Advanced Data Management (CSCI 490/680)

Data Wrangling

Dr. David Koop

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University

NumPy

e Fast vectorized array operations for data munging and cleaning, subsetting
and filtering, transtformation, and any other kinds of computations

e Common array algorithms like sorting, unique, and set operations
o fficient descriptive statistics and aggregating/summarizing data

e Data alignment and relational data manipulations for merging and joining
together heterogeneous data sets

e EXpressing conditional logic as array expressions instead of loops with if-
elif-else branches

e (Group-wise data manipulations (aggregation, transformation, function
application).

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 2

Data
e \What Is this data”?

RO11 42ND STREET & 8TH AVENUE 00228985 00008471 00000441 00001455 00000134 00033341 00071255
R170 14TH STREET-UNION SQUARE 00224603 00011051 00000827 | 00003026 K 00000660 | 00089367 00199841
RO46 42ND STREET & GRAND CENTRAL 00207758 00007908 00000323 00001183 4 00003001 00040759 00096613

e Semantics: real-world meaning of the data
e [ype: structural or mathematical interpretation
e Both often require metadata
- Sometimes we can infer some of this information
- Line between data and metadata isn’t always clear

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 3

Semantics

* [he meaning of the data
o Example: 94023, 90210, 02747, 60115

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 4

Semantics

* [he meaning of the data
o Example: 94023, 90210, 02747, 60115
- Attendance at college football games”

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 4

Semantics

* [he meaning of the data

o Example: 94023, 90210, 02747, 60115
- Attendance at college football games”
- Salaries?

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 4

Semantics

* [he meaning of the data
o Example: 94023, 90210, 02747, 60115
- Attendance at college football games”
- Salaries?
- ZIp codes”?
e Cannot always infer based on what the data looks like
e Often require semantics to better understand data, column names help

e May also include rules about data: a zip code is part of an address that
uniquely identifies a residence

o Useful for asking good questions about the data

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 4

Data lerminology

* [tems
- An 1item Is an individual discrete entity
- .., arow in a table

o Attributes

- An attribute is some specific property that can be measured, observed, or
logged

- a.k.a. variable, (data) dimension
- e.g., acolumn in a table

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 5

lables

Flat e Data organized by rows & columns
Attributes (columns) - row ~ item (usually)
::2332) - column ~ attribute
‘ T - label ~ attribute name
Cell containing value o Key: identifies each item (row)
- Usually unique
Multidimensional - Allows join of data from 2+ tables
L - Compound key: key split among multiple
oy 2 columns, e.g. (state, year) for population
] | | et e Multidimensional:

- Split compound key

[Munzner (ill. Maguire), 2014]

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 6

Attribute lypes

=>» Categorical =» Ordered
+ ‘ . A = Ordinal = Quantitative
» WM —

[Munzner (ill. Maguire), 2014]

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 7

Assignment 1

e Due today at 11:59pm

e Using Python for data analysis on Info Wanted ads

e Provided al.ipynb file (right-click and download)

e Use basic python for now to demonstrate language knowledge
- No pandas (for now)

e Use Anaconda or hosted Python environment

e [urn .ipynb file in via Blackboard

o Notes:
- Bug in URL (https instead of http),
- Bug In Problem 1 solution

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 8

http://faculty.cs.niu.edu/~dakoop/cs680-2021sp/assignment1.html

Assignment 2

e Coming soon
e Similar to Assignment 1, now with pandas

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 9

Reading

e \Nednesday
e Discussing paper:
- "Wrangler: Interactive Visual Specification of Data Transformation Scripts”
- Kandel et al.
- http://vis.stanford.edu/files/wrangler.pdf
* Read
e Come prepared with questions, thoughts
- Compare with how things work in pandas

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 10

http://vis.stanford.edu/files/wrangler.pdf

Dandas

e Contains high-level data structures and manipulation tools designed to make
data analysis fast and easy in Python

e Bullt on top of NumPy
* Requirements:
- Data structures with labeled axes (aligning data)
- lTIme series data
- Arithmetic operations that include metadata (labels)
- Handle missing data
- Merge and relational operations

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 11

Series

e A one-dimensional array (with a type) with an index
¢ |ndex defaults to numbers but can also be text (like a dictionary)

o Allows easlier reference to specific items
e Ob] = pd.Series([7,14,-2,1])

e Basically two arrays: obj.values and obj.index

e Can specify the index explicitly and use strings
e Obj]2 = pd.Series([4, 7, -5, 31,
index=['d', 'b', 'a', 'c'])
o Kind of like fixed-length, ordered dictionary + can create from a dictionary

e O3 pd.Series ({'Ohio': 35000, 'Texas': 71000,
'Oregon': 16000, 'Utah': 5000})

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 12

Series

e |[ndexing: s[1] Or s['Oregon']
e Can check for missing data: pd.isnull (s) Or pd.notnull (s)
e Both iIndex and values can have an assoclated name:

- s.name = 'population'; s.i1ndex.name = 'state'

o Addition and Num~Py ops work as expected and preserve the index-value link
® [hese operations align:

In [28]: obj3 In [29]: obj4 In [30]: obj3 + obj4
Out[28]: Out[29]: Out[30]:

Ohio 35000 California NaN California NaN
Oregon 16000 Ohio 35000 Ohio 70000
Texas 71000 Oregon 16000 Oregon 32000
Utah 5000 Texas 71000 Texas 142000
dtype: int64 dtype: float64 Utah NaN

dtype: float64
[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 13

Data Frame

e A dictionary of Series (labels for each series)
e A spreadsheet with column headers

¢ Has an index shared with each series

o Allows easy reference to any cell

e df = DataFrame ({'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada'],
'vear': [2000, 2001, 2002, 2001],
'vop': [1.5, 1.7, 3.6, 2.4]})

¢ |[ndex Is automatically assigned just as with a series but can be passed in as
well via Index kwarg

e Can reassign column names by passing columns kwarg

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 14

DataFrame Constructor Inputs

Type Notes
2D ndarray A matrix of data, passing optional row and column labels
dict of arrays, lists, or tuples Each sequence becomes a column in the DataFrame. All sequences must be the same length.

NumPy structured/record array ~ Treated as the “dict of arrays” case

dict of Series Each value becomes a column. Indexes from each Series are unioned together to form the
result’s row index if no explicit index is passed.

dict of dicts Each inner dict becomes a column. Keys are unioned to form the row index as in the “dict of
Series” case.

list of dicts or Series Each item becomes a row in the DataFrame. Union of dict keys or Series indexes become the
DataFrame’s column labels

List of lists or tuples Treated as the “2D ndarray” case

Another DataFrame The DataFrame’s indexes are used unless different ones are passed

NumPy MaskedArray Like the“2D ndarray” case except masked values become NA/missing in the DataFrame result

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 15

DatarFrame Access and Manipulation

e df .values — 2D NumPy array

e Accessing a column:
- df ["<column>"|]

- df.<column>

- Both return Series

- Dot syntax only works when the column is a valid identifier
e Assigning to a column:

- df ["<column>"] = <scalar> all cells set to same wvalue
- df["<column>"] = <array> values set 1n order
- df ["<column>"] = <series> values set according to match

o

between df and series 1ndexes

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 16

DataFrame Ingex

e Similar to index for Series

o Immutable
e Can be shared with multiple structures (DataFrames or Series)

P

.1ndex

e in operator works with: 'ohio' in d:

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 17

INndex methods and properties

Method Description
append Concatenate with additional Index objects, producing a new Index
diff Compute set difference as an Index

intersection Compute setintersection

union Compute set union

isin Compute boolean array indicating whether each value is contained in the passed collection
delete Compute new Index with element at index i deleted

drop Compute new index by deleting passed values

insert Compute new Index by inserting element at index i

is monotonic Returns True if each elementis greater than or equal to the previous element
1s _unique Returns True if the Index has no duplicate values

unique Compute the array of unique values in the Index

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 18

Reindexing

e reindex creates a new object with the data conformed to new index
e 0bj2 = obj.reindex(['a', 'b', 'c', 'd', 'e'l)

e \Missing values: handle with kwargs

- £i11 wvalue: fill any missing value with a specific value

-method="'ffi11": fill values forward

-method="bfill": fill values backward

e Data Frames:
- relndex rows as with series
- reindex columns using columns kwarg

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 19

Dropping entries

e Can drop one or more entries

® Series:
- new obj] = obj.drop('c')
-new:obj = obj.drop(['d"', 'c'])
e Data Frames:
- axis keyword defines which axis to drop (default O)
- axis=0 — rows, axis=1— columns

-axls = 'columns'

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 20

Indexing

e Same as with NumPy arrays but can use Series's index labels
e Slicing with labels: NumPYy is exclusive, Pandas is inclusive!

- 8 = Serilies(np.arange (4))
s[0:2] glves two values like numpy

- s = Seriles(np.arange(4), 1ndex=['a', 'b', 'c¢', 'd'])
s['a':"c'] gives three wvalues, not two!

e Obtaining data subsets
- [1: get columns by label

- loc: get rows/cols by label
- i1loc: get rows/cols by position (integer index)
- For single cells (scalars), also have at and iat

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 21

Indexing

e s = Serles(np.arange(4.), 1ndex=[4,3,2,1])
® S[3]
e s.loc[3]

e s.11oc[3]

e S2 pd.Series (np.arange (4), index=['a',6 'b','c','d'])

o S/ [3]

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 22

~litering

e Same as with numpy arrays but allows use of column-based criteria
- data[data < 5] = 0
- dataldata| 'three'] > 5]

- data < 5 — boolean data frame, can be used to select specific elements

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 23

Arithmetic

e Add, subtract, multiply, and divide are element-wise like numpy
o .. .but use labels to align
e ...and missing labels lead to NaN (not a number) values

In [28]: obj3 In [29]: obj4 In [30]: obj3 + obj4
Out[28]: Out[29]: Out[30]:

Ohio 35000 California NaN California NaN
Oregon 16000 Ohio 35000 Oh1io 70000
Texas 71000 Oregon 16000 Oregon 32000
Utah 5000 Texas 71000 Texas 142000
dtype: 1nt64 dtype: float64 Utah NaN

dtype: float64
® 3lso have .add, .subtract, ... thatallow £i11 value argument
e Obj3.add(obj4, fill value=0)

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University =~ 24

Arithmetic between DataFrames and Series

e Broadcasting: e.g. apply single row operation across all rows

¢ Examp‘e: In [148]: frame In [149]: series In [150]: frame - series
Out[148]: Out[149]: Out[150]:
b d e b 0 b d e
Utah o 1 2 d 1 Utah 0 0 O
Ohio 3 4 5 e 2 Ohio 3 3 3
Texas 6 7 8 Name: Utah, dtype: float64 Texas 6 6 b6
Oregon 9 10 11 Oregon 9 9 9
e [0 broadcast over columns, use methods (. add, ...
In [154]: frame In [155]: series3 In [156]: frame.sub(series3, axis=0)
Out[154]: Out[155]: Out[156]:
b d e Utah 1 b d e
Utah 0o 1 2 Ohio 4 Utah -1 0 1
Ohio 3 4 5 Texas 7 Ohio -1 0 1
Texas 6 7 8 Oregon 10 Texas -1 0 1
Oregon 9 10 11 Name: d, dtype: float64 Oregon -1 0 1

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 25

Sorting by Index (sort_index)

e Sort by index (lexicographical):
In [168]: obj = Series(range(4), index=['d', 'a', 'b', 'c'])

]
]

In |

16 obj.sort index()
Out[16
1
2
3
0

9
9

a
b
C

d
dtype: int64

e DatalFrame sorting:

In [170]: frame = DataFrame(np.arange(8).reshape((2, 4)), index=['three', 'one'],

Ceeeet columns=['d', 'a', 'b', 'c'])
In [171]: frame.sort index() In [172]: frame.sort index(axis=1)
Out[171]: Out[172]:
d a b c a b c d
one 4 5 6 7 three 1 2 3 0
three 0 1 2 3 one 5 6 7 4
S

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 26

Sorting by Value (sort_values)

* sort values Method on series

- Oobj.sort values ()

e Missing values (NaN) are at the end by default (na position controls, can be
first)

* sort values On DataFrame:

- df.sort values (<list-of-columns>)

- df.sort values (by=['a', 'b'])
- Can also use axis=1 to sort by index labels

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 27

Reading

e \Nednesday
e Discussing paper:
- "Wrangler: Interactive Visual Specification of Data Transformation Scripts”
- Kandel et al.
- http://vis.stanford.edu/files/wrangler.pdf
* Read
e Come prepared with questions, thoughts
- Compare with how things work in pandas

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University ~ 28

http://vis.stanford.edu/files/wrangler.pdf

