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Wrangler
• Data cleaning takes a lot of time and human effort 
• "Tedium is the message" 
• Repeating this process on multiple data sets is even worse! 
• Solution: 
- interactive interface (mixed-initiative) 
- transformation language with natural language "translations" 
- suggestions + "programming by demonstration"
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Transform Definition
Format φ(R, i, f) = {(a1, . . . , ai−1, ai+1, . . . , an, f(ai)) | (a1, . . . , an) ∈ R}
Add α(R, x) = {(a1, . . . , an, x) | (a1, . . . , an) ∈ R}
Drop π(R, i) = {(a1, . . . , ai−1, ai+1, . . . , an) | (a1, . . . , an) ∈ R}
Copy κ((a1, . . . , an), i) = {(a1, . . . , an, ai) | (a1, . . . , an) ∈ R}
Merge µ((a1, . . . , an), i, j, glue) = {(a1, . . . , ai−1, ai+1, . . . , aj−1, aj+1, . . . , an, ai ⊕ glue⊕ aj) | (a1, . . . , an) ∈ R}
Split ω((a1, . . . , an), i, splitter) = {(a1, . . . , ai−1, ai+1, . . . , an, left(ai, splitter), right(ai, splitter)) | (a1, . . . , an) ∈ R}
Divide δ((a1, . . . , an), i, pred) = {(a1, . . . , ai−1, ai+1, . . . , an, ai, null) | (a1, . . . , an) ∈ R ∧ pred(ai)} ∪

{(a1, . . . , ai−1, ai+1, . . . , an, null, ai) | (a1, . . . , an) ∈ R ∧ ¬pred(ai)}
Fold λ(R, i1, i2, . . . ik) = {(a1, . . . , ai1−1, ai1+1, . . . , ai2−1, ai2+1, . . . , aik−1, aik+1, . . . , an, ail) |

(a1, . . . , an) ∈ R ∧ 1 ≤ l ≤ k}
Select σ(R, pred) = {(a1, . . . , an) | (a1, . . . , an) ∈ R ∧ pred((a1, . . . , an))}

Notation: R is a relation with n columns. i, j are column indices and ai represents the value of a column in a row. x and glue are
values. f is a function mapping values to values. x ⊕ y concatenates x and y. splitter is a position in a string or a regular expression,
left(x, splitter) is the left part of x after splitting by splitter. pred is a function returning a boolean.

Table 1: Definitions of the various transforms. Unfold is defined in the full paper [22].
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Figure 6: Using Format, Merge and Split to clean name for-
mat differences
Value Translation
The Format transform applies a function to every value in
a column. We provide built-in functions for common oper-
ations like regular-expression based substitutions and arith-
metic operations, but also allow user defined functions. Col-
umn and table names can be demoted into column values us-
ing special characters in regular expressions; these are useful
in conjunction with the Fold transform described below.
One-to-one Mappings of Rows
One-to-one transforms are column operations that transform
individual rows. As illustrated in Figures 6 and 7, they can
be used to unify data collected from different sources.
TheMerge transform concatenates values in two columns,

optionally interposing a constant (the delimiter) in the mid-
dle, to form a single new column. Split splits a column into
two or more parts, and is used typically to parse a value into
its constituent parts. The split positions are often difficult
to specify if the data is not well structured. We allow split-
ting by specifying character positions, regular expressions,
or by interactively performing splits on example values (Sec-
tion 4.3).

Drop, Copy, and Add allow users to drop or copy a col-
umn, or add a new column. Occasionally, logically different
values (maybe from multiple sources) are bunched into the
same column, and we want to transform only some of them.
Divide conditionally divides a column, sending values into
one of two new columns based on a predicate.
Many-to-Many Mappings of Rows
Many-to-Many transforms help to tackle higher-order
schematic heterogeneities [18] where information is stored

partly in data values, and partly in the schema, as shown in
Figure 8. Fold ”flattens” tables by converting one row into
multiple rows, folding a set of columns together into one col-
umn and replicating the rest. Conversely Unfold ”unflattens”
tables; it takes two columns, collects rows that have the same
values for all the other columns, and unfolds the two chosen
columns. Values in one column are used as column names to
align the values in the other column. Figures 8 and 9 show
an example with student grades where the subject names are
demoted into the row via Format, grades are Folded together,
and then Split to separate the subject from the grade. Fold
and UnFold are adapted from the restructuring operators of
SchemaSQL [16], and are discussed in more detail in the
full paper [22].
Power of Transforms: As we prove in the full paper [22],
these transforms can be used to perform all one-to-many row
mappings of rows. Fold andUnfold can also be used to f latten
tables, converting them to a form where column and table
names are all literals and do not have data values. For a for-
mal definition of (un)flattening and an analysis of the power
of Fold and Unfold, see [16].

4.2 Interactive Application of Transforms
We want to apply the transforms on tuples incrementally, as
they stream in, so that the effects of transforms can be imme-
diately shown on tuples visible on the screen of the UI. It also
lets the system pipeline discrepancy detection on the results
of the transforms, thereby giving the interactivity advantages
described in the introduction.
Among the transforms discussed above, all the one-to-one

transforms as well as the Fold transform are functions on a
single row. Hence they are easy to apply incrementally.
However Unfold operates on a set of rows with match-

ing values. Since this could potentially involve scanning the
entire data, we do not allow Unfold to be specified graphi-
cally. For displaying records on the screen we can avoid this
problem by not showing a complete row but instead show-
ing more and more columns as distinct values are found, and
filling data values in these columns as the corresponding in-
put rows are read. Such progressive column addition in the
spreadsheet interface could confuse the user; hence we plan
to implement an abstraction interface where all newly cre-
ated columns are shown as one rolled up column. When

Potter's Wheel: Example
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Transform Definition
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mat differences
Value Translation
The Format transform applies a function to every value in
a column. We provide built-in functions for common oper-
ations like regular-expression based substitutions and arith-
metic operations, but also allow user defined functions. Col-
umn and table names can be demoted into column values us-
ing special characters in regular expressions; these are useful
in conjunction with the Fold transform described below.
One-to-one Mappings of Rows
One-to-one transforms are column operations that transform
individual rows. As illustrated in Figures 6 and 7, they can
be used to unify data collected from different sources.
TheMerge transform concatenates values in two columns,

optionally interposing a constant (the delimiter) in the mid-
dle, to form a single new column. Split splits a column into
two or more parts, and is used typically to parse a value into
its constituent parts. The split positions are often difficult
to specify if the data is not well structured. We allow split-
ting by specifying character positions, regular expressions,
or by interactively performing splits on example values (Sec-
tion 4.3).

Drop, Copy, and Add allow users to drop or copy a col-
umn, or add a new column. Occasionally, logically different
values (maybe from multiple sources) are bunched into the
same column, and we want to transform only some of them.
Divide conditionally divides a column, sending values into
one of two new columns based on a predicate.
Many-to-Many Mappings of Rows
Many-to-Many transforms help to tackle higher-order
schematic heterogeneities [18] where information is stored

partly in data values, and partly in the schema, as shown in
Figure 8. Fold ”flattens” tables by converting one row into
multiple rows, folding a set of columns together into one col-
umn and replicating the rest. Conversely Unfold ”unflattens”
tables; it takes two columns, collects rows that have the same
values for all the other columns, and unfolds the two chosen
columns. Values in one column are used as column names to
align the values in the other column. Figures 8 and 9 show
an example with student grades where the subject names are
demoted into the row via Format, grades are Folded together,
and then Split to separate the subject from the grade. Fold
and UnFold are adapted from the restructuring operators of
SchemaSQL [16], and are discussed in more detail in the
full paper [22].
Power of Transforms: As we prove in the full paper [22],
these transforms can be used to perform all one-to-many row
mappings of rows. Fold andUnfold can also be used to f latten
tables, converting them to a form where column and table
names are all literals and do not have data values. For a for-
mal definition of (un)flattening and an analysis of the power
of Fold and Unfold, see [16].

4.2 Interactive Application of Transforms
We want to apply the transforms on tuples incrementally, as
they stream in, so that the effects of transforms can be imme-
diately shown on tuples visible on the screen of the UI. It also
lets the system pipeline discrepancy detection on the results
of the transforms, thereby giving the interactivity advantages
described in the introduction.
Among the transforms discussed above, all the one-to-one

transforms as well as the Fold transform are functions on a
single row. Hence they are easy to apply incrementally.
However Unfold operates on a set of rows with match-

ing values. Since this could potentially involve scanning the
entire data, we do not allow Unfold to be specified graphi-
cally. For displaying records on the screen we can avoid this
problem by not showing a complete row but instead show-
ing more and more columns as distinct values are found, and
filling data values in these columns as the corresponding in-
put rows are read. Such progressive column addition in the
spreadsheet interface could confuse the user; hence we plan
to implement an abstraction interface where all newly cre-
ated columns are shown as one rolled up column. When
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Interface
• Automated Transformation Suggestions 
• Editable Natural Language Explanations 

• Visual Transformation Previews 
• Transformation History
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intended to enhance analysts’ ability to review and refine
transformation steps. Textual annotations enable communi-
cation of analyst intent. Wrangler also couples verification
(run in the background as data is transformed) with visual-
ization to help users discover data quality issues.

Basic Interactions
The Wrangler interface supports six basic interactions within
the data table. Users can select rows, select columns, click
bars in the data quality meter, select text within a cell, edit
data values within the table (for mass editing [14, 19]), and
assign column names, data types or semantic roles. Users
can also choose transforms from the menu or refine sugges-
tions by editing transform descriptions as described below.

Automated Transformation Suggestions
As a user interacts with data, Wrangler generates a list of
suggested transforms. In some cases the set of possible sug-
gestions is large (in the hundreds), but we wish to show only
a relevant handful to avoid overload. Instead of enumerat-
ing the entire suggestion space, users can prune and reorder
the space in three ways. First, users can provide more exam-
ples to disambiguate input to the inference engine. Providing
examples is especially effective for text selections needed
for splitting, extraction, and reformatting; two or three well-
chosen examples typically suffice. Second, users can filter
the space of transforms by selecting an operator from the
transform menu. Third, users can edit a transform by alter-
ing the parameters of a transform to a desired state.

Wrangler does not immediately execute a selected sugges-
tion. Instead, Wrangler makes it the current working trans-
form. The user can edit this transform directly; as a user edits
parameters, the suggestion space updates to reflect these ed-
its. Also, a user can instead interact with the table to generate
new suggestions that use the working transform as context.

Natural Language Descriptions
To aid apprehension of suggested transforms, Wrangler gen-
erates short natural language descriptions of the transform
type and parameters. These descriptions are editable, with
parameters presented as bold hyperlinks (Fig. 8). Clicking
a link reveals an in-place editor appropriate to the parameter
(Fig. 8b). Enumerable variables (such as the direction of a
fill) are mapped to drop-down menus while free-form text
parameters are mapped to text editors with autocomplete.

We designed these descriptions to be concise; default param-
eters that are not critical to understanding may be omitted.
For example, the unless between parameter for split opera-
tions indicates regions of text to ignore while splitting. In
most cases, this parameter is left undefined and including it
would bloat the description. To edit hidden parameters, users
can click the expansion arrow to the left of the description,
revealing an editor with entries for all possible parameters.

We also sought to make parameters within descriptions read-
able by non-experts. For instance, we translate regular ex-
pressions into natural language via pattern substitution (e.g.,
(\d+) to ‘number’). This translation can make some descrip-
tions less concise but increases readability. Translation is

Figure 8. Editable Natural Language Descriptions. (a) An example of

an editable description; highlighted text indicates editable parameters.

(b) Clicking on a parameter reveals an in-place editor. (c) After editing,

the description may update to include new parameters. In this case, a

new window size parameter is displayed for the moving average.

only performed with regular expressions generated by the
Wrangler inference engine. If a user types in a custom ex-
pression, Wrangler will reflect their input.

Visual Transformation Previews
Wrangler uses visual previews to enable users to quickly
evaluate the effect of a transform. For most transforms, Wran-
gler displays these previews in the source data, and not as
a separate visualization (e.g., side-by-side before and after
views). In-place previews provide a visual economy that
serves a number of goals. First, displaying two versions of
a table inherently forces both versions to be small, which
is particularly frustrating when the differences are sparse.
Second, presenting in-place modifications draws user atten-
tion to the effect of the transformation in its original context,
without requiring a shift in focus across multiple tables. As
we discuss next, in-place previews better afford direct ma-
nipulation for users to revise the current transform.

Wrangler maps transforms to at least one of five preview
classes: selection, deletion, update, column and table. In
defining these mappings, we attempted to convey a trans-
form’s effect with minimum displacement of the original
data. This stability allows users to continue interacting with
the original data, e.g., to provide new selection examples.

Selection previews highlight relevant regions of text in all
affected cells (Fig. 3). Deletion previews color to-be-deleted
cells in red (Fig. 2). Update previews overwrite values in a
column and indicate differences with yellow highlights (Fig.
4). Column previews display new derived columns, e.g., as
results from an extract operation (Fig. 3). We show a side-
by-side display of versions when previewing fold and unfold
transforms. These alter the structure of the table to such an
extent that the best preview is to show another table (Fig.
6, 9). These table previews use color highlights to match
input data to their new locations in the output table. Some
transforms map to multiple classes; e.g., extract transforms
use both selection and column previews.

When possible, previews also indicate where the user can
modify the transform through either direct manipulation or
description refinement. Highlighting selected text or cells
works well for certain transformations. For example, by
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Figure 9. Visual preview of a fold operation. For transforms that rear-

range table layout, Wrangler previews the output table and uses color

highlights to show the correspondence of values across table states.

highlighting the text selected by a regular expression in each
cell, users can determine which examples they need to fix.
For reshape transforms, Wrangler highlights the input data
in the same color as the corresponding output in the sec-
ondary table. For instance, in a fold operation, data values
that will become keys are colored to match the keys in the
output table (Fig. 9). Wrangler also highlights the param-
eters in the transform description using the same colors as
those generated in previews (Fig. 3–6). The consistent use
of colors allows users to associate clauses in a description
with their effects in the table.

Transformation Histories and Export
As successive transforms are applied, Wrangler adds their
descriptions to an interactive transformation history viewer.
Users can edit individual transform descriptions and selec-
tively enable and disable prior transforms. Upon changes,
Wrangler runs the edited script and updates the data table.
Toggling or editing a transform may result in downstream er-
rors; Wrangler highlights broken transforms in red and pro-
vides an error message to aid debugging.

Wrangler scripts also support lightweight text annotations.
Analysts can use annotations to document their rationale for
a particular transform and may help future users better un-
derstand data provenance. To annotate a transform, users can
click the edit icon next to the desired transform and write
their annotation in the resulting text editor. Users can view
an annotation by mousing over the same edit icon. These
annotations appear as comments in code-generated scripts.
Users can export both generated scripts and transformed data;
clicking the Export button in the transform history invokes
export options. Analysts can later run saved or exported
scripts on new data sources, modifying the script as needed.

TYPES, ROLES, AND VERIFICATION
It is often difficult to discover data quality issues and there-
fore difficult to address them by constructing the appropri-
ate transform. Wrangler aids discovery of data quality issues
through the use of data types and semantic roles.

As users transform data, Wrangler attempts to infer the data
type and semantic role for each column. Wrangler applies
validation functions to a sample of a column’s data to infer

these types, assigning the type that validates for over half of
the non-missing values. When multiple types satisfy this cri-
teria, Wrangler assigns the more specific one (e.g., integer is
more specific than double). Wrangler infers semantic roles
analogously. An icon in the column header indicates the se-
mantic role of the column, or the underlying data type if no
role has been assigned. Clicking the icon reveals a menu
with which users can manually assign a type or role.

Above each column is a data quality meter: a divided bar
chart that indicates the proportion of values in the column
that verify completely. Values that parse successfully are in-
dicated in green; values that match the type but do not match
the role (e.g., a 6 digit zip code) are shown in yellow; those
that do not match the type (e.g., ‘One’ does not parse as an
integer) are shown in red; and missing data are shown in
gray. Clicking a bar generates suggested transforms for that
category. For instance, clicking the missing values bar will
suggest transforms to fill in missing values or delete those
rows. Clicking the fails role bar will suggest transforms such
as a similarity join on misspelled country names.

THE WRANGLER INFERENCE ENGINE
We now present the design of the Wrangler inference engine,
which is responsible for generating a ranked list of suggested
transforms. Inputs to the engine consist of user interactions;
the current working transform; data descriptions such as col-
umn data types, semantic roles, and summary statistics; and
a corpus of historical usage statistics. Transform sugges-
tion proceeds in three phases: inferring transform parame-
ters from user interactions, generating candidate transforms
from inferred parameters, and finally ranking the results.

Usage Corpus and Transform Equivalence
To generate and rank transforms, Wrangler’s inference en-
gine relies on a corpus of usage statistics. The corpus con-
sists of frequency counts of transform descriptors and initi-
ating interactions. We built our initial corpus by wrangling
our collection of gathered data sets. The corpus updates over
time as more analysts use Wrangler.

For any given transform, we are unlikely to find an exact
match in the corpus. For instance, an analyst may perform
a fold operation over a combination of columns and rows
that does not appear in the corpus. In order to get useful
transform frequencies, we define a relaxed matching routine:
two transforms are considered equivalent in our corpus if (a)
they have an identical transform type (e.g., extract or fold)
and (b) they have equivalent parameters as defined below.

Wrangler transforms accept four basic types of parameters:
row, column or text selections and enumerables. We treat
two row selections as equivalent if they both (a) contain fil-
tering conditions (either index- or predicate-based) or (b)
match all rows in a table. Column selections are equivalent
if they refer to columns with the same data type or semantic
role. We based this rule on the observation that transforms
that operate on identical data types are more likely to be
similar. Text selections are equivalent if both (a) are index-
based selections or (b) contain regular expressions. We con-



Figure 1: Predictive Interaction for text pattern specification. The left image shows the interface after the user has highlighted the

string mobile in line 34. The right shows the interface after one more gesture: highlighting the string dynamic in line 31. Note

that the top-ranked suggested transform changes after the second highlight, and hence so do the Source and Preview contents.

Figure 2: A ranked list of regular expressions.

a visual rendering of their data in a familiar tabular grid. They can
guide the system by highlighting substrings in the table, which are
added to an example set. Based on this set, an inference algorithm
produces a ranked list of suggested text patterns that model the set
well. For the top-ranked pattern, the table renderer highlights any
matches found, and shows how those matches will be used.

Figure 1 shows the states of the interface after the user makes each
of two guiding interactions: first, highlighting the string mobile
in row 34, and then highlighting the additional string dynamic in
row 31. The user interface shows the highlighted patterns in the
source (blue), and the outcome of a text extraction transform in a
preview column (tan). The user can choose to view the outputs of
other suggested transforms by clicking on them in the top panel;
they can also edit the patterns directly in a Transform Editor. When
the user decides on the best pattern, they can click the “plus” (+) to
the right of the transform to add it to a DSL script.

In our initial prototype the suggested transforms looked different
than what is shown in Figure 1. Originally, users would see a
ranked list of REs in a traditional syntax, as shown in Figure 2
(corresponding to the ranked list of suggested transforms on the
right of Figure 1). In user studies we found that even experienced
programmers had difficulty deciding quickly and accurately among
alternative REs. It seems that RE syntax is better suited to writing
patterns than to reading them. Hence we changed our DSL to a new
pattern language (compilable to REs) that is better suited to rapid
disambiguation among options.

In essence, we evolved our DSL design to simplify the way that
users can interact with automated predictions. Although simple, this
example illustrates some of the subtleties involved in co-designing
Predictive Interaction across the three streams of traditional research
mentioned above. The visualization has to be informative and the
affordances for user guidance clear; the predictive model has to
receive information-rich guidance from the interactions, and do a
good job of surfacing probable but diverse choices; the DSL has
to be expressive yet sufficiently small for tractable inference and
simple user interaction.

In the remainder of the paper, we provide a general framework for
Predictive Interaction, putting it in context with previous approaches
to visual languages for managing data, and highlighting research
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Data Results
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Figure 3: Lifts. A traditional lift (a): given a map f : X !
Y , and a map g : Z ! Y , the lifting problem is to find a

map h : X ! Z such that g � h = f . Lifting in the context

of visual specifications (b): rather than write expressions in a

textual DSL, we define a lift to a domain of data visualization

and interactions, such that the interactions in that domain lead

to final outputs: compilation � interaction � visualization = DSL
programming.
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Qualijied  retrieval. Print  the  names of the  employees  who  work 
in the toy department  and  earn  more  than $10000. This is shown 
in Figure 11. Note  the specification of the  condition  “more  than 
$lQl&)O.” One has  the  option  of using any of the following in- 
equality  operators: #, >, >=, <, <=. If no inequality operator is 
used’  as  a prefix, equality is implied. The symbol # can  be  re- 
placed by 1 or I=. 

Partially  underlined  qualijied  retrieval. Print  the  green items that 
start with the  letter I .  This is found in Figure 12. The I in IKE is 
not  underlined,  and it is a  constant.  Therefore,  the  system  prints 
all the  green  items  that  start with the  letter I .  The  user can  par- 
tially underline at  the beginning, middle or end of a word, a sen- 
tence,  or a  paragraph, as in the  example, XPAY, which means 
find a word, a sentence  or a paragraph such that  somewhere in 
that  sentence  or  paragraph  there  exist  the  letters PA. Since an 
example  element  can  be blank, then it word, a sentence,  or a 
paragraph  that  starts  or  ends with the  letters PA also qualifies. 

The partial underline  feature is useful if an  entry is a  sentence  or 
text  and  the  user wishes to  search to find all examples  that  con- 
tain a special word or  root.  If,  for  example,  the  query is to find 
entries with the word Texas,  the formulation’ of this  query is P. x 
TEXAS Y. 

- 
- 

Qualijied  retrieval using links. Print all the  green  items sold by 
the  toy  department.  This is shown in Figure 13.  In this  case,  the 
user  displays  both  the TYPE table  and  the SALES table by gener- 
3ting two blank skeletons on the  screen  and filling them in with 
beadings and with required entries. The significance of the  ex- 
ample  element is best  illustrated in this  query. Here,  the same 
example  element must be used in both  tables, indicating that if 
an  example item such as N U T  is green,  that  same item is also 
sold by  the toy department.  Only if these  conditions are met 
simultaneously does  the item qualify as a  solution. The manual 
equivalent is to  scan  the TYPE table  to find a green item and  then 
scan the SALES table  to  check  whether  that  same item is also 
sold by the toy department.  Since  there is no specification of 
how the  query is to  be  processed or where  the  scan is to start, 
the formulation of this  query is neutral  and  symmetric. 

Figure 13 Qualified  retrieval using links ‘“7-1 
P . E T  GREEN - 

Once  the  concept of a linking example  element is understood, 
the  user can link any  number of tables and  any  number of rows 
within a single table, as in the following examples. 

ZLOOF IBM SYST J 

Figure 4: Query By Example: qualified retrieval using

links [32].

challenges and opportunities for the community.

2. LIFTING TO VISUAL LANGUAGES

To set the stage for our discussion, we re-examine the more
traditional integration of two of our three themes: visualization
and data-centric languages. There are a number of influential prior
efforts along these lines, including Query-By-Example (QBE) [32],
Microsoft Access, and Tableau. These interfaces take a textual data
manipulation language (e.g., relational calculus) and “lift” it into
an isomorphic higher-level visual language intended to be more
natural for users. Given a visual specification of a query, a system
can translate (“ground”) to the domain of the textual language for
processing. Lifting is a basic idea from category theory, sometimes
used in the design of functional programming languages (Figure 3).

Lifting to a visual domain has proven to be useful for the specifi-
cation of standard select-project-join-aggregate queries. As illustra-
tion, we review two influential systems: QBE and Tableau.

Example 1: QBE. The main idea in QBE is to lift the database

Improvements in Prediction

6
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Update suggestions when given more information



Differences with Extract-Transform-Load (ETL)
• ETL: 
- Who: IT Professionals 
- Why: Create static data pipeline 
- What: Structured data 
- Where: Data centers 

• "Modern Data Preparation": 
- Who: Analysts 
- Why: Solve problems by designing recipes to use data 
- What: Original, custom data blended with other data 
- Where: Cloud, desktop

7
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Handling Missing Data
• Filtering out missing data: 
- Can choose rows or columns 

• Filling in missing data: 
- with a default value 
- with an interpolated value 

• In pandas:

8
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In [10]: string_data = pd.Series(['aardvark', 'artichoke', np.nan, 'avocado'])

In [11]: string_data
Out[11]: 
0     aardvark
1    artichoke
2          NaN
3      avocado
dtype: object

In [12]: string_data.isnull()
Out[12]: 
0    False
1    False
2     True
3    False
dtype: bool

In pandas, we’ve adopted a convention used in the R programming language by refer‐
ring to missing data as NA, which stands for not available. In statistics applications, 
NA data may either be data that does not exist or that exists but was not observed
(through problems with data collection, for example). When cleaning up data for
analysis, it is often important to do analysis on the missing data itself to identify data
collection problems or potential biases in the data caused by missing data.

The built-in Python None value is also treated as NA in object arrays:
In [13]: string_data[0] = None

In [14]: string_data.isnull()
Out[14]: 
0     True
1    False
2     True
3    False
dtype: bool

There is work ongoing in the pandas project to improve the internal details of how
missing data is handled, but the user API functions, like pandas.isnull, abstract 
away many of the annoying details. See Table 7-1 for a list of some functions related
to missing data handling.

Table 7-1. NA handling methods
Argument Description
dropna Filter axis labels based on whether values for each label have missing data, with varying thresholds for how

much missing data to tolerate.
fillna Fill in missing data with some value or using an interpolation method such as 'ffill' or 'bfill'.
isnull Return boolean values indicating which values are missing/NA.
notnull Negation of isnull.
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Filtering and Cleaning Data
• Find duplicates 

- duplicated: returns boolean Series indicating whether row is a duplicate—
first instance is not marked as a duplicate 

• Remove duplicates: 
- drop_duplicates: drops all rows where duplicated is True 
- keep: which value to keep (first or last) 

• Can pass specific columns to check for duplicates, e.g. check only key 
column

9D. Koop, CSCI 680/490, Spring 2021



Replacing Values
• fillna is a special case 
• What if -999 in our dataset was identified as a missing value? 

• Can pass list of values or dictionary to change different values

10D. Koop, CSCI 680/490, Spring 2021

7    honey ham     5.0     pig
8     nova lox     6.0  salmon

We could also have passed a function that does all the work:
In [59]: data['food'].map(lambda x: meat_to_animal[x.lower()])
Out[59]: 
0       pig
1       pig
2       pig
3       cow
4       cow
5       pig
6       cow
7       pig
8    salmon
Name: food, dtype: object

Using map is a convenient way to perform element-wise transformations and other
data cleaning–related operations.

Replacing Values
Filling in missing data with the fillna method is a special case of more general value
replacement. As you’ve already seen, map can be used to modify a subset of values in
an object but replace provides a simpler and more flexible way to do so. Let’s con‐
sider this Series:

In [60]: data = pd.Series([1., -999., 2., -999., -1000., 3.])

In [61]: data
Out[61]: 
0       1.0
1    -999.0
2       2.0
3    -999.0
4   -1000.0
5       3.0
dtype: float64

The -999 values might be sentinel values for missing data. To replace these with NA
values that pandas understands, we can use replace, producing a new Series (unless
you pass inplace=True):

In [62]: data.replace(-999, np.nan)
Out[62]: 
0       1.0
1       NaN
2       2.0
3       NaN
4   -1000.0
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5       3.0
dtype: float64

If you want to replace multiple values at once, you instead pass a list and then the
substitute value:

In [63]: data.replace([-999, -1000], np.nan)
Out[63]: 
0    1.0
1    NaN
2    2.0
3    NaN
4    NaN
5    3.0
dtype: float64

To use a different replacement for each value, pass a list of substitutes:
In [64]: data.replace([-999, -1000], [np.nan, 0])
Out[64]: 
0    1.0
1    NaN
2    2.0
3    NaN
4    0.0
5    3.0
dtype: float64

The argument passed can also be a dict:
In [65]: data.replace({-999: np.nan, -1000: 0})
Out[65]: 
0    1.0
1    NaN
2    2.0
3    NaN
4    0.0
5    3.0
dtype: float64

The data.replace method is distinct from data.str.replace,
which performs string substitution element-wise. We look at these
string methods on Series later in the chapter.

Renaming Axis Indexes
Like values in a Series, axis labels can be similarly transformed by a function or map‐
ping of some form to produce new, differently labeled objects. You can also modify
the axes in-place without creating a new data structure. Here’s a simple example:
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String Transformation
• One of the reasons for Python's popularity is string/text processing 
• split(<delimiter>): break a string into pieces: 

- s = "12,13, 14" 
slist = s.split(',') # ["12", "13", " 14"] 

• <delimiter>.join([<str>]): join several strings by a delimiter 
- ":".join(slist) # "12:13: 14" 

• strip(): remove leading and trailing whitespace 
- [p.strip() for p in slist] # ["12", "13", "14"]

11D. Koop, CSCI 680/490, Spring 2021



String Transformation
• replace(<from>,<to>): change substrings to another substring 
• upper()/lower(): casing 
• index(<str>): find where a substring first occurs (Error if not found) 
• find(<str>): same as index but -1 if not found 
• startswith()/endswith(): boolean checks for string occurrence

12D. Koop, CSCI 680/490, Spring 2021



Assignment 2
• Due Friday 
• Same data as A1, different version of the dataset 
• Dealing with the raw data now 
• Same questions as A1, but use pandas 
• Potential answers sent via email 
• CS680 students + some questions about problems with the data

13D. Koop, CSCI 680/490, Spring 2021

http://faculty.cs.niu.edu/~dakoop/cs680-2021sp/assignment2.html


Test 1
• Wednesday, February 17, 3:30pm-4:45pm Online (Blackboard) 
• Includes much of the python content we have covered plus data, data 

cleaning, data transformation topics (content through today's lecture) 
• Format: 
- Multiple Choice 
- Free Response (see web page for examples) 
- CS680 students will have additional questions 

• Coding questions will focus on broad syntax not your memorization of every 
pandas function 

• Concept questions can include discussions of the research papers

14D. Koop, CSCI 503, Spring 2021
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Regular Expressions in Python
• import re 

• re.search(<pattern>, <str_to_check>) 

- Returns None if no match, information about the match otherwise 
• Capturing information about what is in a string → parentheses 
• (\d+)/\d+/\d+ will capture information about the month 
• match = re.search('(\d+)/\d+/\d+','12/31/2016') 
if match: 
    match.group() # 12 

• re.findall(<pattern>, <str_to_check>) 

- Finds all matches in the string, search only finds the first match 
• Can pass in flags to alter methods: e.g. re.IGNORECASE

15D. Koop, CSCI 680/490, Spring 2021



Pandas String Methods
• Any column or series can have the string methods (e.g. replace, split) applied 

to the entire series 
• Fast (vectorized) on whole columns or datasets 
• use .str.<method_name> 
• .str is important! 

- data = pd.Series({'Dave': 'dave@google.com', 
                  'Steve': 'steve@gmail.com', 
                  'Rob': 'rob@gmail.com', 
                  'Wes': np.nan}) 
data.str.contains('gmail') 
data.str.split('@').str[1] 
data.str[-3:]

16D. Koop, CSCI 680/490, Spring 2021

mailto:dave@google.com
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[('dave', 'google', 'com'),
 ('steve', 'gmail', 'com'),
 ('rob', 'gmail', 'com'),
 ('ryan', 'yahoo', 'com')]

sub also has access to groups in each match using special symbols like \1 and \2. The
symbol \1 corresponds to the first matched group, \2 corresponds to the second, and
so forth:

In [166]: print(regex.sub(r'Username: \1, Domain: \2, Suffix: \3', text))
Dave Username: dave, Domain: google, Suffix: com
Steve Username: steve, Domain: gmail, Suffix: com
Rob Username: rob, Domain: gmail, Suffix: com
Ryan Username: ryan, Domain: yahoo, Suffix: com

There is much more to regular expressions in Python, most of which is outside the
book’s scope. Table 7-4 provides a brief summary.

Table 7-4. Regular expression methods
Argument Description
findall Return all non-overlapping matching patterns in a string as a list
finditer Like findall, but returns an iterator
match Match pattern at start of string and optionally segment pattern components into groups; if the pattern

matches, returns a match object, and otherwise None
search Scan string for match to pattern; returning a match object if so; unlike match, the match can be anywhere in

the string as opposed to only at the beginning
split Break string into pieces at each occurrence of pattern
sub, subn Replace all (sub) or !rst n occurrences (subn) of pattern in string with replacement expression; use symbols

\1, \2, ... to refer to match group elements in the replacement string

Vectorized String Functions in pandas
Cleaning up a messy dataset for analysis often requires a lot of string munging and
regularization. To complicate matters, a column containing strings will sometimes
have missing data:

In [167]: data = {'Dave': 'dave@google.com', 'Steve': 'steve@gmail.com',
   .....:         'Rob': 'rob@gmail.com', 'Wes': np.nan}

In [168]: data = pd.Series(data)

In [169]: data
Out[169]: 
Dave     dave@google.com
Rob        rob@gmail.com
Steve    steve@gmail.com
Wes                  NaN
dtype: object
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Pandas String Methods with Regexs
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In [170]: data.isnull()
Out[170]: 
Dave     False
Rob      False
Steve    False
Wes       True
dtype: bool

You can apply string and regular expression methods can be applied (passing a
lambda or other function) to each value using data.map, but it will fail on the NA
(null) values. To cope with this, Series has array-oriented methods for string opera‐
tions that skip NA values. These are accessed through Series’s str attribute; for exam‐
ple, we could check whether each email address has 'gmail' in it with str.contains:

In [171]: data.str.contains('gmail')
Out[171]: 
Dave     False
Rob       True
Steve     True
Wes        NaN
dtype: object

Regular expressions can be used, too, along with any re options like IGNORECASE:
In [172]: pattern
Out[172]: '([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\\.([A-Z]{2,4})'

In [173]: data.str.findall(pattern, flags=re.IGNORECASE)
Out[173]: 
Dave     [(dave, google, com)]
Rob        [(rob, gmail, com)]
Steve    [(steve, gmail, com)]
Wes                        NaN
dtype: object

There are a couple of ways to do vectorized element retrieval. Either use str.get or
index into the str attribute:

In [174]: matches = data.str.match(pattern, flags=re.IGNORECASE)

In [175]: matches
Out[175]: 
Dave     True
Rob      True
Steve    True
Wes       NaN
dtype: object

To access elements in the embedded lists, we can pass an index to either of these
functions:

In [176]: matches.str.get(1)
Out[176]: 
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Foofah Discussion
• What is the paper's contribution?
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Foofah Discussion
• What is the paper's contribution?
• What questions do you have about what is going on?
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Foofah Discussion
• What is the paper's contribution?
• What questions do you have about what is going on?
• What does the technique do well/have issues with?
• How does its approach compare with Trifacta?
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DataWrangler

ExportImport

Split data repeatedly on
newline into rows

Split split repeatedly on
","

Promote row 0 to header

Delete rows 0,1

Fill row 0 by copying
values from the left

Transform Script

Text
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Cut
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Table

Fold
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split split1 split2 split3 split4

0 2004 2004 2004 2003
1 STATE Participation Rate 2004 Mean SAT I Verbal Mean SAT I Math Participation Rate 2003
2 New York 87 497 510 82
3 Connecticut 85 515 515 84
4 Massachusetts 85 518 523 82
5 New Jersey 83 501 514 85
6 New Hampshire 80 522 521 75
7 D.C. 77 489 476 77
8 Maine 76 505 501 70
9 Pennsylvania 74 501 502 73

10 Delaware 73 500 499 73
11 Georgia 73 494 493 66

split fold fold1 value

0 New York 2004 Participation Rate 2004
1 New York 2004 Mean SAT I Verbal
2 New York 2004 Mean SAT I Math
3 New York 2003 Participation Rate 2003
4 New York 2003 Mean SAT I Verbal
5 New York 2003 Mean SAT I Math
6 Connecticut 2004 Participation Rate 2004
7 Connecticut 2004 Mean SAT I Verbal
8 Connecticut 2004 Mean SAT I Math
9 Connecticut 2003 Participation Rate 2003

10 Connecticut 2003 Mean SAT I Verbal
11 Connecticut 2003 Mean SAT I Math
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Figure 9. Visual preview of a fold operation. For transforms that rear-

range table layout, Wrangler previews the output table and uses color

highlights to show the correspondence of values across table states.

highlighting the text selected by a regular expression in each
cell, users can determine which examples they need to fix.
For reshape transforms, Wrangler highlights the input data
in the same color as the corresponding output in the sec-
ondary table. For instance, in a fold operation, data values
that will become keys are colored to match the keys in the
output table (Fig. 9). Wrangler also highlights the param-
eters in the transform description using the same colors as
those generated in previews (Fig. 3–6). The consistent use
of colors allows users to associate clauses in a description
with their effects in the table.

Transformation Histories and Export
As successive transforms are applied, Wrangler adds their
descriptions to an interactive transformation history viewer.
Users can edit individual transform descriptions and selec-
tively enable and disable prior transforms. Upon changes,
Wrangler runs the edited script and updates the data table.
Toggling or editing a transform may result in downstream er-
rors; Wrangler highlights broken transforms in red and pro-
vides an error message to aid debugging.

Wrangler scripts also support lightweight text annotations.
Analysts can use annotations to document their rationale for
a particular transform and may help future users better un-
derstand data provenance. To annotate a transform, users can
click the edit icon next to the desired transform and write
their annotation in the resulting text editor. Users can view
an annotation by mousing over the same edit icon. These
annotations appear as comments in code-generated scripts.
Users can export both generated scripts and transformed data;
clicking the Export button in the transform history invokes
export options. Analysts can later run saved or exported
scripts on new data sources, modifying the script as needed.

TYPES, ROLES, AND VERIFICATION
It is often difficult to discover data quality issues and there-
fore difficult to address them by constructing the appropri-
ate transform. Wrangler aids discovery of data quality issues
through the use of data types and semantic roles.

As users transform data, Wrangler attempts to infer the data
type and semantic role for each column. Wrangler applies
validation functions to a sample of a column’s data to infer

these types, assigning the type that validates for over half of
the non-missing values. When multiple types satisfy this cri-
teria, Wrangler assigns the more specific one (e.g., integer is
more specific than double). Wrangler infers semantic roles
analogously. An icon in the column header indicates the se-
mantic role of the column, or the underlying data type if no
role has been assigned. Clicking the icon reveals a menu
with which users can manually assign a type or role.

Above each column is a data quality meter: a divided bar
chart that indicates the proportion of values in the column
that verify completely. Values that parse successfully are in-
dicated in green; values that match the type but do not match
the role (e.g., a 6 digit zip code) are shown in yellow; those
that do not match the type (e.g., ‘One’ does not parse as an
integer) are shown in red; and missing data are shown in
gray. Clicking a bar generates suggested transforms for that
category. For instance, clicking the missing values bar will
suggest transforms to fill in missing values or delete those
rows. Clicking the fails role bar will suggest transforms such
as a similarity join on misspelled country names.

THE WRANGLER INFERENCE ENGINE
We now present the design of the Wrangler inference engine,
which is responsible for generating a ranked list of suggested
transforms. Inputs to the engine consist of user interactions;
the current working transform; data descriptions such as col-
umn data types, semantic roles, and summary statistics; and
a corpus of historical usage statistics. Transform sugges-
tion proceeds in three phases: inferring transform parame-
ters from user interactions, generating candidate transforms
from inferred parameters, and finally ranking the results.

Usage Corpus and Transform Equivalence
To generate and rank transforms, Wrangler’s inference en-
gine relies on a corpus of usage statistics. The corpus con-
sists of frequency counts of transform descriptors and initi-
ating interactions. We built our initial corpus by wrangling
our collection of gathered data sets. The corpus updates over
time as more analysts use Wrangler.

For any given transform, we are unlikely to find an exact
match in the corpus. For instance, an analyst may perform
a fold operation over a combination of columns and rows
that does not appear in the corpus. In order to get useful
transform frequencies, we define a relaxed matching routine:
two transforms are considered equivalent in our corpus if (a)
they have an identical transform type (e.g., extract or fold)
and (b) they have equivalent parameters as defined below.

Wrangler transforms accept four basic types of parameters:
row, column or text selections and enumerables. We treat
two row selections as equivalent if they both (a) contain fil-
tering conditions (either index- or predicate-based) or (b)
match all rows in a table. Column selections are equivalent
if they refer to columns with the same data type or semantic
role. We based this rule on the observation that transforms
that operate on identical data types are more likely to be
similar. Text selections are equivalent if both (a) are index-
based selections or (b) contain regular expressions. We con-

Starting Point: Raw Data
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Goal
• Focus on data transformation 
• Data transformation tools suffer usability issues: 
- High Skill: familiarity with operations and the effect or their order 
- High Effort: user effort increases as the program becomes longer 

• Repetitive and tedious 
• Goal: minimize a user's effort and reduce the required background 

knowledge for data transformation tasks 

22D. Koop, CSCI 680/490, Spring 2021



Getting Lost in Transformations
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Foofah: Transforming Data By Example
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ABSTRACT
Data transformation is a critical first step in modern data
analysis: before any analysis can be done, data from a va-
riety of sources must be wrangled into a uniform format
that is amenable to the intended analysis and analytical
software package. This data transformation task is tedious,
time-consuming, and often requires programming skills be-
yond the expertise of data analysts. In this paper, we develop
a technique to synthesize data transformation programs by
example, reducing this burden by allowing the analyst to de-
scribe the transformation with a small input-output example
pair, without being concerned with the transformation steps
required to get there. We implemented our technique in a
system, Foofah, that e�ciently searches the space of pos-
sible data transformation operations to generate a program
that will perform the desired transformation. We experimen-
tally show that data transformation programs can be created
quickly with Foofah for a wide variety of cases, with 60%
less user e↵ort than the well-known Wrangler system.

Keywords
Data Transformation; Program Synthesis; Programming By
Example; A* algorithm; Heuristic

1. INTRODUCTION
The many fields that depend on data for decision making

have at least one thing in common: raw data is often in a non-
relational or poorly structured form, possibly with extraneous
information, and cannot be directly used by a downstream
information system, like a database or visualization system.
Figure 1 from [16] is a good example of such raw data.
In modern data analytics, data transformation (or data
wrangling) is usually a crucial first step that reorganizes
raw data into a more desirable format that can be easily
consumed by other systems. Figure 2 showcases a relational
form obtained by transforming Figure 1.

Traditionally, domain experts handwrite task specific scripts
to transform unstructured data—a task that is often labor-
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intensive and tedious. The requirement for programming
hamstrings data users that are capable analysts but have
limited coding skills. Even worse, these scripts are tailored to
particular data sources and cannot adapt when new sources
are acquired. People normally spend more time preparing
data than analyzing it; up to 80% of a data scientist’s time
can be spent on transforming data into a usable state [28].

Recent research into automated and assisted data transfor-
mation systems have tried to reduce the need of a program-
ming background for users, with some success [19, 22, 41].
These tools help users generate reusable data transformation
programs, but they still require users to know which data
transformation operations are needed and in what order they
should be applied. Current tools still require some level of im-
perative programming, placing a significant burden on data
users. Take Wrangler [22], for example, where a user must
select the correct operators and parameters to complete a
data transformation task. This is often challenging if the user
has no experience in data transformation or programming.

In general, existing data transformation tools are di�cult
to use due to two usability issues:

• High Skill : Users must be familiar with the often compli-
cated transformation operations and then decide which
operations to use and in what order.

• High E↵ort : The amount of user e↵ort increases as the
data transformation program gets lengthy.

To resolve the above usability issues, we envision a data
transformation program synthesizer that can be successfully
used by people without a programming background and that
requires minimal user e↵ort. Unlike Wrangler, which asks

the user for procedural hints, this system should allow the
user to specify a desired transformation simply by providing
an input-output example: the user only needs to know how
to describe the transformed data, as opposed to knowing any
particular transformation operation that must be performed.

Our Approach — In this paper, we solve the data trans-
formation program synthesis problem using a Programming
By Example (PBE) approach. Our proposed technique aims
to help an unsophisticated user easily generate a quality
data transformation program using purely input-output ex-
amples. The synthesized program is designed to be easy-to-
understand (it is a straight-line program comprised of simple
primitives), so an unsophisticated user can understand the
semantics of the program and validate it. Because it is often
infeasible to examine and approve a very large transformed
dataset synthesizing a readable transformation program is
preferred over performing an opaque transformation.

We model program synthesis as a search problem in a state
space graph and use a heuristic search approach based on
the classic A* algorithm to synthesize the program. A major
challenge in applying A* to program synthesis is to create a
heuristic function estimating the cost of any proposed par-
tial solution. Unlike robotic path planning, where a metric
like Euclidean distance naturally serves as a good heuristic
function, there is no straightforward heuristic for data trans-
formation. In this work, we define an e↵ective A* heuristic
for data transformation, as well as lossless pruning rules that
significantly reduce the size of the search space. We have im-
plemented our methods in a prototype data transformation
program synthesizer called Foofah.

Organization — After motivating our problem with an
example in Section 2 and formally defining the problem in
Section 3, we discuss the following contributions:

• We present a PBE data transformation program syn-
thesis technique backed by an e�cient heuristic-search-
based algorithm inspired by the A* algorithm. It has a
novel, operator-independent heuristic, Table Edit Dis-
tance Batch, along with pruning rules designed specifi-
cally for data transformation (Section 4).

• We prototype our method in a system, Foofah, and
evaluate it with a comprehensive set of benchmark test
scenarios that show it is both e↵ective and e�cient in
synthesizing data transformation programs. We also
present a user study that shows Foofah requires about
60% less user e↵ort than Wrangler(Section 5).

We explore Related Work in Section 6 and finish with a
discussion of future work in Section 7

2. MOTIVATING EXAMPLE
Data transformation can be a tedious task involving the

application of complex operations that may be di�cult for
a näıve user to understand, as illustrated by the following
simple but realistic scenario:

Example 1. Bob wants to load a spreadsheet of business
contact information (Figure 1) into a database system. Un-
fortunately, the raw data cannot be loaded in its original
format, so Bob hopes to transform it into a relational format
(Figure 2). Manually transforming the data record-by-record
would be tedious and error-prone, so he uses the interactive
data cleaning tool Wrangler [22].
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Figure 4: Perform Unfold before Fill

Bob first removes the rows of irrelevant data (rows 1 and
2) and empty rows (rows 5, 8, and more). He then splits the
cells containing phone numbers on “:”, extracting the phone
numbers into a new column. Now that almost all the cells from
the desired table exist in the intermediate table (Figure 3),
Bob intends to perform a cross-tabulation operation that
tabulates phone numbers of each category against the human
names. He looks through Wrangler’s provided operations
and finally decides that Unfold should be used. But Unfold
does not transform the intermediate table correctly, since
there are missing values in the column of names, resulting
in “null” being the unique identifier for all rows without a
human name (Figure 4). Bob backtracks and performs a Fill
operation to fill in the empty cells with the appropriate names
before finally performing the Unfold operation. The final data
transformation program is shown in Figure 5.

The usability issues described in Section 1 have occurred in
this example. Lines 1–3 in Figure 5 are lengthy and repetitive
(High E↵ort). Lines 5–6 require a good understanding of the
Unfold operation, causing di�culty for the näıve user (High
Skill). Note that Deletes in Lines 1–2 are di↵erent from the
Delete in Line 3 in that the latter could apply to the entire file.
Non-savvy users may find such conditional usage of Delete
di�cult to discover, further illustrating the High Skill issue.
Consider another scenario where the same task becomes

much easier for Bob, our data analyst:

Example 2. Bob decides to use an alternative data transfor-
mation system, Foofah. To use Foofah, Bob simply needs
to choose a small sample of the raw data (Figure 1) and
describe what this sample should be after being transformed
(Figure 2). Foofah automatically infers the data transfor-
mation program in Figure 6 (which is semantically the same
as Figure 5, and even more succinct). Bob takes this inferred
program and executes it on the entire raw dataset and finds
that raw data are transformed exactly as desired.

The motivating example above gives an idea of the real-
world data transformation tasks our proposed technique
is designed to address. In general, we aim to transform a
poorly-structured grid of values (e.g., a spreadsheet table) to
a relational table with coherent rows and columns. Such a
transformation can be a combination of the following chores:

1. changing the structure of the table

2. removing unnecessary data fields

3. filling in missing values

4. extracting values from cells

5. creating new cell values out of several cell values
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ABSTRACT
Data transformation is a critical first step in modern data
analysis: before any analysis can be done, data from a va-
riety of sources must be wrangled into a uniform format
that is amenable to the intended analysis and analytical
software package. This data transformation task is tedious,
time-consuming, and often requires programming skills be-
yond the expertise of data analysts. In this paper, we develop
a technique to synthesize data transformation programs by
example, reducing this burden by allowing the analyst to de-
scribe the transformation with a small input-output example
pair, without being concerned with the transformation steps
required to get there. We implemented our technique in a
system, Foofah, that e�ciently searches the space of pos-
sible data transformation operations to generate a program
that will perform the desired transformation. We experimen-
tally show that data transformation programs can be created
quickly with Foofah for a wide variety of cases, with 60%
less user e↵ort than the well-known Wrangler system.

Keywords
Data Transformation; Program Synthesis; Programming By
Example; A* algorithm; Heuristic

1. INTRODUCTION
The many fields that depend on data for decision making

have at least one thing in common: raw data is often in a non-
relational or poorly structured form, possibly with extraneous
information, and cannot be directly used by a downstream
information system, like a database or visualization system.
Figure 1 from [16] is a good example of such raw data.
In modern data analytics, data transformation (or data
wrangling) is usually a crucial first step that reorganizes
raw data into a more desirable format that can be easily
consumed by other systems. Figure 2 showcases a relational
form obtained by transforming Figure 1.

Traditionally, domain experts handwrite task specific scripts
to transform unstructured data—a task that is often labor-
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intensive and tedious. The requirement for programming
hamstrings data users that are capable analysts but have
limited coding skills. Even worse, these scripts are tailored to
particular data sources and cannot adapt when new sources
are acquired. People normally spend more time preparing
data than analyzing it; up to 80% of a data scientist’s time
can be spent on transforming data into a usable state [28].

Recent research into automated and assisted data transfor-
mation systems have tried to reduce the need of a program-
ming background for users, with some success [19, 22, 41].
These tools help users generate reusable data transformation
programs, but they still require users to know which data
transformation operations are needed and in what order they
should be applied. Current tools still require some level of im-
perative programming, placing a significant burden on data
users. Take Wrangler [22], for example, where a user must
select the correct operators and parameters to complete a
data transformation task. This is often challenging if the user
has no experience in data transformation or programming.

In general, existing data transformation tools are di�cult
to use due to two usability issues:

• High Skill : Users must be familiar with the often compli-
cated transformation operations and then decide which
operations to use and in what order.

• High E↵ort : The amount of user e↵ort increases as the
data transformation program gets lengthy.

To resolve the above usability issues, we envision a data
transformation program synthesizer that can be successfully
used by people without a programming background and that
requires minimal user e↵ort. Unlike Wrangler, which asks
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Most real-world data is unstructured and must be transformed 
into a structured form to be used. Manual transformation (e.g., 
using Excel) requires too much user effort. Traditional 
transformation often requires good programming skills beyond 
most of the users. Data transformation tools, like Data 
Wranger [1], often require repetitive and tedious work and a 
depth of data transformation knowledge from the user. 
Our goal: minimize a user's effort and reduce the required 
background knowledge for data transformation tasks.
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1 Delete row 1
2 Delete row 2
3 Delete rows where column 2 is null
4 Split column 2 on ’:’
5 Fill split with values from above
6 Unfold column 2 on column 3

Figure 5: Program created with Wrangler

1 t = split(t, 1, ’:’)
2 t = delete(t, 2)
3 t = fill(t, 0)
4 t = unfold(t, 1)

Figure 6: Program synthesized with Foofah

We assume that the input data should be transformed without
any extra semantic information, so, for example, transforming
“NY”to“New York” is not possible (previous projects [1,9,37]
have addressed such semantic transformations). Transforma-
tions should not add new information that is not in the input
table, such as adding a column header. We provide another
example use case in Appendix B.

3. PROBLEM DEFINITION
To help the user synthesize a correct data transformation

program, we take a Programming By Example (PBE) ap-
proach: the user provides an input-output example pair, and
the system generates a program satisfying the example pair
and hopefully can correctly transform the full dataset R.

3.1 Problem Definition
With all notations summarized in Table 1, we define this

problem formally:
Problem Given a user’s set of input-output examples

E = (ei, eo), where ei is drawn from raw dataset R and
eo is the desired transformed form of ei, synthesize a data
transformation program P, parameterized with a library of
data transformation operators, that will transform ei to eo.

Like previous work in data transformation [17, 22], we
assume the raw data R is a grid of values. R might not be
relational but must have some regular structure (and thus
may have been programmatically generated). Further, R may
contain schematic information (e.g., column or row headers)
as table values, and even some extraneous information (e.g.,
“Bureau of I.A.” in Figure 1).

Once the raw data and the desired transformation meet
the above criteria, the user must choose the input sample and
specify the corresponding output example. More issues with
creating quality input-output examples will be discussed in
detail in Section 4.5.

3.2 Data Transformation Programs
Transforming tabular data into a relational table usually re-

quire two types of transformations: syntactic transformations
and layout transformations [13]. Syntactic transformations
reformat cell contents (e.g., split a cell of ”mm/dd/yyyy”
into three cells containing month, day, year). Layout trans-
formations do not modify cell contents, but instead change
how the cells are arranged in the table (e.g., relocating cells
containing month information to be column headers).

We find that the data transformation operators shown in
Table 2 (defined in Potter’s Wheel project [33, 34] and used
by state-of-art data transformation tool Wrangler [22]) are

Notation Description

P = {p1, . . . , pn} Data transformation program
pi = (opi, par1, . . . ) Transformation operation with operator

opi and parameters par1, par2, etc.
R Raw dataset to be transformed
ei 2 R Example input sampled from R by user
eo = P(ei) Example output provided by user, trans-

formed from ei
E = (ei, eo) Input-output example table pair, pro-

vided as input to the system by user

Table 1: Frequently used notation

Operator Description

Drop Deletes a column in the table
Move Relocates a column from one position to an-

other in the table
Copy Duplicates a column and append the copied

column to the end of the table
Merge Concatenates two columns and append the

merged column to the end of the table
Split Separates a column into two or more halves

at the occurrences of the delimiter
Fold Collapses all columns after a specific column

into one column in the output table
Unfold “Unflatten” tables and move information from

data values to column names
Fill Fill empty cells with the value from above
Divide Divide is used to divide one column into two

columns based on some predicate
Delete Delete rows or columns that match a given

predicate
Extract Extract first match of a given regular expres-

sion each cell of a designated column
Transpose Transpose the rows and columns of the table
Wrap (added) Concatenate multiple rows conditionally

Table 2: Data transformation operators used by Foofah

expressive enough to describe these two types of transfor-
mations. We use these operations in Foofah: operators like
Split and Merge are syntactic transformations and operators
like Fold, and Unfold are layout transformations. To illustrate
the type of operations in our library, consider Split. When
applying Split parameterized by ‘:’ to the data in Figure 7,
we get Figure 8 as the output. Detailed definitions for each
operator are shown in Appendix A.
Our proposed technique is not limited to supporting Pot-

ter’s Wheel operations; users are able to add new operators
as needed to improve the expressiveness of the program syn-
thesis system. We assume that new operators will match our
system’s focus on syntactic and layout transformations (as
described in Section 2); if an operator attempts a seman-
tic transformation, our system may not correctly synthesize
programs that use it. As we describe below, the synthesized
programs do not contain loops, so novel operators must be
useful outside a loop’s body.
We have tuned the system to work especially e↵ectively

when operators make ”conventional” transformations that
apply to an entire row or column at a time. If operators
were to do otherwise — such as an operator for “Removing
the cell values at odd numbered rows in a certain column”,
or for “Splitting the cell values on Space in cells whose
values start with ‘Math”’ — the system will run more slowly.
Experimental results in Section 5.5 show evidence that adding
operators can enhance the expressiveness of our synthesis
technique without hurting e�ciency.

Transformations
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Proposed Solution
• Use a small, manually transformed portion of the data to infer a program (in 

Potter's Wheel syntax) based on the specified data transformation operations 
• No loops 
• Assumes relational tables  
• … and perfect data?
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FOOFAH: A Programming-By-Example System for
Synthesizing Data Transformation Program

Zhongjun Jin, Michael R. Anderson, Michael Cafarella, H. V. Jagadish
University of Michigan

Most real-world data is unstructured and must be transformed 
into a structured form to be used. Manual transformation (e.g., 
using Excel) requires too much user effort. Traditional 
transformation often requires good programming skills beyond 
most of the users. Data transformation tools, like Data 
Wranger [1], often require repetitive and tedious work and a 
depth of data transformation knowledge from the user. 
Our goal: minimize a user's effort and reduce the required 
background knowledge for data transformation tasks.
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User Study

Our PBE technique prototype
FOOFAH:
1. can handle most test cases from

the benchmarks.
2. requires little user effort
3. generally efficient (low system

runtime)
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simple and complex tasks
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• FOOFAH on average requires 60% less user effort than Wrangler
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Intuition: Most data transformation operations can be seen as many 
cell-level transformation operations

Solution: Table Edit Distance as the heuristic function

Table Edit Distance (TED) Definition:
The cost of transforming Table T1 to Table T2 using the cell-level
operators Add/Remove/Move/Transform cell.

TED $%, $' = min,-,… ,	,0 ∈2 3-,	34
56789 :;
<

;=>
• P(T1, T2): Set of all “paths” transforming T1 to T2 using cell-level operators

Batching: a remedy for Table Edit Distance to scale down heuristic

Batch the geometrically-adjacent cell-level operations of the same type
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to	handle	same	tasks	as	FOOFAH

User Input:
• Sample from raw data
• Transformed view of the sample

Raw Data: 
• A grid of values, i.e., spreadsheets
• “Somewhat” structured - must have some 

regular structure or is automatically generated.

Transformations Targeted:
1. Layout transformation              2. String transformation
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into a structured form to be used. Manual transformation (e.g., 
using Excel) requires too much user effort. Traditional 
transformation often requires good programming skills beyond 
most of the users. Data transformation tools, like Data 
Wranger [1], often require repetitive and tedious work and a 
depth of data transformation knowledge from the user. 
Our goal: minimize a user's effort and reduce the required 
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Table Edit Distance
• Akin to Graph Edit Distance 
• Count the number of operations required to transform one table to another 
• Use Add/Remove/Modify + Move
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Batching: a remedy for Table Edit Distance to scale down heuristic

Batch the geometrically-adjacent cell-level operations of the same type

8 Transform operations 2 “batched” Transform operations
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• A loop-free Potter’s Wheel [2] program 
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Input-output	
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Program

Raw	Data

Programming-By-Example interaction model: User provides input-
output examples rather than demonstrating correct operations

Note:	Ideally,	Wrangler	should	be	able	
to	handle	same	tasks	as	FOOFAH

User Input:
• Sample from raw data
• Transformed view of the sample

Raw Data: 
• A grid of values, i.e., spreadsheets
• “Somewhat” structured - must have some 

regular structure or is automatically generated.

Transformations Targeted:
1. Layout transformation              2. String transformation
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Pattern Formulation (X is a table edit operator) Related Operators

Horizontal to Horizontal {X((xi, yi), (xj , yj)), X((xi, yi + 1), (xj , yj + 1)), . . . } Delete(Possibly)
Horizontal to Vertical {X((xi, yi), (xj , yj)), X((xi, yi + 1), (xj + 1, yj)), . . . } Fold, Transpose
Vertical to Horizontal {X((xi, yi), (xj , yj)), X((xi + 1, yi), (xj , yj + 1)), . . . } Unfold,Transpose
Vertical to Vertical {X((xi, yi), (xj , yj)), X((xi + 1, yi), (xj + 1, yj)), . . . } Move, Copy, Merge, Split, Extract, Drop
One to Horizontal {X((xi, yi), (xj , yj)), X((xi, yi), (xj , yj + 1)), . . . } Fold(Possibly), Fill(Possibly)
One to Vertical {X((xi, yi), (xj , yj)), X((xi, yi), (xj + 1, yj)), . . . } Fold, Fill
Remove Horizontal {X((xi, yi)), X((xi, yi + 1)), . . . } Delete
Remove Vertical {X((xi, yi)), X((xi + 1, yi)), . . . } Drop, Unfold

Table 4: Geometric patterns

Property-specific Pruning Rules — The properties of
certain operators allow us to define further pruning rules.

• Generating Empty Columns — Prune the operation if
it adds an empty column in the resulting state when it
should not. This applies to Split, Divide, Extract, and
Fold. For example, Split adds an empty column to a
table when parameterized by a delimiter not present in
the input column; this Split useless and can be pruned.

• Null In Column — Prune the operation if a column in
the parent state or resulting child state has null value
that would cause an error. This applies to Unfold, Fold
and Divide. For example, Unfold takes in one column
as header and one column as data values: if the header
column has null values, it means the operation is invalid,
since column headers should not be null values.

4.4 Complexity Analysis
The worst-case time complexity for our proposed program

synthesis technique is O((kmn)d), where m is the number
of cells in input example ei, n is the number of cells in
the output example eo, k is the number of candidate data
transformation operations for each intermediate table, and d
is the number of components in the final synthesized program.
In comparison, two of the previous works related to our
project, ProgFromEx and FlashRelate, have worst-case
time complexities that are exponential in the size of the
example the user provides. ProgFromEx’s worst-case time
complexity is O(mn), where m is the number of cells in the
input example and n is the number of cells in the output
example. FlashRelate’s worst-case complexity is O(tt�2),
where t is the number of columns in the output table.

In practice, we believe the complexity exponential in input
size will not cause a severe performance issue because none of
the three PBE techniques require large amount of user input.
However, if a new usage model arises in the future that allows
the user to provide a large example easily, ProgFromEx
might become impractical.

4.5 Synthesizing Perfect Programs
Since the input-output example E is the only clue about the

desired transformation provided by the user, the e↵ectiveness
of our technique could be greatly impacted by the quality of
E . We can consider its fidelity and representativeness.

Fidelity of E — The success of synthesizing a program
is premised on the fidelity of the user-specified example E :
the end user must not make any mistake while specifying E .
Some common mistakes a user might make are: typos, copy-
paste-mistakes, and loss of information. This last mistake
occurs when the user forgets to include important informa-
tion, such as column headers, when specifying E . When such
mistakes occur, our proposed technique is almost certain to

fail. However, the required user input is small, and, as we
show in Section 5.6, our system usually fails quickly. As a
result, it is easy for the user to fix any errors. In Section 7,
we describe future work that allows tolerance for user error.

Representativeness of E — Once a program P is gener-
ated given the user input, the synthesized program is guar-
anteed to be correct : P must transform the input example ei
to the output example eo. However, we do not promise that
P is perfect, or guarantees to transform the entire raw data
R as the user may expect. How well a synthesized program
generalizes to R relies heavily on the representativeness of E ,
or how accurately E reflects the desired transformation. Our
proposed synthesis technique requires the user to carefully
choose a representative sample from R as the input example
to formulate E . With a small sample from R, there is a risk
of synthesizing a P that will not generalize to R (similar
to overfitting when building a machine learning model with
too few training examples). Experimentally, however, we see
that a small number (e.g., 2 or 3) of raw data records usually
su�ces to formulate E (Section 5).

Validation — [C2] In Section 1, we mentioned that one way
the user can validate the synthesized program is by under-
standing the semantics of the program. Alternatively, the user
could follow the sampling-based lazy approach of Gulwani et
al. [17] To the best of our knowledge, no existing work in the
PBE area provides guarantees about the reliability of this
approach or how many samples it may require. Of course,
not only PBE systems, but work in machine learning and the
program test literature must wrestle with the same sampling
challenges. Our system neither exacerbates nor ameliorates
the situation, so we do not address these issues here.

5. EXPERIMENTS
In this section, we evaluate the e↵ectiveness and e�ciency

of our PBE data transformation synthesis technique and how
much user e↵ort it requires. We implemented our technique
in a system called Foofah. Foofah is written in Python
and C++ and runs on a 16-core (2.53GHz) Intel Xeon E5630
server with 120 GB RAM.

We first present our benchmarks and then evaluate Foofah
using the benchmarks to answer several questions:

• How generalizeable are the synthesized programs out-
put by Foofah? (Section 5.2)

• How e�cient is Foofah at synthesizing data transfor-
mation programs? (Section 5.2)

• How is the chosen search method using the TED Batch
heuristic better than other search strategies, including
BFS and a näıve rule-based heuristic? (Section 5.3)

• How e↵ectively do our pruning rules boost the search
speed? (Section 5.4)

Geometric Patterns Used to Batch
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Other Pruning Rules
• Global: 
- Missing Alphanumerics: check that character maintained 
- No effect: meaningless operation 
- Introducing Novel Symbols: check that no new characters added 

• Property-specific: 
- Generating Empty Columns 
- Null in Column
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Figure 11: (a) and (b) show number of records and synthesis time required by Foofah in the experiments of Section 5.1; (c)
Percentage of successes for di↵erent search strategies in the experiments of Section 5.3.

0 20 40 60 80 100
0

10

20

30

40

50

60

% of test cases

T
im

e
(s
ec
on

d
s)

BFS NoPrune BFS

Rule TED Batch

(a) Compare search strategies

0 20 40 60 80 100
0

10

20

30

40

50

60

% of test cases

T
im

e
(s
ec
on

d
s)

NoPrune PropPrune

GlobalPrune FullPrune

(b) E↵ectiveness of pruning rules

0 20 40 60 80 100
0

10

20

30

40

50

60

% of test cases

T
im

e
(s
ec
on

d
s)

NoWrap W1

W1&W2 W1&W2&W3

(c) Adding new operators

Figure 12: (a) Percentage of tests synthesized in  Y seconds using di↵erent search strategies; (b) Percentage of tests synthesized
in  Y seconds with di↵erent pruning rules settings; (c) Percentage of tests synthesized in  Y seconds adding Wrap variants.

achieves the highest success rate of any of the strategies,
with a margin larger than that for over all test cases. This
indicates that our proposed strategy, TED Batch, is e↵ective
at speeding up the synthesis of lengthy programs.
Since end users often feel frustrated when handling com-

plex data transformations, we wished to know how TED
Batch fared compared to other search strategies on complex
tasks. We considered test cases that required the operators
Fold, Unfold, Divide, Extract to be complex. Figure 11c shows
the success rate for those complex test cases. TED Batch
outperforms the other three strategies.

Figure 12a shows the time required to synthesize the pro-
grams for our set of tests for each search strategy. The TED
Batch search strategy is significantly the fastest, with over
90% of the tests completing in under 10 seconds.

5.4 Effectiveness of Pruning Rules
One contribution of our work is the creation of a set of

pruning rules for data transformation. We examine the e�-
ciency of Foofah with and without these pruning rules to
show how e↵ectively these pruning rules boost the search
speed, using the benchmarks from Section 5.1.
Figure 12b presents the response times of Foofah with

pruning rules removed. The pruning rules do improving the
e�ciency of the program synthesis. However, the di↵erence
between the response time of Foofah with and without prun-
ing rules is only moderate in size. This is because the search
strategy we use—TED Batch—is itself also very e↵ective in
“pruning”bad states, by giving them low priority in search. In
fact, if we look at “BFS NoPrune” and “BFS” in Figure 12a,
the di↵erence between their response time is quite significant,
showing that the pruning rules are indeed quite helpful at
reducing the size of the search space.

5.5 Adaptiveness to New Operators
A property of our program synthesis technique is its operator-

independence, as we discussed in Section 4. To demonstrate
this, we compared the e�ciency of our prototype, Foofah,
with and without a newly added operator: Wrap (defined in
Appendix A). Wrap has three variants: Wrap on column x
(W1), Wrap every n rows (W2) and Wrap into one row (W3).
We examined the responsiveness of Foofah on all test cases
as we sequentially added the three variants of Wrap.

Figure 12c shows the response time of Foofah as we add
new variants of Wrap, using the same set of test cases as
in Section 5.3. The addition of the Wrap operations allowed
more test scenarios to be successfully completed, while the
synthesis time of overall test cases did not increase. This
is evidence that the system can be improved through the
addition of new operators, which can be easily incorporated
without rewriting the core algorithm.

5.6 User Effort Study
Foofah provides a Programming By Example interaction

model in hopes of saving user e↵ort. In this experiment, we
asked participants to work on both Wrangler and Foofah
and compared the user e↵ort required by both systems.

Overview — We invited 10 graduate students in Computer
Science with no experience in data transformation to par-
ticipate in our user study. From our benchmark test suite,
we chose eight user study tasks of varied length and com-
plexity, shown in Table 5. Column “Complex” indicates if a
task requires a complex operator: Fold, Unfold, Divide, and
Extract. Column “� 4 Ops” indicates if a task requires a data
transformation program with 4 or more operations.

Before the experiment, we educated participants on how to

Evaluation Results: # Test Records & Time
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achieves the highest success rate of any of the strategies,
with a margin larger than that for over all test cases. This
indicates that our proposed strategy, TED Batch, is e↵ective
at speeding up the synthesis of lengthy programs.
Since end users often feel frustrated when handling com-

plex data transformations, we wished to know how TED
Batch fared compared to other search strategies on complex
tasks. We considered test cases that required the operators
Fold, Unfold, Divide, Extract to be complex. Figure 11c shows
the success rate for those complex test cases. TED Batch
outperforms the other three strategies.

Figure 12a shows the time required to synthesize the pro-
grams for our set of tests for each search strategy. The TED
Batch search strategy is significantly the fastest, with over
90% of the tests completing in under 10 seconds.

5.4 Effectiveness of Pruning Rules
One contribution of our work is the creation of a set of

pruning rules for data transformation. We examine the e�-
ciency of Foofah with and without these pruning rules to
show how e↵ectively these pruning rules boost the search
speed, using the benchmarks from Section 5.1.
Figure 12b presents the response times of Foofah with

pruning rules removed. The pruning rules do improving the
e�ciency of the program synthesis. However, the di↵erence
between the response time of Foofah with and without prun-
ing rules is only moderate in size. This is because the search
strategy we use—TED Batch—is itself also very e↵ective in
“pruning”bad states, by giving them low priority in search. In
fact, if we look at “BFS NoPrune” and “BFS” in Figure 12a,
the di↵erence between their response time is quite significant,
showing that the pruning rules are indeed quite helpful at
reducing the size of the search space.

5.5 Adaptiveness to New Operators
A property of our program synthesis technique is its operator-

independence, as we discussed in Section 4. To demonstrate
this, we compared the e�ciency of our prototype, Foofah,
with and without a newly added operator: Wrap (defined in
Appendix A). Wrap has three variants: Wrap on column x
(W1), Wrap every n rows (W2) and Wrap into one row (W3).
We examined the responsiveness of Foofah on all test cases
as we sequentially added the three variants of Wrap.

Figure 12c shows the response time of Foofah as we add
new variants of Wrap, using the same set of test cases as
in Section 5.3. The addition of the Wrap operations allowed
more test scenarios to be successfully completed, while the
synthesis time of overall test cases did not increase. This
is evidence that the system can be improved through the
addition of new operators, which can be easily incorporated
without rewriting the core algorithm.

5.6 User Effort Study
Foofah provides a Programming By Example interaction

model in hopes of saving user e↵ort. In this experiment, we
asked participants to work on both Wrangler and Foofah
and compared the user e↵ort required by both systems.

Overview — We invited 10 graduate students in Computer
Science with no experience in data transformation to par-
ticipate in our user study. From our benchmark test suite,
we chose eight user study tasks of varied length and com-
plexity, shown in Table 5. Column “Complex” indicates if a
task requires a complex operator: Fold, Unfold, Divide, and
Extract. Column “� 4 Ops” indicates if a task requires a data
transformation program with 4 or more operations.

Before the experiment, we educated participants on how to

Search Strategies and Pruning Rules
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Wrangler Foofah

Test Complex � 4 Ops Time Mouse Key Time vs Wrangler Mouse Key

PW1 No No 104.2 17.8 11.6 49.4 &52.6% 20.8 22.6

PW3 (modified) No No 96.4 28.8 26.6 38.6 &60.0% 14.2 23.6

ProgFromEx13 Yes No 263.6 59.0 16.2 145.8 &44.7% 43.6 78.4

PW5 Yes No 242.0 52.0 15.2 58.8 &75.7% 31.4 32.4

ProgFromEx17 No Yes 72.4 18.8 11.6 48.6 &32.9% 18.2 15.2

PW7 No Yes 141.0 41.8 12.2 44.4 &68.5% 19.6 35.8

Proactive1 Yes Yes 324.2 60.0 13.8 104.2 &67.9% 41.4 57.0

Wrangler3 Yes Yes 590.6 133.2 29.6 137.0 &76.8% 58.6 99.8

Table 5: User study experiment results

use both Wrangler and Foofah with documentation and
a complex running example. During the experiment, each
participant was given four randomly selected tasks, covering
complex, easy, lengthy, and short tasks, to complete on both
systems. Each task had a 10 minute time limit.

Evaluation Metrics — To quantify the amount of user
e↵ort on both systems, we measured the time a user spends
to finish each user study task. In addition to time, we also
measured the number of user mouse clicks and key strokes.

Results — Table 5 presents the measurement of the average
user e↵orts on both Wrangler and Foofah over our 8
user study tasks. The percentages of time saving in each test
is presented to the right of the time statistics of Foofah.
The timing results show that Foofah required 60% less
interaction time in every test on average. Foofah also saved
more time on complex tasks. On these tasks, Foofah took
one third as much interaction time as Wrangler. On the
lengthy and complex“Wrangler3”case, 4 of 5 test takers could
not find a solution within 10 minutes using Wrangler, but
all found a solution within 3 minutes using Foofah.
Additionally, in Table 5 we see that Foofah required an

equal or smaller number of mouse clicks than Wrangler.
This partially explains why Foofah required less interaction
time and user e↵ort. Table 5 also shows that Foofah required
more typing than Wrangler, mainly due to Foofah’s in-
teraction model. Typing can be unavoidable when specifying
examples, while Wrangler often only requires mouse clicks.

Another observation from the user study was that partici-
pants often felt frustrated after 5 minutes and became less
willing to continue if they could not find a solution, which
justifies our view that a Programming By Demonstration
data transformation tool can be hard to use for näıve users.

5.7 Comparison with Other Systems
Foofah is not the first PBE data transformation system.

There are two other closely related pieces of previous work:
ProgFromEx [17] and FlashRelate [4]. In general, both
ProgFromEx and FlashRelate are less expressive than
Foofah; they are limited to layout transformations and
cannot handle syntactic transformations. Further, in practice,
both systems are likely to require more user e↵ort and to be
less e�cient than Foofah on complex tasks.

Source code and full implementation details for these sys-
tems are not available. However, their published experimental
benchmarks overlap with our own, allowing us to use their
published results in some cases and hand-simulate their re-
sults in other cases. As a result, we can compare our system’s
success rate to that of ProgFromEx and FlashRelate on
at least some tasks, as seen in Table 6. Note that syntactic
transformation tasks may also entail layout transformation
steps, but the reverse is not true.

5.7.1 ProgFromEx

The ProgFromEx project employs the same usage model
as Foofah: the user gives an “input” grid of values, plus a
desired “output” grid, and the system formulates a program
to transform the input into the output. A ProgFromEx
program consists of a set of component programs. Each com-
ponent program takes in the input table and yields a map,
a set of input-output cell coordinate pairs that copies cells
from the input table to some location in the output table.

A component program can be either a filter program or an
associative program. A filter program consists of a mapping
condition (in the form of a conjunction of cell predicates) plus
a sequencer (a geometric summary of where to place data in
the output table). To execute a filter program, ProgFromEx
tests each cell in the input table, finds all cells that match
the mapping condition, and lets the sequencer decide the
coordinates in the output table to which the matching cells
are mapped. An associative program takes a component
program and applies an additional transformation function
to the output cell coordinates, allowing the user to produce
output tables using copy patterns that are not strictly one-
to-one (e.g., a single cell from the input might be copied to
multiple distinct locations in the output).

Expressiveness — The biggest limitation of ProgFromEx
is that it cannot describe syntactic transformations. It is de-
signed to move values from an input grid cell to an output
grid cell; there is no way to perform operations like Split or
Merge to modify existing values. Moreover, it is not clear how
to integrate such operators into their cell mapping framework.
In contrast, our system successfully synthesizes programs for
100% of our benchmark syntactic transformation tasks, as
well as 90% of the layout transformation tasks (see Table 6).
(Other systems can handle these critical syntactic transfor-
mation tasks [16,22,34], but Foofah is the first PBE system
to do so that we know of). ProgFromEx handles slightly
more layout transformations in the benchmark suite than
our current Foofah prototype, but ProgFromEx’s perfor-
mance comes at a price: the system administrator or the user
must pre-define a good set of cell mapping conditions. If the
user were willing to do a similar amount of work on Foofah
by adding operators, we could obtain a comparable result.

User E↵ort and E�ciency — For the subset of our bench-
mark suite that both systems handle successfully (i.e., cases
without any syntactic transformations), ProgFromEx and
Foofah require roughly equal amounts of user e↵ort. As
we describe in Section 5.1, 37 of our 50 benchmark test sce-
narios are borrowed from the benchmarks of ProgFromEx.
For each of these 37 benchmarks, both ProgFromEx and
Foofah can construct a successful program with three or
fewer user-provided examples. Both systems yielded wait
times under 10 seconds for most cases.

User Study Results
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FOOFAH: A Programming-By-Example System for
Synthesizing Data Transformation Program
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Most real-world data is unstructured and must be transformed 
into a structured form to be used. Manual transformation (e.g., 
using Excel) requires too much user effort. Traditional 
transformation often requires good programming skills beyond 
most of the users. Data transformation tools, like Data 
Wranger [1], often require repetitive and tedious work and a 
depth of data transformation knowledge from the user. 
Our goal: minimize a user's effort and reduce the required 
background knowledge for data transformation tasks.
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the benchmarks.
2. requires little user effort
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Figure 2: TDE transformation for date-time. (Left): user provides two desired output examples in column-D,
for the input data in column-C. (Right): After clicking on the “Get Transformation” button, TDE synthesizes
programs consistent with the given examples, and return them as a ranked list within a few seconds. Hovering
over the first program (using System.DateTime.Parse) gives a preview of all results (shaded in green).

Figure 3: (Left): transformation for names. The first three values in column-D are provided as output
examples. The desired first-names and last-names are marked in bold for ease of reading. A composed
program using library CSharpNameParser from GitHub is returned. (Right): transformations for addresses.
The first two values are provided as output examples to produce city, state, and zip-code. Note that some of
these info are missing from the input. A program invoking Bing Maps API is returned as the top result.

entered. For instance, in the first column dates are rep-
resented in many di↵erent formats. In the second column,
some customer names have first-name followed by last-name,
while others are last-name followed by comma, then first-
name, with various salutations (Mr., Dr., etc.) and su�xes
(II, Jr., etc.). Phone numbers are also inconsistent, with
various international calling codes (+1) and extensions (ext
2001), etc. Addresses in the last column are also not clean,
often with missing state and zip-code information.

This data in Figure 1 is clearly not ready for analysis
yet – an analyst wanting to figure out which day-of-the-
week has the most sales, for instance, cannot find it out
by executing a SQL query: the date column needs to be
transformed to day-of-the-week first, which however is non-
trivial even for programmers. Similarly the analyst may
want to analyze sales by area-code (which can be extracted
from phone-numbers), or by zip-code (from addresses), both
of which again require non-trivial data transformations.

In a separate scenario, suppose one would like identified
possible duplicate customer records in Figure 1, by first stan-
dardizing customer names into a format with only last and
first names (e.g., both the first two records will convert into
“Doe, John”). This again requires complex transformations.

Data transformation is clearly di�cult. However, our ob-
servation is that these domain-specific transformation prob-
lems like name parsing and address standardization are re-
ally not new – for decades developers have built custom
code libraries to solve them in a variety of domains, and
shared their code in places like GitHub. In a recent crawl,
we obtained over 1.8M functions extracted from code li-
braries crawled from GitHub, and over 2M code snippets
from StackOverflow, some of which specifically written to
handle data transformations in a variety of domains.

Transform-Data-by-Example. The overarching goal of
the project is to build a search engine for end-users to eas-
ily reuse code for transformations from existing sources.
Specifically, we adopt the by-example paradigm and build a
production-quality system called Transform-Data-by-Example
(TDE). The front-end of TDE is an Excel add-in, currently
in beta and available from O�ce Store [7]. From the Excel
add-in, users can find transformations by providing a few in-
put/output examples. In Figure 2(left), a user provides two
output examples to specify the desired output. Once she
clicks on the “Get Suggestions” button, the front-end talks
to the TDE back-end service running on Microsoft Azure
cloud, which searches over thousands of indexed functions,
to on-the-fly synthesize new programs consistent with all
examples. In the right part of Figure 2, a ranked list of pro-
grams are returned based on program complexity. The top-
ranked program uses the System.DateTime.Parse() func-
tion from the .Net system library to generate correct output
for all input. Figure 3 shows additional examples for trans-
forming names and addresses using the data in Figure 1.
TDE has a number of unique features, which we believe

are important first steps towards realizing self-service data
transformation.
• Search-by-Example. TDE works like a search engine, which
allows end-users to search transformations by just a few ex-
amples, a paradigm known as program-by-example (PBE) [23]
that was also used by FlashFill [16] for data transformation
with much success. Compared to existing PBE systems such
as FlashFill that compose a small number of string primi-
tives predefined in a Domain Specific Language (DSL), TDE
synthesizes programs from a much larger search space (tens
of thousands of functions). We develop novel algorithms to
make it possible at an interactive speed.
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Figure 2: TDE transformation for date-time. (Left): user provides two desired output examples in column-D,
for the input data in column-C. (Right): After clicking on the “Get Transformation” button, TDE synthesizes
programs consistent with the given examples, and return them as a ranked list within a few seconds. Hovering
over the first program (using System.DateTime.Parse) gives a preview of all results (shaded in green).

Figure 3: (Left): transformation for names. The first three values in column-D are provided as output
examples. The desired first-names and last-names are marked in bold for ease of reading. A composed
program using library CSharpNameParser from GitHub is returned. (Right): transformations for addresses.
The first two values are provided as output examples to produce city, state, and zip-code. Note that some of
these info are missing from the input. A program invoking Bing Maps API is returned as the top result.

entered. For instance, in the first column dates are rep-
resented in many di↵erent formats. In the second column,
some customer names have first-name followed by last-name,
while others are last-name followed by comma, then first-
name, with various salutations (Mr., Dr., etc.) and su�xes
(II, Jr., etc.). Phone numbers are also inconsistent, with
various international calling codes (+1) and extensions (ext
2001), etc. Addresses in the last column are also not clean,
often with missing state and zip-code information.

This data in Figure 1 is clearly not ready for analysis
yet – an analyst wanting to figure out which day-of-the-
week has the most sales, for instance, cannot find it out
by executing a SQL query: the date column needs to be
transformed to day-of-the-week first, which however is non-
trivial even for programmers. Similarly the analyst may
want to analyze sales by area-code (which can be extracted
from phone-numbers), or by zip-code (from addresses), both
of which again require non-trivial data transformations.

In a separate scenario, suppose one would like identified
possible duplicate customer records in Figure 1, by first stan-
dardizing customer names into a format with only last and
first names (e.g., both the first two records will convert into
“Doe, John”). This again requires complex transformations.

Data transformation is clearly di�cult. However, our ob-
servation is that these domain-specific transformation prob-
lems like name parsing and address standardization are re-
ally not new – for decades developers have built custom
code libraries to solve them in a variety of domains, and
shared their code in places like GitHub. In a recent crawl,
we obtained over 1.8M functions extracted from code li-
braries crawled from GitHub, and over 2M code snippets
from StackOverflow, some of which specifically written to
handle data transformations in a variety of domains.

Transform-Data-by-Example. The overarching goal of
the project is to build a search engine for end-users to eas-
ily reuse code for transformations from existing sources.
Specifically, we adopt the by-example paradigm and build a
production-quality system called Transform-Data-by-Example
(TDE). The front-end of TDE is an Excel add-in, currently
in beta and available from O�ce Store [7]. From the Excel
add-in, users can find transformations by providing a few in-
put/output examples. In Figure 2(left), a user provides two
output examples to specify the desired output. Once she
clicks on the “Get Suggestions” button, the front-end talks
to the TDE back-end service running on Microsoft Azure
cloud, which searches over thousands of indexed functions,
to on-the-fly synthesize new programs consistent with all
examples. In the right part of Figure 2, a ranked list of pro-
grams are returned based on program complexity. The top-
ranked program uses the System.DateTime.Parse() func-
tion from the .Net system library to generate correct output
for all input. Figure 3 shows additional examples for trans-
forming names and addresses using the data in Figure 1.
TDE has a number of unique features, which we believe

are important first steps towards realizing self-service data
transformation.
• Search-by-Example. TDE works like a search engine, which
allows end-users to search transformations by just a few ex-
amples, a paradigm known as program-by-example (PBE) [23]
that was also used by FlashFill [16] for data transformation
with much success. Compared to existing PBE systems such
as FlashFill that compose a small number of string primi-
tives predefined in a Domain Specific Language (DSL), TDE
synthesizes programs from a much larger search space (tens
of thousands of functions). We develop novel algorithms to
make it possible at an interactive speed.
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Figure 2: TDE transformation for date-time. (Left): user provides two desired output examples in column-D,
for the input data in column-C. (Right): After clicking on the “Get Transformation” button, TDE synthesizes
programs consistent with the given examples, and return them as a ranked list within a few seconds. Hovering
over the first program (using System.DateTime.Parse) gives a preview of all results (shaded in green).

Figure 3: (Left): transformation for names. The first three values in column-D are provided as output
examples. The desired first-names and last-names are marked in bold for ease of reading. A composed
program using library CSharpNameParser from GitHub is returned. (Right): transformations for addresses.
The first two values are provided as output examples to produce city, state, and zip-code. Note that some of
these info are missing from the input. A program invoking Bing Maps API is returned as the top result.

entered. For instance, in the first column dates are rep-
resented in many di↵erent formats. In the second column,
some customer names have first-name followed by last-name,
while others are last-name followed by comma, then first-
name, with various salutations (Mr., Dr., etc.) and su�xes
(II, Jr., etc.). Phone numbers are also inconsistent, with
various international calling codes (+1) and extensions (ext
2001), etc. Addresses in the last column are also not clean,
often with missing state and zip-code information.

This data in Figure 1 is clearly not ready for analysis
yet – an analyst wanting to figure out which day-of-the-
week has the most sales, for instance, cannot find it out
by executing a SQL query: the date column needs to be
transformed to day-of-the-week first, which however is non-
trivial even for programmers. Similarly the analyst may
want to analyze sales by area-code (which can be extracted
from phone-numbers), or by zip-code (from addresses), both
of which again require non-trivial data transformations.

In a separate scenario, suppose one would like identified
possible duplicate customer records in Figure 1, by first stan-
dardizing customer names into a format with only last and
first names (e.g., both the first two records will convert into
“Doe, John”). This again requires complex transformations.

Data transformation is clearly di�cult. However, our ob-
servation is that these domain-specific transformation prob-
lems like name parsing and address standardization are re-
ally not new – for decades developers have built custom
code libraries to solve them in a variety of domains, and
shared their code in places like GitHub. In a recent crawl,
we obtained over 1.8M functions extracted from code li-
braries crawled from GitHub, and over 2M code snippets
from StackOverflow, some of which specifically written to
handle data transformations in a variety of domains.

Transform-Data-by-Example. The overarching goal of
the project is to build a search engine for end-users to eas-
ily reuse code for transformations from existing sources.
Specifically, we adopt the by-example paradigm and build a
production-quality system called Transform-Data-by-Example
(TDE). The front-end of TDE is an Excel add-in, currently
in beta and available from O�ce Store [7]. From the Excel
add-in, users can find transformations by providing a few in-
put/output examples. In Figure 2(left), a user provides two
output examples to specify the desired output. Once she
clicks on the “Get Suggestions” button, the front-end talks
to the TDE back-end service running on Microsoft Azure
cloud, which searches over thousands of indexed functions,
to on-the-fly synthesize new programs consistent with all
examples. In the right part of Figure 2, a ranked list of pro-
grams are returned based on program complexity. The top-
ranked program uses the System.DateTime.Parse() func-
tion from the .Net system library to generate correct output
for all input. Figure 3 shows additional examples for trans-
forming names and addresses using the data in Figure 1.
TDE has a number of unique features, which we believe

are important first steps towards realizing self-service data
transformation.
• Search-by-Example. TDE works like a search engine, which
allows end-users to search transformations by just a few ex-
amples, a paradigm known as program-by-example (PBE) [23]
that was also used by FlashFill [16] for data transformation
with much success. Compared to existing PBE systems such
as FlashFill that compose a small number of string primi-
tives predefined in a Domain Specific Language (DSL), TDE
synthesizes programs from a much larger search space (tens
of thousands of functions). We develop novel algorithms to
make it possible at an interactive speed.
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Figure 13: Produce desired output from input in TDE : a function invocation followed by program synthesis.

Given the intermediate tables with rich semantic informa-
tion derived from the input values, the task now is to “as-
sembly” bits and pieces in them to produce target T.O[i].
We illustrate it with an example below.

Example 4. In Figure 13, given that the target output
is 2011-01-12 (Wed) and 2011-09-15 (Thu), it can be seen
that they can be produced by concatenating relevant fields
from the intermediate tables. Specifically, if we concatenate
the Year field with a “-”, then append with the Month field
followed by a “-”, then with the Day field followed by a “ (”,
then with the first three characters of the Day-of-week field,
and finally append with a closing parenthesis “)”. It can
be verified that this synthesized program produce the desired
target output for both input strings.

Suppose the desired output is instead 2011-Jan-12 (Wed)
and 2011-Sep-15 (Thu). Note that the required months are
now Jan and Sep, which cannot be produced from the Month
column. For this we take the column corresponding to the
output of method ToLongDateString(), and perform the fol-
lowing operations: We split each value using “,”, and take
the second component from the split (the substring after the
first comma), from which we take a substring of length 3
starting at the second character. This would produce the de-
sired Jan and Sep; all other operations in this synthesized
program will remain the same as the previous example.

This example shows the power of synthesis using inter-
mediate results from member properties and methods – by
being able to synthesize multi-step sequences, we produce
powerful and expressive programs to match user output.

We note that similar techniques for generating string trans-
formation programs in this step have been the focus of FlashFill-
like PBE systems [16, 20, 26]. However, the requirement of
TDE is unique, because the intermediate tables shown in
Figure 13 (from which results are synthesized) can often be
very “wide” with hundreds of columns for complex objects.
Furthermore, the synthesis algorithm needs to be invoked
for hundreds of times for each function returned by the L1
ranker. Given that TDE needs to be interactive, the syn-
thesis algorithm is required to be highly e�cient. In par-
ticular, we find existing approaches such as [16] insu�cient
for TDE. We develop new algorithms based on a recursive
greedy search. A basic version of this synthesis algorithm
was described in [32] (used for a di↵erent purpose, which
is to auto-join tables). Compared to prior work, our syn-
thesis is (1) substantially more e�cient; and (2) provides
probabilistic guarantees of success under certain assump-
tions ([32]). We defer details to a full version of the paper.
5.2.2 Parameter learning in multi-function synthesis
In the previous example, when executing a top-ranked

function f 2 RK , we use reflection to not only consider
all member properties, but also member methods that are
parameter-less, since it is straightforward to execute them.
However, there are also many parameterized member meth-
ods that are useful for transformations. For instance, con-
sider the Ttime shown in Figure 14, where the task is to

Figure 14: TDE transformation between timezones.

convert input time in US western timezone, to US eastern
time. Note that this ”+3 hours” operation can lead to a
change in the day, month, and year, as shown in the figure.
This transformation would require not only using relevant

methods but also appropriate parameters (”+3 hours”). TDE
performs this transformation by synthesizing the following
program: it first invokes System.DateTime.Parse() to con-
vert each input string into a DateTime object, whose member
method DateTime.Add(Timespan) is then invoked using a
parameter of type Timespan corresponding to 3 hours. This
leads to a new DateTime object, from which we can synthe-
size the target output as described in Section 5.2.1. The key
challenge here is parameterization, or finding an appropri-
ate Timespan object as parameter – exhaustive enumeration
would not work as the parameter space is infinite.
For parameterization, in TDE we perform o✏ine learn-

ing for relationships between functions in same classes, to
discover concepts such as inverse relationships. Specifically,
we first identify functions f1 and f2 as a candidate pair, if
the result of f1 is of the same type as the parameter of f2.
In the example above, in the class DateTime we have the
function TimeSpan DateTime.Subtract(DateTime) that re-
turns an object of type TimeSpan, and we also have function
DateTime DateTime.Add(Timespan) taking a parameter of
type TimeSpan. We thus treat the two as a candidate pair.
We then instantiate pairs of DateTime objects o1, o2 (with
suitable parameters obtained from indexes in Figure 8), and
invoke o1.Subtract(o2) to produce a TimeSpan object t12.
To test if the inverse relationship holds, we then invoke
o1.Add(t12) to produce o02, and see if o02 is identical to o2.
Since this holds true for all pairs of o1, o2 tested, we can
infer that the two are inverse functions.
With the inverse relationship, given Ttime at run time, we

can use Ttime.I[i] as o1 and Ttime.O[i] as o2, and compute
t12 = o2.Subtract(o1), which turns out to be 3 hours con-
sistently for all i 2 {1, 2, 3}. We can thus produce a correct
program with right parameters as described above.
Another type of parameterized functions we can invoke is

the ones that have parameters with limited cardinality. For
example, the function DateTime.ToString(string format)

accepts a parameter with a limited number of formats (e.g.,
“MM/dd/yyyy”, etc.). Using the index in Figure 8, if we de-
termine a parameter of f to be of small cardinality, we treat
it as an “enum” type and “memorize” all its possible values,
which we then use to exhaustively invoke f . This allows us
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TDE: Transform Data by Example
• Row-to-row translation only 
• Search System, GitHub, and StackOverflow for functions 
• Given dataset with examples 
- Use L1 from library 
- Compose synthesized programs (L2) 
- Rank best transformations
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TDE Benchmarks

• TDE and FlashFill focused on row-to-row transformations 
• Foofah considers a wider range of transformations (table reformatting)
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Table 3: Precision of benchmark cases, reported as precentage of cases solved (number of cases in parenthesis).
System Total cases (239) FF-GR-Trifacta (46) Head cases (44) StackOverflow (49) BingQL-Unit (50) BingQL-Other (50)

TDE 72% (173) 91% (42) 82% (36) 63% (31) 96% (48) 32% (16)
TDE -NF 53% (128) 87% (40) 41% (18) 35% (17) 96% (48) 10% (5)
FlashFill 23% (56) 57% (26) 34% (15) 31% (15) 0% (0) 0% (0)
Foofah 3% (7) 9% (4) 2% (1) 4% (2) 0% (0) 0% (0)

DataXFormer-UB 38% (90) 7% (3) 36% (16) 35% (17) 62% (31) 46% (23)
System-A 13% (30) 52% (24) 2% (1) 10% (5) 0% (0) 0% (0)

OpenRefine-Menu8 4% (9) 13% (6) 2% (1) 4% (2) 0% (0) 0% (0)

reasonably well in all sub-categories except BingQL-Other,
where the coverage is 36%. This category contains diverse
transformations (e.g., conversion of color encoding, geo co-
ordinates, etc.) that are di�cult. We find the C# code
crawled from GitHub lack many such functionalities, which
however are often available in other languages (e.g., Python).
Extending TDE with other languages would clearly help.

TDE -NF uses no external functions and can be considered
as a traditional PBE system. Its overall result is reasonable,
but it clearly falls short on cases requiring more complex
transformations that are di�cult to synthesize from scratch.

Both FlashFill and Foofah lag behind TDE/TDE -NF. We
would like to note that while both FlashFill and TDE work
in the same space of row-to-row transformation, which is
exactly what our benchmark is designed to evaluate, the
benchmark is unfavorable to Foofah, as it is more focused
on orthogonal tasks such as table reformatting (e.g., pivot
and un-pivot)10. Unifying Foofah-like capabilities with row-
to-row transformation is interesting future work.

DataXFormer-UB solves 90 out of the 239 test cases (38%),
showing the power of search engines and web services, which
however is limited by the lack of program-synthesis. When
nontrivial synthesis is required (e.g., output date-time in a
specific format, or rounding numbers to a specific precision),
vanilla web services can often fall short. In addition, We find
that certain classes of transformations, such as names and
date-time, are not typically handled by online web services.

System-A can handle 30 (13%) cases. We find System-
A’s approach the most e↵ective when a test case requires
extracting common sub-components from input. Such op-
erations can be more easily predicted and are often solved
correctly. However, there are many cases where selection
alone is insu�cient to fully specify the desired transforma-
tion (e.g., add 3 hours for time-zone conversion, switch the
order of last/first name, etc.), which is an inherent short-
coming of predicting transformations using input only.

OpenRefine solves only 9 test cases (e.g., upper-casing) us-
ing built-in transformations from its menus. This is not en-
tirely surprising, as the types of transformations supported
by menu options are typically limited.

L1-Function-ranking. Recall that TDE uses L1-rankers
(Section 5.1) to select a small set of promising functions from
all functions its indexes, so that it can execute and synthe-
size them at an interactive speed. L1-ranking is a critical
component for performance(the better we rank, the faster
TDE can synthesize relevant programs).

Figure 15 evaluates the e↵ectiveness of our two L1-rankers,
where y-axis shows the percentage of cases that can be
solved using only top-K functions from L1-rankers, and x-
axis shows the number K, which a↵ects response time. As
we can see, the two L1-rankers are complementary, and their
union is substantially better. Overall around 70% cases can
be solved with top-200 functions, and that number goes up

10Despite the di↵erence we evaluate Foofah as requested.

Figure 15: E↵ectiveness of ranking.

to 90% for top-1000 functions (which corresponds to a re-
sponse time of around 5 seconds on our machine).
E�ciency. The average end-to-end latency to produce

the first correct program (including function ranking, ex-
ecution and synthesis) is 3.4 seconds, which is reasonably
interactive. We note that TDE streams back results as they
are found – once a worker finds a program it will show up
on the right-pane for users to inspect.

9.3 Analysis of real usage logs
Since TDE is used by real Excel users, it provides an op-

portunity to understand how TDE performs on real tasks
by analyzing user query logs. We use logs collected over sev-
eral days to obtain 1244 unique transformation tasks (users
have to “opt in” for TDE to log their queries – the default
is opt-out). We manually inspect each query.
For 910 out of the 1244 tasks, TDE returns at least one

synthesized program consistent with all input/output. We
manually inspect users’ input/output examples to under-
stand the intent, and then verify the correctness of the re-
sult. Out of these, 496 tasks (39.8%) are verified to be cor-
rect for the rank-1 program produced (of which 153 invoke at
least one function, and 343 use pure string transformations).
Verifying lower-ranked programs (e.g. top-10) is more labor-
intensive but should lead to a higher success rate.
For the tasks that TDE fails (defined as either having

no programs produced, or the rank-1 program is judged to
be incorrect), we analyze the underlying cause. For 206
tasks (16.5%), users provide only 1 or 2 output examples to
demonstrate the task (we recommend 3), which makes the
tasks di�cult and even ambiguous. For 170 tasks (13.6%),
we find the task itself to be ill-formed, due to bad input
(e.g., users not understanding this feature and provide only
one column of data), input/output in languages other than
English (currently not supported), and tasks with unclear
intent. For about 40 tasks (3%), a mapping relationship is
needed not indexed. The remaining tasks (around 27%) fail
mostly due to missing functionalities in TDE index.
While our initial experience with TDE reveals a number

of areas for improvement, it also shows the promise of TDE
in solving complex transformations using existing domain-
specific logic. Just like Google and Bing were not perfect
in finding relevant documents in their early days, we hope
TDE will continue to improve as a “search engine” for data
transformation, by growing its index and improving its al-
gorithms using logged user interactions.
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Table 3: Precision of benchmark cases, reported as precentage of cases solved (number of cases in parenthesis).
System Total cases (239) FF-GR-Trifacta (46) Head cases (44) StackOverflow (49) BingQL-Unit (50) BingQL-Other (50)

TDE 72% (173) 91% (42) 82% (36) 63% (31) 96% (48) 32% (16)
TDE -NF 53% (128) 87% (40) 41% (18) 35% (17) 96% (48) 10% (5)
FlashFill 23% (56) 57% (26) 34% (15) 31% (15) 0% (0) 0% (0)
Foofah 3% (7) 9% (4) 2% (1) 4% (2) 0% (0) 0% (0)

DataXFormer-UB 38% (90) 7% (3) 36% (16) 35% (17) 62% (31) 46% (23)
System-A 13% (30) 52% (24) 2% (1) 10% (5) 0% (0) 0% (0)

OpenRefine-Menu8 4% (9) 13% (6) 2% (1) 4% (2) 0% (0) 0% (0)

reasonably well in all sub-categories except BingQL-Other,
where the coverage is 36%. This category contains diverse
transformations (e.g., conversion of color encoding, geo co-
ordinates, etc.) that are di�cult. We find the C# code
crawled from GitHub lack many such functionalities, which
however are often available in other languages (e.g., Python).
Extending TDE with other languages would clearly help.

TDE -NF uses no external functions and can be considered
as a traditional PBE system. Its overall result is reasonable,
but it clearly falls short on cases requiring more complex
transformations that are di�cult to synthesize from scratch.

Both FlashFill and Foofah lag behind TDE/TDE -NF. We
would like to note that while both FlashFill and TDE work
in the same space of row-to-row transformation, which is
exactly what our benchmark is designed to evaluate, the
benchmark is unfavorable to Foofah, as it is more focused
on orthogonal tasks such as table reformatting (e.g., pivot
and un-pivot)10. Unifying Foofah-like capabilities with row-
to-row transformation is interesting future work.

DataXFormer-UB solves 90 out of the 239 test cases (38%),
showing the power of search engines and web services, which
however is limited by the lack of program-synthesis. When
nontrivial synthesis is required (e.g., output date-time in a
specific format, or rounding numbers to a specific precision),
vanilla web services can often fall short. In addition, We find
that certain classes of transformations, such as names and
date-time, are not typically handled by online web services.

System-A can handle 30 (13%) cases. We find System-
A’s approach the most e↵ective when a test case requires
extracting common sub-components from input. Such op-
erations can be more easily predicted and are often solved
correctly. However, there are many cases where selection
alone is insu�cient to fully specify the desired transforma-
tion (e.g., add 3 hours for time-zone conversion, switch the
order of last/first name, etc.), which is an inherent short-
coming of predicting transformations using input only.

OpenRefine solves only 9 test cases (e.g., upper-casing) us-
ing built-in transformations from its menus. This is not en-
tirely surprising, as the types of transformations supported
by menu options are typically limited.

L1-Function-ranking. Recall that TDE uses L1-rankers
(Section 5.1) to select a small set of promising functions from
all functions its indexes, so that it can execute and synthe-
size them at an interactive speed. L1-ranking is a critical
component for performance(the better we rank, the faster
TDE can synthesize relevant programs).

Figure 15 evaluates the e↵ectiveness of our two L1-rankers,
where y-axis shows the percentage of cases that can be
solved using only top-K functions from L1-rankers, and x-
axis shows the number K, which a↵ects response time. As
we can see, the two L1-rankers are complementary, and their
union is substantially better. Overall around 70% cases can
be solved with top-200 functions, and that number goes up

10Despite the di↵erence we evaluate Foofah as requested.

Figure 15: E↵ectiveness of ranking.

to 90% for top-1000 functions (which corresponds to a re-
sponse time of around 5 seconds on our machine).
E�ciency. The average end-to-end latency to produce

the first correct program (including function ranking, ex-
ecution and synthesis) is 3.4 seconds, which is reasonably
interactive. We note that TDE streams back results as they
are found – once a worker finds a program it will show up
on the right-pane for users to inspect.

9.3 Analysis of real usage logs
Since TDE is used by real Excel users, it provides an op-

portunity to understand how TDE performs on real tasks
by analyzing user query logs. We use logs collected over sev-
eral days to obtain 1244 unique transformation tasks (users
have to “opt in” for TDE to log their queries – the default
is opt-out). We manually inspect each query.
For 910 out of the 1244 tasks, TDE returns at least one

synthesized program consistent with all input/output. We
manually inspect users’ input/output examples to under-
stand the intent, and then verify the correctness of the re-
sult. Out of these, 496 tasks (39.8%) are verified to be cor-
rect for the rank-1 program produced (of which 153 invoke at
least one function, and 343 use pure string transformations).
Verifying lower-ranked programs (e.g. top-10) is more labor-
intensive but should lead to a higher success rate.
For the tasks that TDE fails (defined as either having

no programs produced, or the rank-1 program is judged to
be incorrect), we analyze the underlying cause. For 206
tasks (16.5%), users provide only 1 or 2 output examples to
demonstrate the task (we recommend 3), which makes the
tasks di�cult and even ambiguous. For 170 tasks (13.6%),
we find the task itself to be ill-formed, due to bad input
(e.g., users not understanding this feature and provide only
one column of data), input/output in languages other than
English (currently not supported), and tasks with unclear
intent. For about 40 tasks (3%), a mapping relationship is
needed not indexed. The remaining tasks (around 27%) fail
mostly due to missing functionalities in TDE index.
While our initial experience with TDE reveals a number

of areas for improvement, it also shows the promise of TDE
in solving complex transformations using existing domain-
specific logic. Just like Google and Bing were not perfect
in finding relevant documents in their early days, we hope
TDE will continue to improve as a “search engine” for data
transformation, by growing its index and improving its al-
gorithms using logged user interactions.
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