
Advanced Data Management (CSCI 490/680)

Data Wrangling

Dr. David Koop

D. Koop, CSCI 680/490, Spring 2021

DataFrame Access and Manipulation
• df.values → 2D NumPy array

• Accessing a column:
- df["<column>"]

- df.<column>

- Both return Series
- Dot syntax only works when the column is a valid identifier

• Assigning to a column:
- df["<column>"] = <scalar> # all cells set to same value

- df["<column>"] = <array> # values set in order

- df["<column>"] = <series> # values set according to match
 # between df and series indexes

2D. Koop, CSCI 680/490, Spring 2021

Indexing
• Same as with NumPy arrays but can use Series's index labels
• Slicing with labels: NumPy is exclusive, Pandas is inclusive!

- s = Series(np.arange(4))
s[0:2] # gives two values like numpy

- s = Series(np.arange(4), index=['a', 'b', 'c', 'd'])
s['a':'c'] # gives three values, not two!

• Obtaining data subsets
- []: get columns by label
- loc: get rows/cols by label
- iloc: get rows/cols by position (integer index)

- For single cells (scalars), also have at and iat

3D. Koop, CSCI 680/490, Spring 2021

Indexing
• s = Series(np.arange(4.), index=[4,3,2,1])

• s[3]

• s.loc[3]

• s.iloc[3]

• s2 = pd.Series(np.arange(4), index=['a','b','c','d'])

• s2[3]

4D. Koop, CSCI 680/490, Spring 2021

Filtering
• Same as with numpy arrays but allows use of column-based criteria

- data[data < 5] = 0

- data[data['three'] > 5]

- data < 5 → boolean data frame, can be used to select specific elements

5D. Koop, CSCI 680/490, Spring 2021

Arithmetic
• Add, subtract, multiply, and divide are element-wise like numpy
• …but use labels to align
• …and missing labels lead to NaN (not a number) values

• also have .add, .subtract, … that allow fill_value argument
• obj3.add(obj4, fill_value=0)

6D. Koop, CSCI 680/490, Spring 2021

When only passing a dict, the index in the resulting Series will have the dict’s keys in
sorted order.

In [22]: states = ['California', 'Ohio', 'Oregon', 'Texas']

In [23]: obj4 = Series(sdata, index=states)

In [24]: obj4
Out[24]:
California NaN
Ohio 35000
Oregon 16000
Texas 71000
dtype: float64

In this case, 3 values found in sdata were placed in the appropriate locations, but since
no value for 'California' was found, it appears as NaN (not a number) which is con-
sidered in pandas to mark missing or NA values. I will use the terms “missing” or “NA”
to refer to missing data. The isnull and notnull functions in pandas should be used to
detect missing data:

In [25]: pd.isnull(obj4) In [26]: pd.notnull(obj4)
Out[25]: Out[26]:
California True California False
Ohio False Ohio True
Oregon False Oregon True
Texas False Texas True
dtype: bool dtype: bool

Series also has these as instance methods:

In [27]: obj4.isnull()
Out[27]:
California True
Ohio False
Oregon False
Texas False
dtype: bool

I discuss working with missing data in more detail later in this chapter.

A critical Series feature for many applications is that it automatically aligns differently-
indexed data in arithmetic operations:

In [28]: obj3 In [29]: obj4
Out[28]: Out[29]:
Ohio 35000 California NaN
Oregon 16000 Ohio 35000
Texas 71000 Oregon 16000
Utah 5000 Texas 71000
dtype: int64 dtype: float64

In [30]: obj3 + obj4
Out[30]:
California NaN
Ohio 70000

110 | Chapter 5: Getting Started with pandas

When only passing a dict, the index in the resulting Series will have the dict’s keys in
sorted order.

In [22]: states = ['California', 'Ohio', 'Oregon', 'Texas']

In [23]: obj4 = Series(sdata, index=states)

In [24]: obj4
Out[24]:
California NaN
Ohio 35000
Oregon 16000
Texas 71000
dtype: float64

In this case, 3 values found in sdata were placed in the appropriate locations, but since
no value for 'California' was found, it appears as NaN (not a number) which is con-
sidered in pandas to mark missing or NA values. I will use the terms “missing” or “NA”
to refer to missing data. The isnull and notnull functions in pandas should be used to
detect missing data:

In [25]: pd.isnull(obj4) In [26]: pd.notnull(obj4)
Out[25]: Out[26]:
California True California False
Ohio False Ohio True
Oregon False Oregon True
Texas False Texas True
dtype: bool dtype: bool

Series also has these as instance methods:

In [27]: obj4.isnull()
Out[27]:
California True
Ohio False
Oregon False
Texas False
dtype: bool

I discuss working with missing data in more detail later in this chapter.

A critical Series feature for many applications is that it automatically aligns differently-
indexed data in arithmetic operations:

In [28]: obj3 In [29]: obj4
Out[28]: Out[29]:
Ohio 35000 California NaN
Oregon 16000 Ohio 35000
Texas 71000 Oregon 16000
Utah 5000 Texas 71000
dtype: int64 dtype: float64

In [30]: obj3 + obj4
Out[30]:
California NaN
Ohio 70000

110 | Chapter 5: Getting Started with pandas

Oregon 32000
Texas 142000
Utah NaN
dtype: float64

Data alignment features are addressed as a separate topic.

Both the Series object itself and its index have a name attribute, which integrates with
other key areas of pandas functionality:

In [31]: obj4.name = 'population'

In [32]: obj4.index.name = 'state'

In [33]: obj4
Out[33]:
state
California NaN
Ohio 35000
Oregon 16000
Texas 71000
Name: population, dtype: float64

A Series’s index can be altered in place by assignment:

In [34]: obj.index = ['Bob', 'Steve', 'Jeff', 'Ryan']

In [35]: obj
Out[35]:
Bob 4
Steve 7
Jeff -5
Ryan 3
dtype: int64

DataFrame
A DataFrame represents a tabular, spreadsheet-like data structure containing an or-
dered collection of columns, each of which can be a different value type (numeric,
string, boolean, etc.). The DataFrame has both a row and column index; it can be
thought of as a dict of Series (one for all sharing the same index). Compared with other
such DataFrame-like structures you may have used before (like R’s data.frame), row-
oriented and column-oriented operations in DataFrame are treated roughly symmet-
rically. Under the hood, the data is stored as one or more two-dimensional blocks rather
than a list, dict, or some other collection of one-dimensional arrays. The exact details
of DataFrame’s internals are far outside the scope of this book.

While DataFrame stores the data internally in a two-dimensional for-
mat, you can easily represent much higher-dimensional data in a tabular
format using hierarchical indexing, a subject of a later section and a key
ingredient in many of the more advanced data-handling features in pan-
das.

Introduction to pandas Data Structures | 111

Arithmetic between DataFrames and Series
• Broadcasting: e.g. apply single row operation across all rows
• Example:

• To broadcast over columns, use methods (.add, …)

7D. Koop, CSCI 680/490, Spring 2021

Table 5-7. Flexible arithmetic methods

Method Description

add Method for addition (+)

sub Method for subtraction (-)

div Method for division (/)

mul Method for multiplication (*)

Operations between DataFrame and Series
As with NumPy arrays, arithmetic between DataFrame and Series is well-defined. First,
as a motivating example, consider the difference between a 2D array and one of its rows:

In [142]: arr = np.arange(12.).reshape((3, 4))

In [143]: arr
Out[143]:
array([[0., 1., 2., 3.],
 [4., 5., 6., 7.],
 [8., 9., 10., 11.]])

In [144]: arr[0]
Out[144]: array([0., 1., 2., 3.])

In [145]: arr - arr[0]
Out[145]:
array([[0., 0., 0., 0.],
 [4., 4., 4., 4.],
 [8., 8., 8., 8.]])

This is referred to as broadcasting and is explained in more detail in Chapter 12. Op-
erations between a DataFrame and a Series are similar:

In [146]: frame = DataFrame(np.arange(12.).reshape((4, 3)), columns=list('bde'),
 : index=['Utah', 'Ohio', 'Texas', 'Oregon'])

In [147]: series = frame.ix[0]

In [148]: frame In [149]: series
Out[148]: Out[149]:
 b d e b 0
Utah 0 1 2 d 1
Ohio 3 4 5 e 2
Texas 6 7 8 Name: Utah, dtype: float64
Oregon 9 10 11

By default, arithmetic between DataFrame and Series matches the index of the Series
on the DataFrame's columns, broadcasting down the rows:

In [150]: frame - series
Out[150]:
 b d e
Utah 0 0 0

Essential Functionality | 127

Table 5-7. Flexible arithmetic methods

Method Description

add Method for addition (+)

sub Method for subtraction (-)

div Method for division (/)

mul Method for multiplication (*)

Operations between DataFrame and Series
As with NumPy arrays, arithmetic between DataFrame and Series is well-defined. First,
as a motivating example, consider the difference between a 2D array and one of its rows:

In [142]: arr = np.arange(12.).reshape((3, 4))

In [143]: arr
Out[143]:
array([[0., 1., 2., 3.],
 [4., 5., 6., 7.],
 [8., 9., 10., 11.]])

In [144]: arr[0]
Out[144]: array([0., 1., 2., 3.])

In [145]: arr - arr[0]
Out[145]:
array([[0., 0., 0., 0.],
 [4., 4., 4., 4.],
 [8., 8., 8., 8.]])

This is referred to as broadcasting and is explained in more detail in Chapter 12. Op-
erations between a DataFrame and a Series are similar:

In [146]: frame = DataFrame(np.arange(12.).reshape((4, 3)), columns=list('bde'),
 : index=['Utah', 'Ohio', 'Texas', 'Oregon'])

In [147]: series = frame.ix[0]

In [148]: frame In [149]: series
Out[148]: Out[149]:
 b d e b 0
Utah 0 1 2 d 1
Ohio 3 4 5 e 2
Texas 6 7 8 Name: Utah, dtype: float64
Oregon 9 10 11

By default, arithmetic between DataFrame and Series matches the index of the Series
on the DataFrame's columns, broadcasting down the rows:

In [150]: frame - series
Out[150]:
 b d e
Utah 0 0 0

Essential Functionality | 127

Ohio 3 3 3
Texas 6 6 6
Oregon 9 9 9

If an index value is not found in either the DataFrame’s columns or the Series’s index,
the objects will be reindexed to form the union:

In [151]: series2 = Series(range(3), index=['b', 'e', 'f'])

In [152]: frame + series2
Out[152]:
 b d e f
Utah 0 NaN 3 NaN
Ohio 3 NaN 6 NaN
Texas 6 NaN 9 NaN
Oregon 9 NaN 12 NaN

If you want to instead broadcast over the columns, matching on the rows, you have to
use one of the arithmetic methods. For example:

In [153]: series3 = frame['d']

In [154]: frame In [155]: series3
Out[154]: Out[155]:
 b d e Utah 1
Utah 0 1 2 Ohio 4
Ohio 3 4 5 Texas 7
Texas 6 7 8 Oregon 10
Oregon 9 10 11 Name: d, dtype: float64

In [156]: frame.sub(series3, axis=0)
Out[156]:
 b d e
Utah -1 0 1
Ohio -1 0 1
Texas -1 0 1
Oregon -1 0 1

The axis number that you pass is the axis to match on. In this case we mean to match
on the DataFrame’s row index and broadcast across.

Function application and mapping
NumPy ufuncs (element-wise array methods) work fine with pandas objects:

In [157]: frame = DataFrame(np.random.randn(4, 3), columns=list('bde'),
 : index=['Utah', 'Ohio', 'Texas', 'Oregon'])

In [158]: frame In [159]: np.abs(frame)
Out[158]: Out[159]:
 b d e b d e
Utah -0.204708 0.478943 -0.519439 Utah 0.204708 0.478943 0.519439
Ohio -0.555730 1.965781 1.393406 Ohio 0.555730 1.965781 1.393406
Texas 0.092908 0.281746 0.769023 Texas 0.092908 0.281746 0.769023
Oregon 1.246435 1.007189 -1.296221 Oregon 1.246435 1.007189 1.296221

128 | Chapter 5: Getting Started with pandas

Ohio 3 3 3
Texas 6 6 6
Oregon 9 9 9

If an index value is not found in either the DataFrame’s columns or the Series’s index,
the objects will be reindexed to form the union:

In [151]: series2 = Series(range(3), index=['b', 'e', 'f'])

In [152]: frame + series2
Out[152]:
 b d e f
Utah 0 NaN 3 NaN
Ohio 3 NaN 6 NaN
Texas 6 NaN 9 NaN
Oregon 9 NaN 12 NaN

If you want to instead broadcast over the columns, matching on the rows, you have to
use one of the arithmetic methods. For example:

In [153]: series3 = frame['d']

In [154]: frame In [155]: series3
Out[154]: Out[155]:
 b d e Utah 1
Utah 0 1 2 Ohio 4
Ohio 3 4 5 Texas 7
Texas 6 7 8 Oregon 10
Oregon 9 10 11 Name: d, dtype: float64

In [156]: frame.sub(series3, axis=0)
Out[156]:
 b d e
Utah -1 0 1
Ohio -1 0 1
Texas -1 0 1
Oregon -1 0 1

The axis number that you pass is the axis to match on. In this case we mean to match
on the DataFrame’s row index and broadcast across.

Function application and mapping
NumPy ufuncs (element-wise array methods) work fine with pandas objects:

In [157]: frame = DataFrame(np.random.randn(4, 3), columns=list('bde'),
 : index=['Utah', 'Ohio', 'Texas', 'Oregon'])

In [158]: frame In [159]: np.abs(frame)
Out[158]: Out[159]:
 b d e b d e
Utah -0.204708 0.478943 -0.519439 Utah 0.204708 0.478943 0.519439
Ohio -0.555730 1.965781 1.393406 Ohio 0.555730 1.965781 1.393406
Texas 0.092908 0.281746 0.769023 Texas 0.092908 0.281746 0.769023
Oregon 1.246435 1.007189 -1.296221 Oregon 1.246435 1.007189 1.296221

128 | Chapter 5: Getting Started with pandas

Ohio 3 3 3
Texas 6 6 6
Oregon 9 9 9

If an index value is not found in either the DataFrame’s columns or the Series’s index,
the objects will be reindexed to form the union:

In [151]: series2 = Series(range(3), index=['b', 'e', 'f'])

In [152]: frame + series2
Out[152]:
 b d e f
Utah 0 NaN 3 NaN
Ohio 3 NaN 6 NaN
Texas 6 NaN 9 NaN
Oregon 9 NaN 12 NaN

If you want to instead broadcast over the columns, matching on the rows, you have to
use one of the arithmetic methods. For example:

In [153]: series3 = frame['d']

In [154]: frame In [155]: series3
Out[154]: Out[155]:
 b d e Utah 1
Utah 0 1 2 Ohio 4
Ohio 3 4 5 Texas 7
Texas 6 7 8 Oregon 10
Oregon 9 10 11 Name: d, dtype: float64

In [156]: frame.sub(series3, axis=0)
Out[156]:
 b d e
Utah -1 0 1
Ohio -1 0 1
Texas -1 0 1
Oregon -1 0 1

The axis number that you pass is the axis to match on. In this case we mean to match
on the DataFrame’s row index and broadcast across.

Function application and mapping
NumPy ufuncs (element-wise array methods) work fine with pandas objects:

In [157]: frame = DataFrame(np.random.randn(4, 3), columns=list('bde'),
 : index=['Utah', 'Ohio', 'Texas', 'Oregon'])

In [158]: frame In [159]: np.abs(frame)
Out[158]: Out[159]:
 b d e b d e
Utah -0.204708 0.478943 -0.519439 Utah 0.204708 0.478943 0.519439
Ohio -0.555730 1.965781 1.393406 Ohio 0.555730 1.965781 1.393406
Texas 0.092908 0.281746 0.769023 Texas 0.092908 0.281746 0.769023
Oregon 1.246435 1.007189 -1.296221 Oregon 1.246435 1.007189 1.296221

128 | Chapter 5: Getting Started with pandas

Sorting by Index (sort_index)
• Sort by index (lexicographical):

• DataFrame sorting:

• axis controls sort rows (0) vs. sort columns (1)
8D. Koop, CSCI 680/490, Spring 2021

Sorting and ranking
Sorting a data set by some criterion is another important built-in operation. To sort
lexicographically by row or column index, use the sort_index method, which returns
a new, sorted object:

In [168]: obj = Series(range(4), index=['d', 'a', 'b', 'c'])

In [169]: obj.sort_index()
Out[169]:
a 1
b 2
c 3
d 0
dtype: int64

With a DataFrame, you can sort by index on either axis:

In [170]: frame = DataFrame(np.arange(8).reshape((2, 4)), index=['three', 'one'],
 : columns=['d', 'a', 'b', 'c'])

In [171]: frame.sort_index() In [172]: frame.sort_index(axis=1)
Out[171]: Out[172]:
 d a b c a b c d
one 4 5 6 7 three 1 2 3 0
three 0 1 2 3 one 5 6 7 4

The data is sorted in ascending order by default, but can be sorted in descending order,
too:

In [173]: frame.sort_index(axis=1, ascending=False)
Out[173]:
 d c b a
three 0 3 2 1
one 4 7 6 5

To sort a Series by its values, use its order method:

In [174]: obj = Series([4, 7, -3, 2])

In [175]: obj.order()
Out[175]:
2 -3
3 2
0 4
1 7
dtype: int64

Any missing values are sorted to the end of the Series by default:

In [176]: obj = Series([4, np.nan, 7, np.nan, -3, 2])

In [177]: obj.order()
Out[177]:
4 -3
5 2
0 4

130 | Chapter 5: Getting Started with pandas

Sorting and ranking
Sorting a data set by some criterion is another important built-in operation. To sort
lexicographically by row or column index, use the sort_index method, which returns
a new, sorted object:

In [168]: obj = Series(range(4), index=['d', 'a', 'b', 'c'])

In [169]: obj.sort_index()
Out[169]:
a 1
b 2
c 3
d 0
dtype: int64

With a DataFrame, you can sort by index on either axis:

In [170]: frame = DataFrame(np.arange(8).reshape((2, 4)), index=['three', 'one'],
 : columns=['d', 'a', 'b', 'c'])

In [171]: frame.sort_index() In [172]: frame.sort_index(axis=1)
Out[171]: Out[172]:
 d a b c a b c d
one 4 5 6 7 three 1 2 3 0
three 0 1 2 3 one 5 6 7 4

The data is sorted in ascending order by default, but can be sorted in descending order,
too:

In [173]: frame.sort_index(axis=1, ascending=False)
Out[173]:
 d c b a
three 0 3 2 1
one 4 7 6 5

To sort a Series by its values, use its order method:

In [174]: obj = Series([4, 7, -3, 2])

In [175]: obj.order()
Out[175]:
2 -3
3 2
0 4
1 7
dtype: int64

Any missing values are sorted to the end of the Series by default:

In [176]: obj = Series([4, np.nan, 7, np.nan, -3, 2])

In [177]: obj.order()
Out[177]:
4 -3
5 2
0 4

130 | Chapter 5: Getting Started with pandas

Sorting by Value (sort_values)
• sort_values method on series

- obj.sort_values()

• Missing values (NaN) are at the end by default (na_position controls, can be
first)

• sort_values on DataFrame:
- df.sort_values(<list-of-columns>)

- df.sort_values(by=['a', 'b'])

- Can also use axis=1 to sort by index labels

9D. Koop, CSCI 680/490, Spring 2021

Assignment 2
• Same data as A1, different version of the dataset
• Dealing with the raw data now
• Same questions as A1, but use pandas
• CS680 students + some questions about problems with the data

10D. Koop, CSCI 680/490, Spring 2021

http://faculty.cs.niu.edu/~dakoop/cs680-2021sp/assignment2.html

Ranking
• rank() method:

• ascending and method arguments:

• Works on data frames, too

11D. Koop, CSCI 680/490, Spring 2021

2 7
1 NaN
3 NaN
dtype: float64

On DataFrame, you may want to sort by the values in one or more columns. To do so,
pass one or more column names to the by option:

In [178]: frame = DataFrame({'b': [4, 7, -3, 2], 'a': [0, 1, 0, 1]})

In [179]: frame In [180]: frame.sort_index(by='b')
Out[179]: Out[180]:
 a b a b
0 0 4 2 0 -3
1 1 7 3 1 2
2 0 -3 0 0 4
3 1 2 1 1 7

To sort by multiple columns, pass a list of names:

In [181]: frame.sort_index(by=['a', 'b'])
Out[181]:
 a b
2 0 -3
0 0 4
3 1 2
1 1 7

Ranking is closely related to sorting, assigning ranks from one through the number of
valid data points in an array. It is similar to the indirect sort indices produced by
numpy.argsort, except that ties are broken according to a rule. The rank methods for
Series and DataFrame are the place to look; by default rank breaks ties by assigning
each group the mean rank:

In [182]: obj = Series([7, -5, 7, 4, 2, 0, 4])

In [183]: obj.rank()
Out[183]:
0 6.5
1 1.0
2 6.5
3 4.5
4 3.0
5 2.0
6 4.5
dtype: float64

Ranks can also be assigned according to the order they’re observed in the data:

In [184]: obj.rank(method='first')
Out[184]:
0 6
1 1
2 7
3 4
4 3

Essential Functionality | 131

5 2
6 5
dtype: float64

Naturally, you can rank in descending order, too:

In [185]: obj.rank(ascending=False, method='max')
Out[185]:
0 2
1 7
2 2
3 4
4 5
5 6
6 4
dtype: float64

See Table 5-8 for a list of tie-breaking methods available. DataFrame can compute ranks
over the rows or the columns:

In [186]: frame = DataFrame({'b': [4.3, 7, -3, 2], 'a': [0, 1, 0, 1],
 : 'c': [-2, 5, 8, -2.5]})

In [187]: frame In [188]: frame.rank(axis=1)
Out[187]: Out[188]:
 a b c a b c
0 0 4.3 -2.0 0 2 3 1
1 1 7.0 5.0 1 1 3 2
2 0 -3.0 8.0 2 2 1 3
3 1 2.0 -2.5 3 2 3 1

Table 5-8. Tie-breaking methods with rank

Method Description

'average' Default: assign the average rank to each entry in the equal group.

'min' Use the minimum rank for the whole group.

'max' Use the maximum rank for the whole group.

'first' Assign ranks in the order the values appear in the data.

Axis indexes with duplicate values
Up until now all of the examples I’ve showed you have had unique axis labels (index
values). While many pandas functions (like reindex) require that the labels be unique,
it’s not mandatory. Let’s consider a small Series with duplicate indices:

In [189]: obj = Series(range(5), index=['a', 'a', 'b', 'b', 'c'])

In [190]: obj
Out[190]:
a 0
a 1
b 2
b 3

132 | Chapter 5: Getting Started with pandas

Statistics
• sum: column sums (axis=1 gives sums over rows)
• missing values are excluded unless the whole slice is NaN
• idxmax, idxmin are like argmax, argmin (return index)
• describe: shortcut for easy stats!

12D. Koop, CSCI 680/490, Spring 2021

 one two
a 1.40 NaN
b 8.50 -4.5
c NaN NaN
d 9.25 -5.8

Another type of method is neither a reduction nor an accumulation. describe is one
such example, producing multiple summary statistics in one shot:

In [204]: df.describe()
Out[204]:
 one two
count 3.000000 2.000000
mean 3.083333 -2.900000
std 3.493685 2.262742
min 0.750000 -4.500000
25% 1.075000 -3.700000
50% 1.400000 -2.900000
75% 4.250000 -2.100000
max 7.100000 -1.300000

On non-numeric data, describe produces alternate summary statistics:

In [205]: obj = Series(['a', 'a', 'b', 'c'] * 4)

In [206]: obj.describe()
Out[206]:
count 16
unique 3
top a
freq 8
dtype: object

See Table 5-10 for a full list of summary statistics and related methods.

Table 5-10. Descriptive and summary statistics

Method Description

count Number of non-NA values

describe Compute set of summary statistics for Series or each DataFrame column

min, max Compute minimum and maximum values

argmin, argmax Compute index locations (integers) at which minimum or maximum value obtained, respectively

idxmin, idxmax Compute index values at which minimum or maximum value obtained, respectively

quantile Compute sample quantile ranging from 0 to 1

sum Sum of values

mean Mean of values

median Arithmetic median (50% quantile) of values

mad Mean absolute deviation from mean value

var Sample variance of values

std Sample standard deviation of values

Summarizing and Computing Descriptive Statistics | 135

 one two
a 1.40 NaN
b 8.50 -4.5
c NaN NaN
d 9.25 -5.8

Another type of method is neither a reduction nor an accumulation. describe is one
such example, producing multiple summary statistics in one shot:

In [204]: df.describe()
Out[204]:
 one two
count 3.000000 2.000000
mean 3.083333 -2.900000
std 3.493685 2.262742
min 0.750000 -4.500000
25% 1.075000 -3.700000
50% 1.400000 -2.900000
75% 4.250000 -2.100000
max 7.100000 -1.300000

On non-numeric data, describe produces alternate summary statistics:

In [205]: obj = Series(['a', 'a', 'b', 'c'] * 4)

In [206]: obj.describe()
Out[206]:
count 16
unique 3
top a
freq 8
dtype: object

See Table 5-10 for a full list of summary statistics and related methods.

Table 5-10. Descriptive and summary statistics

Method Description

count Number of non-NA values

describe Compute set of summary statistics for Series or each DataFrame column

min, max Compute minimum and maximum values

argmin, argmax Compute index locations (integers) at which minimum or maximum value obtained, respectively

idxmin, idxmax Compute index values at which minimum or maximum value obtained, respectively

quantile Compute sample quantile ranging from 0 to 1

sum Sum of values

mean Mean of values

median Arithmetic median (50% quantile) of values

mad Mean absolute deviation from mean value

var Sample variance of values

std Sample standard deviation of values

Summarizing and Computing Descriptive Statistics | 135

Statistics

13

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 680/490, Spring 2021

 one two
a 1.40 NaN
b 8.50 -4.5
c NaN NaN
d 9.25 -5.8

Another type of method is neither a reduction nor an accumulation. describe is one
such example, producing multiple summary statistics in one shot:

In [204]: df.describe()
Out[204]:
 one two
count 3.000000 2.000000
mean 3.083333 -2.900000
std 3.493685 2.262742
min 0.750000 -4.500000
25% 1.075000 -3.700000
50% 1.400000 -2.900000
75% 4.250000 -2.100000
max 7.100000 -1.300000

On non-numeric data, describe produces alternate summary statistics:

In [205]: obj = Series(['a', 'a', 'b', 'c'] * 4)

In [206]: obj.describe()
Out[206]:
count 16
unique 3
top a
freq 8
dtype: object

See Table 5-10 for a full list of summary statistics and related methods.

Table 5-10. Descriptive and summary statistics

Method Description

count Number of non-NA values

describe Compute set of summary statistics for Series or each DataFrame column

min, max Compute minimum and maximum values

argmin, argmax Compute index locations (integers) at which minimum or maximum value obtained, respectively

idxmin, idxmax Compute index values at which minimum or maximum value obtained, respectively

quantile Compute sample quantile ranging from 0 to 1

sum Sum of values

mean Mean of values

median Arithmetic median (50% quantile) of values

mad Mean absolute deviation from mean value

var Sample variance of values

std Sample standard deviation of values

Summarizing and Computing Descriptive Statistics | 135

Method Description

skew Sample skewness (3rd moment) of values

kurt Sample kurtosis (4th moment) of values

cumsum Cumulative sum of values

cummin, cummax Cumulative minimum or maximum of values, respectively

cumprod Cumulative product of values

diff Compute 1st arithmetic difference (useful for time series)

pct_change Compute percent changes

Correlation and Covariance
Some summary statistics, like correlation and covariance, are computed from pairs of
arguments. Let’s consider some DataFrames of stock prices and volumes obtained from
Yahoo! Finance:

import pandas.io.data as web

all_data = {}
for ticker in ['AAPL', 'IBM', 'MSFT', 'GOOG']:
 all_data[ticker] = web.get_data_yahoo(ticker)

price = DataFrame({tic: data['Adj Close']
 for tic, data in all_data.iteritems()})
volume = DataFrame({tic: data['Volume']
 for tic, data in all_data.iteritems()})

I now compute percent changes of the prices:

In [208]: returns = price.pct_change()

In [209]: returns.tail()
Out[209]:
 AAPL GOOG IBM MSFT
Date
2014-07-07 0.020632 -0.004241 -0.002599 0.004545
2014-07-08 -0.006460 -0.019167 -0.004361 -0.005001
2014-07-09 0.000420 0.008738 0.006410 -0.002633
2014-07-10 -0.003669 -0.008645 -0.003821 0.000480
2014-07-11 0.001894 0.014148 0.001598 0.009595

The corr method of Series computes the correlation of the overlapping, non-NA,
aligned-by-index values in two Series. Relatedly, cov computes the covariance:

In [210]: returns.MSFT.corr(returns.IBM)
Out[210]: 0.51360438136345077

In [211]: returns.MSFT.cov(returns.IBM)
Out[211]: 8.4825099973219876e-05

DataFrame’s corr and cov methods, on the other hand, return a full correlation or
covariance matrix as a DataFrame, respectively:

136 | Chapter 5: Getting Started with pandas

Unique Values and Value Counts
• unique returns an array with only the unique values (no index)

- s = Series(['c','a','d','a','a','b','b','c','c'])
s.unique() # array(['c', 'a', 'd', 'b'])

• Data Frames use drop_duplicates
• value_counts returns a Series with index frequencies:

- s.value_counts() # Series({'c': 3,'a': 3,'b': 2,'d': 1})

14D. Koop, CSCI 680/490, Spring 2021

1 False
2 True
3 False
dtype: bool

I do not claim that pandas’s NA representation is optimal, but it is simple and reason-
ably consistent. It’s the best solution, with good all-around performance characteristics
and a simple API, that I could concoct in the absence of a true NA data type or bit
pattern in NumPy’s data types. Ongoing development work in NumPy may change this
in the future.

Table 5-12. NA handling methods

Argument Description

dropna Filter axis labels based on whether values for each label have missing data, with varying thresholds for how much
missing data to tolerate.

fillna Fill in missing data with some value or using an interpolation method such as 'ffill' or 'bfill'.

isnull Return like-type object containing boolean values indicating which values are missing / NA.

notnull Negation of isnull.

Filtering Out Missing Data
You have a number of options for filtering out missing data. While doing it by hand is
always an option, dropna can be very helpful. On a Series, it returns the Series with only
the non-null data and index values:

In [233]: from numpy import nan as NA

In [234]: data = Series([1, NA, 3.5, NA, 7])

In [235]: data.dropna()
Out[235]:
0 1.0
2 3.5
4 7.0
dtype: float64

Naturally, you could have computed this yourself by boolean indexing:

In [236]: data[data.notnull()]
Out[236]:
0 1.0
2 3.5
4 7.0
dtype: float64

With DataFrame objects, these are a bit more complex. You may want to drop rows
or columns which are all NA or just those containing any NAs. dropna by default drops
any row containing a missing value:

140 | Chapter 5: Getting Started with pandas

Handling Missing Data

15

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 680/490, Spring 2021

16

Data Formats

D. Koop, CSCI 680/490, Spring 2021

Comma-separated values (CSV) Format
• Comma is a field separator, newlines denote records

- a,b,c,d,message
1,2,3,4,hello
5,6,7,8,world
9,10,11,12,foo

• May have a header (a,b,c,d,message), but not required
• No type information: we do not know what the columns are (numbers,

strings, floating point, etc.)
- Default: just keep everything as a string
- Type inference: Figure out the type to make each column based on values

• What about commas in a value? → double quotes

17D. Koop, CSCI 680/490, Spring 2021

Delimiter-separated Values
• Comma is a delimiter, specifies boundary between fields
• Could be a tab, pipe (|), or perhaps spaces instead
• All of these follow similar styles to CSV

18D. Koop, CSCI 680/490, Spring 2021

Fixed-width Format
• Old school
• Each field gets a certain number of spots in the file
• Example:

- id8141 360.242940 149.910199 11950.7
id1594 444.953632 166.985655 11788.4
id1849 364.136849 183.628767 11806.2
id1230 413.836124 184.375703 11916.8
id1948 502.953953 173.237159 12468.3

• Specify exact character ranges for each field, e.g. 0-6 is the id

19D. Koop, CSCI 680/490, Spring 2021

20

Reading & Writing Data

D. Koop, CSCI 680/490, Spring 2021

Reading Data in Python
• Use the open() method to open a file for reading

- f = open('huck-finn.txt')

• Usually, add an 'r' as the second parameter to indicate "read"
• Can iterate through the file (think of the file as a collection of lines):

- f = open('huck-finn.txt', 'r')
for line in f:
 if 'Huckleberry' in line:
 print(line.strip())

• Using line.strip() because the read includes the newline, and print
writes a newline so we would have double-spaced text

• Closing the file: f.close()

21D. Koop, CSCI 680/490, Spring 2021

With Statement: Improved File Handling
• With statement does "enter" and "exit" handling (similar to the finally clause):
• In the previous example, we need to remember to call f.close()
• Using a with statement, this is done automatically:

- with open('huck-finn.txt', 'r') as f:
 for line in f:
 if 'Huckleberry' in line:
 print(line.strip())

• This is more important for writing files!
- with open('output.txt', 'w') as f:
 for k, v in counts.items():
 f.write(k + ': ' + v + '\n')

• Without with, we need f.close()

22D. Koop, CSCI 680/490, Spring 2021

Reading & Writing Data in Pandas

23

[https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html]
D. Koop, CSCI 680/490, Spring 2021

Format
Type

Data Description Reader Writer
text CSV read_csv to_csv
text Fixed-Width Text File read_fwf
text JSON read_json to_json
text HTML read_html to_html
text Local clipboard read_clipboard to_clipboard

MS Excel read_excel to_excel
binary OpenDocument read_excel
binary HDF5 Format read_hdf to_hdf
binary Feather Format read_feather to_feather
binary Parquet Format read_parquet to_parquet
binary ORC Format read_orc
binary Msgpack read_msgpack to_msgpack
binary Stata read_stata to_stata
binary SAS read_sas
binary SPSS read_spss
binary Python Pickle Format read_pickle to_pickle
SQL SQL read_sql to_sql
SQL Google BigQuery read_gbq to_gbq

https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html
https://en.wikipedia.org/wiki/Comma-separated_values
https://www.json.org/
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/Microsoft_Excel
http://www.opendocumentformat.org/
https://support.hdfgroup.org/HDF5/whatishdf5.html
https://github.com/wesm/feather
https://parquet.apache.org/
https://https//orc.apache.org/
https://msgpack.org/index.html
https://en.wikipedia.org/wiki/Stata
https://en.wikipedia.org/wiki/SAS_(software)
https://en.wikipedia.org/wiki/SPSS
https://docs.python.org/3/library/pickle.html
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/BigQuery

Types of arguments for readers
• Indexing: choose a column to index the data, get column names from file or user
• Type inference and data conversion: automatic or user-defined
• Datetime parsing: can combine information from multiple columns
• Iterating: deal with very large files
• Unclean Data: skip rows (e.g. comments) or deal with formatted numbers

(e.g. 1,000,345)

24D. Koop, CSCI 680/490, Spring 2021

read_csv
• Convenient method to read csv files
• Lots of different options to help get data into the desired format
• Basic: df = pd.read_csv(fname)
• Parameters:

- path: where to read the data from
- sep (or delimiter): the delimiter (',', ' ', '\t', '\s+')
- header: if None, no header
- index_col: which column to use as the row index
- names: list of header names (e.g. if the file has no header)
- skiprows: number of list of lines to skip

25D. Koop, CSCI 680/490, Spring 2021

Argument Description
skiprows Number of rows at beginning of !le to ignore or list of row numbers (starting from 0) to skip.
na_values Sequence of values to replace with NA.
comment Character(s) to split comments o" the end of lines.
parse_dates Attempt to parse data to datetime; False by default. If True, will attempt to parse all columns.

Otherwise can specify a list of column numbers or name to parse. If element of list is tuple or list, will
combine multiple columns together and parse to date (e.g., if date/time split across two columns).

keep_date_col If joining columns to parse date, keep the joined columns; False by default.
converters Dict containing column number of name mapping to functions (e.g., {'foo': f} would apply the

function f to all values in the 'foo' column).
dayfirst When parsing potentially ambiguous dates, treat as international format (e.g., 7/6/2012 -> June 7,

2012); False by default.
date_parser Function to use to parse dates.
nrows Number of rows to read from beginning of !le.
iterator Return a TextParser object for reading !le piecemeal.
chunksize For iteration, size of !le chunks.
skip_footer Number of lines to ignore at end of !le.
verbose Print various parser output information, like the number of missing values placed in non-numeric

columns.
encoding Text encoding for Unicode (e.g., 'utf-8' for UTF-8 encoded text).
squeeze If the parsed data only contains one column, return a Series.
thousands Separator for thousands (e.g., ',' or '.').

Reading Text Files in Pieces
When processing very large files or figuring out the right set of arguments to cor‐
rectly process a large file, you may only want to read in a small piece of a file or iterate
through smaller chunks of the file.

Before we look at a large file, we make the pandas display settings more compact:
In [33]: pd.options.display.max_rows = 10

Now we have:
In [34]: result = pd.read_csv('examples/ex6.csv')

In [35]: result
Out[35]:
 one two three four key
0 0.467976 -0.038649 -0.295344 -1.824726 L
1 -0.358893 1.404453 0.704965 -0.200638 B
2 -0.501840 0.659254 -0.421691 -0.057688 G
3 0.204886 1.074134 1.388361 -0.982404 R
4 0.354628 -0.133116 0.283763 -0.837063 Q
...
9995 2.311896 -0.417070 -1.409599 -0.515821 L

6.1 Reading and Writing Data in Text Format | 173

More read_csv/read_tables arguments

26

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 680/490, Spring 2021

Chunked Reads
• With very large files, we may not want to read the entire file
• Why?
- Time
- Want to understand part of data before processing all of it

• Reading only a few rows:
- df = pd.read_csv('example.csv', nrows=5)

• Reading chunks:
- Get an iterator that returns the next chunk of the file
- chunker = pd.read_csv('example.csv', chunksize=1000)

- for piece in chunker:
 process_data(piece)

27D. Koop, CSCI 680/490, Spring 2021

Python csv module
• Also, can read csv files outside of pandas using csv module

- import csv
with open('persons_of_concern.csv', 'r') as f:
 for i in range(3):
 next(f)
 reader = csv.reader(f)
 records = [r for r in reader] # r is a list

• or
- import csv
with open('persons_of_concern.csv', 'r') as f:
 for i in range(3):
 next(f)
 reader = csv.DictReader(f)
 records = [r for r in reader] # r is a dict

28D. Koop, CSCI 680/490, Spring 2021

Writing CSV data with pandas
• Basic: df.to_csv(<fname>)
• Change delimiter with sep kwarg:

- df.to_csv('example.dsv', sep='|')

• Change missing value representation
- df.to_csv('example.dsv', na_rep='NULL')

• Don't write row or column labels:
- df.to_csv('example.csv', index=False, header=False)

• Series may also be written to csv

29D. Koop, CSCI 680/490, Spring 2021

eXtensible Markup Language (XML)
• Older, self-describing format with nesting; each field has tags
• Example:

- <INDICATOR>
 <INDICATOR_SEQ>373889</INDICATOR_SEQ>
 <PARENT_SEQ></PARENT_SEQ>
 <AGENCY_NAME>Metro-North Railroad</AGENCY_NAME>
 <INDICATOR_NAME>Escalator Avail.</INDICATOR_NAME>
 <PERIOD_YEAR>2011</PERIOD_YEAR>
 <PERIOD_MONTH>12</PERIOD_MONTH>
 <CATEGORY>Service Indicators</CATEGORY>
 <FREQUENCY>M</FREQUENCY>
 <YTD_TARGET>97.00</YTD_TARGET>
</INDICATOR>

• Top element is the root
30D. Koop, CSCI 680/490, Spring 2021

XML
• No built-in method
• Use lxml library (also can use ElementTree)
• from lxml import objectify
path = 'datasets/mta_perf/Performance_MNR.xml'
parsed = objectify.parse(open(path))
root = parsed.getroot()
data = []
skip_fields = ['PARENT_SEQ', 'INDICATOR_SEQ',
 'DESIRED_CHANGE','DECIMAL_PLACES']
for elt in root.INDICATOR:
 el_data = {}
 for child in elt.getchildren():
 if child.tag in skip_fields:
 continue
 el_data[child.tag] = child.pyval
 data.append(el_data)
perf = pd.DataFrame(data)

31

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 680/490, Spring 2021

JavaScript Object Notation (JSON)
• A format for web data
• Looks very similar to python dictionaries and lists
• Example:

- {"name": "Wes",
 "places_lived": ["United States", "Spain", "Germany"],
 "pet": null,
 "siblings": [{"name": "Scott", "age": 25, "pet": "Zuko"},
 {"name": "Katie", "age": 33, "pet": "Cisco"}] }

• Only contains literals (no variables) but allows null
• Values: strings, arrays, dictionaries, numbers, booleans, or null
- Dictionary keys must be strings
- Quotation marks help differentiate string or numeric values

32D. Koop, CSCI 680/490, Spring 2021

What is the problem with reading this data?
• [{"name": "Wes",
 "places_lived": ["United States", "Spain", "Germany"],
 "pet": null,
 "siblings": [
 {"name": "Scott", "age": 25, "pet": "Zuko"},
 {"name": "Katie", "age": 33, "pet": "Cisco"}]
 },
 {"name": "Nia",
 "address": {"street": "143 Main",
 "city": "New York",
 "state": "New York"},
 "pet": "Fido",
 "siblings": [
 {"name": "Jacques", "age": 15, "pet": "Fido"}]
 },
…
]

33D. Koop, CSCI 680/490, Spring 2021

Reading JSON data
• Python has a built-in json module

- with open('example.json') as f:
 data = json.load(f)

- Can also load/dump to strings:
• json.loads, json.dumps

• Pandas has read_json, to_json methods

34D. Koop, CSCI 680/490, Spring 2021

JSON Orientation
• Indication of expected JSON string format. Compatible JSON strings can be

produced by to_json() with a corresponding orient value. The set of
possible orients is:

- split: dict like {index -> [index],
 columns -> [columns],
 data -> [values]}

- records: list like [{column -> value}, ... , {column -> value}]
- index: dict like {index -> {column -> value}}
- columns: dict like {column -> {index -> value}}
- values: just the values array

35D. Koop, CSCI 680/490, Spring 2021

Binary Formats
• CSV, JSON, and XML are all text formats
• What is a binary format?
• Pickle: Python's built-in serialization
• HDF5: Library for storing large scientific data
- Hierarchical Data Format, supports compression
- Interfaces in C, Java, MATLAB, etc.
- Use pd.HDFStore to access
- Shortcuts: read_hdf/to_hdf, need to specify object

• Excel: need to specify sheet when a spreadsheet has multiple sheets
- pd.ExcelFile or pd.read_excel

36D. Koop, CSCI 680/490, Spring 2021

Databases

37

[Wikipedia]
D. Koop, CSCI 680/490, Spring 2021

https://en.wikipedia.org/wiki/File:Star-schema-example.png

Databases
• Relational databases are similar to multiple data frames but have many more

features
- links between tables via foreign keys
- SQL to create, store, and query data

• sqlite3 is a simple database with built-in support in python
• Python has a database API which lets you access most database systems

through a common API.

38D. Koop, CSCI 680/490, Spring 2021

Python DBAPI Example
import sqlite3
query = """CREATE TABLE test(a VARCHAR(20), b VARCHAR(20),
 c REAL, d INTEGER);"""
con = sqlite3.connect('mydata.sqlite')
con.execute(query)
con.commit()
Insert some data
data = [('Atlanta', 'Georgia', 1.25, 6),
 ('Tallahassee', 'Florida', 2.6, 3),
 ('Sacramento', 'California', 1.7, 5)]
stmt = "INSERT INTO test VALUES(?, ?, ?, ?)"
con.executemany(stmt, data)
con.commit()

39

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 680/490, Spring 2021

Databases
• Similar syntax from other database systems (MySQL, Microsoft SQL Server,

Oracle, etc.)
• SQLAlchemy: Python package that abstracts away differences between

different database systems
• SQLAlchemy gives support for reading queries to data frame:

- import sqlalchemy as sqla
db = sqla.create_engine('sqlite:///mydata.sqlite')
pd.read_sql('select * from test', db)

40D. Koop, CSCI 680/490, Spring 2021

sqlite:///mydata.sqlite

41

What if data isn't correct/trustworthy/in the right format?

D. Koop, CSCI 680/490, Spring 2021

Dirty Data

42

[Flickr]
D. Koop, CSCI 680/490, Spring 2021

http://farm3.static.flickr.com/2558/3717487523_f197ac2fbf.jpg

Geolocation Errors
• Maxmind helps companies determine where users are located based on IP

address
• "How a quiet Kansas home wound up with 600 million IP addresses and a

world of trouble" [Washington Post, 2016]

43D. Koop, CSCI 680/490, Spring 2021

https://www.washingtonpost.com/news/morning-mix/wp/2016/08/10/lawsuit-how-a-quiet-kansas-home-wound-up-with-600-million-ip-addresses-and-a-world-of-trouble/

Numeric Outliers

Adapted from Joe Hellerstein’s 2012 CS 194 Guest Lecture

Numeric Outliers

44

[J. Hellerstein via J. Canny et al.]
D. Koop, CSCI 680/490, Spring 2021

https://bcourses.berkeley.edu/files/50707513/download?download_frd=1&verifier=njoObzWKAmeihDjqFN9EMrY0IRlDbUWy2mFegnXN

6F INDINGS

we got about the future of the data science,

the most salient takeaway was how excited our

respondents were about the evolution of the

field. They cited things in their own practice, how

they saw their jobs getting more interesting and

less repetitive, all while expressing a real and

broad enthusiasm about the value of the work in

their organization.

As data science becomes more commonplace and

simultaneously a bit demystified, we expect this

trend to continue as well. After all, last year’s

respondents were just as excited about their

work (about 79% were “satisfied” or better).

How a Data Scientist Spends Their Day

Here’s where the popular view of data scientists diverges pretty significantly from reality. Generally,

we think of data scientists building algorithms, exploring data, and doing predictive analysis. That’s

actually not what they spend most of their time doing, however.

As you can see from the chart above, 3 out of every 5 data scientists we surveyed actually spend the

most time cleaning and organizing data. You may have heard this referred to as “data wrangling” or

compared to digital janitor work. Everything from list verification to removing commas to debugging

databases–that time adds up and it adds up immensely. Messy data is by far the more time- consuming

aspect of the typical data scientist’s work flow. And nearly 60% said they simply spent too much

time doing it.

Data scientist job satisfaction

60%

19%

9%

4%
5%3%

 Building training sets: 3%

 Cleaning and organizing data: 60%

 Collecting data sets; 19%

 Mining data for patterns: 9%

 Refining algorithms: 4%

 Other: 5%

What data scientists spend the most time doing

4.0
5

4

3

2

1

35%

47%

12%

6%

1%

This takes a lot of time!

45

[CrowdFlower Data Science Report, 2016]
D. Koop, CSCI 680/490, Spring 2021

http://visit.crowdflower.com/rs/416-ZBE-142/images/CrowdFlower_DataScienceReport_2016.pdf

7F INDINGS

Why That’s a Problem

Simply put, data wrangling isn’t fun. It takes forever. In fact, a few years back, the New York Times

estimated that up to 80% of a data scientist’s time is spent doing this sort of work.

Here, it’s necessary to point out that data cleaning is incredibly important. You can’t do the sort of

work data scientists truly enjoy doing with messy data. It needs to be cleaned, labeled, and enriched

before you can trust the output.

The problem here is two fold. One: data scientists simply don’t like doing this kind of work, and,

as mentioned, this kind of work takes up most of their time. We asked our respondents what

was the least enjoyable part of their job.

They had this to say:

Note how those last two charts mirror each other. The things data scientists do most are the

things they enjoy least. Last year, we found that respondents far prefer doing the more creative,

interesting parts of their job, things like predictive analysis and mining data for patterns. That’s

where the real value comes. But again, you simply can’t do that work unless the data is properly

labeled. And nobody likes labeling data.

Do Data Scientists Have What They Need?

With a shortage of data scientists out there in the world, we wanted to find out if they thought

they were properly supported in their job. After all, when you need more data scientists, you’ll

often find a single person doing the work of several.

 Building training sets: 10%

 Cleaning and organizing data: 57%

 Collecting data sets: 21%

 Mining data for patterns: 3%

 Refining algorithms: 4%

 Other: 5%

57%

21%

10%

5%
4%3% What’s the least enjoyable part of data science?

…and it isn't the most fun thing to do

46

[CrowdFlower Data Science Report, 2016]
D. Koop, CSCI 680/490, Spring 2021

http://visit.crowdflower.com/rs/416-ZBE-142/images/CrowdFlower_DataScienceReport_2016.pdf

Dirty Data: Statistician's View
• Some process produces the data
• Want a model but have non-ideal samples:
- Distortion: some samples corrupted by a process
- Selection bias: likelihood of a sample depends on its value
- Left and right censorship: users come and go from scrutiny
- Dependence: samples are not independent (e.g. social networks)

• You can add/augment models for different problems, but cannot model
everything

• Trade-off between accuracy and simplicity

47

[J. Canny et al.]
D. Koop, CSCI 680/490, Spring 2021

https://bcourses.berkeley.edu/files/50707513/download?download_frd=1&verifier=njoObzWKAmeihDjqFN9EMrY0IRlDbUWy2mFegnXN

Dirty Data: Database Expert's View
• Got a dataset
• Some values are missing, corrupted, wrong, duplicated
• Results are absolute (relational model)
• Better answers come from improving the quality of values in the dataset

48

[J. Canny et al.]
D. Koop, CSCI 680/490, Spring 2021

https://bcourses.berkeley.edu/files/50707513/download?download_frd=1&verifier=njoObzWKAmeihDjqFN9EMrY0IRlDbUWy2mFegnXN

Dirty Data: Domain Expert's View
• Data doesn't look right
• Answer doesn't look right
• What happened?
• Domain experts carry an implicit model of the data they test against
• You don't always need to be a domain expert to do this
- Can a person run 50 miles an hour?
- Can a mountain on Earth be 50,000 feet above sea level?
- Use common sense

49

[J. Canny et al.]
D. Koop, CSCI 680/490, Spring 2021

https://bcourses.berkeley.edu/files/50707513/download?download_frd=1&verifier=njoObzWKAmeihDjqFN9EMrY0IRlDbUWy2mFegnXN

Dirty Data: Data Scientist's View
• Combination of the previous three views
• All of the views present problems with the data
• The goal may dictate the solutions:
- Median value: don't worry too much about crazy outliers
- Generally, aggregation is less susceptible by numeric errors
- Be careful, the data may be correct…

50

[J. Canny et al.]
D. Koop, CSCI 680/490, Spring 2021

https://bcourses.berkeley.edu/files/50707513/download?download_frd=1&verifier=njoObzWKAmeihDjqFN9EMrY0IRlDbUWy2mFegnXN

Be careful how you detect dirty data
• The appearance of a hole in the earth’s ozone layer over Antarctica, first

detected in 1976, was so unexpected that scientists didn’t pay attention to
what their instruments were telling them; they thought their instruments were
malfunctioning.
– National Center for Atmospheric Research

51

[Wikimedia]
D. Koop, CSCI 680/490, Spring 2021

https://commons.wikimedia.org/wiki/File:Agujero_en_la_capa_de_ozono_2008.jpg

Where does dirty data originate?
• Source data is bad, e.g. person entered it incorrectly
• Transformations corrupt the data, e.g. certain values processed incorrectly

due to a software bug
• Integration of different datasets causes problems
• Error propagation: one error is magnified

52

[J. Canny et al.]
D. Koop, CSCI 680/490, Spring 2021

https://bcourses.berkeley.edu/files/50707513/download?download_frd=1&verifier=njoObzWKAmeihDjqFN9EMrY0IRlDbUWy2mFegnXN

Types of Dirty Data Problems
• Separator Issues: e.g. CSV without respecting double quotes

- 12, 13, "Doe, John", 45

• Naming Conventions: NYC vs. New York
• Missing required fields, e.g. key
• Different representations: 2 vs. two
• Truncated data: "Janice Keihanaikukauakahihuliheekahaunaele"

becomes "Janice Keihanaikukauakahihuliheek" on Hawaii license
• Redundant records: may be exactly the same or have some overlap
• Formatting issues: 2017-11-07 vs. 07/11/2017 vs. 11/07/2017

53

[J. Canny et al.]
D. Koop, CSCI 680/490, Spring 2021

https://bcourses.berkeley.edu/files/50707513/download?download_frd=1&verifier=njoObzWKAmeihDjqFN9EMrY0IRlDbUWy2mFegnXN

Data Wrangling
• Data wrangling: transform raw data to a more meaningful format that can be

better analyzed
• Data cleaning: getting rid of inaccurate data
• Data transformations: changing the data from one representation to another
• Data reshaping: reorganizing the data
• Data merging: combining two datasets

54D. Koop, CSCI 680/490, Spring 2021

Data Cleaning

55D. Koop, CSCI 680/490, Spring 2021

Wrangler: Interactive Visual Specification of Data
Transformation Scripts

S. Kandel, A. Paepcke, J. Hellerstein, J. Heer

D. Koop, CSCI 680/490, Spring 2021

Data Wrangler Demo
• http://vis.stanford.edu/wrangler/app/

57D. Koop, CSCI 680/490, Spring 2021

DataWrangler

ExportImport

Split data repeatedly on newline into
rows

Split split repeatedly on ','

Promote row 0 to header

Delete row 7

Delete empty rows

Fill row 7 by copying values from above

Fill row 7 by copying values from below

Fold using row 7 as a key

Fold Year using row 7 as a key

Transform Script

Text

Split

Cut

Columns

Fill

Drop

Rows

Delete

Fill

Promote

Table

Fold

Unfold

Clear

Year Property_crime_rate

0 Reported crime in Alabama
1

2 2004 4029.3
3 2005 3900
4 2006 3937
5 2007 3974.9
6 2008 4081.9
7

8 Reported crime in Alaska
9

10 2004 3370.9
11 2005 3615
12 2006 3582
13 2007 3373.9
14 2008 2928.3
15

16 Reported crime in Arizona
17

18 2004 5073.3
19 2005 4827
20 2006 4741.6
21 2007 4502.6
22 2008 4087.3
23

24
Reported crime in
Arkansas

25

Figure 1. The Wrangler Interface. The left panel contains (from top-to-bottom) a history of transforms, a transform selection menu, and automat-

ically suggested transforms based on the current selection. Bold text within the transform descriptions indicate parameters that can be clicked and

revised. The right panel contains an interactive data table; above each column is a data quality meter.

short natural language descriptions—which users can refine
via interactive parameters—and visual previews of transform
results. These techniques enable analysts to rapidly navigate
and assess the space of viable transforms.

As analysts transform data, their steps are recorded in a script
to facilitate reuse and provide documentation of data prove-
nance. Wrangler’s interactive history viewer supports re-
view, refinement, and annotation of these scripts. Wran-
gler’s high-level language supports a variety of runtime plat-
forms: Wrangler scripts can be run in a web browser using
JavaScript or translated into MapReduce or Python code.

We also present a controlled user study comparing Wran-
gler and Excel across a set of data wrangling tasks. We find
that Wrangler significantly reduces specification time and
promotes the use of robust transforms rather than manual
editing. Wrangler is one piece of a larger effort to address
bottlenecks in the data lifecycle by integrating insights and
methods from the HCI and database communities.

RELATED WORK
The database and machine learning communities have con-
tributed a number of algorithmic techniques for aiding data
cleaning and integration. These techniques include meth-
ods for detecting erroneous values [10, 11], information ex-
traction [1, 25], entity resolution [6], type inference [7], and
schema matching [9, 21]. In the Wrangler interface we seek
to surface such techniques in an accessible manner.

A number of commercial and research systems provide graph-
ical interfaces leveraging the above methods. Many of these
tools provide interfaces for schema matching or entity reso-
lution [3, 9, 16, 23]. Toped++ [24] is an interface for creating
Topes, objects that validate and transform data. Topes sup-
port transformations such as text formatting and lookups, but
provide little support for filtering, reshaping, or aggregation.
Bellman [5] helps users understand the structure and quality
of a database, but does not enable transformations.

Many data cleaning applications apply direct manipulation
and programming-by-demonstration (PBD) methods to spe-
cific cleaning tasks. Users of SWYN [2] build regular ex-
pressions by providing example text selections and can eval-
uate their effect in visual previews. Potluck [14] applies si-
multaneous text editing [19] to merge data sources. Karma
[26] infers text extractors and transformations for web data
from examples entered in a table. Vegemite [18] applies
PBD to integrate web data, automates the use of web ser-
vices, and generates shareable scripts. Other interfaces [15]
apply PBD to data integration via copy and paste actions.

Wrangler applies a number of these techniques: it infers reg-
ular expressions from example selections [2] and supports
mass editing [14, 19]. Wrangler uses semantic roles akin
to Topes [24] and provides natural language descriptions of
transforms [18]. However, Wrangler differs in important
ways. PBD data tools support text extraction or data integra-
tion, but lack operations such as reshaping, aggregation, and
missing value imputation. Prior tools (except for Vegemite
[18]) also do not generate scripts to document provenance.

Most closely related to Wrangler is prior work on interactive
data cleaning. Potter’s Wheel [22] provides a transformation
language for data formatting and outlier detection. Wrangler
extends the Potter’s Wheel language with key differences
discussed later. Ajax [8] also provides an interface to spec-
ify transforms, with advanced facilities for entity resolution.
Neither tool provides much support for direct manipulation:
interaction is largely restricted to menu-based commands or
entering programming statements. Google Refine [13] (for-
merly Freebase GridWorks) leverages Freebase to enable en-
tity resolution and discrepancy detection. It provides sum-
marization and filtering support through faceted histograms.
Though users can specify some commands graphically, oth-
ers must be written in a command language. Moreover, the
system assumes that input data arrives in a proper tabular
format, limiting the forms of data to which it can be applied.

http://vis.stanford.edu/wrangler/app/

Wrangler
• Data cleaning takes a lot of time and human effort
• "Tedium is the message"
• Repeating this process on multiple data sets is even worse!
• Solution:
- interactive interface (mixed-initiative)
- transformation language with natural language "translations"
- suggestions + "programming by demonstration"

58D. Koop, CSCI 680/490, Spring 2021

