
Advanced Data Management (CSCI 490/680)

Provenance

Dr. David Koop

D. Koop, CSCI 490/680, Spring 2020

D. Koop, CSCI 490/680, Spring 2020

Assignment 5
• Work with time series & spatial data
• Shorter assignment
• Cleaning, spatial rollup, rolling

average
• Due April 30
• Questions?

2

D. Koop, CSCI 490/680, Spring 2020

Exam and Review
• Exam
- Tuesday, May 5 from 4-5:50pm
- Online
- Similar format to Test 2
- Comprehensive but with more focus on last few weeks of class
- Information online soon

• Review
- Thursday, April 30
- Submit questions via email or discussion

3

D. Koop, CSCI 490/680, Spring 2020

Provenance in Computational Science

4

Fig. 7: Using the blog to document processes: A visualization expert
created a series of blog posts to explain the problems found when gen-
erating the visualizations for CMOP.

ACKNOWLEDGMENTS

Our research has been funded by the National Science Foun-
dation (grants IIS-0905385, IIS-0746500, ATM-0835821, IIS-
0844546, CNS-0751152, IIS-0713637, OCE-0424602, IIS-0534628,
CNS-0514485, IIS-0513692, CNS-0524096, CCF-0401498, OISE-
0405402, CCF-0528201, CNS-0551724), the Department of En-
ergy SciDAC (VACET and SDM centers), and IBM Faculty Awards
(2005, 2006, 2007, and 2008). E. Santos is partially supported by a
CAPES/Fulbright fellowship.

REFERENCES

[1] L. Bavoil, S. Callahan, P. Crossno, J. Freire, C. Scheidegger, C. Silva, and
H. Vo. VisTrails: Enabling Interactive Multiple-View Visualizations. In
IEEE Visualization 2005, pages 135–142, 2005.

[2] S. P. Callahan, J. Freire, C. E. Scheidegger, C. T. Silva, and H. T. Vo.
Towards provenance-enabling paraview. pages 120–127, 2008.

[3] Chemical blogspace. http://cb.openmolecules.net/.
[4] NSF Center for Coastal Margin Observation and Prediction (CMOP).

http://www.stccmop.org.
[5] S. B. Davidson and J. Freire. Provenance and scientific workflows: chal-

lenges and opportunities. In Proceedings of SIGMOD, pages 1345–1350,
2008.

[6] R. T. Fielding. Architectural Styles and the Design of Network-based Soft-
ware Architectures. PhD thesis, University of California, Irvine, 2000.

[7] S. Fomel and J. Claerbout. Guest editors’ introduction: Reproducible
research. Computing in Science Engineering, 11(1):5 –7, jan.-feb. 2009.

Fig. 8: Visualizing a binary star system simulation. This
is an image that was generated by embedding a workflow di-
rectly in the text. The original workflow is available at
http://www.crowdlabs.org/vistrails/workflows/details/119/.

[8] J. Freire, D. Koop, E. Santos, and C. T. Silva. Provenance for computa-
tional tasks: A survey. Computing in Science & Engineering, 10(3):11–
21, May-June 2008.

[9] J. Freire, C. Silva, S. Callahan, E. Santos, C. Scheidegger, and H. Vo.
Managing rapidly-evolving scientific workflows. In International Prove-
nance and Annotation Workshop (IPAW), LNCS 4145, pages 10–18.
Springer Verlag, 2006.

[10] R. Hoffmann. A wiki for the life sciences where authorship matters. Na-
ture Genetics, 40(9):1047–1051, 2008.

[11] IBM. OpenDX. http://www.research.ibm.com/dx.
[12] Kitware. Paraview. http://www.paraview.org.
[13] Kitware. The visualization toolkit. http://www.vtk.org.
[14] Many Eyes Wikified. http://wikified.researchlabs.ibm.com.
[15] M. McKeon. Harnessing the Web Information Ecosystem with Wiki-

based Visualization Dashboards. IEEE Transactions on Visualization and
Computer Graphics, 15(6):1081–1088, 2009.

[16] A. R. Pico, T. Kelder, M. P. van Iersel, K. Hanspers, B. R. Conklin, and
C. Evelo. WikiPathways: Pathway editing for the people. PLoS Biology,
6(7), 2008.

[17] D. D. Roure, C. Goble, and R. Stevens. The design and realisation of
the virtual research environment for social sharing of workflows. Future
Generation Computer Systems, 25(5):561 – 567, 2009.

[18] E. Santos, L. Lins, J. Ahrens, J. Freire, and C. Silva. Vismashup: Stream-
lining the creation of custom visualization applications. IEEE Transac-
tions on Visualization and Computer Graphics, 15(6):1539–1546, 2009.

[19] Swivel. http://www.swivel.com.
[20] J. Tohline and E. Santos. Visualizing a Journal that Serves the Computa-

tional Sciences Community. Computing in Science & Engineering, 12(3),
2010. To appear.

[21] J. E. Tohline. Scientific Visualization: A Necessary Chore. Computing
in Science & Engineering, 9(6):76–81, 2007.

[22] C. Upson, J. Thomas Faulhaber, D. Kamins, D. H. Laidlaw, D. Schlegel,
J. Vroom, R. Gurwitz, and A. van Dam. The Application Visualiza-
tion System: A Computational Environment for Scientific Visualization.
IEEE Computer Graphics and Applications, 9(4):30–42, 1989.

[23] F. B. Viegas, M. Wattenberg, F. van Ham, J. Kriss, and M. McKeon.
ManyEyes: A site for visualization at internet scale. IEEE Transactions
on Visualization and Computer Graphics, 13(6):1121–1128, 2007.

[24] VisIt Visualization Tool. https://wci.llnl.gov/codes/visit.
[25] The VisTrails Project. http://www.vistrails.org.

DATA DATA

Data Management

Computation

Visualization

Publishing

Provenance

D. Koop, CSCI 490/680, Spring 2020

Provenance Questions
• What process led to the output image?
• What input datasets contributed to the

output image?
• What workflows create an isosurface with

isovalue 57?
• Who create this data product?
• When was this data file created?
• Why was vtkCamera used?
• Why do two output images differ?

5

vtkActor

VTKCell

vtkRenderer

vtkContourFilter

vtkStructuredPointsReader

vtkDataSetMapper

vtkCamera

DATA

IMAGE

D. Koop, CSCI 490/680, Spring 2020

Provenance & Causality
• Knowing what data/steps influenced other data/steps is important!
• Data dependencies: this output file depended on this input file
• Data-process dependencies: this output figure depended on these

processes
• Causality can often be represented as a graph where connections represent

dependencies

6

D. Koop, CSCI 490/680, Spring 2020

Provenance Capture Mechanisms
• Workflow-based: Since workflow execution is controlled, keep track of all

the workflow modules, parameters, etc. as they are executed
• Process-based: Each process is required to write out its own provenance

information (not centralized like workflow-based)
• OS-based: The OS or filesystem is modified so that any activity it does it

monitored and the provenance subsystem organizes it
• Tradeoffs:
- Workflow- and process-based have better abstraction
- OS-based requires minimal user effort once installed and can capture

"hidden dependencies"

7

D. Koop, CSCI 490/680, Spring 2020

vtkActor

VTKCell

vtkRenderer

vtkContourFilter

vtkStructuredPointsReader

vtkDataSetMapper

vtkCamera

Abstraction: Script, Workflow, Abstract Workflow
data = vtk.vtkStructuredPointsReader()
data.SetFileName(../examples/data/head.120.vtk)

contour = vtk.vtkContourFilter()
contour.SetInput(data.GetOutput())
contour.SetValue(0, 67)

mapper = vtk.vtkPolyDataMapper()
mapper.SetInput(contour.GetOutput())
mapper.ScalarVisibilityOff()

actor = vtk.vtkActor()
actor.SetMapper(mapper)

cam = vtk.vtkCamera()
cam.SetViewUp(0,0,-1)
cam.SetPosition(745,-453,369)
cam.SetFocalPoint(135,135,150)
cam.ComputeViewPlaneNormal()

ren = vtk.vtkRenderer()
ren.AddActor(actor)
ren.SetActiveCamera(cam)
ren.ResetCamera()
renwin = vtk.vtkRenderWindow()
renwin.AddRenderer(ren)

style = vtk.vtkInteractorStyleTrackballCamera()
iren = vtk.vtkRenderWindowInteractor()
iren.SetRenderWindow(renwin)
iren.SetInteractorStyle(style)
iren.Initialize()
iren.Start()

8

ViewUp (0,0,-1)
Position (745,-453,369)

FocalPoint (-135,135,150)

FileName .../head.120.vtk

Value (0,67)

D. Koop, CSCI 490/680, Spring 2020

vtkActor

VTKCell

vtkRenderer

vtkContourFilter

vtkStructuredPointsReader

vtkDataSetMapper

vtkCamera

Abstraction: Script, Workflow, Abstract Workflow
data = vtk.vtkStructuredPointsReader()
data.SetFileName(../examples/data/head.120.vtk)

contour = vtk.vtkContourFilter()
contour.SetInput(data.GetOutput())
contour.SetValue(0, 67)

mapper = vtk.vtkPolyDataMapper()
mapper.SetInput(contour.GetOutput())
mapper.ScalarVisibilityOff()

actor = vtk.vtkActor()
actor.SetMapper(mapper)

cam = vtk.vtkCamera()
cam.SetViewUp(0,0,-1)
cam.SetPosition(745,-453,369)
cam.SetFocalPoint(135,135,150)
cam.ComputeViewPlaneNormal()

ren = vtk.vtkRenderer()
ren.AddActor(actor)
ren.SetActiveCamera(cam)
ren.ResetCamera()
renwin = vtk.vtkRenderWindow()
renwin.AddRenderer(ren)

style = vtk.vtkInteractorStyleTrackballCamera()
iren = vtk.vtkRenderWindowInteractor()
iren.SetRenderWindow(renwin)
iren.SetInteractorStyle(style)
iren.Initialize()
iren.Start()

8

ViewUp (0,0,-1)
Position (745,-453,369)

FocalPoint (-135,135,150)

FileName .../head.120.vtk

Value (0,67)

Read File

Extract
Isosurface

Render

Visualization

D. Koop, CSCI 490/680, Spring 2020

��������	�
�

�������
��

��������������������������

�����������	
�

����
�
������

�������������	�
���

�����������	
�

�������������

�������������������

�����������	
�

����������������

������������

�����������	
�

����������

�����������

�����������	
�

�������
�

��������������

�����������	
�

��������

��������

�����������	
�

���	

������������� �������������������

���	

������������� �������������������

���	

������������� �������������������

���	

������������� �������������������

���	 ���	

������������� �������������������

������������� �������������������

���	

������������� �������������������

Abstraction: Provenance Views

9

��������	�
�

�������
��

�������	�
�

�����������	
�

����
�
������

�����������
�
������

�����������	
�

��������

�����������
��
�������

�����������	
�

���	

������������� �������������������

���	

������������� �������������������

���	

������������� �������������������

Abstract

D. Koop, CSCI 490/680, Spring 2020

Prospective and Retrospective Provenance	
• Recipe for baking a cake versus the actual process & outcome
• Prospective provenance is what was specified/intended
- a workflow, script, list of steps

• Retrospective provenance is what actually happened
- actual data, actual parameters, errors that occurred, timestamps, machine

information
• Do not need prospective provenance to have retrospective provenance!

10

D. Koop, CSCI 490/680, Spring 2020

PROV: Three Views of Provenance

11

[Moreau et al., 2014]

D. Koop, CSCI 490/680, Spring 2020

28 COMPUTING IN SCIENCE & ENGINEERING

infrastructures such as the TeraGrid.11 Although
Pegasus models prospective provenance using
OWL, it captures retrospective provenance by
using the Virtual Data System (VDS; a precursor
of Swift) and then stores it in a relational database.
Queries that span prospective and retrospective
provenance must combine two different query
languages: SPARQL and SQL.

REDUX extends the Windows Work!ow
Foundation engine to transparently capture the
work!ow execution trace. As discussed earlier,
it uses a layered provenance model to normalize
data and avoid redundancy. REDUX stores prov-
enance data (both prospective and retrospective)
in a relational database’s set of tables that can be
queried with SQL. The system can also return an
executable work!ow as the result of a provenance
query (for example, a query that requests all the
steps used to derive a particular data product).

Swift (www.ci.uchicago.edu/swift) builds on
and includes technology previously distributed
as the GriPhyN VDS.23 The system combines
a scripting language (SwiftScript) with a power-
ful runtime system for the concise speci"cation
and reliable execution of large, loosely coupled
computations. Swift speci"es these computations
as scripts, which the runtime system translates
into an executable work!ow. A launcher program
invokes the work!ow’s tasks, monitors the exe-
cution process, and records provenance informa-
tion, including the executable name, arguments,
start time, duration, machine information, and
exit status. Similar to VDS, Swift captures the
relationships among data, programs, and com-

putations and uses this information for data and
program discovery as well as for work!ow sched-
uling and optimization.

VisTrails is a work!ow and provenance man-
agement system designed to support exploratory
computational tasks. An important goal of the
VisTrails project is to build intuitive interfaces
for users to query and reuse provenance infor-
mation. Besides its QBE interface (which is built
on top of its specialized provenance query lan-
guage), VisTrails provides a visual interface to
compare work!ows side by side12 and a mecha-
nism for re"ning work!ows by analogy—users
can modify work!ows by example without hav-
ing to directly edit their de"nitions.21 VisTrails
internally represents prospective provenance as
Python objects that can be serialized into XML
and relations; it stores retrospective provenance
in a relational database.

OS-Based Systems
PASS (www.eecs.harvard.edu/syrah/pass) op-
erates at the level of a shared storage system: it
automatically records information about which
programs are executed, their inputs, and any new
"les created as output. The capture mechanism
consists of a set of Linux kernel modules that
transparently record provenance—it doesn’t re-
quire any changes to computational tasks. PASS
also constructs a provenance graph stored as a set
of tables in Berkeley DB. Users can pose prov-
enance queries using nq, a proprietary tool that
supports recursive searches over the provenance
graph. As discussed earlier, the "ne granularity

Table 1. Provenance-enabled systems.

System Capture mechanism Prospective provenance
Retrospective
provenance Work!ow evolution Storage Query support

Available as open
source?

REDUX Work!ow-based Relational Relational No Relational database management
system (RDBMS)

SQL No

Swift Work!ow-based SwiftScript Relational No RDBMS SQL Yes

VisTrails Work!ow-based XML and relational Relational Yes RDBMS and "les Visual query by example, specialized
language

Yes

Karma Work!ow- and
process-based

Business Process Execution
Language

XML No RDBMS Proprietary API Yes

Kepler Work!ow-based MoML MoML variation Under development Files; RDBMS planned Under development Yes

Taverna Work!ow-based Scu! RDF Under development RDBMS SPARQL Yes

Pegasus Work!ow-based OWL Relational No RDBMS SPARQL for metadata and work!ow;
SQL for execution log

Yes

PASS OS-based N/A Relational No Berkeley DB nq (proprietary query tool) No

ES3 OS-based N/A XML No XML database XQuery No

PASOA/PreServ Process-based N/A XML No Filesystem, Berkeley DB XQuery, Java query API Yes

Provenance-Enabled Systems

12

[Freire et. al, 2008]

D. Koop, CSCI 490/680, Spring 2020

Provenance-Enabled Systems

13

[Freire et. al, 2008]

More…

28 COMPUTING IN SCIENCE & ENGINEERING

infrastructures such as the TeraGrid.11 Although
Pegasus models prospective provenance using
OWL, it captures retrospective provenance by
using the Virtual Data System (VDS; a precursor
of Swift) and then stores it in a relational database.
Queries that span prospective and retrospective
provenance must combine two different query
languages: SPARQL and SQL.

REDUX extends the Windows Work!ow
Foundation engine to transparently capture the
work!ow execution trace. As discussed earlier,
it uses a layered provenance model to normalize
data and avoid redundancy. REDUX stores prov-
enance data (both prospective and retrospective)
in a relational database’s set of tables that can be
queried with SQL. The system can also return an
executable work!ow as the result of a provenance
query (for example, a query that requests all the
steps used to derive a particular data product).

Swift (www.ci.uchicago.edu/swift) builds on
and includes technology previously distributed
as the GriPhyN VDS.23 The system combines
a scripting language (SwiftScript) with a power-
ful runtime system for the concise speci"cation
and reliable execution of large, loosely coupled
computations. Swift speci"es these computations
as scripts, which the runtime system translates
into an executable work!ow. A launcher program
invokes the work!ow’s tasks, monitors the exe-
cution process, and records provenance informa-
tion, including the executable name, arguments,
start time, duration, machine information, and
exit status. Similar to VDS, Swift captures the
relationships among data, programs, and com-

putations and uses this information for data and
program discovery as well as for work!ow sched-
uling and optimization.

VisTrails is a work!ow and provenance man-
agement system designed to support exploratory
computational tasks. An important goal of the
VisTrails project is to build intuitive interfaces
for users to query and reuse provenance infor-
mation. Besides its QBE interface (which is built
on top of its specialized provenance query lan-
guage), VisTrails provides a visual interface to
compare work!ows side by side12 and a mecha-
nism for re"ning work!ows by analogy—users
can modify work!ows by example without hav-
ing to directly edit their de"nitions.21 VisTrails
internally represents prospective provenance as
Python objects that can be serialized into XML
and relations; it stores retrospective provenance
in a relational database.

OS-Based Systems
PASS (www.eecs.harvard.edu/syrah/pass) op-
erates at the level of a shared storage system: it
automatically records information about which
programs are executed, their inputs, and any new
"les created as output. The capture mechanism
consists of a set of Linux kernel modules that
transparently record provenance—it doesn’t re-
quire any changes to computational tasks. PASS
also constructs a provenance graph stored as a set
of tables in Berkeley DB. Users can pose prov-
enance queries using nq, a proprietary tool that
supports recursive searches over the provenance
graph. As discussed earlier, the "ne granularity

Table 1. Provenance-enabled systems.

System Capture mechanism Prospective provenance
Retrospective
provenance Work!ow evolution Storage Query support

Available as open
source?

REDUX Work!ow-based Relational Relational No Relational database management
system (RDBMS)

SQL No

Swift Work!ow-based SwiftScript Relational No RDBMS SQL Yes

VisTrails Work!ow-based XML and relational Relational Yes RDBMS and "les Visual query by example, specialized
language

Yes

Karma Work!ow- and
process-based

Business Process Execution
Language

XML No RDBMS Proprietary API Yes

Kepler Work!ow-based MoML MoML variation Under development Files; RDBMS planned Under development Yes

Taverna Work!ow-based Scu! RDF Under development RDBMS SPARQL Yes

Pegasus Work!ow-based OWL Relational No RDBMS SPARQL for metadata and work!ow;
SQL for execution log

Yes

PASS OS-based N/A Relational No Berkeley DB nq (proprietary query tool) No

ES3 OS-based N/A XML No XML database XQuery No

PASOA/PreServ Process-based N/A XML No Filesystem, Berkeley DB XQuery, Java query API Yes

MAY/JUNE 2008 29

of PASS’s capture mechanism often leads to very
large volumes of provenance information; another
limitation of this approach is that it’s restricted to
local !lesystems. It can’t, for example, track !les
in a grid environment.

ES3’s goal is to extract provenance information
from arbitrary applications by monitoring their in-
teractions with the execution environment.6 These
interactions are logged to the ES3 database, which
stores the information as provenance graphs, rep-
resented in XML. ES3 currently supports a Linux
plugin, which uses system call tracing to capture
provenance. As in PASS, ES3 requires no changes
to the underlying processes, but provenance cap-
ture is restricted to applications that run on ES3-
supported environments.

Process-Based Systems
The Provenance-Aware Service Oriented Ar-
chitecture (PASOA) project (www.pasoa.org)
developed a provenance architecture that relies
on individual services to record their own prov-
enance.5 The system doesn’t model the notion of a
work"ow—rather, it captures assertions produced
by services that re"ect the relationships between
the represented services and data. The system
must infer the complete provenance of a task or
data product by combining these assertions and
recursively following the relationships they repre-
sent. The PASOA architecture distinguishes the
notion of process documentation—that is, the prove-
nance recorded speci!cally about a process—from
the notion of a data item’s provenance, which is de-
rived from the process documentation. The PA-

SOA project developed an open source software
package called PreServ that lets developers inte-
grate process documentation recording into their
applications. PreServ also supports multiple back
end storage systems, including !les and relational
databases; users can pose provenance queries by
using its Java-based query API or XQuery.

P rovenance management is a new area,
but it is advancing rapidly. Researchers
are actively pursuing several directions
in this area, including the ability to in-

tegrate provenance derived from different systems
and enhanced analytical and visualization mech-
anisms for exploring provenance information.
Provenance research is also enabling several new
applications, such as science collaboratories, which
have the potential to change the way people do sci-
ence—sharing provenance information at a large
scale exposes researchers to techniques and tools
to which they wouldn’t otherwise have access. By
exploring provenance information in a collabora-
tory, scientists can learn by example, expedite their
scienti!c work, and potentially reduce their time
to insight. The “wisdom of the crowds,” in the
context of scienti!c exploration, can avoid duplica-
tion and encourage continuous, documented, and
reproducible scienti!c progress.24

Acknowledgments
This work was partially supported by the US Nation-
al Science Foundation, the US Department of Energy,
and IBM faculty awards.

Table 1. Provenance-enabled systems.

System Capture mechanism Prospective provenance
Retrospective
provenance Work!ow evolution Storage Query support

Available as open
source?

REDUX Work!ow-based Relational Relational No Relational database management
system (RDBMS)

SQL No

Swift Work!ow-based SwiftScript Relational No RDBMS SQL Yes

VisTrails Work!ow-based XML and relational Relational Yes RDBMS and "les Visual query by example, specialized
language

Yes

Karma Work!ow- and
process-based

Business Process Execution
Language

XML No RDBMS Proprietary API Yes

Kepler Work!ow-based MoML MoML variation Under development Files; RDBMS planned Under development Yes

Taverna Work!ow-based Scu! RDF Under development RDBMS SPARQL Yes

Pegasus Work!ow-based OWL Relational No RDBMS SPARQL for metadata and work!ow;
SQL for execution log

Yes

PASS OS-based N/A Relational No Berkeley DB nq (proprietary query tool) No

ES3 OS-based N/A XML No XML database XQuery No

PASOA/PreServ Process-based N/A XML No Filesystem, Berkeley DB XQuery, Java query API Yes

D. Koop, CSCI 490/680, Spring 2020

Provenance-Enabled Systems

13

[Freire et. al, 2008]

More…

28 COMPUTING IN SCIENCE & ENGINEERING

infrastructures such as the TeraGrid.11 Although
Pegasus models prospective provenance using
OWL, it captures retrospective provenance by
using the Virtual Data System (VDS; a precursor
of Swift) and then stores it in a relational database.
Queries that span prospective and retrospective
provenance must combine two different query
languages: SPARQL and SQL.

REDUX extends the Windows Work!ow
Foundation engine to transparently capture the
work!ow execution trace. As discussed earlier,
it uses a layered provenance model to normalize
data and avoid redundancy. REDUX stores prov-
enance data (both prospective and retrospective)
in a relational database’s set of tables that can be
queried with SQL. The system can also return an
executable work!ow as the result of a provenance
query (for example, a query that requests all the
steps used to derive a particular data product).

Swift (www.ci.uchicago.edu/swift) builds on
and includes technology previously distributed
as the GriPhyN VDS.23 The system combines
a scripting language (SwiftScript) with a power-
ful runtime system for the concise speci"cation
and reliable execution of large, loosely coupled
computations. Swift speci"es these computations
as scripts, which the runtime system translates
into an executable work!ow. A launcher program
invokes the work!ow’s tasks, monitors the exe-
cution process, and records provenance informa-
tion, including the executable name, arguments,
start time, duration, machine information, and
exit status. Similar to VDS, Swift captures the
relationships among data, programs, and com-

putations and uses this information for data and
program discovery as well as for work!ow sched-
uling and optimization.

VisTrails is a work!ow and provenance man-
agement system designed to support exploratory
computational tasks. An important goal of the
VisTrails project is to build intuitive interfaces
for users to query and reuse provenance infor-
mation. Besides its QBE interface (which is built
on top of its specialized provenance query lan-
guage), VisTrails provides a visual interface to
compare work!ows side by side12 and a mecha-
nism for re"ning work!ows by analogy—users
can modify work!ows by example without hav-
ing to directly edit their de"nitions.21 VisTrails
internally represents prospective provenance as
Python objects that can be serialized into XML
and relations; it stores retrospective provenance
in a relational database.

OS-Based Systems
PASS (www.eecs.harvard.edu/syrah/pass) op-
erates at the level of a shared storage system: it
automatically records information about which
programs are executed, their inputs, and any new
"les created as output. The capture mechanism
consists of a set of Linux kernel modules that
transparently record provenance—it doesn’t re-
quire any changes to computational tasks. PASS
also constructs a provenance graph stored as a set
of tables in Berkeley DB. Users can pose prov-
enance queries using nq, a proprietary tool that
supports recursive searches over the provenance
graph. As discussed earlier, the "ne granularity

Table 1. Provenance-enabled systems.

System Capture mechanism Prospective provenance
Retrospective
provenance Work!ow evolution Storage Query support

Available as open
source?

REDUX Work!ow-based Relational Relational No Relational database management
system (RDBMS)

SQL No

Swift Work!ow-based SwiftScript Relational No RDBMS SQL Yes

VisTrails Work!ow-based XML and relational Relational Yes RDBMS and "les Visual query by example, specialized
language

Yes

Karma Work!ow- and
process-based

Business Process Execution
Language

XML No RDBMS Proprietary API Yes

Kepler Work!ow-based MoML MoML variation Under development Files; RDBMS planned Under development Yes

Taverna Work!ow-based Scu! RDF Under development RDBMS SPARQL Yes

Pegasus Work!ow-based OWL Relational No RDBMS SPARQL for metadata and work!ow;
SQL for execution log

Yes

PASS OS-based N/A Relational No Berkeley DB nq (proprietary query tool) No

ES3 OS-based N/A XML No XML database XQuery No

PASOA/PreServ Process-based N/A XML No Filesystem, Berkeley DB XQuery, Java query API Yes

MAY/JUNE 2008 29

of PASS’s capture mechanism often leads to very
large volumes of provenance information; another
limitation of this approach is that it’s restricted to
local !lesystems. It can’t, for example, track !les
in a grid environment.

ES3’s goal is to extract provenance information
from arbitrary applications by monitoring their in-
teractions with the execution environment.6 These
interactions are logged to the ES3 database, which
stores the information as provenance graphs, rep-
resented in XML. ES3 currently supports a Linux
plugin, which uses system call tracing to capture
provenance. As in PASS, ES3 requires no changes
to the underlying processes, but provenance cap-
ture is restricted to applications that run on ES3-
supported environments.

Process-Based Systems
The Provenance-Aware Service Oriented Ar-
chitecture (PASOA) project (www.pasoa.org)
developed a provenance architecture that relies
on individual services to record their own prov-
enance.5 The system doesn’t model the notion of a
work"ow—rather, it captures assertions produced
by services that re"ect the relationships between
the represented services and data. The system
must infer the complete provenance of a task or
data product by combining these assertions and
recursively following the relationships they repre-
sent. The PASOA architecture distinguishes the
notion of process documentation—that is, the prove-
nance recorded speci!cally about a process—from
the notion of a data item’s provenance, which is de-
rived from the process documentation. The PA-

SOA project developed an open source software
package called PreServ that lets developers inte-
grate process documentation recording into their
applications. PreServ also supports multiple back
end storage systems, including !les and relational
databases; users can pose provenance queries by
using its Java-based query API or XQuery.

P rovenance management is a new area,
but it is advancing rapidly. Researchers
are actively pursuing several directions
in this area, including the ability to in-

tegrate provenance derived from different systems
and enhanced analytical and visualization mech-
anisms for exploring provenance information.
Provenance research is also enabling several new
applications, such as science collaboratories, which
have the potential to change the way people do sci-
ence—sharing provenance information at a large
scale exposes researchers to techniques and tools
to which they wouldn’t otherwise have access. By
exploring provenance information in a collabora-
tory, scientists can learn by example, expedite their
scienti!c work, and potentially reduce their time
to insight. The “wisdom of the crowds,” in the
context of scienti!c exploration, can avoid duplica-
tion and encourage continuous, documented, and
reproducible scienti!c progress.24

Acknowledgments
This work was partially supported by the US Nation-
al Science Foundation, the US Department of Energy,
and IBM faculty awards.

Table 1. Provenance-enabled systems.

System Capture mechanism Prospective provenance
Retrospective
provenance Work!ow evolution Storage Query support

Available as open
source?

REDUX Work!ow-based Relational Relational No Relational database management
system (RDBMS)

SQL No

Swift Work!ow-based SwiftScript Relational No RDBMS SQL Yes

VisTrails Work!ow-based XML and relational Relational Yes RDBMS and "les Visual query by example, specialized
language

Yes

Karma Work!ow- and
process-based

Business Process Execution
Language

XML No RDBMS Proprietary API Yes

Kepler Work!ow-based MoML MoML variation Under development Files; RDBMS planned Under development Yes

Taverna Work!ow-based Scu! RDF Under development RDBMS SPARQL Yes

Pegasus Work!ow-based OWL Relational No RDBMS SPARQL for metadata and work!ow;
SQL for execution log

Yes

PASS OS-based N/A Relational No Berkeley DB nq (proprietary query tool) No

ES3 OS-based N/A XML No XML database XQuery No

PASOA/PreServ Process-based N/A XML No Filesystem, Berkeley DB XQuery, Java query API Yes

D. Koop, CSCI 490/680, Spring 2020

Today: Two types of provenance
• Database Provenance
• Evolution Provenance

14

D. Koop, CSCI 490/680, Spring 2020

Database Provenance
• Motivation: Data warehouses and curated databases
- Lots of work
- Provenance helps check correctness
- Adds value to data by how it was obtained

• Three Types:
- Why (Lineage): Associate each tuple t present in the output of a query with a

set of tuples present in the input
- How: Not just existence but routes from tuples to output (multiple contrib.'s)
- Where: Location where data is copied from (may have choice of different

tables)

15

[Cheney et al., 2007]

Provenance in Databases

A. Amarilli

D. Koop, CSCI 490/680, Spring 2020

http://kocoon.gforge.inria.fr/slides/amarilli.pdf

D. Koop, CSCI 490/680, Spring 2020

Why Provenance
• Lineage of(HarborCruz, 831-3000):
{Agencies(t2),ExternalTours(t7)}

• Lineage of (BayTours, 415-1200):
{Agencies(t1), ExternalTours(t5,t6)}

• This is not really precise because we
don't need both t5 and t6—only
one is ok

17

[Cheney et al., 2007]

1.1 Why, How and Where: An Overview 383

Agencies
name based in phone

t1: BayTours San Francisco 415-1200
t2: HarborCruz Santa Cruz 831-3000

ExternalTours
name destination type price

t3: BayTours San Francisco cable car $50
t4: BayTours Santa Cruz bus $100
t5: BayTours Santa Cruz boat $250
t6: BayTours Monterey boat $400
t7: HarborCruz Monterey boat $200
t8: HarborCruz Carmel train $90

Fig. 1.1 Our example database: an online travel portal.

on the name attribute, selecting tours by boat, and projecting on the
name and phone attributes:

Q1:
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name AND
e.type=‘boat’

Result of Q1:
name phone
BayTours 415-1200
HarborCruz 831-3000

The result of Q1 executed on our example database in Figure 1.1 is
shown above on the right. According to Cui et al., the lineage of the out-
put tuple (HarborCruz, 831-3000) is {Agencies(t2), ExternalTours(t7)},
where Agencies(t2) and ExternalTours(t7) denote the subinstances of
Agencies and ExternalTours consisting of tuples t2 and t7, respectively.
Intuitively, the two source tuples witness the existence of the tuple of
interest, (HarborCruz, 831-3000), according to Q1. Furthermore, each
of the two source tuples justify the existence of the HarborCruz tuple.
In other words, the source tuples t2 and t7 form a “proof” or “witness”
for the HarborCruz output tuple according to Q1, and no other source
tuples are part of the witness since they do not contribute to the Har-
borCruz output tuple. Technically speaking, by “witness” we mean a
subset of the input database records that is sufficient to ensure that a
given output tuple appears in the result of a query.

As another example, the lineage of the output tuple (Bay-
Tours, 415-1200) is the union of the lineage of the intermediate

1.1 Why, How and Where: An Overview 383

Agencies
name based in phone

t1: BayTours San Francisco 415-1200
t2: HarborCruz Santa Cruz 831-3000

ExternalTours
name destination type price

t3: BayTours San Francisco cable car $50
t4: BayTours Santa Cruz bus $100
t5: BayTours Santa Cruz boat $250
t6: BayTours Monterey boat $400
t7: HarborCruz Monterey boat $200
t8: HarborCruz Carmel train $90

Fig. 1.1 Our example database: an online travel portal.

on the name attribute, selecting tours by boat, and projecting on the
name and phone attributes:

Q1:
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name AND
e.type=‘boat’

Result of Q1:
name phone
BayTours 415-1200
HarborCruz 831-3000

The result of Q1 executed on our example database in Figure 1.1 is
shown above on the right. According to Cui et al., the lineage of the out-
put tuple (HarborCruz, 831-3000) is {Agencies(t2), ExternalTours(t7)},
where Agencies(t2) and ExternalTours(t7) denote the subinstances of
Agencies and ExternalTours consisting of tuples t2 and t7, respectively.
Intuitively, the two source tuples witness the existence of the tuple of
interest, (HarborCruz, 831-3000), according to Q1. Furthermore, each
of the two source tuples justify the existence of the HarborCruz tuple.
In other words, the source tuples t2 and t7 form a “proof” or “witness”
for the HarborCruz output tuple according to Q1, and no other source
tuples are part of the witness since they do not contribute to the Har-
borCruz output tuple. Technically speaking, by “witness” we mean a
subset of the input database records that is sufficient to ensure that a
given output tuple appears in the result of a query.

As another example, the lineage of the output tuple (Bay-
Tours, 415-1200) is the union of the lineage of the intermediate

Q1:
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name AND e.type='boat'

D. Koop, CSCI 490/680, Spring 2020

How Provenance
• How provenance gives more detail

about how the tuples provide
witnesses to the result

• Prov of (San Francisco, 415-1200):
{{t1}, {t1,t3}}

• t1 contributes twice
• Uses provenance semirings (the

"polynomial" shown on the right)

18

[Cheney et al., 2007]

386 Introduction

minimal witness since {t} is a subinstance of it and it is a witness to
(1,2). Hence, the minimal witness basis is {{t}} for this example. In a
subsequent work by [14], minimal witnesses were used in the study of
variants of the view deletion problem, which is that of finding source
tuples to remove in order to delete a tuple from the view for select-
project–join–union queries.

1.1.2 How-Provenance

Why-provenance describes the source tuples that witness the existence
of an output tuple in the result of the query. However, it leaves out
some information about how an output tuple is derived according to
the query. To illustrate, consider the query Q2 of Figure 1.4 which asks
for all cities where tours are offered (assuming all agencies offer tours
in the city they are headquartered). The result of Q2 on the example
database in Figure 1.1 is shown in the right of Figure 1.4. (Ignore the
additional tags on the output tuples for now.) For the output tuple
(San Francisco, 415-1200) in the result of Q2, its why-provenance is
{{t1}, {t1,t3}}. This description tells us that t1 alone, and t1 with t3 are
each sufficient to witness the existence of the output tuple according to
Q2. However, it does not tell us about the structure of the proof that
t1 (as well as t1 and t3) help witness the output tuple according to Q2.
Although arguably obvious from the description of the query Q2, the
why-provenance does not tell us that the source tuple t1 contributes
twice to the output tuple: (1) t1 contributes to the intermediary result
of the inner query, and (2) it combines with that intermediary result
to witness the output tuple. This intuition is formalized in [43] using

Q2:
SELECT e.destination, a.phone
FROM Agencies a,

(SELECT name,
based in AS destination

FROM Agencies a
UNION
SELECT name, destination
FROM ExternalTours) e

WHERE a.name = e.name

Result of Q2:
destination phone
San Francisco 415-1200 t1 · (t1 + t3)
Santa Cruz 831-3000 t22
Santa Cruz 415-1200 t1 · (t4 + t5)
Monterey 415-1200 t1 · t6
Monterey 831-3000 t1 · t7
Carmel 831-3000 t1 · t8

Fig. 1.4 A query and its output tagged with semiring provenance.

1.1 Why, How and Where: An Overview 383

Agencies
name based in phone

t1: BayTours San Francisco 415-1200
t2: HarborCruz Santa Cruz 831-3000

ExternalTours
name destination type price

t3: BayTours San Francisco cable car $50
t4: BayTours Santa Cruz bus $100
t5: BayTours Santa Cruz boat $250
t6: BayTours Monterey boat $400
t7: HarborCruz Monterey boat $200
t8: HarborCruz Carmel train $90

Fig. 1.1 Our example database: an online travel portal.

on the name attribute, selecting tours by boat, and projecting on the
name and phone attributes:

Q1:
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name AND
e.type=‘boat’

Result of Q1:
name phone
BayTours 415-1200
HarborCruz 831-3000

The result of Q1 executed on our example database in Figure 1.1 is
shown above on the right. According to Cui et al., the lineage of the out-
put tuple (HarborCruz, 831-3000) is {Agencies(t2), ExternalTours(t7)},
where Agencies(t2) and ExternalTours(t7) denote the subinstances of
Agencies and ExternalTours consisting of tuples t2 and t7, respectively.
Intuitively, the two source tuples witness the existence of the tuple of
interest, (HarborCruz, 831-3000), according to Q1. Furthermore, each
of the two source tuples justify the existence of the HarborCruz tuple.
In other words, the source tuples t2 and t7 form a “proof” or “witness”
for the HarborCruz output tuple according to Q1, and no other source
tuples are part of the witness since they do not contribute to the Har-
borCruz output tuple. Technically speaking, by “witness” we mean a
subset of the input database records that is sufficient to ensure that a
given output tuple appears in the result of a query.

As another example, the lineage of the output tuple (Bay-
Tours, 415-1200) is the union of the lineage of the intermediate

D. Koop, CSCI 490/680, Spring 2020

Where Provenance
• Where provenance traces to specific

locations, not the tuple values
• Q and Q' give the same result but

the name comes from different
places

• Prov of HarborCruz in second output:
(t2, name)

• Important in annotation-propogation

19

[Cheney et al., 2007]

388 Introduction

the source instance is related to data in the target instance through
the schema mapping. Hence, in retrospect, routes can be classified as
a form of how-provenance over schema mappings.

1.1.3 Where-Provenance

Why-provenance describes all combinations of source tuples that wit-
ness the existence of an output tuple in the result of a query. In turn,
how-provenance describes how the source tuples witness the output
tuple. Buneman et al. also introduced a different notion of provenance,
called where-provenance [13]. Intuitively, where-provenance describes
where a piece of data is copied from. While why-provenance is about
the relationship between source and output tuples, where-provenance
describes the relationship between source and output locations. In the
relational setting, a location is simply a column of a tuple in a relation,
which precisely refers to a “cell” in a relation. The where-provenance
of a value that resides in some location l in Q(D) consists of locations
of D from which the value in l was copied according to Q. Naturally,
this requires that all the values that reside in the source locations of
the where-provenance of l are equal to the value that resides at l. For
example, the where-provenance of the value “HarborCruz” in the sec-
ond output tuple in the result of Q1 is the location (Agencies, t2, name)
(or simply, (t2, name)) in our example database, since “HarborCruz”
was copied from the name attribute of the tuple t2 in the Agencies
relation, according to Q1.

Where-provenance is also not invariant under equivalent queries.
To illustrate, consider the queries Q1 (repeated from earlier) and Q′

1.
The only difference between Q1 and Q′

1 is in the select clause. The first
attribute of the select clause of Q1 is a.name, whereas the first attribute
of the select clause of Q′

1 is e.name.

Q1:
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name

AND e.type=‘boat’

Q′
1:

SELECT e.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name

AND e.type=‘boat’

1.1 Why, How and Where: An Overview 383

Agencies
name based in phone

t1: BayTours San Francisco 415-1200
t2: HarborCruz Santa Cruz 831-3000

ExternalTours
name destination type price

t3: BayTours San Francisco cable car $50
t4: BayTours Santa Cruz bus $100
t5: BayTours Santa Cruz boat $250
t6: BayTours Monterey boat $400
t7: HarborCruz Monterey boat $200
t8: HarborCruz Carmel train $90

Fig. 1.1 Our example database: an online travel portal.

on the name attribute, selecting tours by boat, and projecting on the
name and phone attributes:

Q1:
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name AND
e.type=‘boat’

Result of Q1:
name phone
BayTours 415-1200
HarborCruz 831-3000

The result of Q1 executed on our example database in Figure 1.1 is
shown above on the right. According to Cui et al., the lineage of the out-
put tuple (HarborCruz, 831-3000) is {Agencies(t2), ExternalTours(t7)},
where Agencies(t2) and ExternalTours(t7) denote the subinstances of
Agencies and ExternalTours consisting of tuples t2 and t7, respectively.
Intuitively, the two source tuples witness the existence of the tuple of
interest, (HarborCruz, 831-3000), according to Q1. Furthermore, each
of the two source tuples justify the existence of the HarborCruz tuple.
In other words, the source tuples t2 and t7 form a “proof” or “witness”
for the HarborCruz output tuple according to Q1, and no other source
tuples are part of the witness since they do not contribute to the Har-
borCruz output tuple. Technically speaking, by “witness” we mean a
subset of the input database records that is sufficient to ensure that a
given output tuple appears in the result of a query.

As another example, the lineage of the output tuple (Bay-
Tours, 415-1200) is the union of the lineage of the intermediate

1.1 Why, How and Where: An Overview 383

Agencies
name based in phone

t1: BayTours San Francisco 415-1200
t2: HarborCruz Santa Cruz 831-3000

ExternalTours
name destination type price

t3: BayTours San Francisco cable car $50
t4: BayTours Santa Cruz bus $100
t5: BayTours Santa Cruz boat $250
t6: BayTours Monterey boat $400
t7: HarborCruz Monterey boat $200
t8: HarborCruz Carmel train $90

Fig. 1.1 Our example database: an online travel portal.

on the name attribute, selecting tours by boat, and projecting on the
name and phone attributes:

Q1:
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name AND
e.type=‘boat’

Result of Q1:
name phone
BayTours 415-1200
HarborCruz 831-3000

The result of Q1 executed on our example database in Figure 1.1 is
shown above on the right. According to Cui et al., the lineage of the out-
put tuple (HarborCruz, 831-3000) is {Agencies(t2), ExternalTours(t7)},
where Agencies(t2) and ExternalTours(t7) denote the subinstances of
Agencies and ExternalTours consisting of tuples t2 and t7, respectively.
Intuitively, the two source tuples witness the existence of the tuple of
interest, (HarborCruz, 831-3000), according to Q1. Furthermore, each
of the two source tuples justify the existence of the HarborCruz tuple.
In other words, the source tuples t2 and t7 form a “proof” or “witness”
for the HarborCruz output tuple according to Q1, and no other source
tuples are part of the witness since they do not contribute to the Har-
borCruz output tuple. Technically speaking, by “witness” we mean a
subset of the input database records that is sufficient to ensure that a
given output tuple appears in the result of a query.

As another example, the lineage of the output tuple (Bay-
Tours, 415-1200) is the union of the lineage of the intermediate

D. Koop, CSCI 490/680, Spring 2020 20

Evolution Provenance

D. Koop, CSCI 490/680, Spring 2020

Data Exploration

21

KnowledgeData Data

Products

Specification

Computation Perception &

Cognition

[Modified from Van Wijk, Vis 2005]

D. Koop, CSCI 490/680, Spring 2020

Data Exploration

• Data analysis and visualization are iterative processes
• In exploratory tasks, change is the norm!

21

KnowledgeData Data

Products

Specification

Computation Perception &

Cognition

Exploration

[Modified from Van Wijk, Vis 2005]

D. Koop, CSCI 490/680, Spring 2020

Exploration and Creativity Support
• Reasoning is key to the exploratory processes
• “Reflective reasoning requires the ability to store temporary results, to make

inferences from stored knowledge, and to follow chains of reasoning
backward and forward, sometimes backtracking when a promising line of
thought proves to be unfruitful. …the process is slow and laborious” —
Donald A. Norman

• Need external aids—tools to facilitate this process
- "Creativity support tools" —Ben Shneiderman

• Need aid from people—collaboration

22

D. Koop, CSCI 490/680, Spring 2020

Change-based Provenance: Photo Editing
• User Actions

• Undo/Redo History

23

original darkened sharpened grayscale

D. Koop, CSCI 490/680, Spring 2020

Change-based Provenance: Photo Editing
• User Actions

• Undo/Redo History

23

watercolor

original darkened sharpened grayscale

D. Koop, CSCI 490/680, Spring 2020

����������

	��
���	

���
�����

��������

��������	

Version Trees
• Undo/redo stacks are linear!
• We lose history of exploration
• Old Solution: User saves files/state
• VisTrails Solution:
- Automatically & transparently capture

entire history as a tree
- Users can tag or annotate each version
- Users can go back to any version by

selecting it in the tree

24

D. Koop, CSCI 490/680, Spring 2020

VisTrails

25

D. Koop, CSCI 490/680, Spring 2020

VisTrails
• Comprehensive provenance infrastructure for computational tasks
• Focus on exploratory tasks such as simulation, visualization, and data

analysis
• Transparently tracks provenance of the discovery process—from data

acquisition to visualization
- The trail followed as users generate and test hypotheses
- Users can refer back to any point along this trail at any time

• Leverage provenance to streamline exploration
• Focus on usability—build tools for scientists

26

D. Koop, CSCI 490/680, Spring 2020

SAHM: Modeling the Spread of Invasive Species

27

D. Koop, CSCI 490/680, Spring 2020

SAHM: Modeling the Spread of Invasive Species

28

[J. Morisette et al., USGS-Fort Collins, NASA]

D. Koop, CSCI 490/680, Spring 2020

UV-CDAT: Climate Science

29

D. Koop, CSCI 490/680, Spring 2020

UV-CDAT: Climate Science

29

CDMSVariable

genutil.averager

Calculator

CellLocation CDMSYxvsx

CDMSCell

(CDMSUnaryVariableOperation)

(CDMSUnaryVariableOperation)

CDMS_FileReader

CDMS_VolumeReader

VolumeRenderer

MapCell3D

CDMSVariable

D. Koop, CSCI 490/680, Spring 2020

UV-CDAT: Climate Science

30

[D. N. Williams, T. Maxwell, E. Santos, et al., LLNL, NASA, NYU]

D. Koop, CSCI 490/680, Spring 2020

AppLoop

SpinModelladder

LatticeModel

Parameter

LoopMonteCarloParameters

IterateValue

Temperature

MonteCarloSimulation

MakeParameterXMLFiles

SimulationID

EvaluateLoop

GetResultFiles

LoadAlpsHdf5

CollectXY

PlotDescriptor

MplXYPlot

MplFigure

MplFigureCell

CellLocation

SheetReference

LegendDescriptor

IterateValue

PythonSource

AxisDescriptor

NonlinearFit

ConcatenateDataSets

Transform

Float
Float

AxisDescriptor

TransformProperties

PythonSource

TransformProperties

ALPS: Large Quantum Simulations

31

[M. Troyer et al., ETH-Zurich]

D. Koop, CSCI 490/680, Spring 2020

Workflows

32

HTTPFile HTTPFile

CSVFile JSONFile

JoinTables

ProjectTable

GMapCell

HTTPFile

CSVFile

TableCell

Map

MplBar MplAxesPropertiesMplFigureProperties

MplFigure

MplFigureCell

GetFareData
(Group)

DateRange
(PythonSource)

BuildLabels
(PythonSource)

HTTPFile.url web.mta.info/.../fares_130824.csv
CSVFile.skip_lines 2
JoinTables.left_col STATION

JoinTables.right_col _key
MplAxesProps.xlabel Full Fares Purchased

Parameters

D. Koop, CSCI 490/680, Spring 2020

Capturing Exploration: Version Tree of Workflows

33

HTTPFile HTTPFile

CSVFile JSONFile

JoinTables

ProjectTable

GMapCell

HTTPFile

CSVFile

TableCell

Map

MplBar MplAxesPropertiesMplFigureProperties

MplFigure

MplFigureCell

GetFareData
(Group)

DateRange
(PythonSource)

BuildLabels
(PythonSource)

D. Koop, CSCI 490/680, Spring 2020

Capturing Exploration: Version Tree of Workflows

33

D. Koop, CSCI 490/680, Spring 2020

Capturing Exploration: Version Tree of Workflows

33

D. Koop, CSCI 490/680, Spring 2020

Workflow Evolution Provenance

34

GMapCircleCell

D. Koop, CSCI 490/680, Spring 2020

Workflow Evolution Provenance

34

GMapCircleCell

delete module “GMapCell”
delete module “CellLocation”
delete module “ProjectTable”

delete module “SelectFromTable”
...

add module “SelectFromTable”
add parameter “float_expr” to “SelectFromTable” 

 with value “latitutde > 40.6” 
delete parameter “float_expr” from “SelectFromTable” 

add parameter “float_expr” to “SelectFromTable” 
 with value “latitutde > 40.7” 

delete parameter “float_expr” from “SelectFromTable” 
add parameter “float_expr” to “SelectFromTable” 

 with value “latitutde > 40.8” 
...

D. Koop, CSCI 490/680, Spring 2020

Execution Provenance

35

D. Koop, CSCI 490/680, Spring 2020

vtkActor

VTKCell

vtkRenderer

vtkContourFilter

vtkStructuredPointsReader

vtkDataSetMapper

vtkCamera

Execution Provenance
<module id="12" name="vtkDataSetReader"
 start_time="2010-02-19 11:01:05"
 end_time="2010-02-19 11:01:07">
 <annotation key="hash"
 value="c54bea63cb7d912a43ce"/>
</module>
<module id="13" name="vtkContourFilter"
 start_time="2010-02-19 11:01:07"
 end_time="2010-02-19 11:01:08"/>
<module id="15" name="vtkDataSetMapper"
 start_time="2010-02-19 11:01:09"
 end_time="2010-02-19 11:01:12"/>
<module id="16" name="vtkActor"
 start_time="2010-02-19 11:01:12"
 end_time="2010-02-19 11:01:13"/>
<module id="17" name="vtkCamera"
 start_time="2010-02-19 11:01:13"
 end_time="2010-02-19 11:01:14"/>
<module id="18" name="vtkRenderer"
 start_time="2010-02-19 11:01:14"
 end_time="2010-02-19 11:01:14"/>
...

36

D. Koop, CSCI 490/680, Spring 2020

Parameter Exploration

37

D. Koop, CSCI 490/680, Spring 2020

CSVReader CSVReader

JoinData

ExtractColumnExtractColumn

MplScatterplot

MplFigure

MplFigureCell

ComposeData

StringToNumeric

StringToNumeric

CSVReader CSVReader

JoinData

ExtractColumnExtractColumn

MplScatterplot

MplFigure

MplFigureCell

AggregateData

AggregateData

StringToNumeric

StringToNumeric

Workflow Upgrades

38

D. Koop, CSCI 490/680, Spring 2020

CSVReader CSVReader

JoinData

ExtractColumnExtractColumn

MplScatterplot

MplFigure

MplFigureCell

ComposeData

StringToNumeric

StringToNumeric

CSVReader CSVReader

JoinData

ExtractColumnExtractColumn

MplScatterplot

MplFigure

MplFigureCell

AggregateData

AggregateData

StringToNumeric

StringToNumeric

Workflow Upgrades

38

D. Koop, CSCI 490/680, Spring 2020

CSVReader CSVReader

JoinData

ExtractColumnExtractColumn

MplScatterplot

MplFigure

MplFigureCell

ComposeData

StringToNumeric

StringToNumeric

CSVReader CSVReader

JoinData

ExtractColumnExtractColumn

MplScatterplot

MplFigure

MplFigureCell

AggregateData

AggregateData

StringToNumeric

StringToNumeric

Workflow Upgrades

38

D. Koop, CSCI 490/680, Spring 2020

CSVReader CSVReader

JoinData

ExtractColumnExtractColumn

MplScatterplot

MplFigure

MplFigureCell

ComposeData

StringToNumeric

StringToNumeric

CSVReader CSVReader

JoinData

ExtractColumnExtractColumn

MplScatterplot

MplFigure

MplFigureCell

AggregateData

AggregateData

StringToNumeric

StringToNumeric

Workflow Upgrades

38

D. Koop, CSCI 490/680, Spring 2020

Provenance of Workflow Upgrades

39

CSVReader CSVReader

JoinData

ExtractColumnExtractColumn

MplScatterplot

MplFigure

MplFigureCell

ComposeData

StringToNumeric

StringToNumeric

CSVReader CSVReader

JoinData

ExtractColumnExtractColumn

MplScatterplot

MplFigure

MplFigureCell

AggregateData

AggregateData

StringToNumeric

StringToNumeric

Change-based Provenance:
delete connection StringToNumeric → AggregateData
delete connection AggregateData → AggregateData
delete connection AggregateData → JoinData
delete connection JoinData → ExtractColumn
delete connection JoinData → ExtractColumn
delete connection ExtractColumn → MplScatterplot
delete connection ExtractColumn → MplScatterplot
delete connection MplScatterplot → MplFigure
delete connection MplFigure → MplFigureCell
delete module AggregateData version 1.0.4
delete module AggregateData version 1.0.4
delete module ExtractColumn version 0.9.7
delete module ExtractColumn version 0.9.7
delete module MplScatterplot version 2.0.0
delete module MplFigure version 2.0.0
delete module MplFigureCell version 2.0.0
add module ComposeData version 1.1.0
add module ExtractColumn version 1.0.2
add module ExtractColumn version 1.0.2
add module MplScatterplot version 2.0.1
add module MplFigure version 2.0.1
add module MplFigureCell version 2.0.1
add connection StringToNumeric → ComposeData
add connection ComposeData → JoinData
add connection JoinData → ExtractColumn
add connection JoinData → ExtractColumn
add connection ExtractColumn → MplScatterplot
add connection ExtractColumn → MplScatterplot
...

D. Koop, CSCI 490/680, Spring 2020

Adding Provenance to 3rd-Party Tools

40

Autodesk Maya

D. Koop, CSCI 490/680, Spring 2020

Adding Provenance to 3rd-Party Tools

40

Autodesk Maya

ParaView

D. Koop, CSCI 490/680, Spring 2020

Adding Provenance to 3rd-Party Tools

40

Autodesk Maya

ParaView

VisIt

D. Koop, CSCI 490/680, Spring 2020

Adding Provenance to 3rd-Party Tools

40

Autodesk Maya

ParaView

VisIt

ImageVis3d

D. Koop, CSCI 490/680, Spring 2020

VisTrails Provenance Plugin for ParaView

41

[VisTrails, Inc.]

D. Koop, CSCI 490/680, Spring 2020

VisTrails Provenance Plugin for ParaView

41

[VisTrails, Inc.]

D. Koop, CSCI 490/680, Spring 2020

VisTrails Provenance Plugin for ParaView

41

[VisTrails, Inc.]

Querying and Re-using Provenance

D. Koop, CSCI 490/680, Spring 2020

D. Koop, CSCI 490/680, Spring 2020

Querying Provenance
• What process led to the output image?
• What input datasets contributed to the

output image?
• What workflows include resampling and

isosurfacing with isovalue 57?

• Graph traversal or graph patterns
- How do we write such queries?

43

vtkActor

VTKCell

vtkRenderer

vtkContourFilter

vtkStructuredPointsReader

vtkDataSetMapper

vtkCamera

DATA

IMAGE

D. Koop, CSCI 490/680, Spring 2020

Querying Provenance by Example
• Provenance is represented as graphs: hard to specify queries using text!
• Querying workflows by example [Scheidegger et al., TVCG 2007; Beeri et al.,

VLDB 2006; Beeri et al. VLDB 2007]
- WYSIWYQ -- What You See Is What You Query
- Interface to create workflow is same as to query

44

D. Koop, CSCI 490/680, Spring 2020

Stronger Links Between Provenance and Data
• Filenames are often the mode of

identification in data exploration
• We might also use URIs or access curated

data stores
- Always expected for exploratory tasks?
- What happens if offline?

• Solution:
- Managed store for data associated with

computations
- Improved data identification
- Automatic versioning

45

[Koop et. al, 2010]

<workflow_exec id="1">
 <m_exec id="5"
 name="vtkStructuredDataReader"
 package="edu.utah.sci.vistrails.vtk"
 version="5.6.0">
 <param id="2" name="SetFile"
 value="/MyData/05-12-sc2.dat"/>
 </m_exec>
 <m_exec id="6"
 name="vtkContourFilter"
 package="edu.utah.sci.vistrails.vtk"
 version="5.6.0">
 <param id="3" name="SetValue"
 value="[1, 57]"/>
 <param id="4" name="ComputeScalarsOn"
 value="True"/>
 </m_exec>

 ...

 <m_exec id="11"
 name="FileSink"
 package="edu.utah.sci.vistrails.basic"
 version="1.5">
 <param id="15" name="path"
 value="/home/a/results/23.out"/>
 </m_exec>

!
FILE NOT FOUND

!
FILE NOT FOUND

D. Koop, CSCI 490/680, Spring 2020

Provenance from Data

46

[Koop et. al, 2010]

newfilename.dat

HASH
CONTENTS

QUERY
FILE STORE

OBTAIN
FILE REFERENCE

12ab3-45ef2...

QUERY
PROVENANCE

OBTAIN
INPUT REFS

0ab678cd...

12ab3-45ef2...

QUERY
FILE STORE

12ab3-45ef2...

12ab3-45ef2...

OBTAIN
INPUT FILES input files

P

D. Koop, CSCI 490/680, Spring 2020

Building Visualization Pipelines

47

D. Koop, CSCI 490/680, Spring 2020

vtkActor

vtkArrowSource

vtkBYUReader

vtkAxes

vtkBezierContourLineInterpolator

vtkCamera

vtkCastToConcrete

vtkCellDataToPointData

vtkClipHyperOctree

vtkCone

vtkConnectivityFilter

vtkContourFilter

vtkCubeAxesActor2D

vtkCylinder

vtkDICOMImageReader

vtkDataSetMapper

vtkDataSetReader

vtkDelaunay3D

vtkDelaunay2D
vtkEncodedGradientShader

vtkElevationFilter

vtkExtractEdges vtkFieldData

vtkGaussianSplattervtkFrustumCoverageCuller

vtkGlyph3D

vtkGeometryFilter

vtkHyperOctree

vtkImageActor

vtkImageClip

vtkImageDataGeometryFilter

vtkImageDilateErode3D

vtkImageFFT

vtkImageResample

vtkImageReslice
vtkInteractorStyle

vtkImplicitSum

vtkLODActor

vtkLineSource

vtkLoopSubdivisionFilter

vtkMergeFilter

vtkMaskPoints

vtkOpenGLVolumeTextureMapper3D

vtkPLOT3DReader

vtkParametricSuperEllipsoid

vtkPiecewiseFunction

vtkPolyDataMapper

vtkPlaneSource vtkProgrammableFilter

vtkProperty

vtkProperty2D

vtkRenderer

vtkRungeKutta4

vtkRungeKutta2

vtkScalarBarActor
vtkStreamTracer

vtkSphereSource

vtkStructuredGridReader

vtkSurfaceReconstructionFilter

vtkTextActor

vtkTransform

vtkTransformFilter

vtkWarpVector

vtkWarpScalar

vtkXYZMolReadervtkWeightedTransformFilter

vtkActor2D

vtkButterÁySubdivisionFilter

vtkCylindricalTransform

Building Visualization Pipelines

48

D. Koop, CSCI 490/680, Spring 2020

Completions

49

[URL Completion, Safari]

[Web Search Completion, Google]
[Code Completion, Intellisense]

D. Koop, CSCI 490/680, Spring 2020

VTKCell

vtkRenderer

vtkActor

vtkPolyDataMapper

vtkTubeFilter

vtkStreamTracer

vtkDataSetReader

VTKCell

vtkRenderer

vtkActor

vtkDataSetMapper

vtkContourFilter

vtkDataSetReader

VTKCell

vtkRenderer

vtkActor

vtkPolyDataMapper

vtkGlyph3D

vtkMaskPoints

vtkDataSetReader

Visualization Pipeline Completions

50

D. Koop, CSCI 490/680, Spring 2020

VisComplete Overview
• Mine provenance collection: Identify graph fragments that co-occur in a

collection of workflows (Data-Driven)
• Predict sets of likely workflow additions to a given partial workflow

51

D. Koop, CSCI 490/680, Spring 2020

Suggestion Interface

52

D. Koop, CSCI 490/680, Spring 2020

Suggestion Interface

52

D. Koop, CSCI 490/680, Spring 2020

VisComplete Results

53

User-Added
Completed

D. Koop, CSCI 490/680, Spring 2020

VisComplete Results

53

vtkActor

vtkDataSetReader

vtkArrowSourcevtkMaskPoints

vtkGlyph3D

vtkPolyDataMapper vtkProperty

vtkRenderer

VTKCell

vtkTransform

vtkTransformFilter

vtkStreamTracer

vtkRungeKutta4

vtkSphereSource

vtkTubeFilter

vtkPolyDataMapper

vtkActor

vtkProperty

vtkOutlineFilter

vtkPolyDataMapper

vtkActor

User-Added
Completed

D. Koop, CSCI 490/680, Spring 2020

Visualization by Analogy

54

D. Koop, CSCI 490/680, Spring 2020

Visualization by Analogy

54

D. Koop, CSCI 490/680, Spring 2020

Visualization by Analogy

55

D. Koop, CSCI 490/680, Spring 2020

Visualization by Analogy

55

D. Koop, CSCI 490/680, Spring 2020

Generating Visualizations by Analogy

56

is to

is to
as
 D

A B

C

D. Koop, CSCI 490/680, Spring 2020

Generating Visualizations by Analogy

56

is to

is to
as
 D

A B

C

D. Koop, CSCI 490/680, Spring 2020

Generating Visualizations by Analogy
• Compute difference ∆(A,B) from provenance
- D = ∆(A,B) ◦ C is often not a valid workflow

56

is to

is to
as
 D

A B

C

D. Koop, CSCI 490/680, Spring 2020

Generating Visualizations by Analogy
• Compute difference ∆(A,B) from provenance
- D = ∆(A,B) ◦ C is often not a valid workflow

• Find map between A & C: map(A,C)

56

is to

is to
as
 D

A B

C

A C

D. Koop, CSCI 490/680, Spring 2020

Generating Visualizations by Analogy
• Compute difference ∆(A,B) from provenance
- D = ∆(A,B) ◦ C is often not a valid workflow

• Find map between A & C: map(A,C)
• Compute mapped difference

 ∆AC(A,B) =map(A,C) ∆(A,B)
- D = ∆AC(A,B) ◦ C

56

is to

is to
as
 D

A B

C

A C

D. Koop, CSCI 490/680, Spring 2020

VisMashup

57

Acquire and
Analyze
Pipelines

Create Views
(Simplify

Pipelines)

Combine
Views

App generation
and deployment

D. Koop, CSCI 490/680, Spring 2020

VisTrails for Teaching Scientific Visualization
• “Using VisTrails and Provenance for Teaching

Scientific Visualization”
[Silva et al., Eurographics Educator Program,
2010]

• Same features that scientists use for
exploratory tasks can also benefit students

- Exploration: see all pipelines not just a
“final” one

- Comparison: see different pipelines and
what changes exist

- Assessment: see how a solution was
developed

58

D. Koop, CSCI 490/680, Spring 2020

C. Silva & E. Anderson & E. Santos & J. Freire / Using VisTrails and Provenance for Teaching Scientific Visualization

Ta
sk

 1

Ta
sk

 2

Ta
sk

 3

Ta
sk

 4

Ta
sk

 5

Ta
sk

 6

0

4000

9000

14000

Ta
sk

 1

Ta
sk

 2

Ta
sk

 3

Ta
sk

 4

Ta
sk

 6

Ta
sk

 5

0

4000

9000

14000

N
um

be
r o

f A
ct

io
ns

Time

2008

2007

Figure 5: Activity histogram of action dates with due dates
indicated for both 2007 and 2008 classes.

Figure 6: The correlation between the number of branches
and the number of tags per user-task.

version tree is correlated with the number of tagged nodes,
as shown in Figure 6. This indicates that, as users have to
revisit a previously defined workflow, they would select a
tagged node because it is easier to identify.

4.2.2. Analysis of Tasks

Workflow evolution information can also be helpful to char-
acterize tasks. As noted in Table 1, the tasks assigned to the
scientific visualization students varied in their goals, diffi-
culty, due date, and how open-ended they were. To illustrate
how workflow evolution data can be used to understand the
different types of work involved in a task, we classified the
actions involved in workflow development into: structural
actions (addition and deletion of modules and connections
in the workflow); parameter actions (modification of param-
eter values in the workflow); and layout actions (changes to
the locations of modules in visual programming interface).

Figure 7 shows an attempt to characterize tasks by the
types of actions involved. For all users, we calculated the
overall percentage of actions that were structural, parameter
and layout actions across all tasks (Figure 7(a)). In addition,
we computed these percentages for each task, as shown in
Figure 7(b), (c) and (d). The distributions of these percent-

ages were plotted as boxplots. Note that the percentage of
actions spent changing parameters has the greatest variance
for most tasks. This should be expected as some users lo-
cate correct parameter values faster than others, and some
will also expend more effort tweaking parameters than oth-
ers. Another interesting feature of these plots is that Task 5
shows more structural activity than Tasks 2, 3, and 4. This
is explained by the fact that students were given examples
for the previous three tasks, and in Task 5, they were left to
discover how to create workflows from scratch.

4.2.3. Analysis of Users

A useful application of workflow evolution provenance is to
help in understanding how different users approach a prob-
lem. Figure 8 shows two trees created by different users for
the same task. User 1 and User 2 clearly have different devel-
opment styles: the tree derived by User 2 is both shorter and
narrower than that of User 1. This figure also shows a plot of
the branching factor of the version trees across the tasks for
User 1 and User 2. A smaller branching factor indicates that
a more direct path was used to obtain a solution. In contrast,
a larger branching factor indicates that more trial-and-error
steps were followed. There are many cases where branch-
ing can be useful, including when a user wishes to develop
workflows that share a common subworkflow: the user de-
signs the first workflow, goes to the version tree, selects the
node corresponding to the common subworkflow and from
there branches to the second workflow. We found a range of
branching factors that varied across users and tasks.

Branching is just one variable from the workflow evolu-
tion provenance data that can be used to identify “user sig-
natures”, other variables, such as the time between actions
and the number of sessions may also lead to insights in this
respect.

5. Discussion

We strongly believe that teaching is one of the killer applica-
tions of provenance-enabled systems. Provenance informa-
tion can help instructors to be more effective and improve
the students’ learning experience. Due to the provenance in-
formation, it is possible for one person to see what another
person did, and to easily compare their own work to it. This
makes it possible for the instructors to share their own work
with the students, who can easily see who the problem was
approached by someone with more experience. When mak-
ing new functionality available (e.g., a new VTK module),
the process of using the new module in an example can easily
be turned into a tutorial on how to use the new functionality.
This also makes it easier to have adoption in other places.
One of the really nice features of the unobtrusive way that
VisTrails captures provenance is that there is no extra bur-
den on the user; they can do their work without caring about
remembering what they did.

The data in the previous section shows that workflow evo-
lution provenance allows one to measure, summarize, and

c� The Eurographics Association 2010.

Provenance Analysis of Projects

59

Activity Histograms by Date

D. Koop, CSCI 490/680, Spring 2020

Provenance Analysis of Projects

60

Comparing Paths to Solutions for Two Students

