
Advanced Data Management (CSCI 490/680)

Data & Pandas

Dr. David Koop

D. Koop, CSCI 680/490, Spring 2021

Arrays
• Usually a fixed size—lists are meant to change size
• Are mutable—tuples are not
• Store only one type of data—lists and tuples can store anything
• Are faster to access and manipulate than lists or tuples
• Can be multidimensional:
- Can have list of lists or tuple of tuples but no guarantee on shape
- Multidimensional arrays are rectangles, cubes, etc.

2D. Koop, CSCI 680/490, Spring 2021

Why NumPy?
• Fast vectorized array operations for data munging and cleaning, subsetting

and filtering, transformation, and any other kinds of computations
• Common array algorithms like sorting, unique, and set operations
• Efficient descriptive statistics and aggregating/summarizing data
• Data alignment and relational data manipulations for merging and joining

together heterogeneous data sets
• Expressing conditional logic as array expressions instead of loops with if-
elif-else branches

• Group-wise data manipulations (aggregation, transformation, function
application).

3

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 680/490, Spring 2021

NumPy Arrays
• data1 = [6, 7.5, 8, 0, 1]
arr1 = np.array(data1)

• Zeros: np.zeros(10), Ones: np.ones((4,5)),
Empty: np.empty((2,2))

• # of dimensions: arr2.ndim, Shape: arr2.shape, Type: arr2.dtype
• Types: Each array has a fixed type unlike other variables in python

4D. Koop, CSCI 680/490, Spring 2021

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

2D Array Slicing

5

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 680/490, Spring 2021

How to obtain the blue slice
from array arr?

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

2D Array Slicing

5

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 680/490, Spring 2021

How to obtain the blue slice
from array arr?

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

2D Array Slicing

5

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 680/490, Spring 2021

How to obtain the blue slice
from array arr?

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

Boolean Indexing
• names == 'Bob' gives back booleans that represent the element-wise

comparison with the array names
• Boolean arrays can be used to index into another array:

- data[names == 'Bob']

• Can even mix and match with integer slicing
• Can do boolean operations (&, |) between arrays (just like addition,

subtraction)
- data[(names == 'Bob') | (names == 'Will')]

• Note: or and and do not work with arrays
• We can set values too! data[data < 0] = 0

6D. Koop, CSCI 680/490, Spring 2021

Assignment 1
• Due Monday, Feb. 1 at 11:59pm
• Using Python for data analysis on Info Wanted ads
• Provided a1.ipynb file (right-click and download)
• Use basic python for now to demonstrate language knowledge
- No pandas (for now)

• Use Anaconda or hosted Python environment
• Turn .ipynb file in via Blackboard
• Notes:
- Bug in URL (https instead of http),
- Bug in Problem 1 solution

7D. Koop, CSCI 680/490, Spring 2021

http://faculty.cs.niu.edu/~dakoop/cs680-2021sp/assignment1.html

Other Operations
• Fancy Indexing: arr[[1,2,3]]
• Transposing arrays: arr.T
• Reshaping arrays: arr.reshape((3,5))
• Unary universal functions (ufuncs): np.sqrt, np.exp
• Binary universal functions: np.add, np.maximum

8D. Koop, CSCI 680/490, Spring 2021

Out[153]: array([nan, nan, nan, 2.318 , 1.9022, 1.8574, 2.2378])

In [154]: arr
Out[154]: array([nan, nan, nan, 2.318 , 1.9022, 1.8574, 2.2378])

See Tables 4-3 and 4-4 for a listing of available ufuncs.

Table 4-3. Unary ufuncs
Function Description
abs, fabs Compute the absolute value element-wise for integer, !oating-point, or complex values
sqrt Compute the square root of each element (equivalent to arr ** 0.5)
square Compute the square of each element (equivalent to arr ** 2)
exp Compute the exponent ex of each element
log, log10,
log2, log1p

Natural logarithm (base e), log base 10, log base 2, and log(1 + x), respectively

sign Compute the sign of each element: 1 (positive), 0 (zero), or –1 (negative)
ceil Compute the ceiling of each element (i.e., the smallest integer greater than or equal to that

number)
floor Compute the !oor of each element (i.e., the largest integer less than or equal to each element)
rint Round elements to the nearest integer, preserving the dtype
modf Return fractional and integral parts of array as a separate array
isnan Return boolean array indicating whether each value is NaN (Not a Number)
isfinite, isinf Return boolean array indicating whether each element is "nite (non-inf, non-NaN) or in"nite,

respectively
cos, cosh, sin,
sinh, tan, tanh

Regular and hyperbolic trigonometric functions

arccos, arccosh,
arcsin, arcsinh,
arctan, arctanh

Inverse trigonometric functions

logical_not Compute truth value of not x element-wise (equivalent to ~arr).

Table 4-4. Binary universal functions
Function Description
add Add corresponding elements in arrays
subtract Subtract elements in second array from "rst array
multiply Multiply array elements
divide, floor_divide Divide or !oor divide (truncating the remainder)
power Raise elements in "rst array to powers indicated in second array
maximum, fmax Element-wise maximum; fmax ignores NaN
minimum, fmin Element-wise minimum; fmin ignores NaN
mod Element-wise modulus (remainder of division)
copysign Copy sign of values in second argument to values in "rst argument

4.2 Universal Functions: Fast Element-Wise Array Functions | 107

Unary Universal Functions

9

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 680/490, Spring 2021

Out[153]: array([nan, nan, nan, 2.318 , 1.9022, 1.8574, 2.2378])

In [154]: arr
Out[154]: array([nan, nan, nan, 2.318 , 1.9022, 1.8574, 2.2378])

See Tables 4-3 and 4-4 for a listing of available ufuncs.

Table 4-3. Unary ufuncs
Function Description
abs, fabs Compute the absolute value element-wise for integer, !oating-point, or complex values
sqrt Compute the square root of each element (equivalent to arr ** 0.5)
square Compute the square of each element (equivalent to arr ** 2)
exp Compute the exponent ex of each element
log, log10,
log2, log1p

Natural logarithm (base e), log base 10, log base 2, and log(1 + x), respectively

sign Compute the sign of each element: 1 (positive), 0 (zero), or –1 (negative)
ceil Compute the ceiling of each element (i.e., the smallest integer greater than or equal to that

number)
floor Compute the !oor of each element (i.e., the largest integer less than or equal to each element)
rint Round elements to the nearest integer, preserving the dtype
modf Return fractional and integral parts of array as a separate array
isnan Return boolean array indicating whether each value is NaN (Not a Number)
isfinite, isinf Return boolean array indicating whether each element is "nite (non-inf, non-NaN) or in"nite,

respectively
cos, cosh, sin,
sinh, tan, tanh

Regular and hyperbolic trigonometric functions

arccos, arccosh,
arcsin, arcsinh,
arctan, arctanh

Inverse trigonometric functions

logical_not Compute truth value of not x element-wise (equivalent to ~arr).

Table 4-4. Binary universal functions
Function Description
add Add corresponding elements in arrays
subtract Subtract elements in second array from "rst array
multiply Multiply array elements
divide, floor_divide Divide or !oor divide (truncating the remainder)
power Raise elements in "rst array to powers indicated in second array
maximum, fmax Element-wise maximum; fmax ignores NaN
minimum, fmin Element-wise minimum; fmin ignores NaN
mod Element-wise modulus (remainder of division)
copysign Copy sign of values in second argument to values in "rst argument

4.2 Universal Functions: Fast Element-Wise Array Functions | 107

Binary Universal Functions

10

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 680/490, Spring 2021

Function Description
greater, greater_equal,
less, less_equal,
equal, not_equal

Perform element-wise comparison, yielding boolean array (equivalent to in!x
operators >, >=, <, <=, ==, !=)

logical_and,
logical_or, logical_xor

Compute element-wise truth value of logical operation (equivalent to in!x operators
& |, ^)

4.3 Array-Oriented Programming with Arrays
Using NumPy arrays enables you to express many kinds of data processing tasks as
concise array expressions that might otherwise require writing loops. This practice of
replacing explicit loops with array expressions is commonly referred to as vectoriza‐
tion. In general, vectorized array operations will often be one or two (or more) orders
of magnitude faster than their pure Python equivalents, with the biggest impact in
any kind of numerical computations. Later, in Appendix A, I explain broadcasting, a
powerful method for vectorizing computations.

As a simple example, suppose we wished to evaluate the function sqrt(x^2 + y^2)
across a regular grid of values. The np.meshgrid function takes two 1D arrays and
produces two 2D matrices corresponding to all pairs of (x, y) in the two arrays:

In [155]: points = np.arange(-5, 5, 0.01) # 1000 equally spaced points

In [156]: xs, ys = np.meshgrid(points, points)

In [157]: ys
Out[157]:
array([[-5. , -5. , -5. , ..., -5. , -5. , -5.],
 [-4.99, -4.99, -4.99, ..., -4.99, -4.99, -4.99],
 [-4.98, -4.98, -4.98, ..., -4.98, -4.98, -4.98],
 ...,
 [4.97, 4.97, 4.97, ..., 4.97, 4.97, 4.97],
 [4.98, 4.98, 4.98, ..., 4.98, 4.98, 4.98],
 [4.99, 4.99, 4.99, ..., 4.99, 4.99, 4.99]])

Now, evaluating the function is a matter of writing the same expression you would
write with two points:

In [158]: z = np.sqrt(xs ** 2 + ys ** 2)

In [159]: z
Out[159]:
array([[7.0711, 7.064 , 7.0569, ..., 7.0499, 7.0569, 7.064],
 [7.064 , 7.0569, 7.0499, ..., 7.0428, 7.0499, 7.0569],
 [7.0569, 7.0499, 7.0428, ..., 7.0357, 7.0428, 7.0499],
 ...,
 [7.0499, 7.0428, 7.0357, ..., 7.0286, 7.0357, 7.0428],
 [7.0569, 7.0499, 7.0428, ..., 7.0357, 7.0428, 7.0499],
 [7.064 , 7.0569, 7.0499, ..., 7.0428, 7.0499, 7.0569]])

108 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

Here, arr.mean(1) means “compute mean across the columns” where arr.sum(0)
means “compute sum down the rows.”

Other methods like cumsum and cumprod do not aggregate, instead producing an array
of the intermediate results:

In [184]: arr = np.array([0, 1, 2, 3, 4, 5, 6, 7])

In [185]: arr.cumsum()
Out[185]: array([0, 1, 3, 6, 10, 15, 21, 28])

In multidimensional arrays, accumulation functions like cumsum return an array of
the same size, but with the partial aggregates computed along the indicated axis
according to each lower dimensional slice:

In [186]: arr = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]])

In [187]: arr
Out[187]:
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8]])

In [188]: arr.cumsum(axis=0)
Out[188]:
array([[0, 1, 2],
 [3, 5, 7],
 [9, 12, 15]])

In [189]: arr.cumprod(axis=1)
Out[189]:
array([[0, 0, 0],
 [3, 12, 60],
 [6, 42, 336]])

See Table 4-5 for a full listing. We’ll see many examples of these methods in action in
later chapters.

Table 4-5. Basic array statistical methods
Method Description
sum Sum of all the elements in the array or along an axis; zero-length arrays have sum 0
mean Arithmetic mean; zero-length arrays have NaN mean
std, var Standard deviation and variance, respectively, with optional degrees of freedom adjustment (default

denominator n)
min, max Minimum and maximum
argmin, argmax Indices of minimum and maximum elements, respectively
cumsum Cumulative sum of elements starting from 0
cumprod Cumulative product of elements starting from 1

112 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

Statistical Methods

11

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 680/490, Spring 2021

More
• Other methods:

- any and all
- sort
- unique

• Linear Algebra (numpy.linalg)
• Pseudorandom Number Generation (numpy.random)

12D. Koop, CSCI 680/490, Spring 2021

Data
• What is data?
- Types
- Semantics

• How is data structured?
- Tables (Data Frames)
- Databases
- Data Cubes

• What formats is data stored in?
• Raw versus derived data

13D. Koop, CSCI 680/490, Spring 2021

Data
• What is this data?

• Semantics: real-world meaning of the data
• Type: structural or mathematical interpretation
• Both often require metadata
- Sometimes we can infer some of this information
- Line between data and metadata isn’t always clear

14D. Koop, CSCI 680/490, Spring 2021

Data

15D. Koop, CSCI 680/490, Spring 2021

Tables

Attributes (columns)

Items
(rows)

Cell containing value

Networks

Link

Node
(item)

Trees

Fields (Continuous)

Attributes (columns)

Value in cell

Cell

Multidimensional Table

Value in cell

Grid of positions

Geometry (Spatial)

Position

Dataset TypesDataset Types

16

[Munzner (ill. Maguire), 2014]
D. Koop, CSCI 680/490, Spring 2021

Data Terminology
• Items
- An item is an individual discrete entity
- e.g., a row in a table

• Attributes
- An attribute is some specific property that can be measured, observed, or

logged
- a.k.a. variable, (data) dimension
- e.g., a column in a table

17D. Koop, CSCI 680/490, Spring 2021

Fieldattribute

item
cell

Tables

18D. Koop, CSCI 680/490, Spring 2021

Attribute Semantics
Keys vs. Values (Tables) or Independent vs. Dependent (Fields)

Flat

Multidimensional

Ta
bl

es

Fi
el

ds

Tables
• Data organized by rows & columns
- row ~ item (usually)
- column ~ attribute
- label ~ attribute name

• Key: identifies each item (row)
- Usually unique
- Allows join of data from 2+ tables
- Compound key: key split among multiple

columns, e.g. (state, year) for population
• Multidimensional:
- Split compound key

19

[Munzner (ill. Maguire), 2014]
D. Koop, CSCI 680/490, Spring 2021

Attributes

Attribute Types

Ordering Direction

Categorical Ordered

Ordinal Quantitative

Sequential Diverging Cyclic

Attribute Types

20

[Munzner (ill. Maguire), 2014]
D. Koop, CSCI 680/490, Spring 2021

23
1 = Quantitative
2 = Nominal
3 = Ordinal

 quantitative
 ordinal
 categorical

Categorial, Ordinal, and Quantitative

21D. Koop, CSCI 680/490, Spring 2021

24
1 = Quantitative
2 = Nominal
3 = Ordinal

 quantitative
 ordinal
 categorical

Categorial, Ordinal, and Quantitative

22D. Koop, CSCI 680/490, Spring 2021

Attribute Types
• May be further specified for computational storage/processing
- Categorical: string, boolean, blood type
- Ordered: enumeration, t-shirt size
- Quantitative: integer, float, fixed decimal, datetime

• Sometimes, types can be inferred from the data
- e.g. numbers and none have decimal points → integer
- could be incorrect (data doesn't have floats, but could be)

23D. Koop, CSCI 680/490, Spring 2021

Attributes

Attribute Types

Ordering Direction

Categorical Ordered

Ordinal Quantitative

Sequential Diverging Cyclic

Ordering Direction

24

[Munzner (ill. Maguire), 2014]
D. Koop, CSCI 680/490, Spring 2021

Sequential and Diverging Data
• Sequential: homogenous range from a

minimum to a maximum
- Examples: Land elevations, ocean depths

• Diverging: can be deconstructed into two
sequences pointing in opposite directions
- Has a zero point (not necessary 0)
- Example: Map of both land elevation and

ocean depth

25

[Rogowitz & Treinish, 1998]
D. Koop, CSCI 680/490, Spring 2021

Sequential and Diverging Data
• Sequential: homogenous range from a

minimum to a maximum
- Examples: Land elevations, ocean depths

• Diverging: can be deconstructed into two
sequences pointing in opposite directions
- Has a zero point (not necessary 0)
- Example: Map of both land elevation and

ocean depth

25

[Rogowitz & Treinish, 1998]
D. Koop, CSCI 680/490, Spring 2021

Cyclic Data

26D. Koop, CSCI 680/490, Spring 2021

Cyclic Data

26D. Koop, CSCI 680/490, Spring 2021

Semantics
• The meaning of the data
• Example: 94023, 90210, 02747, 60115

27D. Koop, CSCI 680/490, Spring 2021

Semantics
• The meaning of the data
• Example: 94023, 90210, 02747, 60115
- Attendance at college football games?

27D. Koop, CSCI 680/490, Spring 2021

Semantics
• The meaning of the data
• Example: 94023, 90210, 02747, 60115
- Attendance at college football games?
- Salaries?

27D. Koop, CSCI 680/490, Spring 2021

Semantics
• The meaning of the data
• Example: 94023, 90210, 02747, 60115
- Attendance at college football games?
- Salaries?
- Zip codes?

• Cannot always infer based on what the data looks like
• Often require semantics to better understand data, column names help
• May also include rules about data: a zip code is part of an address that

uniquely identifies a residence
• Useful for asking good questions about the data

27D. Koop, CSCI 680/490, Spring 2021

Data Model vs. Conceptual Model
• Data Model: raw data that has a specific data type (e.g. floats):
- Temperature Example: [32.5, 54.0, -17.3] (floats)

• Conceptual Model: how we think about the data
- Includes semantics, reasoning
- Temperature Example:

• Quantitative: [32.50, 54.00, -17.30]

28

[via A. Lex, 2015]
D. Koop, CSCI 680/490, Spring 2021

Data Model vs. Conceptual Model
• Data Model: raw data that has a specific data type (e.g. floats):
- Temperature Example: [32.5, 54.0, -17.3] (floats)

• Conceptual Model: how we think about the data
- Includes semantics, reasoning
- Temperature Example:

• Quantitative: [32.50, 54.00, -17.30]
• Ordered: [warm, hot, cold]

28

[via A. Lex, 2015]
D. Koop, CSCI 680/490, Spring 2021

Data Model vs. Conceptual Model
• Data Model: raw data that has a specific data type (e.g. floats):
- Temperature Example: [32.5, 54.0, -17.3] (floats)

• Conceptual Model: how we think about the data
- Includes semantics, reasoning
- Temperature Example:

• Quantitative: [32.50, 54.00, -17.30]
• Ordered: [warm, hot, cold]
• Categorical: [not burned, burned, not burned]

28

[via A. Lex, 2015]
D. Koop, CSCI 680/490, Spring 2021

Derived Data

29D. Koop, CSCI 680/490, Spring 2021

Derived Data
• Often, data in its original form isn't as useful as we would like
• Examples: Data about a basketball team's games

29D. Koop, CSCI 680/490, Spring 2021

Derived Data
• Often, data in its original form isn't as useful as we would like
• Examples: Data about a basketball team's games
• Example 1: 1stHalfPoints, 2ndHalfPoints
- More useful to know total number of points
- Points = 1stHalfPoints + 2ndHalfPoints

29D. Koop, CSCI 680/490, Spring 2021

Derived Data
• Often, data in its original form isn't as useful as we would like
• Examples: Data about a basketball team's games
• Example 1: 1stHalfPoints, 2ndHalfPoints
- More useful to know total number of points
- Points = 1stHalfPoints + 2ndHalfPoints

• Example 2: Points, OpponentPoints
- Want to have a column indicating win/loss
- Win = True if (Points > OpponentPoints) else False

29D. Koop, CSCI 680/490, Spring 2021

Derived Data
• Often, data in its original form isn't as useful as we would like
• Examples: Data about a basketball team's games
• Example 1: 1stHalfPoints, 2ndHalfPoints
- More useful to know total number of points
- Points = 1stHalfPoints + 2ndHalfPoints

• Example 2: Points, OpponentPoints
- Want to have a column indicating win/loss
- Win = True if (Points > OpponentPoints) else False

• Example 3: Points
- Want to have a column indicating how that point total ranks
- Rank = index in sorted list of all Point values

29D. Koop, CSCI 680/490, Spring 2021

pandas
• Contains high-level data structures and manipulation tools designed to make

data analysis fast and easy in Python
• Built on top of NumPy
• Requirements:
- Data structures with labeled axes (aligning data)
- Time series data
- Arithmetic operations that include metadata (labels)
- Handle missing data
- Merge and relational operations

30D. Koop, CSCI 680/490, Spring 2021

Pandas Code Conventions
• Universal:

- import pandas as pd

• Also used:
- from pandas import Series, DataFrame

31D. Koop, CSCI 680/490, Spring 2021

Series
• A one-dimensional array (with a type) with an index
• Index defaults to numbers but can also be text (like a dictionary)
• Allows easier reference to specific items
• obj = pd.Series([7,14,-2,1])

• Basically two arrays: obj.values and obj.index
• Can specify the index explicitly and use strings
• obj2 = pd.Series([4, 7, -5, 3],
 index=['d', 'b', 'a', 'c'])

• Kind of like fixed-length, ordered dictionary + can create from a dictionary
• obj3 = pd.Series({'Ohio': 35000, 'Texas': 71000,
 'Oregon': 16000, 'Utah': 5000})

32D. Koop, CSCI 680/490, Spring 2021

Series
• Indexing: s[1] or s['Oregon']
• Can check for missing data: pd.isnull(s) or pd.notnull(s)
• Both index and values can have an associated name:

- s.name = 'population'; s.index.name = 'state'

• Addition and NumPy ops work as expected and preserve the index-value link
• These operations align:

33

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 680/490, Spring 2021

When only passing a dict, the index in the resulting Series will have the dict’s keys in
sorted order.

In [22]: states = ['California', 'Ohio', 'Oregon', 'Texas']

In [23]: obj4 = Series(sdata, index=states)

In [24]: obj4
Out[24]:
California NaN
Ohio 35000
Oregon 16000
Texas 71000
dtype: float64

In this case, 3 values found in sdata were placed in the appropriate locations, but since
no value for 'California' was found, it appears as NaN (not a number) which is con-
sidered in pandas to mark missing or NA values. I will use the terms “missing” or “NA”
to refer to missing data. The isnull and notnull functions in pandas should be used to
detect missing data:

In [25]: pd.isnull(obj4) In [26]: pd.notnull(obj4)
Out[25]: Out[26]:
California True California False
Ohio False Ohio True
Oregon False Oregon True
Texas False Texas True
dtype: bool dtype: bool

Series also has these as instance methods:

In [27]: obj4.isnull()
Out[27]:
California True
Ohio False
Oregon False
Texas False
dtype: bool

I discuss working with missing data in more detail later in this chapter.

A critical Series feature for many applications is that it automatically aligns differently-
indexed data in arithmetic operations:

In [28]: obj3 In [29]: obj4
Out[28]: Out[29]:
Ohio 35000 California NaN
Oregon 16000 Ohio 35000
Texas 71000 Oregon 16000
Utah 5000 Texas 71000
dtype: int64 dtype: float64

In [30]: obj3 + obj4
Out[30]:
California NaN
Ohio 70000

110 | Chapter 5: Getting Started with pandas

When only passing a dict, the index in the resulting Series will have the dict’s keys in
sorted order.

In [22]: states = ['California', 'Ohio', 'Oregon', 'Texas']

In [23]: obj4 = Series(sdata, index=states)

In [24]: obj4
Out[24]:
California NaN
Ohio 35000
Oregon 16000
Texas 71000
dtype: float64

In this case, 3 values found in sdata were placed in the appropriate locations, but since
no value for 'California' was found, it appears as NaN (not a number) which is con-
sidered in pandas to mark missing or NA values. I will use the terms “missing” or “NA”
to refer to missing data. The isnull and notnull functions in pandas should be used to
detect missing data:

In [25]: pd.isnull(obj4) In [26]: pd.notnull(obj4)
Out[25]: Out[26]:
California True California False
Ohio False Ohio True
Oregon False Oregon True
Texas False Texas True
dtype: bool dtype: bool

Series also has these as instance methods:

In [27]: obj4.isnull()
Out[27]:
California True
Ohio False
Oregon False
Texas False
dtype: bool

I discuss working with missing data in more detail later in this chapter.

A critical Series feature for many applications is that it automatically aligns differently-
indexed data in arithmetic operations:

In [28]: obj3 In [29]: obj4
Out[28]: Out[29]:
Ohio 35000 California NaN
Oregon 16000 Ohio 35000
Texas 71000 Oregon 16000
Utah 5000 Texas 71000
dtype: int64 dtype: float64

In [30]: obj3 + obj4
Out[30]:
California NaN
Ohio 70000

110 | Chapter 5: Getting Started with pandas

Oregon 32000
Texas 142000
Utah NaN
dtype: float64

Data alignment features are addressed as a separate topic.

Both the Series object itself and its index have a name attribute, which integrates with
other key areas of pandas functionality:

In [31]: obj4.name = 'population'

In [32]: obj4.index.name = 'state'

In [33]: obj4
Out[33]:
state
California NaN
Ohio 35000
Oregon 16000
Texas 71000
Name: population, dtype: float64

A Series’s index can be altered in place by assignment:

In [34]: obj.index = ['Bob', 'Steve', 'Jeff', 'Ryan']

In [35]: obj
Out[35]:
Bob 4
Steve 7
Jeff -5
Ryan 3
dtype: int64

DataFrame
A DataFrame represents a tabular, spreadsheet-like data structure containing an or-
dered collection of columns, each of which can be a different value type (numeric,
string, boolean, etc.). The DataFrame has both a row and column index; it can be
thought of as a dict of Series (one for all sharing the same index). Compared with other
such DataFrame-like structures you may have used before (like R’s data.frame), row-
oriented and column-oriented operations in DataFrame are treated roughly symmet-
rically. Under the hood, the data is stored as one or more two-dimensional blocks rather
than a list, dict, or some other collection of one-dimensional arrays. The exact details
of DataFrame’s internals are far outside the scope of this book.

While DataFrame stores the data internally in a two-dimensional for-
mat, you can easily represent much higher-dimensional data in a tabular
format using hierarchical indexing, a subject of a later section and a key
ingredient in many of the more advanced data-handling features in pan-
das.

Introduction to pandas Data Structures | 111

Data Frame
• A dictionary of Series (labels for each series)
• A spreadsheet with column headers
• Has an index shared with each series
• Allows easy reference to any cell
• df = DataFrame({'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada'],
 'year': [2000, 2001, 2002, 2001],
 'pop': [1.5, 1.7, 3.6, 2.4]})

• Index is automatically assigned just as with a series but can be passed in as
well via index kwarg

• Can reassign column names by passing columns kwarg

34D. Koop, CSCI 680/490, Spring 2021

Chicago Food Inspections Exploration
• Based on David Beazley's PyData Chicago talk
• Data
• YouTube video: https://www.youtube.com/watch?v=j6VSAsKAj98
• Our in-class exploration:
- Python can give answers fairly quickly
- Data analysis questions:

• What is information is available
• Questions are interesting about this dataset
• How to decide on good follow-up questions
• What the computations mean

35D. Koop, CSCI 680/490, Spring 2021

https://www.youtube.com/watch?v=j6VSAsKAj98

Chicago Food Inspections Exploration

36D. Koop, CSCI 680/490, Spring 2021

