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Reading Quiz
• Before continuing this lecture, go to Blackboard and complete the reading 

quiz on today's reading
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Assignment 5
• Due Thursday 
• Questions? 
• Note about %-m strftime conversion: 

use %#m on Windows
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http://faculty.cs.niu.edu/~dakoop/cs680-2020sp/assignment5.html
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Final Exam and Review
• Final Exam 
- Tuesday, May 5 from 4-5:50pm 
- Online 
- Similar format to Test 2 
- Comprehensive but with more focus on last few weeks of class 

• Review 
- Thursday, April 30 
- Submit questions via email or discussion

4

http://faculty.cs.niu.edu/~dakoop/cs680-2020sp/final.html
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Checking Computational Results in Systems
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[Collberg and Proebsting, 2015]

http://reproducibility.cs.arizona.edu/v2/RepeatabilityTR.pdf
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Figure 11: Study result. Blue numbers represent papers that were excluded from consideration,
green numbers papers that are weakly repeatable, red numbers papers that are non-weakly repeat-
able, and orange numbers represent papers that were excluded (due to our restriction of sending
at most one email to each author).

10. Notes:

(a) If a link was found through a web search go back and check the paper again to make
sure it was not there.

(b) It can be complicated to determine when there is a larger project of which the current
paper is a subset. In that case the paper may refer to the larger project as though it
were a separate subject when in fact their current code is included with it.

4 Results

Table 2, Figure 11, and Appendix B show the results of the study. Table 4 lists the abbreviations
we use.

Table 2 shows that out of an initial 601 papers, we excluded 30 because they required esoteric
hardware, 63 because the results presented were not backed by code, and 106 in order to avoid
sending multiple email requests to the same author, resulting in a total of 402 papers whose results
were backed by code. Out of these, we found 85 codes through links in the paper itself, 54 codes
through web searches, and 87 codes through email requests. For the remaining 176 papers backed
by code we either got a negative response to our email requests, or no response within two months.

Our results show that for 32.3% of the papers backed by code we were able to obtain the code
and, within  30 minutes, also build it (weak repeatability A); for 48.3% of the papers we managed
to build the code, but it may have required extra e↵ort (weak repeatability B); and for 54.0% of
the papers either we managed to build the code or the authors stated the code would build with
reasonable e↵ort (weak repeatability C).

21

Repeatability Results
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[Collberg and Proebsting, 2015]
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contributed articles

take the expected level of repeatability 
into consideration in their recommen-
dation to accept or reject. To this end, 
we make a recommendation for add-
ing sharing contracts to publications—
a statement by authors as to the level of 
repeatability readers can expect. 

Background 
Three previous empirical studies ex-
plored computer science researchers’ 
willingness to share code and data. 
Kovac̆ević 5 rated 15 papers published 
in the IEEE Transactions on Image 
Proc essing and found that while all al-
gorithms had proofs, none had code 
available, and 33% had data available. 
Vandewalle et al.18 examined the 134 
papers published in IEEE Transactions 
on Image Processing in 2004, finding “…  
code (9%) and data (33%) are available 
online only in a minority of the cases 
…” Stodden15 reported while 74% of the 
registrants at the Neural Information 
Processing Systems (machine-learn-
ing) conference said they were willing 
to share post-publication code and 67% 
post-publication data, only “ … 30% of 
respondents shared some code and 
20% shared some data on their own 
websites.” The most common reasons 
for not sharing code were “The time 
it takes to clean up and document for 
release,” “Dealing with questions from 
users about the code,” “The possibility 
that your code may be used without ci-
tation,” “The possibility of patents, or 
other IP constraints,” and “Competi-
tors may get an advantage.” Stodden14 
has since proposed “The Open Re-
search License,” which, if universally 
adopted, would incentivize researchers 
to share by ensuring “ … each scientist 
is attributed for only the work he or she 
has created.”13 

Public repositories can help authors 
make their research artifacts available 
in perpetuity. Unfortunately, the “if you 
build it they will come” paradigm does 
not always work; for example, on the 
RunMyCode17 and ResearchCompen-
dia Web portals,a only 143 and 236 arti-
facts, respectively, had been registered 
as of January 2016. 

One attractive proposition for re-
searchers to ensure repeatability is to 
bundle code, data, operating system, 

a http://RunMyCode.org and http://research-
compendia.org

the researchers’ experiment using the 
same method in the same environ-
ment and obtain the same results.19 
Sharing for repeatability is essential to 
ensure colleagues and reviewers can 
evaluate our results based on accurate 
and complete evidence. Sharing for 
benefaction allows colleagues to build 
on our results, better advancing scien-
tific progress by avoiding needless rep-
lication of work. 

Unlike repeatability, reproducibility 
does not necessarily require access to 
the original research artifacts. Rather, 
it is the independent confirmation of a 
scientific hypothesis,19 done post-pub-
lication, by collecting different proper-
ties from different experiments run on 
different benchmarks, and using these 
properties to verify the claims made in 
the paper. Repeatability and reproduc-
ibility are cornerstones of the scientific 
process, necessary for avoiding dis-
semination of flawed results. 

In light of our discouraging experi-
ences with sharing research artifacts, 
we embarked on a study to examine 
the extent to which computer systems 
researchers share their code and data, 
reporting the results here. We also 
make recommendations as to how to 
improve such sharing, for the good of 
both repeatability and benefaction. 

The study. Several hurdles must be 
cleared to replicate computer systems 
research. Correct versions of source 
code, input data, operating systems, 
compilers, and libraries must be avail-
able, and the code itself must build 

and run to completion. Moreover, if 
the research requires accurate mea-
surements of resource consumption, 
the hardware platform must be rep-
licated. Here, we use the most liberal 
definitions of repeatability: Do the 
authors make the source code used to 
create the results in their article avail-
able, and will it build? We will call this 
“weak repeatability.” 

Our study examined 601 papers 
from ACM conferences and journals, 
attempting to locate any source code 
that backed up published results. We 
examined the paper itself, performed 
Web searches, examined popular 
source-code repositories, and, when 
all else failed, emailed the authors. We 
also attempted to build the code but 
did not go so far as trying to verify the 
correctness of the published results. 

Recommendations. Previous work on 
repeatability describes the steps that 
must be taken in order to produce re-
search that is truly repeatable11,12 or de-
scribes tools or websites that support 
publication of repeatable research.4,6 

Our recommendations are more mod-
est. We recognize that, as a discipline, 
computer science is a long way away 
from producing research that is al-
ways, and completely, repeatable. But, 
in the interim, we can require authors 
to conscientiously inform their peers 
of their intent with respect to sharing 
their research artifacts. This informa-
tion should be provided by the authors 
when submitting their work for pub-
lication; this would allow reviewers to 

Table 1. Notation used in Table 2 and the figure. 

Notation Number of papers ...

HW excluded due to replication requiring special hardware 

NC excluded due to results not being backed by code 

EX excluded due to overlapping author lists 

BC where the results are backed by code 

Article where code was found in the paper itself 

Web where code was found through a Web search 

EM yes where the author provides code after receiving an email message 

EM no where the author responds to an email message saying code cannot be provided 

EM ø where the author does not respond to email requests within two months 

OK ≤30 where code is available and we succeed in building the system in ≤30 minutes 

OK >30 where code is available and we succeed in building the system in >30 minutes 

OK Auth where code is available and we fail to build, and the author says the code  
builds with reasonable effort 

Fails where code is available and we fail to build, and the author says the code  
may have problems building 

http://reproducibility.cs.arizona.edu/v2/RepeatabilityTR.pdf


D. Koop, CSCI 490/680, Spring 2020

Excuses for not sharing
• Versioning 
• Available Soon 
• No Intention to Share 
• Personnel Issues 
• Lost Code 
• Academic Tradeoffs 
• Industrial Lab Tradeoffs 
• Obsolete HW/SW 
• Controlled Usage 
• Privacy/Security 
• Design Issues

7

[Collberg and Proebsting, 2015]

http://reproducibility.cs.arizona.edu/v2/RepeatabilityTR.pdf
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Reproducible Research
• Science is verified by replicating work independently 
• Replication Issues: 
- Requires many resources to replicate (Sloan Digital Sky Survey) 
- Requires significant computing power (Climate Model Simulation) 
- Requires too much time or very specific circumstances (Environment 

Epidemiology) 
• Reproducibility 
- Replication of the analysis based on the collected data (not replicating the 

data collection itself) 
- Better if we have the actual code or available executables

8

[R. D. Peng]
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Fig. 1.
The spectrum of reproducibility.

Peng Page 5

Science. Author manuscript; available in PMC 2012 December 02.
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[R. D. Peng]
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10 Rules for Reproducible Computational Research
• Rule 1: For Every Result, Keep Track of How It Was Produced 
• Rule 2: Avoid Manual Data Manipulation Steps 
• Rule 3: Archive the Exact Versions of All External Programs Used 
• Rule 4: Version Control All Custom Scripts 
• Rule 5: Record All Intermediate Results, When Possible in Standardized 

Formats

10

[Sandve et al., 2013]
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10 Rules for Reproducible Computational Research
• Rule 6: For Analyses That Include Randomness, Note Underlying Random 

Seeds 
• Rule 7: Always Store Raw Data behind Plots 
• Rule 8: Generate Hierarchical Analysis Output, Allowing Layers of Increasing 

Detail to Be Inspected 
• Rule 9: Connect Textual Statements to Underlying Results 
• Rule 10: Provide Public Access to Scripts, Runs, and Results

11

[Sandve et al., 2013]
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(Database) Reproducibility Research Topics
• Design and Management of Experiment Repositories 
• Querying and Searching Experiments 
• Mining Experiments

12

[J. Freire et al.]
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Notebook Reproducibility
• Use notebooks from Github (~1 million) 
- Unambiguous cell order? 81.99% 

• Study notebook dependencies 
- Dependencies Available? 13.72% 
- Dependencies Install? 5.03% 

• Study notebook executability 
- Execute: 24.11% of unambiguous cell order 
- Matched results: 4.03%

13

[Pimentel et al., 2019]
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In [a0a358]:

raw_df: 0 1 2

0 Caroline Seger Sweden 85
1 Wendie Renard France 85
2 Steph Houghton England 85
... ... ... ...

raw_df = pd.read_csv("fifa17-top20-women.txt",sep="-",header=None)

In [aab079]:

Out[aab079]: Country
USA         6
Canada      3
Brazil      3
...       ...

named_df.groupby("Country").size().sort_values(ascending=False)

In [aaa3c6]:

In [a249ea]:

column_names: {0: 'Name', 1: 'Country', 2: 'Rating'}

named_df: Name Country Rating

0 Caroline Seger Sweden 85
1 Wendie Renard France 85
2 Steph Houghton England 85

column_names = {0: "Name", 1: "Country", 2: "Rating"}

named_df = raw_df.rename(columns=column_names)

... ... ... ...

Dataflow Notebooks

14

[D. Koop et al.]
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• Persistent Identifiers
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• Persistent Identifiers
• Named Outputs



David Koop

In [a0a358]:

raw_df: 0 1 2

0 Caroline Seger Sweden 85
1 Wendie Renard France 85
2 Steph Houghton England 85
... ... ... ...

raw_df = pd.read_csv("fifa17-top20-women.txt",sep="-",header=None)

In [aab079]:

Out[aab079]: Country
USA         6
Canada      3
Brazil      3
...       ...

named_df.groupby("Country").size().sort_values(ascending=False)

In [aaa3c6]:

In [a249ea]:

column_names: {0: 'Name', 1: 'Country', 2: 'Rating'}

named_df: Name Country Rating

0 Caroline Seger Sweden 85
1 Wendie Renard France 85
2 Steph Houghton England 85

column_names = {0: "Name", 1: "Country", 2: "Rating"}

named_df = raw_df.rename(columns=column_names)

... ... ... ...

Dataflow Notebooks

14

[D. Koop et al.]

• Persistent Identifiers
• Named Outputs
• Unnamed Outputs
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[D. Koop et al.]

• Persistent Identifiers
• Named Outputs
• Unnamed Outputs
• Connection by 

Variable Reference
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Improving Databases
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DATA

INDEX

[7,4,2,6,1,3,9,10,5,8] 

ALGORITHMS
[1,2,3,4,5,6,7,8,9,10] 

unor
dere

d
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Data structures are at the core of any data driven algorithm. In fact for any given problem, the design of the data structure defines the range of algorithms that may be 
applied.

Algorithms rely on the order of data

17

[S. Idreos, 2019]

https://stratos.seas.harvard.edu/files/stratos/files/learnedselfdesignedsystemssigmod2019tutorialpart1.pdf
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DATA

INDEX

ALGORITHMS

DATA SYSTEMS

Systems can be seen as a collection of many data structures and algorithms. 

Data systems rely on algorithms

18

[S. Idreos, 2019]

https://stratos.seas.harvard.edu/files/stratos/files/learnedselfdesignedsystemssigmod2019tutorialpart1.pdf
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2018

sp
ee

d COMPUTE

DATA MOVEMENT

register  = this room 

disk = Pluto 
memory = nearby city

Jim Gray, Turing Award 1998

caches = this city 

As time goes by, data structures become ever more critical for data driven applications. 

Data structures define performance

19

[S. Idreos, 2019]

https://stratos.seas.harvard.edu/files/stratos/files/learnedselfdesignedsystemssigmod2019tutorialpart1.pdf
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How do I make my data system run x times as fast?

How do I minimize my bill in the cloud?

How do I train my neural network x times faster?

How to accelerate statistics computation for data science/ML?

(sql,nosql,bigdata, …)

How do I extend the lifetime of my hardware?

Data structures are prevalent across many applications. Many data driven problems can in fact be seen as a data structure problem. 

20

[S. Idreos, 2019]

https://stratos.seas.harvard.edu/files/stratos/files/learnedselfdesignedsystemssigmod2019tutorialpart1.pdf
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Read 
Update 

Memory 
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Every data structure design is simply a point in the design space of possible solutions. There is no perfect design. Every design balances the fundamental tradeoffs of 
Read, Update, and Memory amplification. For example, Read amplification is defined as the excess data an algorithm needs to read on top of the data it wants to read. 
Typically a data structure would have some kind of metadata or navigation data that help locate the actual data, e.g., the internal nodes of a B-tree. Reading this 
navigation data is an excess cost, adding to read amplification. Creating a data structure without any navigation data would suffer update or even more read 
amplification. For example, we could choose to not have any structure in the data at all. Then every query would have to touch all the data. The other extreme would be 
to sort all data which effectively provides an implicit structure. But then updates get expensive. Overall, there is no perfect design. 

Tradeoffs in each structure

21

[S. Idreos, 2019]

https://stratos.seas.harvard.edu/files/stratos/files/learnedselfdesignedsystemssigmod2019tutorialpart1.pdf
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NEW APPLICATIONS
existing systems need to change too

WORKLOAD HARDWARE 

ADAPT

IMPROVE  
WITHIN A BUDGET

WHAT WILL 
BREAK MY 
SYSTEM?

REASON

We increasingly need to think of new data structure designs, because applications and data change rapidly and because for data driven applications great performance 
comes only after rethinking the storage layer as well. 

New Applications Demand Change

22

[S. Idreos, 2019]

https://stratos.seas.harvard.edu/files/stratos/files/learnedselfdesignedsystemssigmod2019tutorialpart1.pdf
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Many efforts in the field have been motivated by the vision of generating tailored systems for a specific scenario. In fact, even traditional databases are architected with 
this vision in mind. A generic database system can optimize a plan on the fly to match the query needs, it can choose from different storage and indexing options, etc. 
This is how generic database systems can be used in a wealth of applications! And then recent research has tried to push the boundaries of tailored designs be 
rethinking parts of the stack of a database system.  

"Traditional" Database Research

23

[S. Idreos, 2019]

https://stratos.seas.harvard.edu/files/stratos/files/learnedselfdesignedsystemssigmod2019tutorialpart1.pdf
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without coding or 
accessing the h/w

workload

h/w

layout 
design

performance
algorithms 

As a first step in this direction, we built an engine, which we call the Data Calculator and which takes as input the hardware, workload and layout of a data structure. It 
then computes automatically the algorithms that this data structure design needs to optimally process the workload on this hardware and it also computes the 
performance. That is, the response time that an actual implementation of this design would need to run this workload on this hardware. However, all this happens without 
the user having to implement anything and without even needing access to the actual hardware. Given this engine we show that we can start thinking about game-
changing paradigms for system designs such as interactive design, self-designing systems, and fully automatic design for instance optimal systems. 

Self-designing systems

24

[S. Idreos, 2019]

https://stratos.seas.harvard.edu/files/stratos/files/learnedselfdesignedsystemssigmod2019tutorialpart1.pdf


SageDB: a learned database system

T. Kraska, M. Alizadeh, A. Beutel, E. H. Chi, J. Ding, A. Kristo,  
G. Leclerc, S. Madden, H. Mao, and V. Nathan  

D. Koop, CSCI 490/680, Spring 2020
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Fundamental 
Building Blocks

Sorting

B-TreeHash-
Map

Scheduling

Join

Priority
Queue

Bloom
Filter

CachingRange
Filter

Learned Data Structures and Algorithms

26

http://people.csail.mit.edu/kraska/pub/sigmod19tutorialpart2.pdf
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Discussion
• Is this the future?  
• What about comparison baselines? 
• Lots of work being done in this area

27
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Reminders
• Assignment 5 Due Thursday 
• Final Exam Review Thursday (send questions!) 
• Final Exam on Tuesday, May 5 from 4-5:50pm

28


