
Advanced Data Management (CSCI 490/680)

Structured Data

Dr. David Koop

D. Koop, CSCI 680/490, Spring 2021

Python Containers
• Container: store more than one value
• Mutable versus immutable: Can we update the container?
- Yes → mutable
- No → immutable
- Lists are mutable, tuples are immutable

• Lists and tuples may contain values of different types:
• List: [1,"abc",12.34]
• Tuple: (1, "abc", 12.34)
• You can also put functions in containers!
• len function: number of items: len(l)

2D. Koop, CSCI 680/490, Spring 2021

Indexing and Slicing
• Just like with strings
• Indexing:
- Where do we start counting?
- Use brackets [] to retrieve one value
- Can use negative values (count from the end)

• Slicing:
- Use brackets plus a colon to retrieve multiple values:

[<start>:<end>]
- Returns a new list (b = a[:])
- Don't need to specify the beginning or end

3D. Koop, CSCI 680/490, Spring 2021

Dictionaries
• One of the most useful features of Python
• Also known as associative arrays
• Exist in other languages but a core feature in Python
• Associate a key with a value
• When I want to find a value, I give the dictionary a key, and it returns the value
• Example: InspectionID (key) → InspectionRecord (value)
• Keys must be immutable (technically, hashable):
- Normal types like numbers, strings are fine
- Tuples work, but lists do not (TypeError: unhashable type: 'list')

• There is only one value per key!

4D. Koop, CSCI 680/490, Spring 2021

Sets
• Sets are like dictionaries but without any values:
• s = {'MA', 'RI', 'CT', 'NH'}; t = {'MA', 'NY', 'NH'}

• {} is an empty dictionary, set() is an empty set
• Adding values: s.add('ME')
• Removing values: s.discard('CT')
• Exists: "CT" in s
• Union: s | t => {'MA', 'RI', 'CT', 'NH', 'NY'}
• Intersection: s & t => {'MA', 'NH'}
• Exclusive-or (xor): s ^ t => {'RI', 'CT', 'NY'}
• Difference: s - t => {'RI', 'CT'}

5D. Koop, CSCI 680/490, Spring 2021

Objects
• d = dict() # construct an empty dictionary object

• l = list() # construct an empty list object

• s = set() # construct an empty set object

• s = set([1,2,3,4]) # construct a set with 4 numbers
• Calling methods:

- l.append('abc')

- d.update({'a': 'b'})

- s.add(3)

• The method is tied to the object preceding the dot (e.g. append modifies l to
add 'abc')

6D. Koop, CSCI 680/490, Spring 2021

Python Modules
• Python module: a file containing definitions and statements
• Import statement: like Java, get a module that isn't a Python builtin

import collections
d = collections.defaultdict(list)
d[3].append(1)

• import <name> as <shorter-name>
import collections as c

• from <module> import <name> – don't need to refer to the module
from collections import defaultdict
d = defaultdict(list)
d[3].append(1)

7D. Koop, CSCI 680/490, Spring 2021

Other Collections Features
• collections.defaultdict: specify a default value for any item in the

dictionary (instead of KeyError)
• collections.OrderedDict: keep entries ordered according to when the

key was inserted
- dict objects are ordered in Python 3.7 but OrderedDict has some other

features (equality comparison, reversed)
• collections.Counter: counts hashable objects, has a most_common

method

8D. Koop, CSCI 680/490, Spring 2021

Assignment 1
• Due Monday, Feb. 1 at 11:59pm
• Using Python for data analysis on Info Wanted ads
• Provided a1.ipynb file (right-click and download)
• Use basic python for now to demonstrate language knowledge
- No pandas (for now)

• Use Anaconda or hosted Python environment
• Turn .ipynb file in via Blackboard
• Notes:
- Bug in URL (https instead of http)
- Be careful with extra spaces

9D. Koop, CSCI 680/490, Spring 2021

http://faculty.cs.niu.edu/~dakoop/cs680-2021sp/assignment1.html

Iterators
• Remember range, values, keys, items?
• They return iterators: objects that traverse containers
• Given iterator it, next(it) gives the next element
• StopIteration exception if there isn't another element
• Generally, we don't worry about this as the for loop handles everything

automatically…but you cannot index or slice an iterator
• d.values()[0] will not work!
• If you need to index or slice, construct a list from an iterator
• list(d.values())[0] or list(range(100))[-1]
• In general, this is slower code so we try to avoid creating lists

10D. Koop, CSCI 680/490, Spring 2021

List Comprehensions
• Shorthand for transformative or filtering for loops
• squares = []
for i in range(10):
 squares.append(i**2)

• squares = [i**2 for i in range(10)]

• Filtering:
• squares = []
for i in range(10):
 if i % 3 != 1:
 squares.append(i ** 2)

• squares = [i**2 for i in range(10) if i % 3 != 1]

• if clause follows the for clause

11D. Koop, CSCI 680/490, Spring 2021

Dictionary Comprehensions
• Similar idea, but allow dictionary construction
• Could use lists:

- names = dict([(k, v) for k,v in … if …])

• Native comprehension:
- names = {"Al": ["Smith", "Brown"], "Beth":["Jones"]}
first_counts ={k: len(v) for k,v in names.items()}

• Could do this with a for loop as well

12D. Koop, CSCI 680/490, Spring 2021

Exceptions
• errors but potentially something that can be addressed
• try-except-else-finally:

- except clause runs if exactly the error(s) you wish to address happen
- else clause will run if no exceptions are encountered
- finally always runs (even if the program is about to crash)

• Can have multiple except clauses
• can also raise exceptions using the raise keyword
• (and define your own)

13D. Koop, CSCI 680/490, Spring 2021

Classes
• class ClassName:
 …

• Everything in the class should be indented until the declaration ends
• self: this in Java or C++ is self in Python
• Every instance method has self as its first parameter
• Instance variables are defined in methods (usually constructor)
• __init__: the constructor, should initialize instance variables
• def __init__(self):
 self.a = 12
 self.b = 'abc'

• def __init__(self, a, b):
 self.a = a
 self.b = b

14D. Koop, CSCI 680/490, Spring 2021

Class Example
• class Rectangle:
 def __init__(self, x, y, w, h):
 self.x = x
 self.y = y
 self.w = w
 self.h = h

 def set_corner(self, x, y):
 self.x = x
 self.y = y

 def set_width(self, w): self.w = w

 def set_height(self, h): self.h = h

 def area(self):
 return self.w * self.h

15D. Koop, CSCI 680/490, Spring 2021

Arrays

What is the difference between an array and a list (or a tuple)?

16D. Koop, CSCI 680/490, Spring 2021

Arrays
• Usually a fixed size—lists are meant to change size
• Are mutable—tuples are not
• Store only one type of data—lists and tuples can store anything
• Are faster to access and manipulate than lists or tuples
• Can be multidimensional:
- Can have list of lists or tuple of tuples but no guarantee on shape
- Multidimensional arrays are rectangles, cubes, etc.

17D. Koop, CSCI 680/490, Spring 2021

Why NumPy?
• Fast vectorized array operations for data munging and cleaning, subsetting

and filtering, transformation, and any other kinds of computations
• Common array algorithms like sorting, unique, and set operations
• Efficient descriptive statistics and aggregating/summarizing data
• Data alignment and relational data manipulations for merging and joining

together heterogeneous data sets
• Expressing conditional logic as array expressions instead of loops with if-
elif-else branches

• Group-wise data manipulations (aggregation, transformation, function
application).

18

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 680/490, Spring 2021

19

import numpy as np

D. Koop, CSCI 680/490, Spring 2021

Textbook's Notebooks
• https://github.com/wesm/pydata-book/
• ch04.ipynb
• Click the raw button and save that file to disk
• …or download/clone the entire repository

20D. Koop, CSCI 680/490, Spring 2021

https://github.com/wesm/pydata-book/

Creating arrays
• data1 = [6, 7.5, 8, 0, 1]
arr1 = np.array(data1)

• data2 = [[1,2,3,4],[5,6,7,8]]
arr2 = np.array(data2)

• Number of dimensions: arr2.ndim
• Shape: arr2.shape
• Types: arr1.dtype, arr2.dtype, can specify explicitly (np.float64)

21D. Koop, CSCI 680/490, Spring 2021

Creating Arrays
• Zeros: np.zeros(10)
• Ones: np.ones((4,5))
• Empty: np.empty((2,2))
• _like versions: pass an existing array and matches shape with specified

contents
• Range: np.arange(15)

22D. Koop, CSCI 680/490, Spring 2021

Types
• "But I thought Python wasn't stingy about types…"
• numpy aims for speed
• Able to do array arithmetic
• int16, int32, int64, float32, float64, bool, object
• astype method allows you to convert between different types of arrays:

arr = np.array([1, 2, 3, 4, 5])
arr.dtype
float_arr = arr.astype(np.float64)

23D. Koop, CSCI 680/490, Spring 2021

In [36]: arr2.dtype
Out[36]: dtype('int32')

dtypes are a source of NumPy’s flexibility for interacting with data coming from other
systems. In most cases they provide a mapping directly onto an underlying disk or
memory representation, which makes it easy to read and write binary streams of data
to disk and also to connect to code written in a low-level language like C or Fortran.
The numerical dtypes are named the same way: a type name, like float or int, fol‐
lowed by a number indicating the number of bits per element. A standard double-
precision floating-point value (what’s used under the hood in Python’s float object)
takes up 8 bytes or 64 bits. Thus, this type is known in NumPy as float64. See
Table 4-2 for a full listing of NumPy’s supported data types.

Don’t worry about memorizing the NumPy dtypes, especially if
you’re a new user. It’s often only necessary to care about the general
kind of data you’re dealing with, whether floating point, complex,
integer, boolean, string, or general Python object. When you need
more control over how data are stored in memory and on disk,
especially large datasets, it is good to know that you have control
over the storage type.

Table 4-2. NumPy data types
Type Type code Description
int8, uint8 i1, u1 Signed and unsigned 8-bit (1 byte) integer types
int16, uint16 i2, u2 Signed and unsigned 16-bit integer types
int32, uint32 i4, u4 Signed and unsigned 32-bit integer types
int64, uint64 i8, u8 Signed and unsigned 64-bit integer types
float16 f2 Half-precision !oating point
float32 f4 or f Standard single-precision !oating point; compatible with C !oat
float64 f8 or d Standard double-precision !oating point; compatible with C double and

Python float object
float128 f16 or g Extended-precision !oating point
complex64,
complex128,
complex256

c8, c16,
c32

Complex numbers represented by two 32, 64, or 128 !oats, respectively

bool ? Boolean type storing True and False values
object O Python object type; a value can be any Python object
string_ S Fixed-length ASCII string type (1 byte per character); for example, to create a

string dtype with length 10, use 'S10'
unicode_ U Fixed-length Unicode type (number of bytes platform speci"c); same

speci"cation semantics as string_ (e.g., 'U10')

4.1 The NumPy ndarray: A Multidimensional Array Object | 91

numpy data types (dtypes)

24

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 680/490, Spring 2021

Operations
• (Array, Array) Operations (elementwise)
- Addition, Subtraction, Multiplication

• (Scalar, Array) Operations:
- Addition, Subtraction, Multiplication, Division, Exponentiation

• Indexing
- Same as with lists plus shorthand for 2D+
- arr = np.array([[1,2],[3,4]])
arr[1,1]

25D. Koop, CSCI 680/490, Spring 2021

Figure 4-1. Indexing elements in a NumPy array

In multidimensional arrays, if you omit later indices, the returned object will be a
lower dimensional ndarray consisting of all the data along the higher dimensions. So
in the 2 × 2 × 3 array arr3d:

In [76]: arr3d = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])

In [77]: arr3d
Out[77]:
array([[[1, 2, 3],
 [4, 5, 6]],
 [[7, 8, 9],
 [10, 11, 12]]])

arr3d[0] is a 2 × 3 array:
In [78]: arr3d[0]
Out[78]:
array([[1, 2, 3],
 [4, 5, 6]])

Both scalar values and arrays can be assigned to arr3d[0]:
In [79]: old_values = arr3d[0].copy()

In [80]: arr3d[0] = 42

In [81]: arr3d
Out[81]:
array([[[42, 42, 42],
 [42, 42, 42]],
 [[7, 8, 9],
 [10, 11, 12]]])

In [82]: arr3d[0] = old_values

96 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

2D Indexing

26

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 680/490, Spring 2021

Slicing
• 1D: Just like with lists except data is not copied!

- a[2:5] = 3 works with arrays
- a.copy() or a[2:5].copy() will copy

• 2D+: comma separated indices as shorthand:
- a[1][2] or a[1,2]
- a[1] gives a row
- a[:,1] gives a column

27D. Koop, CSCI 680/490, Spring 2021

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

2D Array Slicing

28

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 680/490, Spring 2021

How to obtain the blue slice
from array arr?

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

2D Array Slicing

28

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 680/490, Spring 2021

How to obtain the blue slice
from array arr?

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

2D Array Slicing

28

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 680/490, Spring 2021

How to obtain the blue slice
from array arr?

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

2D Array Slicing

28

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 680/490, Spring 2021

How to obtain the blue slice
from array arr?

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

2D Array Slicing

28

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 680/490, Spring 2021

How to obtain the blue slice
from array arr?

Boolean Indexing
• names == 'Bob' gives back booleans that represent the element-wise

comparison with the array names
• Boolean arrays can be used to index into another array:

- data[names == 'Bob']

• Can even mix and match with integer slicing
• Can do boolean operations (&, |) between arrays (just like addition,

subtraction)
- data[(names == 'Bob') | (names == 'Will')]

• Note: or and and do not work with arrays
• We can set values too! data[data < 0] = 0

29D. Koop, CSCI 680/490, Spring 2021

