
Advanced Data Management (CSCI 490/680)

Machine Learning and Databases

Dr. David Koop

D. Koop, CSCI 490/680, Spring 2020

D. Koop, CSCI 490/680, Spring 2020

Reading Quiz
• Before continuing this lecture, go to Blackboard and complete the reading

quiz on today's reading

2

D. Koop, CSCI 490/680, Spring 2020

Assignment 5
• Due Thursday
• Questions?
• Note about %-m strftime conversion:

use %#m on Windows

3

http://faculty.cs.niu.edu/~dakoop/cs680-2020sp/assignment5.html

D. Koop, CSCI 490/680, Spring 2020

Final Exam and Review
• Final Exam
- Tuesday, May 5 from 4-5:50pm
- Online
- Similar format to Test 2
- Comprehensive but with more focus on last few weeks of class

• Review
- Thursday, April 30
- Submit questions via email or discussion

4

http://faculty.cs.niu.edu/~dakoop/cs680-2020sp/final.html

D. Koop, CSCI 490/680, Spring 2020

Commercial?

no
response

research
repeatable

Non−

research
repeatable

Non−

evidence
Anecdotal

builds 1? builds 2?

no
response

response
or late

research
repeatable

Non−

resolve issues
Issue survey,

resolve issues
Issue survey,

runs?
Record
resultsresearch

Repeatable

evidence
Anecdotal

ASPLOS’12, CCS’12, OOPSLA’12, OSDI’12,
PLDI’12, SIGMOD’12, SOSP’11, VLDB’12,
TACO’9, TISSEC’15, TOCS’30, TODS’37,
TOPLAS’34

no yes

no no

yes yes

Theoretical/HW

"yes"

"no" "no"

"yes"

no

yes yes

no

2nd email?

no

yes

Practical

by code?

Results backed

Links to code

http://...

http://...

Download

code

Source code

paper? web? 1st email?

Download

papers

Build and

execute

Scan

manually

Search for

link to code

Search for

other data

NSF support?

Figure 4: Process by which the study was performed.

11

Checking Computational Results in Systems

5

Commercial?

no
response

research
repeatable

Non−

research
repeatable

Non−

evidence
Anecdotal

builds 1? builds 2?

no
response

response
or late

research
repeatable

Non−

resolve issues
Issue survey,

resolve issues
Issue survey,

runs?
Record
resultsresearch

Repeatable

evidence
Anecdotal

ASPLOS’12, CCS’12, OOPSLA’12, OSDI’12,
PLDI’12, SIGMOD’12, SOSP’11, VLDB’12,
TACO’9, TISSEC’15, TOCS’30, TODS’37,
TOPLAS’34

no yes

no no

yes yes

Theoretical/HW

"yes"

"no" "no"

"yes"

no

yes yes

no

2nd email?

no

yes

Practical

by code?

Results backed

Links to code

http://...

http://...

Download

code

Source code

paper? web? 1st email?

Download

papers

Build and

execute

Scan

manually

Search for

link to code

Search for

other data

NSF support?

Figure 4: Process by which the study was performed.

11

[Collberg and Proebsting, 2015]

http://reproducibility.cs.arizona.edu/v2/RepeatabilityTR.pdf

D. Koop, CSCI 490/680, Spring 2020

601

NC
63

HW
30

508

Article
85

Web
54

EMyes

87

EX
106

226

OK∑30

130
OK>30

64
OKAuth

23

Build
fails

9

176

EMno

146
EM;

30

Figure 11: Study result. Blue numbers represent papers that were excluded from consideration,
green numbers papers that are weakly repeatable, red numbers papers that are non-weakly repeat-
able, and orange numbers represent papers that were excluded (due to our restriction of sending
at most one email to each author).

10. Notes:

(a) If a link was found through a web search go back and check the paper again to make
sure it was not there.

(b) It can be complicated to determine when there is a larger project of which the current
paper is a subset. In that case the paper may refer to the larger project as though it
were a separate subject when in fact their current code is included with it.

4 Results

Table 2, Figure 11, and Appendix B show the results of the study. Table 4 lists the abbreviations
we use.

Table 2 shows that out of an initial 601 papers, we excluded 30 because they required esoteric
hardware, 63 because the results presented were not backed by code, and 106 in order to avoid
sending multiple email requests to the same author, resulting in a total of 402 papers whose results
were backed by code. Out of these, we found 85 codes through links in the paper itself, 54 codes
through web searches, and 87 codes through email requests. For the remaining 176 papers backed
by code we either got a negative response to our email requests, or no response within two months.

Our results show that for 32.3% of the papers backed by code we were able to obtain the code
and, within  30 minutes, also build it (weak repeatability A); for 48.3% of the papers we managed
to build the code, but it may have required extra e↵ort (weak repeatability B); and for 54.0% of
the papers either we managed to build the code or the authors stated the code would build with
reasonable e↵ort (weak repeatability C).

21

Repeatability Results

6

[Collberg and Proebsting, 2015]

64 COMMUNICATIONS OF THE ACM | MARCH 2016 | VOL. 59 | NO. 3

contributed articles

take the expected level of repeatability
into consideration in their recommen-
dation to accept or reject. To this end,
we make a recommendation for add-
ing sharing contracts to publications—
a statement by authors as to the level of
repeatability readers can expect.

Background
Three previous empirical studies ex-
plored computer science researchers’
willingness to share code and data.
Kovac̆ević 5 rated 15 papers published
in the IEEE Transactions on Image
Proc essing and found that while all al-
gorithms had proofs, none had code
available, and 33% had data available.
Vandewalle et al.18 examined the 134
papers published in IEEE Transactions
on Image Processing in 2004, finding “…
code (9%) and data (33%) are available
online only in a minority of the cases
…” Stodden15 reported while 74% of the
registrants at the Neural Information
Processing Systems (machine-learn-
ing) conference said they were willing
to share post-publication code and 67%
post-publication data, only “ … 30% of
respondents shared some code and
20% shared some data on their own
websites.” The most common reasons
for not sharing code were “The time
it takes to clean up and document for
release,” “Dealing with questions from
users about the code,” “The possibility
that your code may be used without ci-
tation,” “The possibility of patents, or
other IP constraints,” and “Competi-
tors may get an advantage.” Stodden14
has since proposed “The Open Re-
search License,” which, if universally
adopted, would incentivize researchers
to share by ensuring “ … each scientist
is attributed for only the work he or she
has created.”13

Public repositories can help authors
make their research artifacts available
in perpetuity. Unfortunately, the “if you
build it they will come” paradigm does
not always work; for example, on the
RunMyCode17 and ResearchCompen-
dia Web portals,a only 143 and 236 arti-
facts, respectively, had been registered
as of January 2016.

One attractive proposition for re-
searchers to ensure repeatability is to
bundle code, data, operating system,

a http://RunMyCode.org and http://research-
compendia.org

the researchers’ experiment using the
same method in the same environ-
ment and obtain the same results.19
Sharing for repeatability is essential to
ensure colleagues and reviewers can
evaluate our results based on accurate
and complete evidence. Sharing for
benefaction allows colleagues to build
on our results, better advancing scien-
tific progress by avoiding needless rep-
lication of work.

Unlike repeatability, reproducibility
does not necessarily require access to
the original research artifacts. Rather,
it is the independent confirmation of a
scientific hypothesis,19 done post-pub-
lication, by collecting different proper-
ties from different experiments run on
different benchmarks, and using these
properties to verify the claims made in
the paper. Repeatability and reproduc-
ibility are cornerstones of the scientific
process, necessary for avoiding dis-
semination of flawed results.

In light of our discouraging experi-
ences with sharing research artifacts,
we embarked on a study to examine
the extent to which computer systems
researchers share their code and data,
reporting the results here. We also
make recommendations as to how to
improve such sharing, for the good of
both repeatability and benefaction.

The study. Several hurdles must be
cleared to replicate computer systems
research. Correct versions of source
code, input data, operating systems,
compilers, and libraries must be avail-
able, and the code itself must build

and run to completion. Moreover, if
the research requires accurate mea-
surements of resource consumption,
the hardware platform must be rep-
licated. Here, we use the most liberal
definitions of repeatability: Do the
authors make the source code used to
create the results in their article avail-
able, and will it build? We will call this
“weak repeatability.”

Our study examined 601 papers
from ACM conferences and journals,
attempting to locate any source code
that backed up published results. We
examined the paper itself, performed
Web searches, examined popular
source-code repositories, and, when
all else failed, emailed the authors. We
also attempted to build the code but
did not go so far as trying to verify the
correctness of the published results.

Recommendations. Previous work on
repeatability describes the steps that
must be taken in order to produce re-
search that is truly repeatable11,12 or de-
scribes tools or websites that support
publication of repeatable research.4,6

Our recommendations are more mod-
est. We recognize that, as a discipline,
computer science is a long way away
from producing research that is al-
ways, and completely, repeatable. But,
in the interim, we can require authors
to conscientiously inform their peers
of their intent with respect to sharing
their research artifacts. This informa-
tion should be provided by the authors
when submitting their work for pub-
lication; this would allow reviewers to

Table 1. Notation used in Table 2 and the figure.

Notation Number of papers ...

HW excluded due to replication requiring special hardware

NC excluded due to results not being backed by code

EX excluded due to overlapping author lists

BC where the results are backed by code

Article where code was found in the paper itself

Web where code was found through a Web search

EM yes where the author provides code after receiving an email message

EM no where the author responds to an email message saying code cannot be provided

EM ø where the author does not respond to email requests within two months

OK ≤30 where code is available and we succeed in building the system in ≤30 minutes

OK >30 where code is available and we succeed in building the system in >30 minutes

OK Auth where code is available and we fail to build, and the author says the code
builds with reasonable effort

Fails where code is available and we fail to build, and the author says the code
may have problems building

http://reproducibility.cs.arizona.edu/v2/RepeatabilityTR.pdf

D. Koop, CSCI 490/680, Spring 2020

Excuses for not sharing
• Versioning
• Available Soon
• No Intention to Share
• Personnel Issues
• Lost Code
• Academic Tradeoffs
• Industrial Lab Tradeoffs
• Obsolete HW/SW
• Controlled Usage
• Privacy/Security
• Design Issues

7

[Collberg and Proebsting, 2015]

http://reproducibility.cs.arizona.edu/v2/RepeatabilityTR.pdf

D. Koop, CSCI 490/680, Spring 2020

Reproducible Research
• Science is verified by replicating work independently
• Replication Issues:
- Requires many resources to replicate (Sloan Digital Sky Survey)
- Requires significant computing power (Climate Model Simulation)
- Requires too much time or very specific circumstances (Environment

Epidemiology)
• Reproducibility
- Replication of the analysis based on the collected data (not replicating the

data collection itself)
- Better if we have the actual code or available executables

8

[R. D. Peng]

D. Koop, CSCI 490/680, Spring 2020

Fig. 1.
The spectrum of reproducibility.

Peng Page 5

Science. Author manuscript; available in PMC 2012 December 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Reproducibility Spectrum

9

[R. D. Peng]

D. Koop, CSCI 490/680, Spring 2020

10 Rules for Reproducible Computational Research
• Rule 1: For Every Result, Keep Track of How It Was Produced
• Rule 2: Avoid Manual Data Manipulation Steps
• Rule 3: Archive the Exact Versions of All External Programs Used
• Rule 4: Version Control All Custom Scripts
• Rule 5: Record All Intermediate Results, When Possible in Standardized

Formats

10

[Sandve et al., 2013]

D. Koop, CSCI 490/680, Spring 2020

10 Rules for Reproducible Computational Research
• Rule 6: For Analyses That Include Randomness, Note Underlying Random

Seeds
• Rule 7: Always Store Raw Data behind Plots
• Rule 8: Generate Hierarchical Analysis Output, Allowing Layers of Increasing

Detail to Be Inspected
• Rule 9: Connect Textual Statements to Underlying Results
• Rule 10: Provide Public Access to Scripts, Runs, and Results

11

[Sandve et al., 2013]

D. Koop, CSCI 490/680, Spring 2020

(Database) Reproducibility Research Topics
• Design and Management of Experiment Repositories
• Querying and Searching Experiments
• Mining Experiments

12

[J. Freire et al.]

D. Koop, CSCI 490/680, Spring 2020

Notebook Reproducibility
• Use notebooks from Github (~1 million)
- Unambiguous cell order? 81.99%

• Study notebook dependencies
- Dependencies Available? 13.72%
- Dependencies Install? 5.03%

• Study notebook executability
- Execute: 24.11% of unambiguous cell order
- Matched results: 4.03%

13

[Pimentel et al., 2019]

David Koop

In [a0a358]:

raw_df: 0 1 2

0 Caroline Seger Sweden 85
1 Wendie Renard France 85
2 Steph Houghton England 85
...

raw_df = pd.read_csv("fifa17-top20-women.txt",sep="-",header=None)

In [aab079]:

Out[aab079]: Country
USA 6
Canada 3
Brazil 3
... ...

named_df.groupby("Country").size().sort_values(ascending=False)

In [aaa3c6]:

In [a249ea]:

column_names: {0: 'Name', 1: 'Country', 2: 'Rating'}

named_df: Name Country Rating

0 Caroline Seger Sweden 85
1 Wendie Renard France 85
2 Steph Houghton England 85

column_names = {0: "Name", 1: "Country", 2: "Rating"}

named_df = raw_df.rename(columns=column_names)

...

Dataflow Notebooks

14

[D. Koop et al.]

David Koop

In [a0a358]:

raw_df: 0 1 2

0 Caroline Seger Sweden 85
1 Wendie Renard France 85
2 Steph Houghton England 85
...

raw_df = pd.read_csv("fifa17-top20-women.txt",sep="-",header=None)

In [aab079]:

Out[aab079]: Country
USA 6
Canada 3
Brazil 3
... ...

named_df.groupby("Country").size().sort_values(ascending=False)

In [aaa3c6]:

In [a249ea]:

column_names: {0: 'Name', 1: 'Country', 2: 'Rating'}

named_df: Name Country Rating

0 Caroline Seger Sweden 85
1 Wendie Renard France 85
2 Steph Houghton England 85

column_names = {0: "Name", 1: "Country", 2: "Rating"}

named_df = raw_df.rename(columns=column_names)

...

Dataflow Notebooks

14

[D. Koop et al.]

• Persistent Identifiers

David Koop

In [a0a358]:

raw_df: 0 1 2

0 Caroline Seger Sweden 85
1 Wendie Renard France 85
2 Steph Houghton England 85
...

raw_df = pd.read_csv("fifa17-top20-women.txt",sep="-",header=None)

In [aab079]:

Out[aab079]: Country
USA 6
Canada 3
Brazil 3
... ...

named_df.groupby("Country").size().sort_values(ascending=False)

In [aaa3c6]:

In [a249ea]:

column_names: {0: 'Name', 1: 'Country', 2: 'Rating'}

named_df: Name Country Rating

0 Caroline Seger Sweden 85
1 Wendie Renard France 85
2 Steph Houghton England 85

column_names = {0: "Name", 1: "Country", 2: "Rating"}

named_df = raw_df.rename(columns=column_names)

...

Dataflow Notebooks

14

[D. Koop et al.]

• Persistent Identifiers
• Named Outputs

David Koop

In [a0a358]:

raw_df: 0 1 2

0 Caroline Seger Sweden 85
1 Wendie Renard France 85
2 Steph Houghton England 85
...

raw_df = pd.read_csv("fifa17-top20-women.txt",sep="-",header=None)

In [aab079]:

Out[aab079]: Country
USA 6
Canada 3
Brazil 3
... ...

named_df.groupby("Country").size().sort_values(ascending=False)

In [aaa3c6]:

In [a249ea]:

column_names: {0: 'Name', 1: 'Country', 2: 'Rating'}

named_df: Name Country Rating

0 Caroline Seger Sweden 85
1 Wendie Renard France 85
2 Steph Houghton England 85

column_names = {0: "Name", 1: "Country", 2: "Rating"}

named_df = raw_df.rename(columns=column_names)

...

Dataflow Notebooks

14

[D. Koop et al.]

• Persistent Identifiers
• Named Outputs
• Unnamed Outputs

David Koop

In [a0a358]:

raw_df: 0 1 2

0 Caroline Seger Sweden 85
1 Wendie Renard France 85
2 Steph Houghton England 85
...

raw_df = pd.read_csv("fifa17-top20-women.txt",sep="-",header=None)

In [aab079]:

Out[aab079]: Country
USA 6
Canada 3
Brazil 3
... ...

named_df.groupby("Country").size().sort_values(ascending=False)

In [aaa3c6]:

In [a249ea]:

column_names: {0: 'Name', 1: 'Country', 2: 'Rating'}

named_df: Name Country Rating

0 Caroline Seger Sweden 85
1 Wendie Renard France 85
2 Steph Houghton England 85

column_names = {0: "Name", 1: "Country", 2: "Rating"}

named_df = raw_df.rename(columns=column_names)

...

Dataflow Notebooks

14

[D. Koop et al.]

• Persistent Identifiers
• Named Outputs
• Unnamed Outputs
• Connection by

Variable Reference

D. Koop, CSCI 490/680, Spring 2020 15

Improving Databases

LEARNED AND
SELF-DESIGNING
DATA STRUCTURES

5VTCVQU�+FTGQU���6KO�-TCUMC�

D. Koop, CSCI 490/680, Spring 2020

DATA

INDEX

[7,4,2,6,1,3,9,10,5,8]

ALGORITHMS
[1,2,3,4,5,6,7,8,9,10]

unor
dere

d

orde
red

Data structures are at the core of any data driven algorithm. In fact for any given problem, the design of the data structure defines the range of algorithms that may be
applied.

Algorithms rely on the order of data

17

[S. Idreos, 2019]

https://stratos.seas.harvard.edu/files/stratos/files/learnedselfdesignedsystemssigmod2019tutorialpart1.pdf

D. Koop, CSCI 490/680, Spring 2020

DATA

INDEX

ALGORITHMS

DATA SYSTEMS

Systems can be seen as a collection of many data structures and algorithms.

Data systems rely on algorithms

18

[S. Idreos, 2019]

https://stratos.seas.harvard.edu/files/stratos/files/learnedselfdesignedsystemssigmod2019tutorialpart1.pdf

D. Koop, CSCI 490/680, Spring 2020

2018

sp
ee

d COMPUTE

DATA MOVEMENT

register = this room

disk = Pluto
memory = nearby city

Jim Gray, Turing Award 1998

caches = this city

As time goes by, data structures become ever more critical for data driven applications.

Data structures define performance

19

[S. Idreos, 2019]

https://stratos.seas.harvard.edu/files/stratos/files/learnedselfdesignedsystemssigmod2019tutorialpart1.pdf

D. Koop, CSCI 490/680, Spring 2020

How do I make my data system run x times as fast?

How do I minimize my bill in the cloud?

How do I train my neural network x times faster?

How to accelerate statistics computation for data science/ML?

(sql,nosql,bigdata, …)

How do I extend the lifetime of my hardware?

Data structures are prevalent across many applications. Many data driven problems can in fact be seen as a data structure problem.

20

[S. Idreos, 2019]

https://stratos.seas.harvard.edu/files/stratos/files/learnedselfdesignedsystemssigmod2019tutorialpart1.pdf

D. Koop, CSCI 490/680, Spring 2020

Read
Update

Memory

@EDBT16

M
em
ory

Re
ad

Up
da
te
no perfect structure

amplification

Every data structure design is simply a point in the design space of possible solutions. There is no perfect design. Every design balances the fundamental tradeoffs of
Read, Update, and Memory amplification. For example, Read amplification is defined as the excess data an algorithm needs to read on top of the data it wants to read.
Typically a data structure would have some kind of metadata or navigation data that help locate the actual data, e.g., the internal nodes of a B-tree. Reading this
navigation data is an excess cost, adding to read amplification. Creating a data structure without any navigation data would suffer update or even more read
amplification. For example, we could choose to not have any structure in the data at all. Then every query would have to touch all the data. The other extreme would be
to sort all data which effectively provides an implicit structure. But then updates get expensive. Overall, there is no perfect design.

Tradeoffs in each structure

21

[S. Idreos, 2019]

https://stratos.seas.harvard.edu/files/stratos/files/learnedselfdesignedsystemssigmod2019tutorialpart1.pdf

D. Koop, CSCI 490/680, Spring 2020

NEW APPLICATIONS
existing systems need to change too

WORKLOAD HARDWARE

ADAPT

IMPROVE
WITHIN A BUDGET

WHAT WILL
BREAK MY
SYSTEM?

REASON

We increasingly need to think of new data structure designs, because applications and data change rapidly and because for data driven applications great performance
comes only after rethinking the storage layer as well.

New Applications Demand Change

22

[S. Idreos, 2019]

https://stratos.seas.harvard.edu/files/stratos/files/learnedselfdesignedsystemssigmod2019tutorialpart1.pdf

D. Koop, CSCI 490/680, Spring 2020

STORAGE LAYOUTS

INDEXING

INDEX RECOMENDATIONS

KNOB TUNING

OPTIMIZER

PLAN

H20, NODBCRACKING INDEX ADVISORS
DBA

GUY LOHMANMID-FLIGHT ReOpt

th
e “

tra
dit

ion
al”

 st
ac

k

(no
 M

L,
no

 sy
nth

es
is)

Many efforts in the field have been motivated by the vision of generating tailored systems for a specific scenario. In fact, even traditional databases are architected with
this vision in mind. A generic database system can optimize a plan on the fly to match the query needs, it can choose from different storage and indexing options, etc.
This is how generic database systems can be used in a wealth of applications! And then recent research has tried to push the boundaries of tailored designs be
rethinking parts of the stack of a database system.

"Traditional" Database Research

23

[S. Idreos, 2019]

https://stratos.seas.harvard.edu/files/stratos/files/learnedselfdesignedsystemssigmod2019tutorialpart1.pdf

D. Koop, CSCI 490/680, Spring 2020

without coding or
accessing the h/w

workload

h/w

layout
design

performance
algorithms

As a first step in this direction, we built an engine, which we call the Data Calculator and which takes as input the hardware, workload and layout of a data structure. It
then computes automatically the algorithms that this data structure design needs to optimally process the workload on this hardware and it also computes the
performance. That is, the response time that an actual implementation of this design would need to run this workload on this hardware. However, all this happens without
the user having to implement anything and without even needing access to the actual hardware. Given this engine we show that we can start thinking about game-
changing paradigms for system designs such as interactive design, self-designing systems, and fully automatic design for instance optimal systems.

Self-designing systems

24

[S. Idreos, 2019]

https://stratos.seas.harvard.edu/files/stratos/files/learnedselfdesignedsystemssigmod2019tutorialpart1.pdf

SageDB: a learned database system

T. Kraska, M. Alizadeh, A. Beutel, E. H. Chi, J. Ding, A. Kristo,
G. Leclerc, S. Madden, H. Mao, and V. Nathan

D. Koop, CSCI 490/680, Spring 2020

D. Koop, CSCI 490/680, Spring 2020

Fundamental
Building Blocks

Sorting

B-TreeHash-
Map

Scheduling

Join

Priority
Queue

Bloom
Filter

CachingRange
Filter

Learned Data Structures and Algorithms

26

http://people.csail.mit.edu/kraska/pub/sigmod19tutorialpart2.pdf

D. Koop, CSCI 490/680, Spring 2020

Discussion
• Is this the future?
• What about comparison baselines?
• Lots of work being done in this area

27

D. Koop, CSCI 490/680, Spring 2020

Reminders
• Assignment 5 Due Thursday
• Final Exam Review Thursday (send questions!)
• Final Exam on Tuesday, May 5 from 4-5:50pm

28

