
Advanced Data Management (CSCI 490/680)

Data Wrangling

Dr. David Koop

D. Koop, CSCI 680/490, Spring 2021

NumPy
• Fast vectorized array operations for data munging and cleaning, subsetting

and filtering, transformation, and any other kinds of computations
• Common array algorithms like sorting, unique, and set operations
• Efficient descriptive statistics and aggregating/summarizing data
• Data alignment and relational data manipulations for merging and joining

together heterogeneous data sets
• Expressing conditional logic as array expressions instead of loops with if-
elif-else branches

• Group-wise data manipulations (aggregation, transformation, function
application).

2

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 680/490, Spring 2021

Data
• What is this data?

• Semantics: real-world meaning of the data
• Type: structural or mathematical interpretation
• Both often require metadata
- Sometimes we can infer some of this information
- Line between data and metadata isn’t always clear

3D. Koop, CSCI 680/490, Spring 2021

Semantics
• The meaning of the data
• Example: 94023, 90210, 02747, 60115

4D. Koop, CSCI 680/490, Spring 2021

Semantics
• The meaning of the data
• Example: 94023, 90210, 02747, 60115
- Attendance at college football games?

4D. Koop, CSCI 680/490, Spring 2021

Semantics
• The meaning of the data
• Example: 94023, 90210, 02747, 60115
- Attendance at college football games?
- Salaries?

4D. Koop, CSCI 680/490, Spring 2021

Semantics
• The meaning of the data
• Example: 94023, 90210, 02747, 60115
- Attendance at college football games?
- Salaries?
- Zip codes?

• Cannot always infer based on what the data looks like
• Often require semantics to better understand data, column names help
• May also include rules about data: a zip code is part of an address that

uniquely identifies a residence
• Useful for asking good questions about the data

4D. Koop, CSCI 680/490, Spring 2021

Data Terminology
• Items
- An item is an individual discrete entity
- e.g., a row in a table

• Attributes
- An attribute is some specific property that can be measured, observed, or

logged
- a.k.a. variable, (data) dimension
- e.g., a column in a table

5D. Koop, CSCI 680/490, Spring 2021

Attribute Semantics
Keys vs. Values (Tables) or Independent vs. Dependent (Fields)

Flat

Multidimensional

Ta
bl

es

Fi
el

ds

Tables
• Data organized by rows & columns
- row ~ item (usually)
- column ~ attribute
- label ~ attribute name

• Key: identifies each item (row)
- Usually unique
- Allows join of data from 2+ tables
- Compound key: key split among multiple

columns, e.g. (state, year) for population
• Multidimensional:
- Split compound key

6

[Munzner (ill. Maguire), 2014]
D. Koop, CSCI 680/490, Spring 2021

Attributes

Attribute Types

Ordering Direction

Categorical Ordered

Ordinal Quantitative

Sequential Diverging Cyclic

Attribute Types

7

[Munzner (ill. Maguire), 2014]
D. Koop, CSCI 680/490, Spring 2021

Assignment 1
• Due today at 11:59pm
• Using Python for data analysis on Info Wanted ads
• Provided a1.ipynb file (right-click and download)
• Use basic python for now to demonstrate language knowledge
- No pandas (for now)

• Use Anaconda or hosted Python environment
• Turn .ipynb file in via Blackboard
• Notes:
- Bug in URL (https instead of http),
- Bug in Problem 1 solution

8D. Koop, CSCI 680/490, Spring 2021

http://faculty.cs.niu.edu/~dakoop/cs680-2021sp/assignment1.html

Assignment 2
• Coming soon
• Similar to Assignment 1, now with pandas

9D. Koop, CSCI 680/490, Spring 2021

Reading
• Wednesday
• Discussing paper:
- "Wrangler: Interactive Visual Specification of Data Transformation Scripts"
- Kandel et al.
- http://vis.stanford.edu/files/wrangler.pdf

• Read
• Come prepared with questions, thoughts
- Compare with how things work in pandas

10D. Koop, CSCI 680/490, Spring 2021

http://vis.stanford.edu/files/wrangler.pdf

pandas
• Contains high-level data structures and manipulation tools designed to make

data analysis fast and easy in Python
• Built on top of NumPy
• Requirements:
- Data structures with labeled axes (aligning data)
- Time series data
- Arithmetic operations that include metadata (labels)
- Handle missing data
- Merge and relational operations

11D. Koop, CSCI 680/490, Spring 2021

Series
• A one-dimensional array (with a type) with an index
• Index defaults to numbers but can also be text (like a dictionary)
• Allows easier reference to specific items
• obj = pd.Series([7,14,-2,1])

• Basically two arrays: obj.values and obj.index
• Can specify the index explicitly and use strings
• obj2 = pd.Series([4, 7, -5, 3],
 index=['d', 'b', 'a', 'c'])

• Kind of like fixed-length, ordered dictionary + can create from a dictionary
• obj3 = pd.Series({'Ohio': 35000, 'Texas': 71000,
 'Oregon': 16000, 'Utah': 5000})

12D. Koop, CSCI 680/490, Spring 2021

Series
• Indexing: s[1] or s['Oregon']
• Can check for missing data: pd.isnull(s) or pd.notnull(s)
• Both index and values can have an associated name:

- s.name = 'population'; s.index.name = 'state'

• Addition and NumPy ops work as expected and preserve the index-value link
• These operations align:

13

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 680/490, Spring 2021

When only passing a dict, the index in the resulting Series will have the dict’s keys in
sorted order.

In [22]: states = ['California', 'Ohio', 'Oregon', 'Texas']

In [23]: obj4 = Series(sdata, index=states)

In [24]: obj4
Out[24]:
California NaN
Ohio 35000
Oregon 16000
Texas 71000
dtype: float64

In this case, 3 values found in sdata were placed in the appropriate locations, but since
no value for 'California' was found, it appears as NaN (not a number) which is con-
sidered in pandas to mark missing or NA values. I will use the terms “missing” or “NA”
to refer to missing data. The isnull and notnull functions in pandas should be used to
detect missing data:

In [25]: pd.isnull(obj4) In [26]: pd.notnull(obj4)
Out[25]: Out[26]:
California True California False
Ohio False Ohio True
Oregon False Oregon True
Texas False Texas True
dtype: bool dtype: bool

Series also has these as instance methods:

In [27]: obj4.isnull()
Out[27]:
California True
Ohio False
Oregon False
Texas False
dtype: bool

I discuss working with missing data in more detail later in this chapter.

A critical Series feature for many applications is that it automatically aligns differently-
indexed data in arithmetic operations:

In [28]: obj3 In [29]: obj4
Out[28]: Out[29]:
Ohio 35000 California NaN
Oregon 16000 Ohio 35000
Texas 71000 Oregon 16000
Utah 5000 Texas 71000
dtype: int64 dtype: float64

In [30]: obj3 + obj4
Out[30]:
California NaN
Ohio 70000

110 | Chapter 5: Getting Started with pandas

When only passing a dict, the index in the resulting Series will have the dict’s keys in
sorted order.

In [22]: states = ['California', 'Ohio', 'Oregon', 'Texas']

In [23]: obj4 = Series(sdata, index=states)

In [24]: obj4
Out[24]:
California NaN
Ohio 35000
Oregon 16000
Texas 71000
dtype: float64

In this case, 3 values found in sdata were placed in the appropriate locations, but since
no value for 'California' was found, it appears as NaN (not a number) which is con-
sidered in pandas to mark missing or NA values. I will use the terms “missing” or “NA”
to refer to missing data. The isnull and notnull functions in pandas should be used to
detect missing data:

In [25]: pd.isnull(obj4) In [26]: pd.notnull(obj4)
Out[25]: Out[26]:
California True California False
Ohio False Ohio True
Oregon False Oregon True
Texas False Texas True
dtype: bool dtype: bool

Series also has these as instance methods:

In [27]: obj4.isnull()
Out[27]:
California True
Ohio False
Oregon False
Texas False
dtype: bool

I discuss working with missing data in more detail later in this chapter.

A critical Series feature for many applications is that it automatically aligns differently-
indexed data in arithmetic operations:

In [28]: obj3 In [29]: obj4
Out[28]: Out[29]:
Ohio 35000 California NaN
Oregon 16000 Ohio 35000
Texas 71000 Oregon 16000
Utah 5000 Texas 71000
dtype: int64 dtype: float64

In [30]: obj3 + obj4
Out[30]:
California NaN
Ohio 70000

110 | Chapter 5: Getting Started with pandas

Oregon 32000
Texas 142000
Utah NaN
dtype: float64

Data alignment features are addressed as a separate topic.

Both the Series object itself and its index have a name attribute, which integrates with
other key areas of pandas functionality:

In [31]: obj4.name = 'population'

In [32]: obj4.index.name = 'state'

In [33]: obj4
Out[33]:
state
California NaN
Ohio 35000
Oregon 16000
Texas 71000
Name: population, dtype: float64

A Series’s index can be altered in place by assignment:

In [34]: obj.index = ['Bob', 'Steve', 'Jeff', 'Ryan']

In [35]: obj
Out[35]:
Bob 4
Steve 7
Jeff -5
Ryan 3
dtype: int64

DataFrame
A DataFrame represents a tabular, spreadsheet-like data structure containing an or-
dered collection of columns, each of which can be a different value type (numeric,
string, boolean, etc.). The DataFrame has both a row and column index; it can be
thought of as a dict of Series (one for all sharing the same index). Compared with other
such DataFrame-like structures you may have used before (like R’s data.frame), row-
oriented and column-oriented operations in DataFrame are treated roughly symmet-
rically. Under the hood, the data is stored as one or more two-dimensional blocks rather
than a list, dict, or some other collection of one-dimensional arrays. The exact details
of DataFrame’s internals are far outside the scope of this book.

While DataFrame stores the data internally in a two-dimensional for-
mat, you can easily represent much higher-dimensional data in a tabular
format using hierarchical indexing, a subject of a later section and a key
ingredient in many of the more advanced data-handling features in pan-
das.

Introduction to pandas Data Structures | 111

Data Frame
• A dictionary of Series (labels for each series)
• A spreadsheet with column headers
• Has an index shared with each series
• Allows easy reference to any cell
• df = DataFrame({'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada'],
 'year': [2000, 2001, 2002, 2001],
 'pop': [1.5, 1.7, 3.6, 2.4]})

• Index is automatically assigned just as with a series but can be passed in as
well via index kwarg

• Can reassign column names by passing columns kwarg

14D. Koop, CSCI 680/490, Spring 2021

Table 5-1. Possible data inputs to DataFrame constructor

Type Notes

2D ndarray A matrix of data, passing optional row and column labels

dict of arrays, lists, or tuples Each sequence becomes a column in the DataFrame. All sequences must be the same length.

NumPy structured/record array Treated as the “dict of arrays” case

dict of Series Each value becomes a column. Indexes from each Series are unioned together to form the
result’s row index if no explicit index is passed.

dict of dicts Each inner dict becomes a column. Keys are unioned to form the row index as in the “dict of
Series” case.

list of dicts or Series Each item becomes a row in the DataFrame. Union of dict keys or Series indexes become the
DataFrame’s column labels

List of lists or tuples Treated as the “2D ndarray” case

Another DataFrame The DataFrame’s indexes are used unless different ones are passed

NumPy MaskedArray Like the “2D ndarray” case except masked values become NA/missing in the DataFrame result

Index Objects
pandas’s Index objects are responsible for holding the axis labels and other metadata
(like the axis name or names). Any array or other sequence of labels used when con-
structing a Series or DataFrame is internally converted to an Index:

In [67]: obj = Series(range(3), index=['a', 'b', 'c'])

In [68]: index = obj.index

In [69]: index
Out[69]: Index([u'a', u'b', u'c'], dtype='object')

In [70]: index[1:]
Out[70]: Index([u'b', u'c'], dtype='object')

Index objects are immutable and thus can’t be modified by the user:

In [71]: index[1] = 'd'

TypeError Traceback (most recent call last)
<ipython-input-71-676fdeb26a68> in <module>()
----> 1 index[1] = 'd'
/home/phillip/miniconda3/envs/conda2/lib/python2.7/site-packages/pandas/core/
base.pyc in _disabled(self, *args, **kwargs)
 177 """This method will not function because object is immutable."""
 178 raise TypeError("'%s' does not support mutable operations." %
--> 179 self.__class__)
 180
 181 __setitem__ = __setslice__ = __delitem__ = __delslice__ = _disabled
TypeError: '<class 'pandas.core.index.Index'>' does not support mutable operations.

116 | Chapter 5: Getting Started with pandas

DataFrame Constructor Inputs

15

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 680/490, Spring 2021

DataFrame Access and Manipulation
• df.values → 2D NumPy array

• Accessing a column:
- df["<column>"]

- df.<column>

- Both return Series
- Dot syntax only works when the column is a valid identifier

• Assigning to a column:
- df["<column>"] = <scalar> # all cells set to same value

- df["<column>"] = <array> # values set in order

- df["<column>"] = <series> # values set according to match
 # between df and series indexes

16D. Koop, CSCI 680/490, Spring 2021

DataFrame Index
• Similar to index for Series
• Immutable
• Can be shared with multiple structures (DataFrames or Series)
• in operator works with: 'Ohio' in df.index

17D. Koop, CSCI 680/490, Spring 2021

Table 5-3. Index methods and properties

Method Description

append Concatenate with additional Index objects, producing a new Index

diff Compute set difference as an Index

intersection Compute set intersection

union Compute set union

isin Compute boolean array indicating whether each value is contained in the passed collection

delete Compute new Index with element at index i deleted

drop Compute new index by deleting passed values

insert Compute new Index by inserting element at index i

is_monotonic Returns True if each element is greater than or equal to the previous element

is_unique Returns True if the Index has no duplicate values

unique Compute the array of unique values in the Index

Essential Functionality
In this section, I’ll walk you through the fundamental mechanics of interacting with
the data contained in a Series or DataFrame. Upcoming chapters will delve more deeply
into data analysis and manipulation topics using pandas. This book is not intended to
serve as exhaustive documentation for the pandas library; I instead focus on the most
important features, leaving the less common (that is, more esoteric) things for you to
explore on your own.

Reindexing
A critical method on pandas objects is reindex, which means to create a new object
with the data conformed to a new index. Consider a simple example from above:

In [78]: obj = Series([4.5, 7.2, -5.3, 3.6], index=['d', 'b', 'a', 'c'])

In [79]: obj
Out[79]:
d 4.5
b 7.2
a -5.3
c 3.6
dtype: float64

Calling reindex on this Series rearranges the data according to the new index, intro-
ducing missing values if any index values were not already present:

In [80]: obj2 = obj.reindex(['a', 'b', 'c', 'd', 'e'])

In [81]: obj2
Out[81]:

118 | Chapter 5: Getting Started with pandas

Index methods and properties

18

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 680/490, Spring 2021

Reindexing
• reindex creates a new object with the data conformed to new index
• obj2 = obj.reindex(['a', 'b', 'c', 'd', 'e'])

• Missing values: handle with kwargs
- fill_value: fill any missing value with a specific value
- method='ffill': fill values forward
- method='bfill': fill values backward

• Data Frames:
- reindex rows as with series
- reindex columns using columns kwarg

19D. Koop, CSCI 680/490, Spring 2021

Dropping entries
• Can drop one or more entries
• Series:

- new_obj = obj.drop('c')
- new_obj = obj.drop(['d', 'c'])

• Data Frames:
- axis keyword defines which axis to drop (default 0)
- axis=0 → rows, axis=1→ columns
- axis = 'columns'

20D. Koop, CSCI 680/490, Spring 2021

Indexing
• Same as with NumPy arrays but can use Series's index labels
• Slicing with labels: NumPy is exclusive, Pandas is inclusive!

- s = Series(np.arange(4))
s[0:2] # gives two values like numpy

- s = Series(np.arange(4), index=['a', 'b', 'c', 'd'])
s['a':'c'] # gives three values, not two!

• Obtaining data subsets
- []: get columns by label
- loc: get rows/cols by label
- iloc: get rows/cols by position (integer index)

- For single cells (scalars), also have at and iat

21D. Koop, CSCI 680/490, Spring 2021

Indexing
• s = Series(np.arange(4.), index=[4,3,2,1])

• s[3]

• s.loc[3]

• s.iloc[3]

• s2 = pd.Series(np.arange(4), index=['a','b','c','d'])

• s2[3]

22D. Koop, CSCI 680/490, Spring 2021

Filtering
• Same as with numpy arrays but allows use of column-based criteria

- data[data < 5] = 0

- data[data['three'] > 5]

- data < 5 → boolean data frame, can be used to select specific elements

23D. Koop, CSCI 680/490, Spring 2021

Arithmetic
• Add, subtract, multiply, and divide are element-wise like numpy
• …but use labels to align
• …and missing labels lead to NaN (not a number) values

• also have .add, .subtract, … that allow fill_value argument
• obj3.add(obj4, fill_value=0)

24D. Koop, CSCI 680/490, Spring 2021

When only passing a dict, the index in the resulting Series will have the dict’s keys in
sorted order.

In [22]: states = ['California', 'Ohio', 'Oregon', 'Texas']

In [23]: obj4 = Series(sdata, index=states)

In [24]: obj4
Out[24]:
California NaN
Ohio 35000
Oregon 16000
Texas 71000
dtype: float64

In this case, 3 values found in sdata were placed in the appropriate locations, but since
no value for 'California' was found, it appears as NaN (not a number) which is con-
sidered in pandas to mark missing or NA values. I will use the terms “missing” or “NA”
to refer to missing data. The isnull and notnull functions in pandas should be used to
detect missing data:

In [25]: pd.isnull(obj4) In [26]: pd.notnull(obj4)
Out[25]: Out[26]:
California True California False
Ohio False Ohio True
Oregon False Oregon True
Texas False Texas True
dtype: bool dtype: bool

Series also has these as instance methods:

In [27]: obj4.isnull()
Out[27]:
California True
Ohio False
Oregon False
Texas False
dtype: bool

I discuss working with missing data in more detail later in this chapter.

A critical Series feature for many applications is that it automatically aligns differently-
indexed data in arithmetic operations:

In [28]: obj3 In [29]: obj4
Out[28]: Out[29]:
Ohio 35000 California NaN
Oregon 16000 Ohio 35000
Texas 71000 Oregon 16000
Utah 5000 Texas 71000
dtype: int64 dtype: float64

In [30]: obj3 + obj4
Out[30]:
California NaN
Ohio 70000

110 | Chapter 5: Getting Started with pandas

When only passing a dict, the index in the resulting Series will have the dict’s keys in
sorted order.

In [22]: states = ['California', 'Ohio', 'Oregon', 'Texas']

In [23]: obj4 = Series(sdata, index=states)

In [24]: obj4
Out[24]:
California NaN
Ohio 35000
Oregon 16000
Texas 71000
dtype: float64

In this case, 3 values found in sdata were placed in the appropriate locations, but since
no value for 'California' was found, it appears as NaN (not a number) which is con-
sidered in pandas to mark missing or NA values. I will use the terms “missing” or “NA”
to refer to missing data. The isnull and notnull functions in pandas should be used to
detect missing data:

In [25]: pd.isnull(obj4) In [26]: pd.notnull(obj4)
Out[25]: Out[26]:
California True California False
Ohio False Ohio True
Oregon False Oregon True
Texas False Texas True
dtype: bool dtype: bool

Series also has these as instance methods:

In [27]: obj4.isnull()
Out[27]:
California True
Ohio False
Oregon False
Texas False
dtype: bool

I discuss working with missing data in more detail later in this chapter.

A critical Series feature for many applications is that it automatically aligns differently-
indexed data in arithmetic operations:

In [28]: obj3 In [29]: obj4
Out[28]: Out[29]:
Ohio 35000 California NaN
Oregon 16000 Ohio 35000
Texas 71000 Oregon 16000
Utah 5000 Texas 71000
dtype: int64 dtype: float64

In [30]: obj3 + obj4
Out[30]:
California NaN
Ohio 70000

110 | Chapter 5: Getting Started with pandas

Oregon 32000
Texas 142000
Utah NaN
dtype: float64

Data alignment features are addressed as a separate topic.

Both the Series object itself and its index have a name attribute, which integrates with
other key areas of pandas functionality:

In [31]: obj4.name = 'population'

In [32]: obj4.index.name = 'state'

In [33]: obj4
Out[33]:
state
California NaN
Ohio 35000
Oregon 16000
Texas 71000
Name: population, dtype: float64

A Series’s index can be altered in place by assignment:

In [34]: obj.index = ['Bob', 'Steve', 'Jeff', 'Ryan']

In [35]: obj
Out[35]:
Bob 4
Steve 7
Jeff -5
Ryan 3
dtype: int64

DataFrame
A DataFrame represents a tabular, spreadsheet-like data structure containing an or-
dered collection of columns, each of which can be a different value type (numeric,
string, boolean, etc.). The DataFrame has both a row and column index; it can be
thought of as a dict of Series (one for all sharing the same index). Compared with other
such DataFrame-like structures you may have used before (like R’s data.frame), row-
oriented and column-oriented operations in DataFrame are treated roughly symmet-
rically. Under the hood, the data is stored as one or more two-dimensional blocks rather
than a list, dict, or some other collection of one-dimensional arrays. The exact details
of DataFrame’s internals are far outside the scope of this book.

While DataFrame stores the data internally in a two-dimensional for-
mat, you can easily represent much higher-dimensional data in a tabular
format using hierarchical indexing, a subject of a later section and a key
ingredient in many of the more advanced data-handling features in pan-
das.

Introduction to pandas Data Structures | 111

Arithmetic between DataFrames and Series
• Broadcasting: e.g. apply single row operation across all rows
• Example:

• To broadcast over columns, use methods (.add, …)

25D. Koop, CSCI 680/490, Spring 2021

Table 5-7. Flexible arithmetic methods

Method Description

add Method for addition (+)

sub Method for subtraction (-)

div Method for division (/)

mul Method for multiplication (*)

Operations between DataFrame and Series
As with NumPy arrays, arithmetic between DataFrame and Series is well-defined. First,
as a motivating example, consider the difference between a 2D array and one of its rows:

In [142]: arr = np.arange(12.).reshape((3, 4))

In [143]: arr
Out[143]:
array([[0., 1., 2., 3.],
 [4., 5., 6., 7.],
 [8., 9., 10., 11.]])

In [144]: arr[0]
Out[144]: array([0., 1., 2., 3.])

In [145]: arr - arr[0]
Out[145]:
array([[0., 0., 0., 0.],
 [4., 4., 4., 4.],
 [8., 8., 8., 8.]])

This is referred to as broadcasting and is explained in more detail in Chapter 12. Op-
erations between a DataFrame and a Series are similar:

In [146]: frame = DataFrame(np.arange(12.).reshape((4, 3)), columns=list('bde'),
 : index=['Utah', 'Ohio', 'Texas', 'Oregon'])

In [147]: series = frame.ix[0]

In [148]: frame In [149]: series
Out[148]: Out[149]:
 b d e b 0
Utah 0 1 2 d 1
Ohio 3 4 5 e 2
Texas 6 7 8 Name: Utah, dtype: float64
Oregon 9 10 11

By default, arithmetic between DataFrame and Series matches the index of the Series
on the DataFrame's columns, broadcasting down the rows:

In [150]: frame - series
Out[150]:
 b d e
Utah 0 0 0

Essential Functionality | 127

Table 5-7. Flexible arithmetic methods

Method Description

add Method for addition (+)

sub Method for subtraction (-)

div Method for division (/)

mul Method for multiplication (*)

Operations between DataFrame and Series
As with NumPy arrays, arithmetic between DataFrame and Series is well-defined. First,
as a motivating example, consider the difference between a 2D array and one of its rows:

In [142]: arr = np.arange(12.).reshape((3, 4))

In [143]: arr
Out[143]:
array([[0., 1., 2., 3.],
 [4., 5., 6., 7.],
 [8., 9., 10., 11.]])

In [144]: arr[0]
Out[144]: array([0., 1., 2., 3.])

In [145]: arr - arr[0]
Out[145]:
array([[0., 0., 0., 0.],
 [4., 4., 4., 4.],
 [8., 8., 8., 8.]])

This is referred to as broadcasting and is explained in more detail in Chapter 12. Op-
erations between a DataFrame and a Series are similar:

In [146]: frame = DataFrame(np.arange(12.).reshape((4, 3)), columns=list('bde'),
 : index=['Utah', 'Ohio', 'Texas', 'Oregon'])

In [147]: series = frame.ix[0]

In [148]: frame In [149]: series
Out[148]: Out[149]:
 b d e b 0
Utah 0 1 2 d 1
Ohio 3 4 5 e 2
Texas 6 7 8 Name: Utah, dtype: float64
Oregon 9 10 11

By default, arithmetic between DataFrame and Series matches the index of the Series
on the DataFrame's columns, broadcasting down the rows:

In [150]: frame - series
Out[150]:
 b d e
Utah 0 0 0

Essential Functionality | 127

Ohio 3 3 3
Texas 6 6 6
Oregon 9 9 9

If an index value is not found in either the DataFrame’s columns or the Series’s index,
the objects will be reindexed to form the union:

In [151]: series2 = Series(range(3), index=['b', 'e', 'f'])

In [152]: frame + series2
Out[152]:
 b d e f
Utah 0 NaN 3 NaN
Ohio 3 NaN 6 NaN
Texas 6 NaN 9 NaN
Oregon 9 NaN 12 NaN

If you want to instead broadcast over the columns, matching on the rows, you have to
use one of the arithmetic methods. For example:

In [153]: series3 = frame['d']

In [154]: frame In [155]: series3
Out[154]: Out[155]:
 b d e Utah 1
Utah 0 1 2 Ohio 4
Ohio 3 4 5 Texas 7
Texas 6 7 8 Oregon 10
Oregon 9 10 11 Name: d, dtype: float64

In [156]: frame.sub(series3, axis=0)
Out[156]:
 b d e
Utah -1 0 1
Ohio -1 0 1
Texas -1 0 1
Oregon -1 0 1

The axis number that you pass is the axis to match on. In this case we mean to match
on the DataFrame’s row index and broadcast across.

Function application and mapping
NumPy ufuncs (element-wise array methods) work fine with pandas objects:

In [157]: frame = DataFrame(np.random.randn(4, 3), columns=list('bde'),
 : index=['Utah', 'Ohio', 'Texas', 'Oregon'])

In [158]: frame In [159]: np.abs(frame)
Out[158]: Out[159]:
 b d e b d e
Utah -0.204708 0.478943 -0.519439 Utah 0.204708 0.478943 0.519439
Ohio -0.555730 1.965781 1.393406 Ohio 0.555730 1.965781 1.393406
Texas 0.092908 0.281746 0.769023 Texas 0.092908 0.281746 0.769023
Oregon 1.246435 1.007189 -1.296221 Oregon 1.246435 1.007189 1.296221

128 | Chapter 5: Getting Started with pandas

Ohio 3 3 3
Texas 6 6 6
Oregon 9 9 9

If an index value is not found in either the DataFrame’s columns or the Series’s index,
the objects will be reindexed to form the union:

In [151]: series2 = Series(range(3), index=['b', 'e', 'f'])

In [152]: frame + series2
Out[152]:
 b d e f
Utah 0 NaN 3 NaN
Ohio 3 NaN 6 NaN
Texas 6 NaN 9 NaN
Oregon 9 NaN 12 NaN

If you want to instead broadcast over the columns, matching on the rows, you have to
use one of the arithmetic methods. For example:

In [153]: series3 = frame['d']

In [154]: frame In [155]: series3
Out[154]: Out[155]:
 b d e Utah 1
Utah 0 1 2 Ohio 4
Ohio 3 4 5 Texas 7
Texas 6 7 8 Oregon 10
Oregon 9 10 11 Name: d, dtype: float64

In [156]: frame.sub(series3, axis=0)
Out[156]:
 b d e
Utah -1 0 1
Ohio -1 0 1
Texas -1 0 1
Oregon -1 0 1

The axis number that you pass is the axis to match on. In this case we mean to match
on the DataFrame’s row index and broadcast across.

Function application and mapping
NumPy ufuncs (element-wise array methods) work fine with pandas objects:

In [157]: frame = DataFrame(np.random.randn(4, 3), columns=list('bde'),
 : index=['Utah', 'Ohio', 'Texas', 'Oregon'])

In [158]: frame In [159]: np.abs(frame)
Out[158]: Out[159]:
 b d e b d e
Utah -0.204708 0.478943 -0.519439 Utah 0.204708 0.478943 0.519439
Ohio -0.555730 1.965781 1.393406 Ohio 0.555730 1.965781 1.393406
Texas 0.092908 0.281746 0.769023 Texas 0.092908 0.281746 0.769023
Oregon 1.246435 1.007189 -1.296221 Oregon 1.246435 1.007189 1.296221

128 | Chapter 5: Getting Started with pandas

Ohio 3 3 3
Texas 6 6 6
Oregon 9 9 9

If an index value is not found in either the DataFrame’s columns or the Series’s index,
the objects will be reindexed to form the union:

In [151]: series2 = Series(range(3), index=['b', 'e', 'f'])

In [152]: frame + series2
Out[152]:
 b d e f
Utah 0 NaN 3 NaN
Ohio 3 NaN 6 NaN
Texas 6 NaN 9 NaN
Oregon 9 NaN 12 NaN

If you want to instead broadcast over the columns, matching on the rows, you have to
use one of the arithmetic methods. For example:

In [153]: series3 = frame['d']

In [154]: frame In [155]: series3
Out[154]: Out[155]:
 b d e Utah 1
Utah 0 1 2 Ohio 4
Ohio 3 4 5 Texas 7
Texas 6 7 8 Oregon 10
Oregon 9 10 11 Name: d, dtype: float64

In [156]: frame.sub(series3, axis=0)
Out[156]:
 b d e
Utah -1 0 1
Ohio -1 0 1
Texas -1 0 1
Oregon -1 0 1

The axis number that you pass is the axis to match on. In this case we mean to match
on the DataFrame’s row index and broadcast across.

Function application and mapping
NumPy ufuncs (element-wise array methods) work fine with pandas objects:

In [157]: frame = DataFrame(np.random.randn(4, 3), columns=list('bde'),
 : index=['Utah', 'Ohio', 'Texas', 'Oregon'])

In [158]: frame In [159]: np.abs(frame)
Out[158]: Out[159]:
 b d e b d e
Utah -0.204708 0.478943 -0.519439 Utah 0.204708 0.478943 0.519439
Ohio -0.555730 1.965781 1.393406 Ohio 0.555730 1.965781 1.393406
Texas 0.092908 0.281746 0.769023 Texas 0.092908 0.281746 0.769023
Oregon 1.246435 1.007189 -1.296221 Oregon 1.246435 1.007189 1.296221

128 | Chapter 5: Getting Started with pandas

Sorting by Index (sort_index)
• Sort by index (lexicographical):

• DataFrame sorting:

• axis controls sort rows (0) vs. sort columns (1)
26D. Koop, CSCI 680/490, Spring 2021

Sorting and ranking
Sorting a data set by some criterion is another important built-in operation. To sort
lexicographically by row or column index, use the sort_index method, which returns
a new, sorted object:

In [168]: obj = Series(range(4), index=['d', 'a', 'b', 'c'])

In [169]: obj.sort_index()
Out[169]:
a 1
b 2
c 3
d 0
dtype: int64

With a DataFrame, you can sort by index on either axis:

In [170]: frame = DataFrame(np.arange(8).reshape((2, 4)), index=['three', 'one'],
 : columns=['d', 'a', 'b', 'c'])

In [171]: frame.sort_index() In [172]: frame.sort_index(axis=1)
Out[171]: Out[172]:
 d a b c a b c d
one 4 5 6 7 three 1 2 3 0
three 0 1 2 3 one 5 6 7 4

The data is sorted in ascending order by default, but can be sorted in descending order,
too:

In [173]: frame.sort_index(axis=1, ascending=False)
Out[173]:
 d c b a
three 0 3 2 1
one 4 7 6 5

To sort a Series by its values, use its order method:

In [174]: obj = Series([4, 7, -3, 2])

In [175]: obj.order()
Out[175]:
2 -3
3 2
0 4
1 7
dtype: int64

Any missing values are sorted to the end of the Series by default:

In [176]: obj = Series([4, np.nan, 7, np.nan, -3, 2])

In [177]: obj.order()
Out[177]:
4 -3
5 2
0 4

130 | Chapter 5: Getting Started with pandas

Sorting and ranking
Sorting a data set by some criterion is another important built-in operation. To sort
lexicographically by row or column index, use the sort_index method, which returns
a new, sorted object:

In [168]: obj = Series(range(4), index=['d', 'a', 'b', 'c'])

In [169]: obj.sort_index()
Out[169]:
a 1
b 2
c 3
d 0
dtype: int64

With a DataFrame, you can sort by index on either axis:

In [170]: frame = DataFrame(np.arange(8).reshape((2, 4)), index=['three', 'one'],
 : columns=['d', 'a', 'b', 'c'])

In [171]: frame.sort_index() In [172]: frame.sort_index(axis=1)
Out[171]: Out[172]:
 d a b c a b c d
one 4 5 6 7 three 1 2 3 0
three 0 1 2 3 one 5 6 7 4

The data is sorted in ascending order by default, but can be sorted in descending order,
too:

In [173]: frame.sort_index(axis=1, ascending=False)
Out[173]:
 d c b a
three 0 3 2 1
one 4 7 6 5

To sort a Series by its values, use its order method:

In [174]: obj = Series([4, 7, -3, 2])

In [175]: obj.order()
Out[175]:
2 -3
3 2
0 4
1 7
dtype: int64

Any missing values are sorted to the end of the Series by default:

In [176]: obj = Series([4, np.nan, 7, np.nan, -3, 2])

In [177]: obj.order()
Out[177]:
4 -3
5 2
0 4

130 | Chapter 5: Getting Started with pandas

Sorting by Value (sort_values)
• sort_values method on series

- obj.sort_values()

• Missing values (NaN) are at the end by default (na_position controls, can be
first)

• sort_values on DataFrame:
- df.sort_values(<list-of-columns>)

- df.sort_values(by=['a', 'b'])

- Can also use axis=1 to sort by index labels

27D. Koop, CSCI 680/490, Spring 2021

Reading
• Wednesday
• Discussing paper:
- "Wrangler: Interactive Visual Specification of Data Transformation Scripts"
- Kandel et al.
- http://vis.stanford.edu/files/wrangler.pdf

• Read
• Come prepared with questions, thoughts
- Compare with how things work in pandas

28D. Koop, CSCI 680/490, Spring 2021

http://vis.stanford.edu/files/wrangler.pdf

