Advanced Data Management (CSCI 490/680)

Structured Data

Dr. David Koop

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University

Python Containers

e Container: store more than one value

e Mutable versus immutable: Can we update the container?
- Yes = mutable
- No = immutable
- Lists are mutable, tuples are immutable

¢ | [sts and tuples may contain values of different types:

o [ist: [1,"abc",12.34]

e [uple: (1, "abc", 12.34)

® YOu can also put functions in containers!

e 1en function: number of items: 1len (1)

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 2

Indexing and Slicing

o Just like with strings
® |ndexing:
- Where do we start counting?
- Use brackets [] to retrieve one value

- Can use negative values (count from the end)

e Slicing:
- Use brackets plus a colon to retrieve multiple values:
[<start>:<end>]

- Returnsanew list (b = a[:1)
- Don't need to specify the beginning or end

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 3

Dictionaries

e One of the most useful features of Python
e Also known as associative arrays
e xist In other languages but a core feature in Python
e Assoclate a key with a value
e \\When | want to find a value, | give the dictionary a key, and it returns the value
e Example: Inspection|D (key) = InspectionRecord (value)
e Keys must be immutable (technically, hashable):
- Normal types like numbers, strings are fine
- Tuples work, but lists do not (Typekrror: unhashable type: ‘list’)
® [here Is only one value per key!

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 4

Sets

e Sets are like dictionaries but without any values:
es = {'MA', 'RI', 'CT', 'NH'}; t = {'MA', 'NY', 'NH')}

e (1 IS an empty dictionary, set () IS an empty set
')
e Removing values: s.discard ('CT")

L]

e Adding values: s.add ("M

e EXISIS: "CT" in s
e UniONn:s | t => {'MA', 'RI', 'CT', 'NH', 'NY'}

e [ntersection: s ¢ t => {'MA', 'NH')}
e Exclusive-or (xor): s ~ t => {'RI', 'CT', 'NY')}

e Difference: s - t => {'RI', 'CT'}

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 5

Objects

o 0 =
o | =
e & =

o S =

dict ()
list ()
set ()

set ([1,2,3,4])

construct an empty dictionary object

construct an empty list object

construct an empty set object

e Calling methods:
- 1l.append('abc')
- d.update({'a': "b'})
- s.add (3)

e [he method is tied to the object preceding the dot (e.9. append modifies 1 to
add 'abc')

construct a set with 4 numbers

D. Koop, CSCI 680/490, Spring 2021

Northern Illinois University 6

Python Modules

e Python module: a file containing definitions and statements
o Import statement: like Java, get a module that isn't a Python builtin

import collections
d = collections.defaultdict(list)

d[3] .append (1)

e 1mport <name> as <shorter-name>

import collections as c

e from <module> import <name> - don't need to refer to the module

from collections 1mport defaultdict
d = defaultdict(list)
d[3] .append (1)

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 7

Other Collections Features

® collections.defaultdict: specify a default value for any item in the
dictionary (instead of KeyError)

* collections.OrderedDict: keep entries ordered according to when the
key was inserted

- dict objects are ordered in Python 3.7 but OrderedDict has some other
features (equality comparison, reversed)

* collections.Counter: counts hashaple objects, has amost common
method

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 8

Assignment 1

e Due Monday, Feb. 1 at 11:59pm

e Using Python for data analysis on Info Wanted ads

e Provided al.ipynb file (right-click and download)

e Use basic python for now to demonstrate language knowledge
- No pandas (for now)

e Use Anaconda or hosted Python environment

e [urn .ipynb file in via Blackboard

e Notes:
- Bug in URL (https instead of http)
- Be careful with extra spaces

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 9

http://faculty.cs.niu.edu/~dakoop/cs680-2021sp/assignment1.html

iterators

e Remember range, values, keys, items?

e [hey return iterators: objects that traverse containers
e Given iterator it, next (it) gives the next element

e StopIteration exception If there isn't another element

e Generally, we don't worry about this as the for loop handles everything
automatically...but you cannot index or slice an iterator

e d.values () [0] will not work!

® [f you need to index or slice, construct a list from an iterator
® list(d.values()) [0] Or Li1st (range (100)) [-1]

* |n general, this is slower code so we try to avoid creating lists

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 10

List Comprehensions

e Shorthand for transformative or filtering for loops
e squares = |[]
for 1 1n range(10) :

squares.append (1**2)

e squares = [1**2 for 1 1n range(10)]
® [ltering:

e squares = |[]
for 1 1n range(10):

1f 1 5 3 !'= 1:
squares.append (1 ** 2)

e squares = [1**2 for 1 1n range(l0) 1f 1 % 3 != 1]

o [f clause follows the for clause

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 11

Dictionary Comprehensions

e Similar idea, but allow dictionary construction
e Could use lists:

- names = dict([(k, v) for k,v 1in ..
e Native comprehension:
- names = {"Al1l": ["Smith", "Brown"],

e Could do this with a for loop as well

1 —

7

LA

1)

Beth": ["Jones"]}
first counts ={k: len(v) for k,v in names.items () }

Northern Illinois University 12

D. Koop, CSCI 680/490, Spring 2021

EXceptions

e crrors but potentially something that can be addressed

o {ry-except-else-finally:
- except clause runs if exactly the error(s) you wish to address happen
- else clause will run If no exceptions are encountered

- finally always runs (even if the program is about to crash)

e Can have multiple except clauses
e can also raise exceptions using the raise keyword
¢ (and define your own)

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 13

Classes

e Class ClassName:

e Everything In the class should be indented until the declaration ends
e self: thisIn Javaor C++ IS self In Python

e bvery Instance method has self as its first parameter

® |nstance variables are defined in methods (usually constructor)
e init :the constructor, should initialize instance variables

e def 1nit (self):
self.a = 12
self.b = "abc'

e def init (self, a, b)
self.a = a
self.b = D

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 14

Class Example

e class Rectangle:
def init (self, x, vy, w, h):

self.x = X
self.y = vy
self.w = w
self.h = h

def set corner(self, x, Vy):

self.x = X

self.y = vy
def set width(self, w): self.w = w
def set height(self, h): self.h = h

def area(self):
return self.w * self.h

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 15

Arrays

What is the difference between an array and a list (or a tuple)?

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 16

Arrays

e Usually a fixed size—Ilists are meant to change size

e Are mutable —tuples are not

e Store only one type of data—Ilists and tuples can store anything

e Are faster to access and manipulate than lists or tuples

e Can be multidimensional:
- Can have list of lists or tuple of tuples but no guarantee on shape
- Multidimensional arrays are rectangles, cubes, etc.

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 17

Why NumPy*?

e Fast vectorized array operations for data munging and cleaning, subsetting
and filtering, transtformation, and any other kinds of computations

e Common array algorithms like sorting, unique, and set operations
o fficient descriptive statistics and aggregating/summarizing data

e Data alignment and relational data manipulations for merging and joining
together heterogeneous data sets

e EXpressing conditional logic as array expressions instead of loops with if-
elif-else branches

e (Group-wise data manipulations (aggregation, transformation, function
application).

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 18

1mport numpy as np

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 19

Textbook's Notebooks

o Nitps://qgithub.com/wesm/pydata-book/

e chO4.ipynb

e Click the raw button and save that file to disk
e ..or download/clone the entire repository

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 20

https://github.com/wesm/pydata-book/

Creating arrays
e datal = [o, 7.5, 8, 0, 1]

arrl = np.array(datal)
e dataz = [[1,2,3,4],[5,6,7,8]]
arrZ2 = np.array(data?z)

e Number of dimensions: arr2 .ndim

e Shape: arr2.shape

* lypes: arrl.dtype, arr2.dtype, can specify explicitly (np.float64)

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 21

Creating Arrays

® /er0S: np.zeros (10)
e Ones: np.ones ((4,5))
o EmMpty: np.empty ((2,2))

e |ike versions: pass an existing array and matches shape with specitied
contents

e Range: np.arange (15)

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 22

lypes

o "But | thought Python wasn't stingy about types..."
® NUMPY aims for speed

e Able to do array arithmetic

e Nt106, INt32, Int64, float32, floato4, bool, object

* astype Method allows you to convert between different types of arrays:

arr = np.arravy([1l, 2, 3, 4, 5])
arr.dtype
float arr

arr.astype (np.floato4)

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 23

nuMmpy data types (dtypes)

Type Type code Description

int8, uint8 11, ul Signed and unsigned 8-bit (1 byte) integer types

intl6, uintl6 12, u2 Signed and unsigned 16-bit integer types

int32, uint32 14, u4d Signed and unsigned 32-bit integer types

int64, uint64 18, u8 Signed and unsigned 64-bit integer types

floatil6 f2 Half-precision floating point

float32 f4 or f Standard single-precision floating point; compatible with C float

float64 f8 or d Standard double-precision floating point; compatible with C double and
Python float object

float128 f16 or g Extended-precision floating point

complex64, c8, cl6, Complex numbers represented by two 32, 64, or 128 floats, respectively

comp Lex128, c32

comp lex256

bool ! Boolean type storing True and Fa'lse values

object 0 Python object type; a value can be any Python object

string_ S Fixed-length ASCII string type (1 byte per character); for example, to create a

string dtype with length 10, use 'S10'

unicode_ U Fixed-length Unicode type (number of bytes platform specific); same
specification semantics as string_ (e.q., 'U10")

M.-MeKinney, Python for Data Analysis]

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 24

Operations

e (Array, Array) Operations (elementwise)

- Addition, Subtraction, Multiplication
e (Scalar, Array) Operations:

- Addition, Subtraction, Multiplication, Division, Exponentiation
* |ndexing

- Same as with lists plus shorthand for 2D+

- arr = np.arrav([[1,2],[3,4]1])
arr|[1l,1]

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 25

2D Indexing

axis 1
0 1 2

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 26

Slicing

o 1D: Just like with lists except data is not copied!
- al[2:5] = 3 works with arrays
- a.copy () Oraf[2:5].copy () Wil copy
o ?D+: comma separated indices as shorthand:
- a[l][2]0Orall,2]
- a[1l] gives a row
- al[:,1] gives a column

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 27

2D Array Slicing

How to obtain the blue slice
from array arr?

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 28

2D Array Slicing

Expression Shape

arr[:2, 1:] (2, 2)

How to obtain the blue slice
from array arr?

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 28

2D Array Slicing

How to obtain the blue slice
from array arr?

Expression

arr[:2, 1:]

arr|2
arr(2, :
arr[2:, :

Shape
(2, 2)

(3,)
(3,
(1, 3)

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 680/490, Spring 2021

Northern Illinois University 28

2D Array Slicing

How to obtain the blue slice
from array arr?

]l SEJE

Expression

arr[:2, 1:]

arr|2
arr(2, :
arr[2:, :

arr[:, :2]

Shape
(2, 2)

(3,)
(3,
(1, 3)

(3, 2)

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 680/490, Spring 2021

Northern Illinois University 28

2D Array Slicing

Expression Shape
:::1[!!!!!l arr[:2, 1:] (2, 2)
arr[2. (3,)
How to obtain the blue slice arr([2, :. (3,
from array arr? arr2:, = (1, 3)
|||||||E§§| arr[:, :2] (3, 2)
arr[1, :2] (2,)
arr[1:2, :2] (1, 2)

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 28

Boolean Indexing

* names == 'Bob' gives back booleans that represent the element-wise
comparison with the array names

e Boolean arrays can be used to index Into another array:

- data[names == 'Bob']
e Can even mix and match with integer slicing

e Can do boolean operations (&, |) between arrays (just like addition,

subtraction)
- data| (names == 'Bob') | (names == '"W1ill")]

e Note: or and and do not work with arrays
e \\le can set values 100! datal[data < 0] = 0

D. Koop, CSCI 680/490, Spring 2021 Northern Illinois University 29

