Advanced Data Management (CSCI 490/680)

Data & Pandas

Dr. David Koop

Arrays

- Usually a fixed size—lists are meant to change size
- Are mutable—tuples are not
- Store only one type of data—lists and tuples can store anything • Are faster to access and manipulate than lists or tuples
- Can be multidimensional:

 - Can have list of lists or tuple of tuples but no guarantee on shape - Multidimensional arrays are rectangles, cubes, etc.

2

Why NumPy?

- Fast vectorized array operations for data munging and cleaning, subsetting and filtering, transformation, and any other kinds of computations
- Common array algorithms like sorting, unique, and set operations Efficient descriptive statistics and aggregating/summarizing data
- Data alignment and relational data manipulations for merging and joining together heterogeneous data sets
- Expressing conditional logic as array expressions instead of loops with ifelif-else branches
- Group-wise data manipulations (aggregation, transformation, function) application).

Northern Illinois University

NumPy Arrays

- data1 = [6, 7.5, 8, 0, 1]arr1 = np.array(data1)
- Zeros: np.zeros(10), Ones: np.ones((4,5)), **Empty:** np.empty((2,2))
- Types: Each array has a fixed type unlike other variables in python

D. Koop, CSCI 680/490, Spring 2021

• # of dimensions: arr2.ndim, Shape: arr2.shape, Type: arr2.dtype

2D Array Slicing

How to obtain the blue slice from array arr?

D. Koop, CSCI 680/490, Spring 2021

[W. McKinney, Python for Data Analysis]

Northern Illinois University

2D Array Slicing

How to obtain the blue slice from array arr?

D. Koop, CSCI 680/490, Spring 2021

[W. McKinney, Python for Data Analysis]

Northern Illinois University

2D Array Slicing

How to obtain the blue slice from array arr?

D. Koop, CSCI 680/490, Spring 2021

[W. McKinney, Python for Data Analysis]

Boolean Indexing

- names == 'Bob' gives back booleans that represent the element-wise comparison with the array names
- Boolean arrays can be used to index into another array:
 - data[names == 'Bob']
- Can even mix and match with integer slicing
- Can do boolean operations (&, |) between arrays (just like addition, subtraction)
 - data[(names == 'Bob') | (names == 'Will')]
- Note: or and and do not work with arrays
- We can set values too! data [data < 0] = 0

<u>Assignment 1</u>

- Due Monday, Feb. 1 at 11:59pm
- Using Python for data analysis on Info Wanted ads Provided a1.ipynb file (right-click and download) Use basic python for now to demonstrate language knowledge
- No pandas (for now)
- Use Anaconda or hosted Python environment
- Turn .ipynb file in via Blackboard
- Notes:
 - Bug in URL (https instead of http),
 - Bug in Problem 1 solution

Other Operations

- Fancy Indexing: arr[[1,2,3]]
- Transposing arrays: arr.T
- Reshaping arrays: arr.reshape((3,5))
- Unary universal functions (ufuncs): np.sqrt, np.exp
- Binary universal functions: np.add, np.maximum

Unary Universal Functions

Description
Compute the absolute value
Compute the square root of
Compute the square of each
Compute the exponent e ^x of
Natural logarithm (base <i>e</i>),
Compute the sign of each el
Compute the ceiling of each number)
Compute the floor of each e
Round elements to the near
Return fractional and integr
Return boolean array indica
Return boolean array indica respectively
Regular and hyperbolic trigo
Inverse trigonometric functi
Compute truth value of not

D. Koop, CSCI 680/490, Spring 2021

e element-wise for integer, floating-point, or complex values each element (equivalent to arr ** 0.5) element (equivalent to arr ** 2) f each element log base 10, log base 2, and log(1 + x), respectively

lement: 1 (positive), 0 (zero), or –1 (negative) element (i.e., the smallest integer greater than or equal to that

element (i.e., the largest integer less than or equal to each element)

- rest integer, preserving the dtype
- ral parts of array as a separate array
- ating whether each value is NaN (Not a Number)
- nting whether each element is finite (non-inf, non-NaN) or infinite,

onometric functions

ions

t \times element-wise (equivalent to $\sim arr$).

[W. McKinney, Python for Data Analysis]

Binary Universal Functions

Function	Description
add	Add corresponding
subtract	Subtract elements
multiply	Multiply array elen
divide, floor_divide	Divide or floor divi
рожег	Raise elements in f
maximum, fmax	Element-wise max
minimum, fmin	Element-wise mini
mod	Element-wise mod
copysign	Copy sign of values
greater, greater_equal,	Perform element-v
less, less_equal,	operators >, >=,
equal, not_equal	
logical_and,	Compute element-
logical_or, logical_xor	& , ^)

D. Koop, CSCI 680/490, Spring 2021

- elements in arrays
- in second array from first array
- nents
- de (truncating the remainder)
- first array to powers indicated in second array
- (imum; fmax ignores NaN
- imum; fmin ignores NaN
- lulus (remainder of division)
- s in second argument to values in first argument
- wise comparison, yielding boolean array (equivalent to infix

<, <=, ==, !=)

-wise truth value of logical operation (equivalent to infix operators

[W. McKinney, Python for Data Analysis]

Statistical Methods

Method	Description
SUM	Sum of all the elements in the arra
mean	Arithmetic mean; zero-length array
std, var	Standard deviation and variance, reddenominator n
min, max	Minimum and maximum
argmin, argmax	Indices of minimum and maximum
CUMSUM	Cumulative sum of elements starting
cumprod	Cumulative product of elements sta

D. Koop, CSCI 680/490, Spring 2021

- ay or along an axis; zero-length arrays have sum 0
- ys have NaN mean
- espectively, with optional degrees of freedom adjustment (default

- elements, respectively
- ng from 0
- arting from 1

[W. McKinney, Python for Data Analysis]

/SIS] 11

More

- Other methods:
 - any and all
 - sort
 - unique
- Linear Algebra (numpy.linalg)
- Pseudorandom Number Generation (numpy.random)

Data

- What is data?
 - Types
 - Semantics
- How is data structured?
 - Tables (Data Frames)
 - Databases
 - Data Cubes
- What formats is data stored in?
- Raw versus derived data

Data

• What is this data?

R011	42ND STREET & 8TH AVENUE	00228985	00008471	00000441	00001455	00000134	00033341	00071255
R170	14TH STREET-UNION SQUARE	00224603	00011051	00000827	00003026	00000660	00089367	00199841
R046	42ND STREET & GRAND CENTRAL	00207758	00007908	00000323	00001183	00003001	00040759	00096613

- Semantics: real-world meaning of the data
- Type: structural or mathematical interpretation
- Both often require metadata
 - Sometimes we can infer some of this information
 - Line between data and metadata isn't always clear

this information isn't always clear

Data

	REMOTE	STATION	FF 1
1	R011	42ND STREET & 8TH AVENUE	00228985
2	R170	14TH STREET-UNION SQUARE	00224603
3	R046	42ND STREET & GRAND CENTRAL	00207758
4	R012	34TH STREET & 8TH AVENUE	00188311
5	R293	34TH STREET – PENN STATION	00168768
6	R033	42ND STREET/TIMES SQUARE	00159382
7	R022	34TH STREET & 6TH AVENUE	00156008
8	R084	59TH STREET/COLUMBUS CIRCLE	00155262
9	R020	47-50 STREETS/ROCKEFELLER	00143500
10	R179	86TH STREET-LEXINGTON AVE	00142169
11	R023	34TH STREET & 6TH AVENUE	00134052
12	R029	PARK PLACE	00121614
13	R047	42ND STREET & GRAND CENTRAL	00100742
14	R031	34TH STREET & 7TH AVENUE	00095076
15	R017	LEXINGTON AVENUE	00094655
16	R175	8TH AVENUE-14TH STREET	00094313
17	R057	BARCLAYS CENTER	00093804
18	R138	WEST 4TH ST-WASHINGTON SO	00093562

							_
/	SEN/DIS	7-D AFAS UNL	D AFAS/RMF L	JOINT RR TKT	7-D UNL	30-D UNL	
5	00008471	00000441	00001455	00000134	00033341	00071255	
3	00011051	00000827	00003026	00000660	00089367	00199841	
3	00007908	00000323	00001183	00003001	00040759	00096613	
L	00006490	00000498	00001279	00003622	00035527	00067483	
3	00006155	00000523	00001065	00005031	00030645	00054376	
2	00005945	00000378	00001205	00000690	00058931	00078644	
3	00006276	00000487	00001543	00000712	00058910	00110466	
2	00009484	00000589	00002071	00000542	00053397	00113966	
)	00006402	00000384	00001159	00000723	00037978	00090745	
9	00010367	00000470	00001839	00000271	00050328	00125250	
2	00005005	00000348	00001112	00000649	00031531	00075040	
1	00004311	00000287	00000931	00000792	00025404	00065362	
2	00004273	00000185	00000704	00001241	00022808	00068216	
5	00003990	00000232	00000727	00001459	00024284	00038671	
5	00004688	00000190	00000833	00000754	00020018	00055066	
3	00003907	00000286	00001144	00000256	00038272	00074661	
1	00004204	00000454	00001386	00001491	00039113	00068119	
,	00004677	00000251	00000965	00000127	00031628	00074458	

Dataset Types

→ Tables

→ Networks

 \rightarrow Multidimensional Table

→ Trees

D. Koop, CSCI 680/490, Spring 2021

→ Geometry (Spatial)

Northern Illinois University

Data Terminology

- Items
 - An **item** is an individual discrete entity
 - e.g., a row in a table
- Attributes
 - logged
 - a.k.a. variable, (data) dimension
 - e.g., a column in a table

D. Koop, CSCI 680/490, Spring 2021

- An attribute is some specific property that can be measured, observed, or

Tables

Α	В	С	S	Т	U
Order ID	Order Date	Order Priority	Product Container	Product Base Margin	Ship Date
3	10/14/06	5-Low	Large Box	0.8	10/21/06
6	2/21/08	4-Not Specified	Small Pack	0.55	2/22/08
32	7/16/07	2-High	Small Pack	0.79	7/17/07
32	7/16/07	2-High	Jumbo Box	•1 .	7/17/07
32	7/16/07	2-High	Medium Box	attribute	7/18/07
32	7/16/07	2-High	Medium Box	0.05	7/18/07
35	10/23/07	4-Not Specified	Wrap Bag	0.52	10/24/07
35	10/23/07	4-Not Specified	Small Box	0.58	10/25/07
36	11/3/07	1-Urgent	Small Box	0.55	11/3/07
65	3/18/07	1-Urgent	Small Pack	0.49	3/19/07
66	1 (20 (05	5-Low	Wrap Bag	0.56	1/20/05
69	item ⁵	4-Not Specified	Small Pack	0.44	6/6/05
69	5	4-Not Specified	Wrap Bag	0.6	6/6/05
70	12/18/06	5-Low	Small Box	0.59	12/23/06
70	12/18/06	5-Low	Wrap Bag	0.82	12/23/06
96	4/17/05	2-High	Small Box	0.55	4/19/05
97	1/29/06	3-Medium	Small Box	0.38	1/30/06
129	11/19/08	5-Low	Small Box	0.37	11/28/08
130	5/8/08	2-High	Small Box	0.37	5/9/08
130	5/8/08	2-High	Medium Box	0.38	5/10/08
130	5/8/08	2-High	Small Box	0.6	5/11/08
132	6/11/06	3-Medium	Medium Box	0.6	6/12/06
132	6/11/06	3-Medium	Jumbo Box	0.69	6/14/06
134	5/1/08	4-Not Specified	Large Box	0.82	5/3/08
135	10/21/07	4-Not Specified	Small Pack	0.64	10/23/07
166	9/12/07	2-High	Small Box	0.55	9/14/07
193	8/8/06	1-Urgent	Medium Box	0.57	8/10/06
194	4/5/08	3-Medium	Wrap Bag	0.42	4/7/08

Tables

- - row ~ item (usually)
- column ~ attribute
- label labe
- Key: identifies each item (row)
 - Usually unique
 - Allows join of data from 2+ tables
 - Compound key: key split among multiple columns, e.g. (state, year) for population
- Multidimensional:
 - Split compound key

D. Koop, CSCI 680/490, Spring 2021

Data organized by rows & columns

Attribute Types

Categorical

D. Koop, CSCI 680/490, Spring 2021

Northern Illinois University

Categorial, Ordinal, and Quantitative

Α	В	(2	S	Т	U
Order ID	Order Date	Order Priorit	ty	Product Container	Product Base Margin	Ship Date
3	10/14/06	5-Low		Large Box	0.8	10/21/06
6	2/21/08	4-Not Speci	fied	Small Pack	0.55	2/22/08
32	7/16/07	2-High		Small Pack	0.79	7/17/07
32	7/16/07	2-High		Jumbo Box	0.72	7/17/07
32	7/16/07	2-High		Medium Box	0.6	7/18/07
32	7/16/07	2-High		Medium Box	0.65	7/18/07
35	10/23/07	4-Not Speci	fied	Wrap Bag	0.52	10/24/07
35	10/23/07	4-Not Speci	fied	Small Box	0.58	10/25/07
36	11/3/07	1-Urgent		Small Box	0.55	11/3/07
65	3/18/07	1-Urgent		Small Pack	0.49	3/19/07
66	1/20/05	5-Low		Wrap Bag	0.56	1/20/05
69	6/4/05	4-Not Speci	fied	Small Dack	0.44	6/6/05
69	6/4/05	4-Not Spec	anar	ntitativo	0.6	6/6/05
70	12/18/06	5-Low	yuai	illative	0.59	12/23/06
70	12/18/06	5-Low	ordi	nal	0.82	12/23/06
96	4/17/05	2-High	UI UI		0.55	4/19/05
97	1/29/06	3-Medium	cate	porical	0.38	1/30/06
129	11/19/08	5-Low	cute	5011041	0.37	11/28/08
130	5/8/08	2-High		Small Box	0.37	5/9/08
130	5/8/08	2-High		Medium Box	0.38	5/10/08
130	5/8/08	2-High		Small Box	0.6	5/11/08
132	6/11/06	3-Medium		Medium Box	0.6	6/12/06
132	6/11/06	3-Medium		Jumbo Box	0.69	6/14/06
134	5/1/08	4-Not Speci	fied	Large Box	0.82	5/3/08
135	10/21/07	4-Not Speci	fied	Small Pack	0.64	10/23/07
166	9/12/07	2-High		Small Box	0.55	9/14/07
193	8/8/06	1-Urgent		Medium Box	0.57	8/10/06
194	4/5/08	3-Medium		Wrap Bag	0.42	4/7/08

D. Koop, CSCI 680/490, Spring 2021

21

Categorial, Ordinal, and Quantitative

Α	В	(C	S	Т	U
Order ID	Order Date	Order Priori	ty	Product Container	Product Base Margin	Ship Date
3	10/14/06	5-Low		Large Box	0.8	10/21/06
6	2/21/08	4-Not Speci	fied	Small Pack	0.55	2/22/08
32	7/16/07	2-High		Small Pack	0.79	7/17/07
32	7/16/07	2-High		Jumbo Box	0.72	7/17/07
32	7/16/07	2-High		Medium Box	0.6	7/18/07
32	7/16/07	2-High		Medium Box	0.65	7/18/07
35	10/23/07	4-Not Speci	fied	Wrap Bag	0.52	10/24/07
35	10/23/07	4-Not Speci	fied	Small Box	0.58	10/25/07
36	11/3/07	1-Urgent		Small Box	0.55	11/3/07
65	3/18/07	1-Urgent		Small Pack	0.49	3/19/07
66	1/20/05	5-Low		Wrap Bag	0.56	1/20/05
69	6/4/05	4-Not Spec	fied	Small Pack	0.44	6/6/05
69	6/4/05	4-Not Spec	ana	atitativo	0.6	6/6/05
70	12/18/06	5-Low	yuai	illative	0.59	12/23/06
70	12/18/06	5-Low	ordi	nal	0.82	12/23/06
96	4/17/05	2-High		1101	0.55	4/19/05
97	1/29/06	3-Medium	cate	gorical	0.38	1/30/06
129	11/19/08	5-Low	cute	5011041	0.37	11/28/08
130	5/8/08	2-High		Small Box	0.37	5/9/08
130	5/8/08	2-High		Medium Box	0.38	5/10/08
130	5/8/08	2-High		Small Box	0.6	5/11/08
132	6/11/06	3-Medium		Medium Box	0.6	6/12/06
132	6/11/06	3-Medium		Jumbo Box	0.69	6/14/06
134	5/1/08	4-Not Speci	fied	Large Box	0.82	5/3/08
135	10/21/07	4-Not Specified		Small Pack	0.64	10/23/07
166	9/12/07	2-High		Small Box	0.55	9/14/07
193	8/8/06	1-Urgent		Medium Box	0.57	8/10/06
194	4/5/08	3-Medium		Wrap Bag	0.42	4/7/08
	1 / 1 / 0 0	a				1 (11) (0.0)

Attribute Types

- May be further specified for computational storage/processing - Categorical: string, boolean, blood type
- - Ordered: enumeration, t-shirt size
 - Quantitative: integer, float, fixed decimal, datetime
- Sometimes, types can be inferred from the data
 - e.g. numbers and none have decimal points \rightarrow integer
 - could be incorrect (data doesn't have floats, but could be)

Ordering Direction

Sequential

D. Koop, CSCI 680/490, Spring 2021

Diverging

Northern Illinois University

Sequential and Diverging Data

- Sequential: homogenous range from a minimum to a maximum
 - Examples: Land elevations, ocean depths
- Diverging: can be deconstructed into two sequences pointing in opposite directions
 - Has a **zero point** (not necessary 0)
 - Example: Map of both land elevation and ocean depth

1000 500 -500 -1000-1500 -2000 -2500 -3000 -3500

Sequential and Diverging Data

- Sequential: homogenous range from a minimum to a maximum
 - Examples: Land elevations, ocean depths
- Diverging: can be deconstructed into two sequences pointing in opposite directions
 - Has a **zero point** (not necessary 0)
 - Example: Map of both land elevation and ocean depth

Cyclic Data

Cyclic Data

D. Koop, CSCI 680/490, Spring 2021

month

- The meaning of the data
- Example: 94023, 90210, 02747, 60115

- The meaning of the data
- Example: 94023, 90210, 02747, 60115
 - Attendance at college football games?

- The meaning of the data
- Example: 94023, 90210, 02747, 60115
 - Attendance at college football games?
 - Salaries?

- The meaning of the data
- Example: 94023, 90210, 02747, 60115
 - Attendance at college football games?
 - Salaries?
 - Zip codes?
- Cannot always infer based on what the data looks like • Often require semantics to better understand data, column names help May also include rules about data: a zip code is part of an address that
- uniquely identifies a residence
- Useful for asking good questions about the data

Data Model vs. Conceptual Model

- Data Model: raw data that has a specific data type (e.g. floats):
 - Temperature Example: [32.5, 54.0, -17.3] (floats)
- Conceptual Model: how we think about the data
 - Includes semantics, reasoning
 - Temperature Example:
 - Quantitative: [32.50, 54.00, -17.30]

Data Model vs. Conceptual Model

- Data Model: raw data that has a specific data type (e.g. floats):
 - Temperature Example: [32.5, 54.0, -17.3] (floats)
- Conceptual Model: how we think about the data
 - Includes semantics, reasoning
 - Temperature Example:
 - Quantitative: [32.50, 54.00, -17.30]
 - Ordered: [warm, hot, cold]

Data Model vs. Conceptual Model

- Data Model: raw data that has a specific data type (e.g. floats):
 - Temperature Example: [32.5, 54.0, -17.3] (floats)
- Conceptual Model: how we think about the data
 - Includes semantics, reasoning
 - Temperature Example:
 - Quantitative: [32.50, 54.00, -17.30]
 - Ordered: [warm, hot, cold]
 - Categorical: [not burned, burned, not burned]

- Often, data in its original form isn't as useful as we would like
- Examples: Data about a basketball team's games

- Often, data in its original form isn't as useful as we would like
- Examples: Data about a basketball team's games
- Example 1: 1stHalfPoints, 2ndHalfPoints
 - More useful to know total number of points
 - Points = 1stHalfPoints + 2ndHalfPoints

- Often, data in its original form isn't as useful as we would like
- Examples: Data about a basketball team's games
- Example 1: 1stHalfPoints, 2ndHalfPoints
 - More useful to know total number of points
 - Points = 1stHalfPoints + 2ndHalfPoints
- Example 2: Points, OpponentPoints
 - Want to have a column indicating win/loss
 - Win = True if (Points > OpponentPoints) else False

- Often, data in its original form isn't as useful as we would like
- Examples: Data about a basketball team's games
- Example 1: 1stHalfPoints, 2ndHalfPoints
 - More useful to know total number of points
 - Points = 1stHalfPoints + 2ndHalfPoints
- Example 2: Points, OpponentPoints
 - Want to have a column indicating win/loss
 - Win = True if (Points > OpponentPoints) else False
- Example 3: Points
 - Want to have a column indicating how that point total ranks
 - Rank = index in sorted list of all Point values

pandas

- data analysis fast and easy in Python
- Built on top of NumPy
- Requirements:
 - Data structures with labeled axes (aligning data)
 - Time series data
 - Arithmetic operations that include metadata (labels)
 - Handle missing data
 - Merge and relational operations

D. Koop, CSCI 680/490, Spring 2021

Contains high-level data structures and manipulation tools designed to make

Pandas Code Conventions

- Universal:
 - import pandas as pd
- Also used:
 - from pandas import Series, DataFrame

Series

- A one-dimensional array (with a type) with an **index**
- Index defaults to numbers but can also be text (like a dictionary)
- Allows easier reference to specific items
- obj = pd.Series([7,14,-2,1])
- Basically two arrays: obj.values and obj.index
- Can specify the index explicitly and use strings
- obj2 = pd.Series([4, 7, -5, 3])index=['d', 'b', 'a', 'c'])
- Kind of like fixed-length, ordered dictionary + can create from a dictionary
- obj3 = pd.Series({'Ohio': 35000, 'Texas': 71000,

D. Koop, CSCI 680/490, Spring 2021

'Oregon': 16000, 'Utah': 5000})

Series

- Indexing: s[1] Or s['Oregon']
- Can check for missing data: pd.isnull(s) Or pd.notnull(s)
- Both index and values can have an associated name:
 - s.name = 'population'; s.index.name = 'state'
- Addition and NumPy ops work as expected and preserve the index-value link
- These operations **align**:

In [28]:	obj3	In [29]: obj	4	In [30]: obj	3 + obj4
Out[28]:		Out[29]:		Out[30]:	
Ohio	35000	California	NaN	California	NaN
Oregon	16000	Ohio	35000	Ohio	70000
Texas	71000	Oregon	16000	Oregon	32000
Utah	5000	Texas	71000	Texas	142000
dtype: i	nt64	dtype: float	64	Utah	NaN
71	•	71	•	dtype: float	64
				[VV. N	AcKinney, Pyt

Data Frame

- A dictionary of Series (labels for each series)
- A spreadsheet with column headers
- Has an index shared with each series
- Allows easy reference to any cell
- df = DataFrame({'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada'], 'year': [2000, 2001, 2002, 2001], 'pop': [1.5, 1.7, 3.6, 2.4]})
- Index is automatically assigned just as with a series but can be passed in as well via index kwarg
- Can reassign column names by passing columns kwarg

Chicago Food Inspections Exploration

- Based on David Beazley's PyData Chicago talk
- Data
- YouTube video: <u>https://www.youtube.com/watch?v=j6VSAsKAj98</u>
- Our in-class exploration:
 - Python can give answers fairly quickly
 - Data analysis questions:
 - What is information is available
 - Questions are interesting about this dataset
 - How to decide on good follow-up questions
 - What the computations mean

Chicago Food Inspections Exploration

