result = data.stack()

In [97]: result
Out[97]:
state number
Ohio one 0
 two 1
 three 2
Colorado one 3
 two 4
 three 5
dtype: int64

From a hierarchically-indexed Series, you can rearrange the data back into a DataFrame
with unstack:

In [98]: result.unstack()
Out[98]:
number one two three

188 | Chapter 7: Data Wrangling: Clean, Transform, Merge, Reshape

2 5 4 10
3 3 6 14
4 7 8 NaN

Reshaping and Pivoting
There are a number of fundamental operations for rearranging tabular data. These are
alternatingly referred to as reshape or pivot operations.

Reshaping with Hierarchical Indexing
Hierarchical indexing provides a consistent way to rearrange data in a DataFrame.
There are two primary actions:

• stack: this “rotates” or pivots from the columns in the data to the rows

• unstack: this pivots from the rows into the columns

I’ll illustrate these operations through a series of examples. Consider a small DataFrame
with string arrays as row and column indexes:

In [94]: data = DataFrame(np.arange(6).reshape((2, 3)),
 : index=pd.Index(['Ohio', 'Colorado'], name='state'),
 : columns=pd.Index(['one', 'two', 'three'], name='number'))

In [95]: data
Out[95]:
number one two three
state
Ohio 0 1 2
Colorado 3 4 5

Using the stack method on this data pivots the columns into the rows, producing a
Series:

In [96]: result = data.stack()

In [97]: result
Out[97]:
state number
Ohio one 0
 two 1
 three 2
Colorado one 3
 two 4
 three 5
dtype: int64

From a hierarchically-indexed Series, you can rearrange the data back into a DataFrame
with unstack:

In [98]: result.unstack()
Out[98]:
number one two three

188 | Chapter 7: Data Wrangling: Clean, Transform, Merge, Reshape

state
Ohio 0 1 2
Colorado 3 4 5

By default the innermost level is unstacked (same with stack). You can unstack a dif-
ferent level by passing a level number or name:

In [99]: result.unstack(0) In [100]: result.unstack('state')
Out[99]: Out[100]:
state Ohio Colorado state Ohio Colorado
number number
one 0 3 one 0 3
two 1 4 two 1 4
three 2 5 three 2 5

Unstacking might introduce missing data if all of the values in the level aren’t found in
each of the subgroups:

In [101]: s1 = Series([0, 1, 2, 3], index=['a', 'b', 'c', 'd'])

In [102]: s2 = Series([4, 5, 6], index=['c', 'd', 'e'])

In [103]: data2 = pd.concat([s1, s2], keys=['one', 'two'])

In [104]: data2.unstack()
Out[104]:
 a b c d e
one 0 1 2 3 NaN
two NaN NaN 4 5 6

Stacking filters out missing data by default, so the operation is easily invertible:

In [105]: data2.unstack().stack() In [106]: data2.unstack().stack(dropna=False)
Out[105]: Out[106]:
one a 0 one a 0
 b 1 b 1
 c 2 c 2
 d 3 d 3
two c 4 e NaN
 d 5 two a NaN
 e 6 b NaN
dtype: float64 c 4
 d 5
 e 6
 dtype: float64

When unstacking in a DataFrame, the level unstacked becomes the lowest level in the
result:

In [107]: df = DataFrame({'left': result, 'right': result + 5},
 : columns=pd.Index(['left', 'right'], name='side'))

In [108]: df
Out[108]:
side left right
state number
Ohio one 0 5

Reshaping and Pivoting | 189

stack

unstack

unstack(0)

T

Pivot
• Sometimes, we have data that is given in "long" format and we would like

"wide" format
• Long format: column names are data values…
• Wide format: more like spreadsheet format
• Example:

42

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 680/490, Spring 2021

 two 1 6
 three 2 7
Colorado one 3 8
 two 4 9
 three 5 10

In [109]: df.unstack('state') In [110]: df.unstack('state').stack('side')
Out[109]: Out[110]:
side left right state Ohio Colorado
state Ohio Colorado Ohio Colorado number side
number one left 0 3
one 0 3 5 8 right 5 8
two 1 4 6 9 two left 1 4
three 2 5 7 10 right 6 9
 three left 2 5
 right 7 10

Pivoting “long” to “wide” Format
A common way to store multiple time series in databases and CSV is in so-called long
or stacked format:

data = pd.read_csv('ch07/macrodata.csv')
periods = pd.PeriodIndex(year=data.year, quarter=data.quarter, name='date')
data = DataFrame(data.to_records(),
 columns=pd.Index(['realgdp', 'infl', 'unemp'], name='item'),
 index=periods.to_timestamp('D', 'end'))

ldata = data.stack().reset_index().rename(columns={0: 'value'})

In [116]: ldata[:10]
Out[116]:
 date item value
0 1959-03-31 realgdp 2710.349
1 1959-03-31 infl 0.000
2 1959-03-31 unemp 5.800
3 1959-06-30 realgdp 2778.801
4 1959-06-30 infl 2.340
5 1959-06-30 unemp 5.100
6 1959-09-30 realgdp 2775.488
7 1959-09-30 infl 2.740
8 1959-09-30 unemp 5.300
9 1959-12-31 realgdp 2785.204

Data is frequently stored this way in relational databases like MySQL as a fixed schema
(column names and data types) allows the number of distinct values in the item column
to increase or decrease as data is added or deleted in the table. In the above example
date and item would usually be the primary keys (in relational database parlance),
offering both relational integrity and easier joins and programmatic queries in many
cases. The downside, of course, is that the data may not be easy to work with in long
format; you might prefer to have a DataFrame containing one column per distinct

190 | Chapter 7: Data Wrangling: Clean, Transform, Merge, Reshape

item value indexed by timestamps in the date column. DataFrame’s pivot method per-
forms exactly this transformation:

In [117]: pivoted = ldata.pivot('date', 'item', 'value')

In [118]: pivoted.head()
Out[118]:
item infl realgdp unemp
date
1959-03-31 0.00 2710.349 5.8
1959-06-30 2.34 2778.801 5.1
1959-09-30 2.74 2775.488 5.3
1959-12-31 0.27 2785.204 5.6
1960-03-31 2.31 2847.699 5.2

The first two values passed are the columns to be used as the row and column index,
and finally an optional value column to fill the DataFrame. Suppose you had two value
columns that you wanted to reshape simultaneously:

In [119]: ldata['value2'] = np.random.randn(len(ldata))

In [120]: ldata[:10]
Out[120]:
 date item value value2
0 1959-03-31 realgdp 2710.349 1.669025
1 1959-03-31 infl 0.000 -0.438570
2 1959-03-31 unemp 5.800 -0.539741
3 1959-06-30 realgdp 2778.801 0.476985
4 1959-06-30 infl 2.340 3.248944
5 1959-06-30 unemp 5.100 -1.021228
6 1959-09-30 realgdp 2775.488 -0.577087
7 1959-09-30 infl 2.740 0.124121
8 1959-09-30 unemp 5.300 0.302614
9 1959-12-31 realgdp 2785.204 0.523772

By omitting the last argument, you obtain a DataFrame with hierarchical columns:

In [121]: pivoted = ldata.pivot('date', 'item')

In [122]: pivoted[:5]
Out[122]:
 value value2
item infl realgdp unemp infl realgdp unemp
date
1959-03-31 0.00 2710.349 5.8 -0.438570 1.669025 -0.539741
1959-06-30 2.34 2778.801 5.1 3.248944 0.476985 -1.021228
1959-09-30 2.74 2775.488 5.3 0.124121 -0.577087 0.302614
1959-12-31 0.27 2785.204 5.6 0.000940 0.523772 1.343810
1960-03-31 2.31 2847.699 5.2 -0.831154 -0.713544 -2.370232

In [123]: pivoted['value'][:5]
Out[123]:
item infl realgdp unemp
date
1959-03-31 0.00 2710.349 5.8
1959-06-30 2.34 2778.801 5.1

Reshaping and Pivoting | 191

.pivot('date', 'item', 'value')

43

Baby Names Example

D. Koop, CSCI 680/490, Spring 2021

