
Advanced Data Management (CSCI 490/680)

Provenance

Dr. David Koop

D. Koop, CSCI 490/680, Spring 2020

D. Koop, CSCI 490/680, Spring 2020

Assignment 5
• Available soon
• Work with time series and spatial data
• Shorter assignment
• Due at the end of the semester

2

D. Koop, CSCI 490/680, Spring 2020

Exploring	NASA	MODIS	data

5

Measure	vegetation	density

Measure	snow	melt

Track	phytoplankton	populations

Track	hurricanes Introduction

Spatial Data

3

[L. Battle, 2017]

https://courses.cs.washington.edu/courses/cse512/18sp/lectures/CSE512-Interaction.pdf

D. Koop, CSCI 490/680, Spring 2020

Exploratory	browsing	systems	design

7

DBMS

Client

Server

query

result

Exploratory
Browsing

SELECT	lat,	lng,	(b4-b6)/(b4+b6)	as	ndsi
FROM	modis_data
WHERE	ndsi >0.7	

Interactive Exploration of Spatial Data

4

[L. Battle, 2017]

https://courses.cs.washington.edu/courses/cse512/18sp/lectures/CSE512-Interaction.pdf

D. Koop, CSCI 490/680, Spring 2020

Exploratory	browsing	systems	design

7

DBMS

Client

Server

query

result

Exploratory
Browsing

SELECT	lat,	lng,	(b4-b6)/(b4+b6)	as	ndsi
FROM	modis_data
WHERE	ndsi >0.7	

Interactive Exploration of Spatial Data

4

[L. Battle, 2017]

SLOW

https://courses.cs.washington.edu/courses/cse512/18sp/lectures/CSE512-Interaction.pdf

D. Koop, CSCI 490/680, Spring 2020

Target	metric:	responsiveness

9

User	
submits	
query

Create	
visualization

User	
pan/zoom

Update
visualization

Prepare	data
in	DBMS

Fetch	results	
from	DBMS

Cold	start	time interaction	latency	<	500ms

Input Compute Respond Input Compute Respond

Exploratory
Browsing

(Pre-comp.
Structures)

Two Inputs to Exploratory Browsing

5

[L. Battle, 2017]

https://courses.cs.washington.edu/courses/cse512/18sp/lectures/CSE512-Interaction.pdf

D. Koop, CSCI 490/680, Spring 2020

Comparing	with	existing	exploratory	
browsing	systems

10

Sa
m
pl
in
g

Ag
gr
eg
at
io
n

Progressive/IncrementalPredictivePre-computed	structures
SampleAction (CHI	2012)
Vizdom (VLDB	2015)

Nanocubes (Infovis 2013)
imMens (Eurovis 2013)

ATLAS	(VAST	2008)

ForeCache

DICE	(ICDE	2014)

Exploratory
Browsing

O
ut
pu

t	
fo
rm

at

Time

XmdvTool (DASFAA 2003)

(Offline) (Before	interaction) (After	interaction)

A-WARE	(HILDA	2016)

Systems for Interactive Exploration

6

[L. Battle, 2017]

https://courses.cs.washington.edu/courses/cse512/18sp/lectures/CSE512-Interaction.pdf

D. Koop, CSCI 490/680, Spring 2020

Nanocubes for Real-Time Exploration of Spatiotemporal Datasets
Lauro Lins, James T. Klosowski, and Carlos Scheidegger

Fig. 1. Example visualizations of 210 million public geolocated Twitter posts over the course of a year. The data structure we
propose enables real-time (these images above were rendered faster than the typical screen refresh rate) visual exploration of large,
spatiotemporal, multidimensional datasets. The visual encodings built using nanocubes are within a controllable difference to ones
rendered by a traditional linear scan over the dataset. They naturally support linked navigation and brushing, and include choropleth
maps, time series over arbitrary regions and scales of space and time, parallel sets, histograms, and binned scatterplots. The
color scale of the choropleth map is a diverging scale in which blue corresponds to iPhones being relatively more popular, and red
corresponds to higher relative popularity of Android devices.

Abstract—Consider real-time exploration of large multidimensional spatiotemporal datasets with billions of entries, each defined by
a location, a time, and other attributes. Are certain attributes correlated spatially or temporally? Are there trends or outliers in the
data? Answering these questions requires aggregation over arbitrary regions of the domain and attributes of the data. Many relational
databases implement the well-known data cube aggregation operation, which in a sense precomputes every possible aggregate query
over the database. Data cubes are sometimes assumed to take a prohibitively large amount of space, and to consequently require disk
storage. In contrast, we show how to construct a data cube that fits in a modern laptop’s main memory, even for billions of entries;
we call this data structure a nanocube. We present algorithms to compute and query a nanocube, and show how it can be used
to generate well-known visual encodings such as heatmaps, histograms, and parallel coordinate plots. When compared to exact
visualizations created by scanning an entire dataset, nanocube plots have bounded screen error across a variety of scales, thanks
to a hierarchical structure in space and time. We demonstrate the effectiveness of our technique on a variety of real-world datasets,
and present memory, timing, and network bandwidth measurements. We find that the timings for the queries in our examples are
dominated by network and user-interaction latencies.

Index Terms—Data cube, Data structures, Interactive exploration

1 INTRODUCTION

As datasets get larger, exploratory data visualization becomes more
difficult. Consider a dataset with a billion entries. We can compute
a small summary of the dataset and visualize the summary instead of
the dataset, but as Anscombe’s famous quartet shows [3], summaries
themselves cannot ascertain their own validity. Summaries might help,
but in order to understand if that is the case, we will inevitably find

• Lauro Lins is with AT&T Research. E-mail: llins@research.att.com.
• Jim Klosowski is with AT&T Research. E-mail: jklosow@research.att.com.
• Carlos Scheidegger is with AT&T Research. E-mail:

cscheid@research.att.com.

Manuscript received 31 March 2013; accepted 1 August 2013; posted online
13 October 2013; mailed on 4 October 2013.
For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

ourselves having to visualize one billion residuals. As far as scale goes,
we are back to square one. In other words, data summarization alone
will never solve the problem of scale in exploratory visualization. As
visualization practitioners, what then can we do? Even drawing the
simplest scatterplot is not straightforward. If we decide to produce
the visualization by scanning the rows of a table, we will either need
non-trivial parallel rendering algorithms or significant time to produce
a drawing. Neither of these solutions is attractive or scales well with
dataset size.

Data cubes are structures that perform aggregations across every
possible set of dimensions of a table in a database, to support quick
exploration [15, 31]. Many visualization systems are built on top of data
cubes, concretely or conceptually. Still, only recently have researchers
started to examine data cube creation algorithms in the context of
information visualization [33, 18, 21].

Data cubes are often problematic in that they can take prohibitively
large amounts of memory as the number of dimensions increases. In

Nanocubes

7

[Lins et. al, 2013]

D. Koop, CSCI 490/680, Spring 2020

From Tables and Spreadsheets to Data Cubes
• A data warehouse is based on a multidimensional data model which views

data in the form of a data cube
• A data cube, such as sales, allows data to be modeled and viewed in

multiple dimensions
- Dimension tables, such as item (item_name, brand, type), or time(day,

week, month, quarter, year)
- Fact table contains measures (such as dollars_sold) and keys to each of

the related dimension tables
• In data warehousing literature, an n-D base cube is called a base cuboid.

The top most 0-D cuboid, which holds the highest-level of summarization, is
called the apex cuboid. The lattice of cuboids forms a data cube.

8

[Han et al., 2011]

D. Koop, CSCI 490/680, Spring 2020

all

time item location supplier

time,location

time,supplier

item,location

item,supplier

location,supplier

time,item,supplier

time,location,supplier

item,location,supplier

��D (apex) cuboid

��D cuboids

��D cuboids

��D cuboids

��D (base) cuboid

Data Cube: A Lattice of Cuboids

9

[Han et al., 2011]

D. Koop, CSCI 490/680, Spring 2020

Data Cube Measures: Three Categories
• Distributive: if the result derived by applying the function to n aggregate

values is the same as that derived by applying the function on all the data
without partitioning
• E.g., count(), sum(), min(), max()

• Algebraic: if it can be computed by an algebraic function with M arguments
(where M is a bounded integer), each of which is obtained by applying a
distributive aggregate function
• E.g., avg(), min_N(), standard_deviation()

• Holistic: if there is no constant bound on the storage size needed to
describe a subaggregate.
• E.g., median(), mode(), rank()

10

[Han et al., 2011]

D. Koop, CSCI 490/680, Spring 2020

Multidimensional Data
• Sales volume as a function of product, month, and region

11

[Han et al., 2011]

Pr
od
uc
t

Re
gio
n

Month

Dimensions: Product, Location, Time
Hierarchical summarization paths

Industry Region Year

Category Country Quarter

Product City Month Week

 Office Day

D. Koop, CSCI 490/680, Spring 2020

A Sample Data Cube

12

[Han et al., 2011]

Total annual sales
of TVs in U.S.A.

Date

Pro
du

ct

C
ou

nt
ry

All, All, All

sum

sum
TV

VCR
PC

1Qtr 2Qtr 3Qtr 4Qtr

U.S.A

Canada

Mexico

sum

D. Koop, CSCI 490/680, Spring 2020

OLAP Operations

13

[Han et al., 2011]

D. Koop, CSCI 490/680, Spring 2020

Efficient Processing of OLAP Queries
• Determine which operations should be performed on the available cuboids
- Transform drill, roll, etc. into corresponding SQL and/or OLAP operations,

e.g., dice = selection + projection
• Determine which materialized cuboid(s) for OLAP operation:
- Query: {brand, province_or_state} with “year = 2004”
- 4 materialized cuboids available:

1. {year, item_name, city}
2. {year, brand, country}
3. {year, brand, province_or_state}
4. {item_name, province_or_state} where year = 2004

- Which should be selected to process the query?

14

[Han et al., 2011]

D. Koop, CSCI 490/680, Spring 2020

Natural language query s c t URL
count of all Delta flights R U R { Delta } R U /where/carrier=Delta
count of all Delta flights in the Midwest R Midwest R { Delta } R U /region/Midwest/where/carrier=Delta
count of all flights in 2010 R U D R 2010 /field/carrier/when/2010
time-series of all United flights in 2009 R U R { United } D 2009 /tseries/when/2009/where/carrier=United
heatmap of Delta flights in 2010 D tile0 R { Delta } R 2010 /tile/tile0/when/2010/where/carrier=Delta

Fig. 5. A simplified set of queries supported by nanocubes. The column s represents space; t, time; c, category. R means “rollup”, D means
“drilldown”. The value next to R or D contains the subset of that dimension’s domain being selected. U represents the entire domain (“universe”).

guage, but does not include the GROUP BY on Language only. As the
results of GROUP BYs, CUBEs and ROLL UPs can be seen as relations,
we can naturally compose such operators (e.g. a ROLL UP CUBE).

4 NANOCUBE: A COMPACT, SPATIOTEMPORAL DATA CUBE

Data visualizations in a computer are necessarily bounded by display
size, and so we would like to be able to quickly collect subsets of the
dataset that would end up in the same pixel on the screen. However,
spatiotemporal navigation is inherently multiscale. The same data
structure should support quick indexing for a visualization over multiple
years of time series and for drilling down into one particular hour or
day. Similarly, the data cube should support aggregation queries over
vast spatial regions covering entire continents, as well as very narrow
queries covering only a few city blocks.

The database notion of ROLL UP, in a sense, aligns nicely with the
notion of Level of Detail. For example, if the records of a table (relation)
contain a location attribute, one can design a ROLL UP query whose
resulting relation encodes the same information as the one encoded
in a level of detail data structure. More concretely, suppose `1, . . . ,`k
are attributes computed from the original location attribute and yield
“quadtree addresses” of increasingly higher levels of detail (from 1 to k).
A ROLL UP query on these (computed) attributes results in, essentially,
the same information as the one contained in a quadtree (given that we
are keeping the same summary in both, e.g. count).

The second important notion in the design of nanocubes is the idea
that we want to combine aggregations of independent dimensions at
independent levels of detail. For example we might want to know for
a whole country, what is the spatial distribution of tweets generated
by an iPhone: coarse on the spatial dimension, but specific on the
device dimension. Conversely, we might want to know the distribution
of tweets (coarse on device) in a small city block (fine in space). In
relational database terminology, this model has a name: it is a CUBE
of ROLL UP, or a ROLL UP CUBE. With the terminology set, we can
state: a nanocube is a data structure to efficiently store and query
spatiotemporal ROLL UP CUBE. Besides implementation tricks, the
main difference between nanocubes and previously published sparse
coalesced data cubes such as Dwarf cubes [30] is in the design of aggre-
gations across spatiotemporal dimensions (see Sections 4.3.1 and 4.3.3).
Next, we present a formal description of the components that make up
our nanocube index, pseudo-code for building nanocubes, an illustrated
example, and how queries are made against our index.

Online Submission ID: 276

1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE() . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK() . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE())
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE()
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

(d= dim(S) ?
SUMMEDTABLETIMESERIES() : NODE())

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have been recent efforts to build data cube structures specif-
ically suited for visualization. Crossfilter [32] is a software package
built on the clever observation that many queries in interactive visual-
ization are incremental: assuming that previous results are available,
the results needed for the next query can be quickly computed. Unfor-
tunately, we do not see easily how this would work for the multiscale
queries necessary in a spatiotemporal setting. Just as recently, Kandel
et al. have proposed Datavore, a column-oriented database support fast
data cube queries [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 14 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

Following common practice, we will call the table in Figure 5 a rela-
tion, its columns attributes, its lines records, and its entries values. An
aggregation represents the idea of selecting a certain group of records
from a relation and summarizing this group using an aggregation func-
tion (e.g. count, sum, max, min). For example, a possible aggrega-
tion for the relation A could be to select all its records and summarize
those using count, yielding five as the aggregation result. If we al-
low a special value All to be a valid attribute value, we could represent
this aggregation as relation B in Figure 5.

A record that contains the special value All is an aggregation record.

Using this notation, it is easy to understand some conventional ways
of describing aggregations for a given relation: group by, cube, and
rollup. A group by operation is one in which a relation is derived from
a base relation given a list of attributes and an aggregate function. For
example, group by on attributes Device and Language with the count
aggregate function results in the relation C in Figure 5.

Note that for every different combination of values present in the
attributes of a base relation an aggregation record is added to the re-
sulting relation. In our running example (Figure 5) these combinations
are (Android, en), (iPhone, en), and (iPhone, ru). The cube operation

Online Submission ID: 276

1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE() . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK() . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE())
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE()
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

(d= dim(S) ?
SUMMEDTABLETIMESERIES() : NODE())

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

Our technique is most closely related to the work of Sismanis et
al. [30, 29]. Specifically, we use similar ideas to reduce the size of
a data cube from potentially exponential in the cardinality of the key
space (we define these terms in Section 4.1) to essentially linear [31].
Nanocubes improve on Sismanis et al.’s work in two fundamental di-
rections. First, we develop a model for spatiotemporal data cubes that
exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have also been recent efforts to build data cube structures
specifically suited for visualization. Crossfilter [32] is a software pack-
age built on the clever observation that many queries in interactive vi-
sualization are incremental: assuming that previous results are avail-
able, the results needed for the next query can be quickly computed.
Unfortunately, we do not see easily how this would work for the multi-
scale queries necessary in a spatiotemporal setting. Just as recently,
Kandel et al. have proposed Datavore, a column-oriented data cube
representation [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 13 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

In the relational databases community, the table below is a relation, its
columns are attributes, its lines are records, and its entries are values.

Country Device Language
US Android en
US iPhone ru

South Africa iPhone en
India Android en

Australia iPhone en

An aggregation represents the idea of selecting a certain group of
records from a relation and summarizing this group using an aggrega-
tion function (e.g.count, sum, max, min). For example, a possible
aggregation for the relation above could be to select all its records and
summarize those using count. In this case, five would be the final
aggregation result. If we allow entries in the record to have a special
value All, we could represent this aggreation as the following relation:

Country Device Language Count
All All All 5

We refer to records in a relation that contain the special value All as ag-
gregation records. Using this notation, it is easy to understand the con-
ventional ways of describing aggregations for a given relation: group
by, cube, and rollup. A group by operation is one in which a relation is
derived from a base relation given a list of attributes and an aggregate
function. For example, group by on attributes Device and Language
with the count aggregate function results in the relation:

Country Device Language Count
All Android en 2
All iPhone en 2
All iPhone ru 1

Note that for every different combination of values present in the at-
tributes of the base relation an aggregation record is added to the re-

3

Online Submission ID: 276

1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE() . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK() . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE())
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE()
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

(d= dim(S) ?
SUMMEDTABLETIMESERIES() : NODE())

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

Our technique is most closely related to the work of Sismanis et
al. [30, 29]. Specifically, we use similar ideas to reduce the size of
a data cube from potentially exponential in the cardinality of the key
space (we define these terms in Section 4.1) to essentially linear [31].
Nanocubes improve on Sismanis et al.’s work in two fundamental di-
rections. First, we develop a model for spatiotemporal data cubes that
exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have also been recent efforts to build data cube structures
specifically suited for visualization. Crossfilter [32] is a software pack-
age built on the clever observation that many queries in interactive vi-
sualization are incremental: assuming that previous results are avail-
able, the results needed for the next query can be quickly computed.
Unfortunately, we do not see easily how this would work for the multi-
scale queries necessary in a spatiotemporal setting. Just as recently,
Kandel et al. have proposed Datavore, a column-oriented data cube
representation [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 13 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

In the relational databases community, the table below is a relation, its
columns are attributes, its lines are records, and its entries are values.

Country Device Language
US Android en
US iPhone ru

South Africa iPhone en
India Android en

Australia iPhone en

An aggregation represents the idea of selecting a certain group of
records from a relation and summarizing this group using an aggrega-
tion function (e.g.count, sum, max, min). For example, a possible
aggregation for the relation above could be to select all its records and
summarize those using count. In this case, five would be the final
aggregation result. If we allow entries in the record to have a special
value All, we could represent this aggreation as the following relation:

Country Device Language Count
All All All 5

We refer to records in a relation that contain the special value All as ag-
gregation records. Using this notation, it is easy to understand the con-
ventional ways of describing aggregations for a given relation: group
by, cube, and rollup. A group by operation is one in which a relation is
derived from a base relation given a list of attributes and an aggregate
function. For example, group by on attributes Device and Language
with the count aggregate function results in the relation:

Country Device Language Count
All Android en 2
All iPhone en 2
All iPhone ru 1

Note that for every different combination of values present in the at-
tributes of the base relation an aggregation record is added to the re-

3

Online Submission ID: 276

1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE() . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK() . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE())
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE()
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

(d= dim(S) ?
SUMMEDTABLETIMESERIES() : NODE())

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

Our technique is most closely related to the work of Sismanis et
al. [30, 29]. Specifically, we use similar ideas to reduce the size of
a data cube from potentially exponential in the cardinality of the key
space (we define these terms in Section 4.1) to essentially linear [31].
Nanocubes improve on Sismanis et al.’s work in two fundamental di-
rections. First, we develop a model for spatiotemporal data cubes that
exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have also been recent efforts to build data cube structures
specifically suited for visualization. Crossfilter [32] is a software pack-
age built on the clever observation that many queries in interactive vi-
sualization are incremental: assuming that previous results are avail-
able, the results needed for the next query can be quickly computed.
Unfortunately, we do not see easily how this would work for the multi-
scale queries necessary in a spatiotemporal setting. Just as recently,
Kandel et al. have proposed Datavore, a column-oriented data cube
representation [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 13 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

In the relational databases community, the table below is a relation, its
columns are attributes, its lines are records, and its entries are values.

Country Device Language
US Android en
US iPhone ru

South Africa iPhone en
India Android en

Australia iPhone en

An aggregation represents the idea of selecting a certain group of
records from a relation and summarizing this group using an aggrega-
tion function (e.g.count, sum, max, min). For example, a possible
aggregation for the relation above could be to select all its records and
summarize those using count. In this case, five would be the final
aggregation result. If we allow entries in the record to have a special
value All, we could represent this aggreation as the following relation:

Country Device Language Count
All All All 5

We refer to records in a relation that contain the special value All as ag-
gregation records. Using this notation, it is easy to understand the con-
ventional ways of describing aggregations for a given relation: group
by, cube, and rollup. A group by operation is one in which a relation is
derived from a base relation given a list of attributes and an aggregate
function. For example, group by on attributes Device and Language
with the count aggregate function results in the relation:

Country Device Language Count
All Android en 2
All iPhone en 2
All iPhone ru 1

Note that for every different combination of values present in the at-
tributes of the base relation an aggregation record is added to the re-

3

Natural language query s c t URL
count of all Delta flights R U R { Delta } R U /where/carrier=Delta
count of all Delta flights in the Midwest R (Midwest) R { Delta } R U /region/(Midwest)/where/carrier=Delta
count of early flights in 2010 R U D R (2010) /field/carrier/when/(2010)
time-series of all United flights in 2009 R U R U D (2009) /tseries/when/2009/where/carrier=United
heatmap of Delta flights in 2010 D (tile) R { Delta } R (2010) /tile/(tile)/where/carrier=Delta

Fig. 4. A simplified set of queries supported by the nanocube data structure. The column s represents space; t, time; c, category. R means “rollup”,
D means “drilldown”. The value next to R or D contains the subset of that dimension’s domain being selected. We use U to represent the entire
domain (“universe”). Omitted here, but supported by our structure, are: the extra parameter for number of steps throughout the time region in a
time-based drilldown; multiple categories with separate rollups and drilldowns; tiles of variable resolution.

sulting relation. In our running example these combinations are (An-
droid, en), (iPhone, en), and (iPhone, ru). The cube operation is the
result of collecting all possible group by aggregations into a single re-
lation for a given list of attributes. In our running example, the cube
for count on Device and Language would be the same as the union
of four group by’s: on (1) no attributes; on (2) Device only; on (3)
Language only; and (4) on Device and Language (2n group bys where
n is the number of input attributes):

Country Device Language Count
All All All 5
All Android All 2
All iPhone All 3
All All eu 4
All All ru 1
All iPhone ru 1
All Android en 2
All iPhone en 2
All iPhone ru 1

Finally, a roll up is a constrained version of the cube operation where
the order of the input attributes is important. So a roll up on Device
and Language (in this order) means the union of group by’s on: (1)
no attributes; (2) Device; and (3) Device and Language. Note that the
group by on Language only is not part of the roll up. As the results
of group by’s, cubes and roll ups can be seen as relations, we can
naturally compose such operations. As we will describe nanocubes is
a specialized data structure to store and query cubes of roll ups.

4 NANOCUBES: A COMPACT, SPATIOTEMPORAL ROLL-UP
CUBE

Data visualizations in a computer are necessarily bounded by display
size, and so we would like to be able to quickly collect subspaces of
the dataset that would end up in the same pixel on the screen. How-
ever, spatiotemporal navigation is inherently multiscale. The same
data structure should support quick indexing for a visualization over
multiple years of time series and for drilling down into one particu-
lar hour or day. Similarly, the data cube should support aggregation
queries over vast spatial regions covering entire continents, as well as
very narrow queries covering only a few city blocks.

The database notion of roll ups (Section 3), in a sense, aligns nicely
with the notion of Level of Detail. For example, if the records of a table
(relation) contain a location attribute, one can design a roll up query
whose resulting relation encodes the same information as the one en-
coded in a level of detail data structure. More concretely, suppose
`1, . . . ,`k are attributes computed from the original location attribute
and yield ’quad-tree addresses’ of increasingly higher levels of detail
(from 1 to k). A roll up query on these (computed) attributes results in,
essentially, the same information as the one contained in a quad-tree
(given that we are keeping the same summary in both, e.g.count). At
first, this connection might be obvious but bridges between terminolo-
gies from different areas is usually important. As it turns out, only later
in the development of nanocubes is that we became aware of Hierar-
chical Dwarf-Cubes [29], which is a highly related to nanocubes and
was developed by the database community to efficiently store results
of aggreagation queries.

The second important notion in the design of nanocubes is the idea
that we want to combine aggregations of independent dimensions at

independent levels of detail. For example we might want to know for
a whole country, what is the spatial distribution of tweets gererated
by an iPhone: coarse on the spatial dimension, but specific on the
device dimension; conversely we might want to know the distribu-
tion of tweets (coarse on device) in a small block of a city (fine in
space). In relational database terminology, this model has a name: it
is a cube of roll-ups, or a roll-up cube. Now with the language set up,
we can state: A nanocube is a data structure to efficiently store and
query spatio-temporal roll-up cubes. Besides implmentation tricks
(e.g. tagged pointers, carefully design of the bit layout of the struc-
tures, specifically designed to live in main memory), there is, to the
best of our knowledge, a qualitative difference in nanocubes to other
data structures like [29]. The difference is in what nanocubes store for
each aggregation which is deeply related to spatio-temporal datasets:
it stores time series in a sparse summed table format. This element of
nanocubes is explained in Section 4.3 and, cannot be cannot be effi-
ciently simulated (memory-wise) by previous datastructures.

In the remainder of this section, we present a formal description
of the components that make up our nanocube index, pseudo-code
for building nanocubes together with an illustrated example, and how
queries are made against our index.

4.1 Definitions
Let O be a set of objects. A labeling function ` : O ! L associates a
label value to the objects of O. We can think of ` as an attribute in
a relational database. In connection with the level of detail discus-
sion above, if `1 and `2 are two labeling functions for O, we say `1 is
coarser than `2 or that `2 is finer than `1 if for any two objects o,o0 2 O
the implication `2(o) = `2(o0)) `1(o) = `1(o0) holds. We denote this
fact by `1 < `2.

A sequence of labeling functions c = [`1,`, . . . ,`k] for objects O
is a chain for O if every labeling function is coarser than the next
labeling function in the sequence: `i < `i+1. Note how chains are
related to roll ups, we avoid the same name to not overload more the
term roll up. The number of levels of a chain is defined by levels(c) =
|c|+1. An indexing schema for objects O consists of a sequence of
chains S = [c1,c2, . . . ,cn]. The dimension of an indexing schema S
is the length of its sequence of chains and is denoted by dim(S). The
multiplicity of a schema S is the product of its chains’ number of levels:
µ(S) = ’n

i=1 levels(ci).
A full assignment for a sequence of labeling functions [`1,`2, . . . ,`k]

is a sequence of label values [v1,v2, . . . ,vk] where vi is a label value
under `i. Any prefix of a full assignment for a sequence of label-
ing functions, including the empty one, is referred to as a partial as-
signment. Note that an full assignment is also a patial assignment
since a sequence is also a prefix of itself. An address on a schema
is a sequence of partial assignments for its chains, more formally, if
S = [c1,c2, . . . ,cn] is an indexing schema, then a = [p1, p2, . . . , pn] is
an address of S if pi is a partial assignment for chain ci. The set of pos-
sible addresses of S is denoted by addr(S). and its size is referred to as
the Global Cardinality of S. The subset of addr(S) whose addresses
contain only full assignments is called the Key Cardinality of S. The
key Key Cardinality is exactely the number of the finest resoultion bins
a nanocube can store.

The addresses of an object o under indexing schema S, denoted by
addr(o,S) are all the addresses in addr(S) whose partial assignments

4

Relation

Aggregation

Group By on Device, Language

Cube on Device, Language

Equivalent to Group By on
all possible subsets of
{Device, Language}

A

B

C

D

Fig. 5. A sample relation and its associated aggregation operators.

3

A

B

C

Online Submission ID: 276

1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE() . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK() . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE())
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE()
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

(d= dim(S) ?
SUMMEDTABLETIMESERIES() : NODE())

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have been recent efforts to build data cube structures specif-
ically suited for visualization. Crossfilter [32] is a software package
built on the clever observation that many queries in interactive visual-
ization are incremental: assuming that previous results are available,
the results needed for the next query can be quickly computed. Unfor-
tunately, we do not see easily how this would work for the multiscale
queries necessary in a spatiotemporal setting. Just as recently, Kandel
et al. have proposed Datavore, a column-oriented database support fast
data cube queries [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 14 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

Following common practice, we will call the table in Figure 5 a rela-
tion, its columns attributes, its lines records, and its entries values. An
aggregation represents the idea of selecting a certain group of records
from a relation and summarizing this group using an aggregation func-
tion (e.g. count, sum, max, min). For example, a possible aggrega-
tion for the relation A could be to select all its records and summarize
those using count, yielding five as the aggregation result. If we al-
low a special value All to be a valid attribute value, we could represent
this aggregation as relation B in Figure 5.

A record that contains the special value All is an aggregation record.

Using this notation, it is easy to understand some conventional ways
of describing aggregations for a given relation: group by, cube, and
rollup. A group by operation is one in which a relation is derived from
a base relation given a list of attributes and an aggregate function. For
example, group by on attributes Device and Language with the count
aggregate function results in the relation C in Figure 5.

Note that for every different combination of values present in the
attributes of a base relation an aggregation record is added to the re-
sulting relation. In our running example (Figure 5) these combinations
are (Android, en), (iPhone, en), and (iPhone, ru). The cube operation

Online Submission ID: 276

1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE() . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK() . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE())
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE()
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

(d= dim(S) ?
SUMMEDTABLETIMESERIES() : NODE())

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

Our technique is most closely related to the work of Sismanis et
al. [30, 29]. Specifically, we use similar ideas to reduce the size of
a data cube from potentially exponential in the cardinality of the key
space (we define these terms in Section 4.1) to essentially linear [31].
Nanocubes improve on Sismanis et al.’s work in two fundamental di-
rections. First, we develop a model for spatiotemporal data cubes that
exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have also been recent efforts to build data cube structures
specifically suited for visualization. Crossfilter [32] is a software pack-
age built on the clever observation that many queries in interactive vi-
sualization are incremental: assuming that previous results are avail-
able, the results needed for the next query can be quickly computed.
Unfortunately, we do not see easily how this would work for the multi-
scale queries necessary in a spatiotemporal setting. Just as recently,
Kandel et al. have proposed Datavore, a column-oriented data cube
representation [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 13 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

In the relational databases community, the table below is a relation, its
columns are attributes, its lines are records, and its entries are values.

Country Device Language
US Android en
US iPhone ru

South Africa iPhone en
India Android en

Australia iPhone en

An aggregation represents the idea of selecting a certain group of
records from a relation and summarizing this group using an aggrega-
tion function (e.g.count, sum, max, min). For example, a possible
aggregation for the relation above could be to select all its records and
summarize those using count. In this case, five would be the final
aggregation result. If we allow entries in the record to have a special
value All, we could represent this aggreation as the following relation:

Country Device Language Count
All All All 5

We refer to records in a relation that contain the special value All as ag-
gregation records. Using this notation, it is easy to understand the con-
ventional ways of describing aggregations for a given relation: group
by, cube, and rollup. A group by operation is one in which a relation is
derived from a base relation given a list of attributes and an aggregate
function. For example, group by on attributes Device and Language
with the count aggregate function results in the relation:

Country Device Language Count
All Android en 2
All iPhone en 2
All iPhone ru 1

Note that for every different combination of values present in the at-
tributes of the base relation an aggregation record is added to the re-

3

Online Submission ID: 276

1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE() . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK() . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE())
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE()
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

(d= dim(S) ?
SUMMEDTABLETIMESERIES() : NODE())

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

Our technique is most closely related to the work of Sismanis et
al. [30, 29]. Specifically, we use similar ideas to reduce the size of
a data cube from potentially exponential in the cardinality of the key
space (we define these terms in Section 4.1) to essentially linear [31].
Nanocubes improve on Sismanis et al.’s work in two fundamental di-
rections. First, we develop a model for spatiotemporal data cubes that
exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have also been recent efforts to build data cube structures
specifically suited for visualization. Crossfilter [32] is a software pack-
age built on the clever observation that many queries in interactive vi-
sualization are incremental: assuming that previous results are avail-
able, the results needed for the next query can be quickly computed.
Unfortunately, we do not see easily how this would work for the multi-
scale queries necessary in a spatiotemporal setting. Just as recently,
Kandel et al. have proposed Datavore, a column-oriented data cube
representation [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 13 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

In the relational databases community, the table below is a relation, its
columns are attributes, its lines are records, and its entries are values.

Country Device Language
US Android en
US iPhone ru

South Africa iPhone en
India Android en

Australia iPhone en

An aggregation represents the idea of selecting a certain group of
records from a relation and summarizing this group using an aggrega-
tion function (e.g.count, sum, max, min). For example, a possible
aggregation for the relation above could be to select all its records and
summarize those using count. In this case, five would be the final
aggregation result. If we allow entries in the record to have a special
value All, we could represent this aggreation as the following relation:

Country Device Language Count
All All All 5

We refer to records in a relation that contain the special value All as ag-
gregation records. Using this notation, it is easy to understand the con-
ventional ways of describing aggregations for a given relation: group
by, cube, and rollup. A group by operation is one in which a relation is
derived from a base relation given a list of attributes and an aggregate
function. For example, group by on attributes Device and Language
with the count aggregate function results in the relation:

Country Device Language Count
All Android en 2
All iPhone en 2
All iPhone ru 1

Note that for every different combination of values present in the at-
tributes of the base relation an aggregation record is added to the re-

3

Online Submission ID: 276

1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE() . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK() . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE())
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE()
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

(d= dim(S) ?
SUMMEDTABLETIMESERIES() : NODE())

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

Our technique is most closely related to the work of Sismanis et
al. [30, 29]. Specifically, we use similar ideas to reduce the size of
a data cube from potentially exponential in the cardinality of the key
space (we define these terms in Section 4.1) to essentially linear [31].
Nanocubes improve on Sismanis et al.’s work in two fundamental di-
rections. First, we develop a model for spatiotemporal data cubes that
exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have also been recent efforts to build data cube structures
specifically suited for visualization. Crossfilter [32] is a software pack-
age built on the clever observation that many queries in interactive vi-
sualization are incremental: assuming that previous results are avail-
able, the results needed for the next query can be quickly computed.
Unfortunately, we do not see easily how this would work for the multi-
scale queries necessary in a spatiotemporal setting. Just as recently,
Kandel et al. have proposed Datavore, a column-oriented data cube
representation [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 13 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

In the relational databases community, the table below is a relation, its
columns are attributes, its lines are records, and its entries are values.

Country Device Language
US Android en
US iPhone ru

South Africa iPhone en
India Android en

Australia iPhone en

An aggregation represents the idea of selecting a certain group of
records from a relation and summarizing this group using an aggrega-
tion function (e.g.count, sum, max, min). For example, a possible
aggregation for the relation above could be to select all its records and
summarize those using count. In this case, five would be the final
aggregation result. If we allow entries in the record to have a special
value All, we could represent this aggreation as the following relation:

Country Device Language Count
All All All 5

We refer to records in a relation that contain the special value All as ag-
gregation records. Using this notation, it is easy to understand the con-
ventional ways of describing aggregations for a given relation: group
by, cube, and rollup. A group by operation is one in which a relation is
derived from a base relation given a list of attributes and an aggregate
function. For example, group by on attributes Device and Language
with the count aggregate function results in the relation:

Country Device Language Count
All Android en 2
All iPhone en 2
All iPhone ru 1

Note that for every different combination of values present in the at-
tributes of the base relation an aggregation record is added to the re-

3

Natural language query s c t URL
count of all Delta flights R U R { Delta } R U /where/carrier=Delta
count of all Delta flights in the Midwest R (Midwest) R { Delta } R U /region/(Midwest)/where/carrier=Delta
count of early flights in 2010 R U D R (2010) /field/carrier/when/(2010)
time-series of all United flights in 2009 R U R U D (2009) /tseries/when/2009/where/carrier=United
heatmap of Delta flights in 2010 D (tile) R { Delta } R (2010) /tile/(tile)/where/carrier=Delta

Fig. 4. A simplified set of queries supported by the nanocube data structure. The column s represents space; t, time; c, category. R means “rollup”,
D means “drilldown”. The value next to R or D contains the subset of that dimension’s domain being selected. We use U to represent the entire
domain (“universe”). Omitted here, but supported by our structure, are: the extra parameter for number of steps throughout the time region in a
time-based drilldown; multiple categories with separate rollups and drilldowns; tiles of variable resolution.

sulting relation. In our running example these combinations are (An-
droid, en), (iPhone, en), and (iPhone, ru). The cube operation is the
result of collecting all possible group by aggregations into a single re-
lation for a given list of attributes. In our running example, the cube
for count on Device and Language would be the same as the union
of four group by’s: on (1) no attributes; on (2) Device only; on (3)
Language only; and (4) on Device and Language (2n group bys where
n is the number of input attributes):

Country Device Language Count
All All All 5
All Android All 2
All iPhone All 3
All All eu 4
All All ru 1
All iPhone ru 1
All Android en 2
All iPhone en 2
All iPhone ru 1

Finally, a roll up is a constrained version of the cube operation where
the order of the input attributes is important. So a roll up on Device
and Language (in this order) means the union of group by’s on: (1)
no attributes; (2) Device; and (3) Device and Language. Note that the
group by on Language only is not part of the roll up. As the results
of group by’s, cubes and roll ups can be seen as relations, we can
naturally compose such operations. As we will describe nanocubes is
a specialized data structure to store and query cubes of roll ups.

4 NANOCUBES: A COMPACT, SPATIOTEMPORAL ROLL-UP
CUBE

Data visualizations in a computer are necessarily bounded by display
size, and so we would like to be able to quickly collect subspaces of
the dataset that would end up in the same pixel on the screen. How-
ever, spatiotemporal navigation is inherently multiscale. The same
data structure should support quick indexing for a visualization over
multiple years of time series and for drilling down into one particu-
lar hour or day. Similarly, the data cube should support aggregation
queries over vast spatial regions covering entire continents, as well as
very narrow queries covering only a few city blocks.

The database notion of roll ups (Section 3), in a sense, aligns nicely
with the notion of Level of Detail. For example, if the records of a table
(relation) contain a location attribute, one can design a roll up query
whose resulting relation encodes the same information as the one en-
coded in a level of detail data structure. More concretely, suppose
`1, . . . ,`k are attributes computed from the original location attribute
and yield ’quad-tree addresses’ of increasingly higher levels of detail
(from 1 to k). A roll up query on these (computed) attributes results in,
essentially, the same information as the one contained in a quad-tree
(given that we are keeping the same summary in both, e.g.count). At
first, this connection might be obvious but bridges between terminolo-
gies from different areas is usually important. As it turns out, only later
in the development of nanocubes is that we became aware of Hierar-
chical Dwarf-Cubes [29], which is a highly related to nanocubes and
was developed by the database community to efficiently store results
of aggreagation queries.

The second important notion in the design of nanocubes is the idea
that we want to combine aggregations of independent dimensions at

independent levels of detail. For example we might want to know for
a whole country, what is the spatial distribution of tweets gererated
by an iPhone: coarse on the spatial dimension, but specific on the
device dimension; conversely we might want to know the distribu-
tion of tweets (coarse on device) in a small block of a city (fine in
space). In relational database terminology, this model has a name: it
is a cube of roll-ups, or a roll-up cube. Now with the language set up,
we can state: A nanocube is a data structure to efficiently store and
query spatio-temporal roll-up cubes. Besides implmentation tricks
(e.g. tagged pointers, carefully design of the bit layout of the struc-
tures, specifically designed to live in main memory), there is, to the
best of our knowledge, a qualitative difference in nanocubes to other
data structures like [29]. The difference is in what nanocubes store for
each aggregation which is deeply related to spatio-temporal datasets:
it stores time series in a sparse summed table format. This element of
nanocubes is explained in Section 4.3 and, cannot be cannot be effi-
ciently simulated (memory-wise) by previous datastructures.

In the remainder of this section, we present a formal description
of the components that make up our nanocube index, pseudo-code
for building nanocubes together with an illustrated example, and how
queries are made against our index.

4.1 Definitions
Let O be a set of objects. A labeling function ` : O ! L associates a
label value to the objects of O. We can think of ` as an attribute in
a relational database. In connection with the level of detail discus-
sion above, if `1 and `2 are two labeling functions for O, we say `1 is
coarser than `2 or that `2 is finer than `1 if for any two objects o,o0 2 O
the implication `2(o) = `2(o0)) `1(o) = `1(o0) holds. We denote this
fact by `1 < `2.

A sequence of labeling functions c = [`1,`, . . . ,`k] for objects O
is a chain for O if every labeling function is coarser than the next
labeling function in the sequence: `i < `i+1. Note how chains are
related to roll ups, we avoid the same name to not overload more the
term roll up. The number of levels of a chain is defined by levels(c) =
|c|+1. An indexing schema for objects O consists of a sequence of
chains S = [c1,c2, . . . ,cn]. The dimension of an indexing schema S
is the length of its sequence of chains and is denoted by dim(S). The
multiplicity of a schema S is the product of its chains’ number of levels:
µ(S) = ’n

i=1 levels(ci).
A full assignment for a sequence of labeling functions [`1,`2, . . . ,`k]

is a sequence of label values [v1,v2, . . . ,vk] where vi is a label value
under `i. Any prefix of a full assignment for a sequence of label-
ing functions, including the empty one, is referred to as a partial as-
signment. Note that an full assignment is also a patial assignment
since a sequence is also a prefix of itself. An address on a schema
is a sequence of partial assignments for its chains, more formally, if
S = [c1,c2, . . . ,cn] is an indexing schema, then a = [p1, p2, . . . , pn] is
an address of S if pi is a partial assignment for chain ci. The set of pos-
sible addresses of S is denoted by addr(S). and its size is referred to as
the Global Cardinality of S. The subset of addr(S) whose addresses
contain only full assignments is called the Key Cardinality of S. The
key Key Cardinality is exactely the number of the finest resoultion bins
a nanocube can store.

The addresses of an object o under indexing schema S, denoted by
addr(o,S) are all the addresses in addr(S) whose partial assignments

4

Relation

Aggregation

Group By on Device, Language

Cube on Device, Language

Equivalent to Group By on
all possible subsets of
{Device, Language}

A

B

C

D

Fig. 5. A sample relation and its associated aggregation operators.

3

A

B

C

Online Submission ID: 276

1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE() . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK() . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE())
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE()
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

(d= dim(S) ?
SUMMEDTABLETIMESERIES() : NODE())

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have been recent efforts to build data cube structures specif-
ically suited for visualization. Crossfilter [32] is a software package
built on the clever observation that many queries in interactive visual-
ization are incremental: assuming that previous results are available,
the results needed for the next query can be quickly computed. Unfor-
tunately, we do not see easily how this would work for the multiscale
queries necessary in a spatiotemporal setting. Just as recently, Kandel
et al. have proposed Datavore, a column-oriented database support fast
data cube queries [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 14 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

Following common practice, we will call the table in Figure 5 a rela-
tion, its columns attributes, its lines records, and its entries values. An
aggregation represents the idea of selecting a certain group of records
from a relation and summarizing this group using an aggregation func-
tion (e.g. count, sum, max, min). For example, a possible aggrega-
tion for the relation A could be to select all its records and summarize
those using count, yielding five as the aggregation result. If we al-
low a special value All to be a valid attribute value, we could represent
this aggregation as relation B in Figure 5.

A record that contains the special value All is an aggregation record.

Using this notation, it is easy to understand some conventional ways
of describing aggregations for a given relation: group by, cube, and
rollup. A group by operation is one in which a relation is derived from
a base relation given a list of attributes and an aggregate function. For
example, group by on attributes Device and Language with the count
aggregate function results in the relation C in Figure 5.

Note that for every different combination of values present in the
attributes of a base relation an aggregation record is added to the re-
sulting relation. In our running example (Figure 5) these combinations
are (Android, en), (iPhone, en), and (iPhone, ru). The cube operation

Online Submission ID: 276

1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE() . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK() . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE())
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE()
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

(d= dim(S) ?
SUMMEDTABLETIMESERIES() : NODE())

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

Our technique is most closely related to the work of Sismanis et
al. [30, 29]. Specifically, we use similar ideas to reduce the size of
a data cube from potentially exponential in the cardinality of the key
space (we define these terms in Section 4.1) to essentially linear [31].
Nanocubes improve on Sismanis et al.’s work in two fundamental di-
rections. First, we develop a model for spatiotemporal data cubes that
exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have also been recent efforts to build data cube structures
specifically suited for visualization. Crossfilter [32] is a software pack-
age built on the clever observation that many queries in interactive vi-
sualization are incremental: assuming that previous results are avail-
able, the results needed for the next query can be quickly computed.
Unfortunately, we do not see easily how this would work for the multi-
scale queries necessary in a spatiotemporal setting. Just as recently,
Kandel et al. have proposed Datavore, a column-oriented data cube
representation [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 13 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

In the relational databases community, the table below is a relation, its
columns are attributes, its lines are records, and its entries are values.

Country Device Language
US Android en
US iPhone ru

South Africa iPhone en
India Android en

Australia iPhone en

An aggregation represents the idea of selecting a certain group of
records from a relation and summarizing this group using an aggrega-
tion function (e.g.count, sum, max, min). For example, a possible
aggregation for the relation above could be to select all its records and
summarize those using count. In this case, five would be the final
aggregation result. If we allow entries in the record to have a special
value All, we could represent this aggreation as the following relation:

Country Device Language Count
All All All 5

We refer to records in a relation that contain the special value All as ag-
gregation records. Using this notation, it is easy to understand the con-
ventional ways of describing aggregations for a given relation: group
by, cube, and rollup. A group by operation is one in which a relation is
derived from a base relation given a list of attributes and an aggregate
function. For example, group by on attributes Device and Language
with the count aggregate function results in the relation:

Country Device Language Count
All Android en 2
All iPhone en 2
All iPhone ru 1

Note that for every different combination of values present in the at-
tributes of the base relation an aggregation record is added to the re-

3

Online Submission ID: 276

1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE() . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK() . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE())
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE()
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

(d= dim(S) ?
SUMMEDTABLETIMESERIES() : NODE())

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

Our technique is most closely related to the work of Sismanis et
al. [30, 29]. Specifically, we use similar ideas to reduce the size of
a data cube from potentially exponential in the cardinality of the key
space (we define these terms in Section 4.1) to essentially linear [31].
Nanocubes improve on Sismanis et al.’s work in two fundamental di-
rections. First, we develop a model for spatiotemporal data cubes that
exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have also been recent efforts to build data cube structures
specifically suited for visualization. Crossfilter [32] is a software pack-
age built on the clever observation that many queries in interactive vi-
sualization are incremental: assuming that previous results are avail-
able, the results needed for the next query can be quickly computed.
Unfortunately, we do not see easily how this would work for the multi-
scale queries necessary in a spatiotemporal setting. Just as recently,
Kandel et al. have proposed Datavore, a column-oriented data cube
representation [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 13 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

In the relational databases community, the table below is a relation, its
columns are attributes, its lines are records, and its entries are values.

Country Device Language
US Android en
US iPhone ru

South Africa iPhone en
India Android en

Australia iPhone en

An aggregation represents the idea of selecting a certain group of
records from a relation and summarizing this group using an aggrega-
tion function (e.g.count, sum, max, min). For example, a possible
aggregation for the relation above could be to select all its records and
summarize those using count. In this case, five would be the final
aggregation result. If we allow entries in the record to have a special
value All, we could represent this aggreation as the following relation:

Country Device Language Count
All All All 5

We refer to records in a relation that contain the special value All as ag-
gregation records. Using this notation, it is easy to understand the con-
ventional ways of describing aggregations for a given relation: group
by, cube, and rollup. A group by operation is one in which a relation is
derived from a base relation given a list of attributes and an aggregate
function. For example, group by on attributes Device and Language
with the count aggregate function results in the relation:

Country Device Language Count
All Android en 2
All iPhone en 2
All iPhone ru 1

Note that for every different combination of values present in the at-
tributes of the base relation an aggregation record is added to the re-

3

Online Submission ID: 276

1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE() . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK() . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE())
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE()
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

(d= dim(S) ?
SUMMEDTABLETIMESERIES() : NODE())

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

Our technique is most closely related to the work of Sismanis et
al. [30, 29]. Specifically, we use similar ideas to reduce the size of
a data cube from potentially exponential in the cardinality of the key
space (we define these terms in Section 4.1) to essentially linear [31].
Nanocubes improve on Sismanis et al.’s work in two fundamental di-
rections. First, we develop a model for spatiotemporal data cubes that
exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have also been recent efforts to build data cube structures
specifically suited for visualization. Crossfilter [32] is a software pack-
age built on the clever observation that many queries in interactive vi-
sualization are incremental: assuming that previous results are avail-
able, the results needed for the next query can be quickly computed.
Unfortunately, we do not see easily how this would work for the multi-
scale queries necessary in a spatiotemporal setting. Just as recently,
Kandel et al. have proposed Datavore, a column-oriented data cube
representation [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 13 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

In the relational databases community, the table below is a relation, its
columns are attributes, its lines are records, and its entries are values.

Country Device Language
US Android en
US iPhone ru

South Africa iPhone en
India Android en

Australia iPhone en

An aggregation represents the idea of selecting a certain group of
records from a relation and summarizing this group using an aggrega-
tion function (e.g.count, sum, max, min). For example, a possible
aggregation for the relation above could be to select all its records and
summarize those using count. In this case, five would be the final
aggregation result. If we allow entries in the record to have a special
value All, we could represent this aggreation as the following relation:

Country Device Language Count
All All All 5

We refer to records in a relation that contain the special value All as ag-
gregation records. Using this notation, it is easy to understand the con-
ventional ways of describing aggregations for a given relation: group
by, cube, and rollup. A group by operation is one in which a relation is
derived from a base relation given a list of attributes and an aggregate
function. For example, group by on attributes Device and Language
with the count aggregate function results in the relation:

Country Device Language Count
All Android en 2
All iPhone en 2
All iPhone ru 1

Note that for every different combination of values present in the at-
tributes of the base relation an aggregation record is added to the re-

3

Natural language query s c t URL
count of all Delta flights R U R { Delta } R U /where/carrier=Delta
count of all Delta flights in the Midwest R (Midwest) R { Delta } R U /region/(Midwest)/where/carrier=Delta
count of early flights in 2010 R U D R (2010) /field/carrier/when/(2010)
time-series of all United flights in 2009 R U R U D (2009) /tseries/when/2009/where/carrier=United
heatmap of Delta flights in 2010 D (tile) R { Delta } R (2010) /tile/(tile)/where/carrier=Delta

Fig. 4. A simplified set of queries supported by the nanocube data structure. The column s represents space; t, time; c, category. R means “rollup”,
D means “drilldown”. The value next to R or D contains the subset of that dimension’s domain being selected. We use U to represent the entire
domain (“universe”). Omitted here, but supported by our structure, are: the extra parameter for number of steps throughout the time region in a
time-based drilldown; multiple categories with separate rollups and drilldowns; tiles of variable resolution.

sulting relation. In our running example these combinations are (An-
droid, en), (iPhone, en), and (iPhone, ru). The cube operation is the
result of collecting all possible group by aggregations into a single re-
lation for a given list of attributes. In our running example, the cube
for count on Device and Language would be the same as the union
of four group by’s: on (1) no attributes; on (2) Device only; on (3)
Language only; and (4) on Device and Language (2n group bys where
n is the number of input attributes):

Country Device Language Count
All All All 5
All Android All 2
All iPhone All 3
All All eu 4
All All ru 1
All iPhone ru 1
All Android en 2
All iPhone en 2
All iPhone ru 1

Finally, a roll up is a constrained version of the cube operation where
the order of the input attributes is important. So a roll up on Device
and Language (in this order) means the union of group by’s on: (1)
no attributes; (2) Device; and (3) Device and Language. Note that the
group by on Language only is not part of the roll up. As the results
of group by’s, cubes and roll ups can be seen as relations, we can
naturally compose such operations. As we will describe nanocubes is
a specialized data structure to store and query cubes of roll ups.

4 NANOCUBES: A COMPACT, SPATIOTEMPORAL ROLL-UP
CUBE

Data visualizations in a computer are necessarily bounded by display
size, and so we would like to be able to quickly collect subspaces of
the dataset that would end up in the same pixel on the screen. How-
ever, spatiotemporal navigation is inherently multiscale. The same
data structure should support quick indexing for a visualization over
multiple years of time series and for drilling down into one particu-
lar hour or day. Similarly, the data cube should support aggregation
queries over vast spatial regions covering entire continents, as well as
very narrow queries covering only a few city blocks.

The database notion of roll ups (Section 3), in a sense, aligns nicely
with the notion of Level of Detail. For example, if the records of a table
(relation) contain a location attribute, one can design a roll up query
whose resulting relation encodes the same information as the one en-
coded in a level of detail data structure. More concretely, suppose
`1, . . . ,`k are attributes computed from the original location attribute
and yield ’quad-tree addresses’ of increasingly higher levels of detail
(from 1 to k). A roll up query on these (computed) attributes results in,
essentially, the same information as the one contained in a quad-tree
(given that we are keeping the same summary in both, e.g.count). At
first, this connection might be obvious but bridges between terminolo-
gies from different areas is usually important. As it turns out, only later
in the development of nanocubes is that we became aware of Hierar-
chical Dwarf-Cubes [29], which is a highly related to nanocubes and
was developed by the database community to efficiently store results
of aggreagation queries.

The second important notion in the design of nanocubes is the idea
that we want to combine aggregations of independent dimensions at

independent levels of detail. For example we might want to know for
a whole country, what is the spatial distribution of tweets gererated
by an iPhone: coarse on the spatial dimension, but specific on the
device dimension; conversely we might want to know the distribu-
tion of tweets (coarse on device) in a small block of a city (fine in
space). In relational database terminology, this model has a name: it
is a cube of roll-ups, or a roll-up cube. Now with the language set up,
we can state: A nanocube is a data structure to efficiently store and
query spatio-temporal roll-up cubes. Besides implmentation tricks
(e.g. tagged pointers, carefully design of the bit layout of the struc-
tures, specifically designed to live in main memory), there is, to the
best of our knowledge, a qualitative difference in nanocubes to other
data structures like [29]. The difference is in what nanocubes store for
each aggregation which is deeply related to spatio-temporal datasets:
it stores time series in a sparse summed table format. This element of
nanocubes is explained in Section 4.3 and, cannot be cannot be effi-
ciently simulated (memory-wise) by previous datastructures.

In the remainder of this section, we present a formal description
of the components that make up our nanocube index, pseudo-code
for building nanocubes together with an illustrated example, and how
queries are made against our index.

4.1 Definitions
Let O be a set of objects. A labeling function ` : O ! L associates a
label value to the objects of O. We can think of ` as an attribute in
a relational database. In connection with the level of detail discus-
sion above, if `1 and `2 are two labeling functions for O, we say `1 is
coarser than `2 or that `2 is finer than `1 if for any two objects o,o0 2 O
the implication `2(o) = `2(o0)) `1(o) = `1(o0) holds. We denote this
fact by `1 < `2.

A sequence of labeling functions c = [`1,`, . . . ,`k] for objects O
is a chain for O if every labeling function is coarser than the next
labeling function in the sequence: `i < `i+1. Note how chains are
related to roll ups, we avoid the same name to not overload more the
term roll up. The number of levels of a chain is defined by levels(c) =
|c|+1. An indexing schema for objects O consists of a sequence of
chains S = [c1,c2, . . . ,cn]. The dimension of an indexing schema S
is the length of its sequence of chains and is denoted by dim(S). The
multiplicity of a schema S is the product of its chains’ number of levels:
µ(S) = ’n

i=1 levels(ci).
A full assignment for a sequence of labeling functions [`1,`2, . . . ,`k]

is a sequence of label values [v1,v2, . . . ,vk] where vi is a label value
under `i. Any prefix of a full assignment for a sequence of label-
ing functions, including the empty one, is referred to as a partial as-
signment. Note that an full assignment is also a patial assignment
since a sequence is also a prefix of itself. An address on a schema
is a sequence of partial assignments for its chains, more formally, if
S = [c1,c2, . . . ,cn] is an indexing schema, then a = [p1, p2, . . . , pn] is
an address of S if pi is a partial assignment for chain ci. The set of pos-
sible addresses of S is denoted by addr(S). and its size is referred to as
the Global Cardinality of S. The subset of addr(S) whose addresses
contain only full assignments is called the Key Cardinality of S. The
key Key Cardinality is exactely the number of the finest resoultion bins
a nanocube can store.

The addresses of an object o under indexing schema S, denoted by
addr(o,S) are all the addresses in addr(S) whose partial assignments

4

Relation

Aggregation

Group By on Device, Language

Cube on Device, Language

Equivalent to Group By on
all possible subsets of
{Device, Language}

A

B

C

D

Fig. 5. A sample relation and its associated aggregation operators.

3

A

B

C

Fig. 4. A sample relation and its associated aggregation operators.

4.1 Definitions
Let O be a set of objects. A labeling function ` : O ! L associates a
label value to the objects of O. We can think of ` as an attribute in a
relational database. In connection with the level of detail discussion
above, if `1 and `2 are two labeling functions for O, we say `1 is coarser
than `2 or that `2 is finer than `1 if for any two objects o,o0 2 O the
implication `2(o) = `2(o0)) `1(o) = `1(o0) holds. We denote this fact
by `1 < `2.

A sequence of labeling functions c = [`1,`, . . . ,`k] for objects O is a
chain for O if every labeling function is coarser than the next labeling
function in the sequence: `i < `i+1. The number of levels of a chain
is defined by levels(c) = |c|+1. An indexing schema for objects O
consists of a sequence of chains S = [c1,c2, . . . ,cn]. The dimension of
an indexing schema S is the length of its sequence of chains and is
denoted by dim(S). The multiplicity of a schema S is the product of its
chains’ number of levels: µ(S) = ’n

i=1 levels(ci).
A full assignment for a sequence of labeling functions [`1,`2, . . . ,`k]

is a sequence of label values [v1,v2, . . . ,vk] where vi is a label value
under `i. Any prefix of a full assignment for a sequence of labeling func-
tions, including the empty one, is referred to as a partial assignment.
Note that a full assignment is also a partial assignment since a sequence
is also a prefix of itself. An address on a schema is a sequence of partial
assignments for its chains, more formally, if S = [c1,c2, . . . ,cn] is an
indexing schema, then a = [p1, p2, . . . , pn] is an address of S if pi is a
partial assignment for chain ci. The set of possible addresses of S is
denoted by addr(S).

The addresses of an object o under indexing schema S, denoted by
addr(o,S) are all the addresses in addr(S) whose partial assignments
are consistent with the label values associated to o and it is easy to
see that the size of addr(o,S) is always µ(S). Besides a schema S,
the definition of a nanocube requires a separate labeling function,
`time : O ! T , which we refer to as the time labeling function since we
use it to encode the temporal aspect of our datasets. Thus, a nanocube
for objects o1, . . . ,on is denoted by:

NANOCUBE([o1, . . . ,on],S,`time)

A key in a nanocube is any pair (a, t) where a 2 addr(S) and corre-
sponds to a full assignment (see definition above) and t 2 T is a possible
time label. If we remove the requirement of a being a full assignment,
we say that pair (a, t) is an aggregate key. Note that every key is also
an aggregate key. The set of all possible keys and the set of all possible
aggregate keys of a nanocube are respectively referred to as its key
space, or K?, and its aggregate key space, or K?

a . The size of the key
space, |K?|, is referred to as its cardinality.

4.2 Building the Index
To ease the remaining exposition, we assume that a nanocube maps an
aggregate key to a count. Nevertheless, nanocubes support any kind
of summary that is an algebra with weighted sums and subtractions.
Notably, this includes linear combinations of moment statistics, with
which we can compute means, variances and covariances.

The pseudo-code for building a nanocube is presented in Figure 3.
The main idea of the algorithm is for every object oi to first find the
finest address of the schema S hit by this object, update the time series
associated with this address and from there on update in a deepest
first fashion, all coarser addresses also hit by oi. Note that the content
of the last dimension of schema S is always a time series and that is
why, in line 21 of ADD, we insert the time label of the current object.
The important trick used is to, when possible, allow for shared links

Data Cube Aggregations

15

[Lins et. al, 2013]

D. Koop, CSCI 490/680, Spring 2020

00,11 01,11 10,11 11,11

00,10 01,10 10,10 11,10

00,01 01,01 10,01 11,01

00,00 01,00 10,00 11,00

o1

o2

o3

o4

o5

0,1 1,1

0,0 1,0

Five Tweets: Location and Device

= iPhone
= Android`device()

`device()

`spatial1 `spatial2

S = [[`spatial1, `spatial2], [`device]]

o2

o2o1

o2 o3

0,1

01,10

Android

o1

iPhone

1,0

10,01

o3

iPhone

o2o1 o3

iPhone Android

10,10

Android

o4

1,1

o1 o4

o4

11,01

iPhone

o5

iPhone

o5o3

0,1

01,10

Android

o1

0,1

01,10

Android

o1 o2 o2o1

iPhone

0,1

01,10

Android

o1 o2 o2o1

iPhone

1,0

10,01

o3

iPhone

o2o1 o3

iPhone
Android

o2 o3

0,1

01,10

Android

o1 o2 o2o1

iPhone

1,0

10,01

o3

iPhone

o2o1 o3

iPhone Android

o2 o3

10,10

Android

o4

1,1

o1 o4

o4

Indexing Schema

1. 2. 3.

4. 5.

parent-child (same dimension):

proper

content (next dimension):

shared

proper shared

o5

o5

updated in
current step

dimension
boundary

Fig. 2. An illustration of how to build a nanocube for five points [o1, . . . ,o5] under schema S. The complete process is described in Section 4.

Section 4, we show how to construct a data cube that fits in the main
memory of a modern laptop computer or workstation, extending the
work of Sismanis et al. [31]. In addition, the query times to build the
visual encodings in which we are interested will be at most proportional
to the size of the output, which is bounded by the number of screen
pixels (within a small factor). This is an important observation: the time
complexity of a visualization algorithm should ideally be bounded the
number of pixels it touches on the screen. Our technique enables real-
time exploratory visualization on datasets that are large, spatiotemporal,
and multidimensional. Because the speed of our data cube structure
hinges partly on it being small enough to fit in main memory, we call it
a nanocube.

By real-time, we mean query times on average under a millisecond
for a single thread running on computers ranging from laptops, to
workstations, to server-class computing nodes (Section 6). By large,
we mean that the datasets we support have millions to billions of entries.

By spatiotemporal, we mean that nanocubes support queries typical
of spatial databases, such as counting events in a spatial region that
can be either a rectangle covering most of the world, or a heatmap
of activity in downtown San Francisco (Section 4.3.1). By the same
token, nanocubes support temporal queries at multiple scales, such
as event counts by hour, day, week, or month over a period of years
(Section 4.3.3). Data cubes in general enable the Visual Information-
Seeking Mantra [29] of “Overview first, zoom and filter, then details-
on-demand” by providing summaries and letting users drill down by
expanding along the wanted dimensions. Nanocubes also provide
overviews, filters, zooming, and details-on-demand inside the spa-
tiotemporal dimensions themselves.

By multidimensional, we mean that besides latitude, longitude, and
time, each entry can have additional attributes (see section 6) that can
be used in query selections and rollups.

As we will show, nanocubes lend themselves very well to building
visual encodings which are fundamental building blocks of interac-
tive visualization systems, such as scatterplots, histograms, parallel
coordinate plots, and choropleth maps. In summary, we contribute:

• a novel data structure that improves on the current state of the art
data cube technology to enable real-time exploratory visualization
of multidimensional, spatiotemporal datasets;

• algorithms to query the nanocube and build linked and brushable
visual encodings commonly found in visualization systems; and

• case studies highlighting the strengths and weaknesses of our

technique, together with experiments to measure its utilization of
space, time, and network bandwidth.

2 RELATED WORK

Relational databases are so widespread and fundamental to the practice
of computing that they were a natural target for information visualiza-
tion almost since the field’s inception [20]. Mackinlay’s Automatic
Presentation Tool is the breakthrough result that critically connected the
relational structure of the data with the graphical primitives available
for display [23] and ultimately lead to data cube visualization tools
like Polaris [34, 35] and Show Me [24]. Nanocubes are specifically
designed to speed up queries for spatiotemporal data cubes, and could
eventually be used as a backend for these types of applications.

In contrast, some of the work in large data visualization involves
shipping the computation and data to a cluster of processing nodes.
While parallelism is an attractive option for increasing throughput, it
does not necessarily help achieve low latency, which is essential for
fluid interactions with a visualization tool. As a result, sophisticated
techniques such as query prediction become necessary [6]. Leveraging
the enormous power of graphics processing units has also become
popular [25, 21], but without algorithmic changes, linear scans through
the dataset will still be too slow for fluid interaction, even with GPUs.

Another popular way to cope with large datasets is through sampling.
Statistical sampling can be performed on the database backend [26, 1,
10, 14], or on the front-end [11]. Still, the techniques we introduce
with nanocubes can produce results quickly and exactly (to within
screen precision) without requiring approximations, which we believe
is preferable. In addition, as Liu et al. argue, sampling by itself is not
sufficient to prevent overplotting, and might actually mask important
data outliers [21].

Fekete and Plaisant have proposed modifications of traditional visual
encodings which use the computer screen more efficiently [13]. These
scale better with dataset size, but nevertheless require a traversal of
all input data points that renders the proposal less attractive for larger
datasets. Carr et al. were among the first to propose techniques replac-
ing a scatterplot with an equivalent density plot [5]; nanocubes enable
these visualizations at a variety of dataset sizes and scales.

Careful data aggregation [17], then, appears to be one of the few
scalable solutions for low-latency large data graphics. While Elmqvist
and Fekete propose variations of visualization techniques that include
aggregation as a first-class citizen [12], in this paper we show how to
issue queries such that, at the screen resolution in which the application
is operating, the result is indistinguishable (or close to) from a complete

Building a Nanocube

16

[Lins et. al, 2013]

D. Koop, CSCI 490/680, Spring 2020

1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2671341, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, JANUARY 2016 9

Fig. 7. Comparing the top edited articles in Nevada and Mississippi.

Fig. 8. Geolocated Flickr tags in Africa: the unusual activity on the west
coast are from photos taken during a bike trip.

keywords were then used as keys in the construction of our
TOPKUBE data structure.

6.1 Use Cases
Wikipedia: The Wikipedia English dump datasets [33] con-
tains edit history for every article since its creation in 2005.
Anonymous edits contain the IP information of the user,
which we used to trace their location. The final dataset, with
geographical information, contains more than 112 million
edits of over three million articles. Figure 7 presents a
visualization of the dataset using TOPKUBE. It is interesting
to see that even though Nevada is not considered a state with
a high percentage of religious people, religious articles are
among the highest ranked. On the other hand, Mississippi,
considered one of the most religious states in the U.S., does
not have a single article related to religion among the top-20.

Flickr: The Yahoo! Flickr Creative Commons dataset [34]
contains 100 million public Flickr photos and videos, with
each record containing a set of user tags and geographical
information. The dataset contains 84 million geolocated tags
(1.57 million unique ones). Figure 8 shows how exploration
can be used to gain insight of unusual patterns in the data
along the West Coast of Africa. By highlighting the region,
we can see that there were an unusual spike of activity during
a few days in January. We create two different brushes in the
timeseries: a blue one covering the low activity days, and an
orange one covering the high activity days. We can see that
the high activity spike is mostly due to photos tagged with
freewheely.com and bicycle, which were taken by a Flickr user
during his bike trip.

Microblogging: This dataset is comprised of publicly
available geotagged microblog entries. From each post, we
extracted the latitude, longitude, and hashtags from the blog.

1. Select Paris Area 2. Observe Uncommon Spike on Wed. Jan 7, 2015

3. Select this Spike and Observe Top-10 Hashtags

 1. #jesuischarlie 4,456
 2. #charliehebdo 4,190
 3. #lrt 1,146
 4. #paris 607
 5. #gagnetaplace 447
 6. #charliehebdo 418
 7. #off 402
 8. #lt 335
 9. #noussommescharlie 197
10. #rip 187

4. Select Charlie Hebdo’s Top Hashtags and
Observe its Temporal Volume Pattern

Fig. 9. Microblog exploration using TOPKUBE: a temporal perspective of
the top hashtags related to the the Charlie Hebdo terrorism act in Paris.

Fig. 10. GitHub projects with most commits in three large urban centers.

We can use TOPKUBE to explore the most popular hashtags
in order to understand how trending topics vary over time
and in a given region. Figure 9 presents a sequence of
exploration steps within January 2015 records. First we select
a geographical area around Paris and find out an unusual
Wednesday peak (Jan. 7) in the volume of hashtags. By
selecting this peak we quickly find evidence of the event that
caused the volume spike by inspecting the top-10 hashtags
in the current selection (i.e. Paris and Jan 7). The event
in question was the terrorism attack at the Charlie Hebdo
headquarters. To understand how the hashtags created for
this event at the day of the attack faded in time, we further
constrain our selection to just the hashtags related to the
terrorism attack and see that those fade almost completely
(relative to event day) after one week of the attack.

GitHub: The GitHub dataset was first made available
by Gousios [35] and contains all events from the GitHub
public event time line. We were able to obtain information
on more than 58 million commits for roughly 1.5 million
projects. Each commit was geolocated based on the location
of the user responsible for the action. Figure 10 presents a
visualization with the top-k projects of three large urban
centers. The only common project among all three regions
is dotfiles, a project for sharing customized environment files
on Unix-based operating systems. It is also interesting to
notice how llvm and related projects (such as clang), are very
popular in California, but not elsewhere. This shows a highly
diversified open source community across the United States.

6.2 Performance

To determine which of the previously described algorithms
works best when solving top-k queries, we conducted an
initial evaluation using the Microblogs dataset, which is the

TopKube: Rankings and Top-k Queries

17

[F. Miranda et al., 2017]

D. Koop, CSCI 490/680, Spring 2020

TopKube vs. Nanocubes
• Product bin: the combination of selections from dimensions
• Nanocubes maps each product bin ((01,10), iPhone) to a time series

• TopKube maps each product bin to rank-aware multi-set

• q_i is the ith smallest key that appears in product bin
• v_i is the value of the measure for key q_i in the product bin
• σ_i is the index of the key with its largest value

To appear in IEEE Transactions on Visualization and Computer Graphics

basketball court example in Figure 1. We want to compare the top-
20 players that take shots from the left 3-point corner (orange) versus
players that take shots from the right 3-point corner (blue). In this
case, knowing that there are only a few hundred players in the NBA
each year, it would not be computationally expensive to scan all play-
ers to figure the top 20, but there are many other cases such as GitHub
projects, Flickr images, or microblog hashtags, where having to scan
millions of objects can result in unacceptable latencies.

4.1 TOPKUBE vs. Nanocubes
The use case considered by the original Nanocube data structure was
that of multi-dimensional selections that resulted in a large number of
data records, whose aggregated counts would be presented to the user
in a variety of means: as pixel values on a heatmap, as categorical
values in a barchart, or as temporal values in a time series line plot.
The use case we have in mind here is different: the multi-dimensional
selection in our case might result in hundreds of thousands to millions
of object-value pairs, and we are not interested in presenting all these
pairs to the user, but only the top valued pairs. More concretely, the
problem we are interested in here is to quickly produce visalizations
like Figure 1 even if the NBA had millions of players.

Each dimension in the original Nanocube is modeled as a hierarchy
of bins, with the exception of time. Each product bin, i.e. the combina-
tion of one selection from each dimension, is instead mapped to a time
series, which is implemented as a summed-area table. In TOPKUBE,
in order to speed up top-k queries, we propose that each product bin
should be mapped not to a time series, but to a rank-aware multi-set.
More formally, if b is a product bin, the original Nanocube would
store a mapping like:

b 7! ((t1,v1),(t2,v1 + v2), . . . ,(tm,v1 + . . .+ vm)) [NANOCUBE]

where ti would be increasing time bins and vi would be the measure of
interest (e.g.record count). The cumulative values were stored there to
allow for fast retrieval of value sums for any time interval. In the case
of TOPKUBE, we want each product bin b to be mapped to:

b 7!
(

lst = ((q1,v1,s1), . . . ,(q j,v j,s j)),sum =
j

Â
i=1

vi

)
[TOPKUBE]

With this encoding, to access the value of a query key q in b we per-
form a binary search in lst (assuming it is ordered by qi); the i-th top
ranked object in b is the si-th entry in lst and takes constant time (fast
random access to si + fast random access to ksi and vsi).

4.2 Top-K From Ranked Lists
With TOPKUBE, we can easily produce a list of top-k ranked objects
when a multi-dimensional selection results in a single product-bin b ,
but in general that does not happen. For example, in Figure 2, we
show a common case in a spatiotemporal dataset: a 624 bin selection
in space and 3 bins in time, which potentially results in a 1872 product
bin selection. The pre-stored ranked lists we have for each b should
help speed up the top-k query, but the task is not as trivial as collecting
top-k resulting objects in O(k) steps. To ease the exposition, and for
the lack of a consistent name in the literature reviewed, we refer to this
problem as Top-k From Ranked Lists or TKFRL.

4.3 Threshold Algorithm
The source of the difficulty for the TKFRL problem is that, for any
key object q, its final measure v for our top-k ranking purposes might
be broken into m summands v = v1, . . .vm, one for each product-bin in
the selection. Although we have an efficient way to access these sum-
mands in decreasing order (by putting all m lists into a heap/priority
queue and popping the next largest key and summand), this does not
directly imply we are going to find the measures for the top-k keys
efficiently. Fortunately, a lot is known about the TKFRL problem [5].
The famous threshold algorithm or TA (which was explained and an-
alyzed in the first database paper to win the prestigious Gödel Prize
in 2014) is known to be optimal in a strong sense: no other algorithm

Fig. 2. Dimensions of space and time represented as bin hierarchies.
Bspace are bins in a quad-tree hierarchy: we show an annulus selection
around Madison Square Garden corresponding to 624 bins; Btime is a
binary hierarchy; we show 3 bins corresponding to the interval [3,6].

can access less data than the threshold algorithm does and still obtain
the correct answer. The threshold algorithm consists of the following
steps: (1) find key q of the next largest summand; after finding the
other summands of q in the other m� 1 b ’s, compute the key-value
pair (q, v); (2) Insert the key-value pair found in the previous step into
a buffer R that maintains only the top-k key-value pairs it has seen; (3)
update threshold t to be the sum of the available largest m summands
(an upper bound for the total measure of a yet unseen key); (4) if R
has k key-value pairs and the smallest valued pair is larger than t , then
report R as the top-k result, otherwise go to Step 1.

Although TA has ideal theoretical guarantees, there is an assump-
tion that all m lists contain summands for all keys. This is natural given
the application usually associated with TA: the m lists corresponded to
m attribute-columns of a table and all keys (rows) should have an en-
try in each of those columns. However, the instances of the TKFRL
problem that we observed were quite sparse: one key q is present in
only a small fraction of the m lists, thus reducing the efficiency of TA.

4.4 Key Sweep Algorithm
Let us step back and suppose we do not store the ranking information,
s , in b . If we go back to a rank-unaware data structure, how can we
solve the top-k problem? One way, which we refer to as as the Naive
Algorithm is to traverse all the b ’s in the selection, and keep updating a
dictionary structure of key-value pairs (we would increment the value
of a key already in the dictionary with the current summand we found
for that key in the current m-bin). Once we finish traversing all b ’s,
we would sort the keys by their values and report the top-k ones. The
Naive algorithm is correct, but inefficient. It uses memory proportional
to all the keys in all m lists, and this number might be much larger than
k (e.g. millions of keys instead of 100 if we ask for k = 100).

A more efficient way to do the union of m lists (that are sorted by
keys) is to add all these lists into a heap/priority queue where the list
with the smallest key is on the top of the heap. If we keep popping
the next smallest key and summand from all the m lists, we will sweep
all key-summand pairs in key increasing order, and every time we get
a new (larger) key, we can be sure we know the total measure of all
previous keys. Using this approach, we can maintain a result list with
at most k buffers instead of a dictionary with all keys in all lists. We
will refer to this approach as the Key Sweep Algorithm. Note that this
algorithm scans all the summands, as does the Naive Algorithm, but it
does not need a potentially large buffer to solve the top-k problem.

4.5 Hybrid Algorithm
The problem with the direct application of TA to solve the TKFRL
problem is that in sparse instances, for each good candidate key to
be in the top-k result, the algorithm performs a binary search for the
other m�1 summands for that same key. If every key had a summand
present in all m lists (dense instance), these cycles would be useful, but
in a sparse instance of the problem, these are mostly wasted cycles.
In typical instances of the TKFRL problem (e.g., what are the most
active GitHub projects in the west coast of the U.S.?), we observe that
on average each key is in less than 3% of the m-lists in the selection.

3

To appear in IEEE Transactions on Visualization and Computer Graphics

basketball court example in Figure 1. We want to compare the top-
20 players that take shots from the left 3-point corner (orange) versus
players that take shots from the right 3-point corner (blue). In this
case, knowing that there are only a few hundred players in the NBA
each year, it would not be computationally expensive to scan all play-
ers to figure the top 20, but there are many other cases such as GitHub
projects, Flickr images, or microblog hashtags, where having to scan
millions of objects can result in unacceptable latencies.

4.1 TOPKUBE vs. Nanocubes
The use case considered by the original Nanocube data structure was
that of multi-dimensional selections that resulted in a large number of
data records, whose aggregated counts would be presented to the user
in a variety of means: as pixel values on a heatmap, as categorical
values in a barchart, or as temporal values in a time series line plot.
The use case we have in mind here is different: the multi-dimensional
selection in our case might result in hundreds of thousands to millions
of object-value pairs, and we are not interested in presenting all these
pairs to the user, but only the top valued pairs. More concretely, the
problem we are interested in here is to quickly produce visalizations
like Figure 1 even if the NBA had millions of players.

Each dimension in the original Nanocube is modeled as a hierarchy
of bins, with the exception of time. Each product bin, i.e. the combina-
tion of one selection from each dimension, is instead mapped to a time
series, which is implemented as a summed-area table. In TOPKUBE,
in order to speed up top-k queries, we propose that each product bin
should be mapped not to a time series, but to a rank-aware multi-set.
More formally, if b is a product bin, the original Nanocube would
store a mapping like:

b 7! ((t1,v1),(t2,v1 + v2), . . . ,(tm,v1 + . . .+ vm)) [NANOCUBE]

where ti would be increasing time bins and vi would be the measure of
interest (e.g.record count). The cumulative values were stored there to
allow for fast retrieval of value sums for any time interval. In the case
of TOPKUBE, we want each product bin b to be mapped to:

b 7!
(

lst = ((q1,v1,s1), . . . ,(q j,v j,s j)),sum =
j

Â
i=1

vi

)
[TOPKUBE]

With this encoding, to access the value of a query key q in b we per-
form a binary search in lst (assuming it is ordered by qi); the i-th top
ranked object in b is the si-th entry in lst and takes constant time (fast
random access to si + fast random access to ksi and vsi).

4.2 Top-K From Ranked Lists
With TOPKUBE, we can easily produce a list of top-k ranked objects
when a multi-dimensional selection results in a single product-bin b ,
but in general that does not happen. For example, in Figure 2, we
show a common case in a spatiotemporal dataset: a 624 bin selection
in space and 3 bins in time, which potentially results in a 1872 product
bin selection. The pre-stored ranked lists we have for each b should
help speed up the top-k query, but the task is not as trivial as collecting
top-k resulting objects in O(k) steps. To ease the exposition, and for
the lack of a consistent name in the literature reviewed, we refer to this
problem as Top-k From Ranked Lists or TKFRL.

4.3 Threshold Algorithm
The source of the difficulty for the TKFRL problem is that, for any
key object q, its final measure v for our top-k ranking purposes might
be broken into m summands v = v1, . . .vm, one for each product-bin in
the selection. Although we have an efficient way to access these sum-
mands in decreasing order (by putting all m lists into a heap/priority
queue and popping the next largest key and summand), this does not
directly imply we are going to find the measures for the top-k keys
efficiently. Fortunately, a lot is known about the TKFRL problem [5].
The famous threshold algorithm or TA (which was explained and an-
alyzed in the first database paper to win the prestigious Gödel Prize
in 2014) is known to be optimal in a strong sense: no other algorithm

Fig. 2. Dimensions of space and time represented as bin hierarchies.
Bspace are bins in a quad-tree hierarchy: we show an annulus selection
around Madison Square Garden corresponding to 624 bins; Btime is a
binary hierarchy; we show 3 bins corresponding to the interval [3,6].

can access less data than the threshold algorithm does and still obtain
the correct answer. The threshold algorithm consists of the following
steps: (1) find key q of the next largest summand; after finding the
other summands of q in the other m� 1 b ’s, compute the key-value
pair (q, v); (2) Insert the key-value pair found in the previous step into
a buffer R that maintains only the top-k key-value pairs it has seen; (3)
update threshold t to be the sum of the available largest m summands
(an upper bound for the total measure of a yet unseen key); (4) if R
has k key-value pairs and the smallest valued pair is larger than t , then
report R as the top-k result, otherwise go to Step 1.

Although TA has ideal theoretical guarantees, there is an assump-
tion that all m lists contain summands for all keys. This is natural given
the application usually associated with TA: the m lists corresponded to
m attribute-columns of a table and all keys (rows) should have an en-
try in each of those columns. However, the instances of the TKFRL
problem that we observed were quite sparse: one key q is present in
only a small fraction of the m lists, thus reducing the efficiency of TA.

4.4 Key Sweep Algorithm
Let us step back and suppose we do not store the ranking information,
s , in b . If we go back to a rank-unaware data structure, how can we
solve the top-k problem? One way, which we refer to as as the Naive
Algorithm is to traverse all the b ’s in the selection, and keep updating a
dictionary structure of key-value pairs (we would increment the value
of a key already in the dictionary with the current summand we found
for that key in the current m-bin). Once we finish traversing all b ’s,
we would sort the keys by their values and report the top-k ones. The
Naive algorithm is correct, but inefficient. It uses memory proportional
to all the keys in all m lists, and this number might be much larger than
k (e.g. millions of keys instead of 100 if we ask for k = 100).

A more efficient way to do the union of m lists (that are sorted by
keys) is to add all these lists into a heap/priority queue where the list
with the smallest key is on the top of the heap. If we keep popping
the next smallest key and summand from all the m lists, we will sweep
all key-summand pairs in key increasing order, and every time we get
a new (larger) key, we can be sure we know the total measure of all
previous keys. Using this approach, we can maintain a result list with
at most k buffers instead of a dictionary with all keys in all lists. We
will refer to this approach as the Key Sweep Algorithm. Note that this
algorithm scans all the summands, as does the Naive Algorithm, but it
does not need a potentially large buffer to solve the top-k problem.

4.5 Hybrid Algorithm
The problem with the direct application of TA to solve the TKFRL
problem is that in sparse instances, for each good candidate key to
be in the top-k result, the algorithm performs a binary search for the
other m�1 summands for that same key. If every key had a summand
present in all m lists (dense instance), these cycles would be useful, but
in a sparse instance of the problem, these are mostly wasted cycles.
In typical instances of the TKFRL problem (e.g., what are the most
active GitHub projects in the west coast of the U.S.?), we observe that
on average each key is in less than 3% of the m-lists in the selection.

3

18

D. Koop, CSCI 490/680, Spring 2020

1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2671341, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, JANUARY 2016 6

order to speed up top-k queries on one of its dimensions (e.g.
top players by number of shots, top projects by number of
commits), a TOPKUBE also includes ranking information in
the encoding of that dimension.

The special dimension in a TOPKUBE is one that could
be modeled as yet another 1-level bin hierarchy, but that
contains lots of bins (e.g. players in the NBA example,
or projects in GitHub, or tags in Flickr) and that we are
interested in quickly accessing the top valued bins from this
dimension with respect to the additive measure of interest
on any multi-dimensional selection. We refer to this special
dimension of a TOPKUBE as its key dimension, and the bins in
this dimension as keys. Note that efficiently retrieving ranks
of top-k keys (and their respective values) for an arbitrary
selection of product-bins is the main goal of our TOPKUBE
data structure. All dimensions in a TOPKUBE, except for its
key dimension, are represented in the same way as the (non-
special) dimensions of a Nanocube: as nested bin-hierarchies.
Nodes in the bin-hierarchy of a previous dimension point to
a root bin of a bin-hierarchy in the next dimension until we
get to the last special dimension (see Figure 2 of [5]). A path
through the nested hierarchies down to the last and special
dimension of a TOPKUBE corresponds to a product-bin � on
all dimensions except the key dimension.

To represent the key dimension information associated with
a product-bin �, TOPKUBE uses the following data:

� 7!
n
q, v, �,

X
vi
o

, (2)

where q = q1 . . . qp, v = v1 . . . vp, and � = �1 . . . �p are
arrays of equal length obeying the following semantics: qi is
the i-th smallest key that appears in �; vi is the value of the
measure of interest (e.g. occurrences) for key qi in �; and �i

represents index of the key with the i-th largest value in �.
For example, the third highest values key in a specific � is
given v�3 and corresponds to key q�3 . In addition to arrays
q, v, �, in order to quickly solve queries that contain no key
constraints, we also store the measure of all records in �
regardless of keys, i.e. µ(A(�)). Since in all our applications
we always assume linearity of our measures, this aggregate
reduces to the sum of the values v in �.

In Figure 3, we show a concrete TOPKUBE corresponding
to the model shown on the top left part of the display. This
TOPKUBE consists of one spatial dimension (two level quad-
tree hierarchy) and a key dimension. In this toy example, the
keys of the key dimension are the letters A, B, and C and the
measure is simply the number of occurrences of a letter in
the corresponding product-bin. Note that since there is only
one dimension outside of the key dimension in this example,
a product-bin � corresponds exactly to one spatial bin. The
TOPKUBE data structure with the keys, counts, rank and total
count are shown as tables in the bottom part of the figure.
Note, for example, that the top valued key in the whole
model is given by q�1 = C and v�1 = 6 in the right-most
table which corresponds to the coarsest spatial bin.

With this encoding for the key dimension information
of a product-bin, to find out if a given key exists in a
product-bin, we can perform a binary search in the q array
(logarithmic time in the length of the array), and to access
the i-th top ranked key we perform two random accesses:
first we retrieve �i and then q�i or v�i (both constant time).

A 1 2
C 3 1

�vq

sum 4

A 2 1
C 1 2

�vq

sum 3

B 1 2
C 2 1

�vq

sum 3

A 3 2
C 4 1

�vq

sum 7

A 2 1
B 1 2

�vq

sum 3

A 5 3
B 2 1
C 6 2

�vq

sum 13

A
C
C

B
A

C C
A

A

A
C

C
B

Fig. 3. Concrete example of a TOPKUBE with one spatial dimension and
the special key-dimension for counting and ranking the event types: A, B,
or C. The additional ranking information (q, v, sigma) from Equation 2 is
shown in the tables associated with each product-bin.

As in a Nanocube, the size of a TOPKUBE is proportional
to its number of product-bins � plus the size of the encodings
of the special dimension information associated with each of
its product-bins. In the case of a Nanocube, this extra size
per product-bin is the size of the summed area data from
Equation 1, while in the case of TOPKUBE, it is given by the
size of the rank aware data-structure of Equation 2. Note that
if a Nanocube and a TOPKUBE have the same set of product-
bins � and the number of time stamps and keys encoded
in their respective special dimensions are comparable, the
extra size cost of a TOPKUBE compared to the similar
Nanocube will be the rank arrays �. This extra size cost of a
TOPKUBE represents a good trade-off if queries for interactive
top-k keys are important for a given application. Another
important remark with respect to the sizes of Nanocubes and
TOPKUBES is that in order to represent a Nanocube special
temporal dimension into a TOPKUBE dimension, we have
to convert it into a conventional TOPKUBE dimension (e.g.
a binary tree where the leaves are timestamps: right side of
Figure 2). This adds a multiplicative logarithmic term to the
size of that dimension: while O(n) in a Nanocube, it becomes
O(n log n) in a TOPKUBE. The advantage here is that now
multiple temporal dimensions can be supported.

5.1 Top-K from Ranked Lists
The easiest top-k query for a TOPKUBE happens when a
single product-bin � in involved. Suppose a user wants the
top ranked keys in a multi-dimensional selection without
any constraints. This query boils down to the single coarsest
product-bin � in the cube (formed by root bins in all
dimensions). In this case, obtaining the top-k keys is the same
as generating from � the list (q�1 , v�1), . . . , (q�k , v�k), and,
clearly, it can be done in O(k) steps. In general, though, this
task is not that easy. The number of product-bins involved in
the answer of a multi-dimensional selection is not one. For
common spatial brushes, time intervals, categorical selections,
the typical number of product-bins involved in a query
ranges from tens up to a few thousand. For example, in
Figure 2, we show a 624 bin selection in space and 3 bins in
time which potentially means a 1,872 product-bin selection.
In this case, the pre-stored ranks, or �, we have for each

Example: One Spatial Dim. and A,B,C events

19

[F. Miranda et al., 2017]

D. Koop, CSCI 490/680, Spring 2020

1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2671341, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, JANUARY 2016 5

Fig. 2. Dimensions of space and time are represented as bin hierarchies.
(left) Bspace is a quad-tree hierarchy: here we show a 624 bin selection
around Madison Square Garden, NY; (right) Btime is a binary hierarchy;
in red we show 3 bins corresponding to the interval [3, 6].

interested in how many shots happened in that region, or
what the average or median distance from the basket was for
all of those shots. A measure for a multi-dimensional binning
model M is simply a real function µ : B ! R that associates
a number to any product-bin � of M , which captures some
notion of “size” for the set of incident records A(�). In the
target applications we are interested in, we want to access
measure values not for just one product-bin at a time, but
for sets of product-bins that are semantically meaningful
together. For example we might be interested in the spatial
region on the left of Figure 2 that consists of multiple bins.
In general, one cannot derive the measure value of the union
of a set of product-bins by combining the measure values of
the individual product-bins. The median distance of an NBA
shot is such an example: we cannot derive the median of the
union of two sets of values by knowing the median of each
individual set. We avoid this problem here by restricting our
universe to those of additive measures only. We start with a
real function µ : R ! R that associates a number to each
record from model M and extend this function to the whole
set of product-bins by using additivity µ(�) =

P
r2A(�) µ(r).

Additive measures can naturally count occurrences (e.g. how
many records) by making µ(r) = 1, or measure weight sums
by making µ(r) = wr. In addition to scalars, we can also
generalize additive measure to produce real vectors. For
example, by making µ(r) = (1, wr, w2

r) additivity will yield
a 3d vector on any product-bin and union of product-bins
(just sum the vectors). In this 3d measure example, it is
possible to post-process the vector entries to derive mean
and variance of weights for any set of product-bins (mean:
divide second entry by first entry). Correlations can also be
derived by post-processing an additive measure [32]. In the
remainder of this paper we assume simple additive scalar
measures. We do not deal with post-processed ones.

We refer to the combination of a multi-dimensional
binning model M with a measure µ to its product-bins
as a measure model M [µ]. The idea of precomputing and
representing a measure model M [µ] so that we can quickly
access µ(�) for any product-bin � is essentially the well-
known notion of a cube relational operator (if all hierarchies
in the model are all 1-level) or the more general roll up cube
relational operator (if some hierarchies have 2 or more levels).
Note that in practice, when precomputing such measure
models, one does not expect to be able to retrieve the original
records A(�), but only its measure µ(�).

4.2 Nanocubes
In Nanocubes [5], the authors propose an efficient encoding
of a measure model M [µ] with an additional special encoding
for one temporal dimension. Nanocubes uses a pointer-based
sparse data structure to represent the product-bins � that
have at least one record associated to it, and tries to make
every product-bin that yields the same set of records refer
to the same memory location encoding its measure value.
Conceptually, we can think of Nanocubes as an encoding to a
mapping {� 7! µ(�) : � 2 B, A(�) 6= ?}. For the temporal
dimension, the particular µ values are stored in Nanocubes
as summed area tables:

� 7! ((t1, v1), (t2, v1 + v2), . . . , (tp, v1 + . . . + vp)), (1)

where ti’s are all the finest temporal bins associated to the
records in A(�), they are sorted ti < ti+1, and vi is the
measure of µ(�, btime=ti), i.e. product-bin with the added
constraint in the time dimension. Note that by taking differ-
ences of values from two different indices of a summed area
table one can quickly find the value of any query (�, [ta, tb]),
where � is a product-bin (without the time dimension) and
[ta, tb] is the time interval of interest.

5 TOPKUBE

A Nanocubes-like approach can efficiently retrieve a measure
of interest for any pre-defined “bucket” (i.e. a product-
bin plus a time interval). This capability can be handy for
many applications, but is especially useful for interactive
visualizations where each element presented on a screen (e.g.
bar in a barchart, pixel in a heatmap) is associated with one
of these “buckets” and encoded (e.g. bar length, pixel color)
based on its value. However, suppose that, instead of simply
accessing the measure associated with specific buckets, we
are actually interested in identifying the top-k valued objects
from a potentially large set of buckets. For example, “Who
are the top-20 players that make the most shots from the
right-hand 3-point corner of the basketball court?” (blue
selection and ranking shown in Figure 1).

Since there is no ranking information encoded in a
Nanocube, the only way to obtain such a top-20 rank is
to find out, for each player associated with a shot in the
selection, their total number of shots and report the top-20
players found. This computation takes time proportional to
at least the number of players associated with the shots in the
selection. While this computation in the case of NBA shots is
not very expensive (only a few thousand players ever played
in the NBA), there are interesting use cases, analogous to the
player-shot case, where the number of “players” can be quite
large. For instance, project-commit in GitHub (a cloud based
project repository), tag-photo in Flickr (a cloud based photo
repository), or hashtag-post in a microblog website. In these
cases the number of projects, tags, and hashtags are counted
in millions instead of in thousands. The need to scan millions
of objects to solve a single top-k query can be a hard hit in
the latency budget of a fluid interactive experience.

TOPKUBE is a data structure similar to a Nanocube: it
encodes a measure in a multi-dimensional binning model, and,
with this encoding, it allows the quick access of the measure’s
value of any product-bin in the model. The main addition
of a TOPKUBE when compared to a Nanocube is that, in

Problem: Lots of Bins!

20

[F. Miranda et al., 2017]

D. Koop, CSCI 490/680, Spring 2020

Three Algorithms to Merge Bins
• Threshold: don't do a full scan, use extra information about ranking
• Sweep: Use a priority queue where the product bin with the current smallest

key is on the top
• Hybrid:
- Threshold has best theoretical guarantee but some sparse cases can be

faster
- Use Sweep on small input lists, Threshold on denser problem

21

D. Koop, CSCI 490/680, Spring 2020 22

What actually happened in a
computational experiment?

D. Koop, CSCI 490/680, Spring 2020

Provenance in Art
Rembrandt van Rijn
Dutch, 1606 - 1669

Self-Portrait, 1659
oil on canvas

Andrew W. Mellon Collection

1937.1.72

Provenance

George, 3rd Duke of Montagu and 4th Earl of Cardigan [d. 1790], by 1767;[1] by inheritance to his daughter, Lady
Elizabeth, wife of Henry, 3rd Duke of Buccleuch of Montagu House, London; John Charles, 7th Duke of Buccleuch;
(P. & D. Colnaghi & Co., New York, 1928); (M. Knoedler & Co., New York); sold January 1929 to Andrew W. Mellon,
Pittsburgh and Washington, D.C.; deeded 28 December 1934 to The A.W. Mellon Educational and Charitable Trust,
Pittsburgh; gift 1937 to NGA.

[1] This early provenance is established by presence of a mezzotint after the portrait by R. Earlom (1743-1822),
dated 1767. See John Charrington, A Catalogue of the Mezzotints After, or Said to Be After, Rembrandt, Cambridge,
1923, no. 49.

Associated Names
• Buccleuch, Henry, 3rd Duke of

• Buccleuch, John Charles, 7th Duke of

• Colnaghi & Co., Ltd., P. & D.

• Knoedler & Company, M.

• Mellon, Andrew W.

• Mellon Educational and Charitable Trust, The A.W.

• Montagu, and 4th Earl of Cardigan, George, 3rd Duke of

23

[National Gallery of Art]

http://www.nga.gov/cgi-bin/tsearch?ownerid=22007
http://www.nga.gov/cgi-bin/tsearch?ownerid=22008
http://www.nga.gov/cgi-bin/tsearch?ownerid=703
http://www.nga.gov/cgi-bin/tsearch?ownerid=789
http://www.nga.gov/cgi-bin/tsearch?ownerid=8416
http://www.nga.gov/cgi-bin/tsearch?ownerid=427
http://www.nga.gov/cgi-bin/tsearch?ownerid=22006

D. Koop, CSCI 490/680, Spring 2020

Provenance in Art
Rembrandt van Rijn
Dutch, 1606 - 1669

Self-Portrait, 1659
oil on canvas

Andrew W. Mellon Collection

1937.1.72

Provenance

George, 3rd Duke of Montagu and 4th Earl of Cardigan [d. 1790], by 1767;[1] by inheritance to his daughter, Lady
Elizabeth, wife of Henry, 3rd Duke of Buccleuch of Montagu House, London; John Charles, 7th Duke of Buccleuch;
(P. & D. Colnaghi & Co., New York, 1928); (M. Knoedler & Co., New York); sold January 1929 to Andrew W. Mellon,
Pittsburgh and Washington, D.C.; deeded 28 December 1934 to The A.W. Mellon Educational and Charitable Trust,
Pittsburgh; gift 1937 to NGA.

[1] This early provenance is established by presence of a mezzotint after the portrait by R. Earlom (1743-1822),
dated 1767. See John Charrington, A Catalogue of the Mezzotints After, or Said to Be After, Rembrandt, Cambridge,
1923, no. 49.

Associated Names
• Buccleuch, Henry, 3rd Duke of

• Buccleuch, John Charles, 7th Duke of

• Colnaghi & Co., Ltd., P. & D.

• Knoedler & Company, M.

• Mellon, Andrew W.

• Mellon Educational and Charitable Trust, The A.W.

• Montagu, and 4th Earl of Cardigan, George, 3rd Duke of

23

[National Gallery of Art]

http://www.nga.gov/cgi-bin/tsearch?ownerid=22007
http://www.nga.gov/cgi-bin/tsearch?ownerid=22008
http://www.nga.gov/cgi-bin/tsearch?ownerid=703
http://www.nga.gov/cgi-bin/tsearch?ownerid=789
http://www.nga.gov/cgi-bin/tsearch?ownerid=8416
http://www.nga.gov/cgi-bin/tsearch?ownerid=427
http://www.nga.gov/cgi-bin/tsearch?ownerid=22006

D. Koop, CSCI 490/680, Spring 2020

Provenance in Science
• Provenance: the lineage of data, a

computation, or a visualization
• Provenance is as (or more) important as

the result!
• Old solution:
- Lab notebooks

• New problems:
- Large volumes of data
- Complex analyses
- Writing notes doesn’t scale

24

[DNA Recombination, Lederberg]

D. Koop, CSCI 490/680, Spring 2020

Provenance in Science
• Provenance: the lineage of data, a

computation, or a visualization
• Provenance is as (or more) important as

the result!
• Old solution:
- Lab notebooks

• New problems:
- Large volumes of data
- Complex analyses
- Writing notes doesn’t scale

24

[DNA Recombination, Lederberg]

Date

Annotations

Observed Data

D. Koop, CSCI 490/680, Spring 2020

Provenance in Computational Science

25

Fig. 7: Using the blog to document processes: A visualization expert
created a series of blog posts to explain the problems found when gen-
erating the visualizations for CMOP.

ACKNOWLEDGMENTS

Our research has been funded by the National Science Foun-
dation (grants IIS-0905385, IIS-0746500, ATM-0835821, IIS-
0844546, CNS-0751152, IIS-0713637, OCE-0424602, IIS-0534628,
CNS-0514485, IIS-0513692, CNS-0524096, CCF-0401498, OISE-
0405402, CCF-0528201, CNS-0551724), the Department of En-
ergy SciDAC (VACET and SDM centers), and IBM Faculty Awards
(2005, 2006, 2007, and 2008). E. Santos is partially supported by a
CAPES/Fulbright fellowship.

REFERENCES

[1] L. Bavoil, S. Callahan, P. Crossno, J. Freire, C. Scheidegger, C. Silva, and
H. Vo. VisTrails: Enabling Interactive Multiple-View Visualizations. In
IEEE Visualization 2005, pages 135–142, 2005.

[2] S. P. Callahan, J. Freire, C. E. Scheidegger, C. T. Silva, and H. T. Vo.
Towards provenance-enabling paraview. pages 120–127, 2008.

[3] Chemical blogspace. http://cb.openmolecules.net/.
[4] NSF Center for Coastal Margin Observation and Prediction (CMOP).

http://www.stccmop.org.
[5] S. B. Davidson and J. Freire. Provenance and scientific workflows: chal-

lenges and opportunities. In Proceedings of SIGMOD, pages 1345–1350,
2008.

[6] R. T. Fielding. Architectural Styles and the Design of Network-based Soft-
ware Architectures. PhD thesis, University of California, Irvine, 2000.

[7] S. Fomel and J. Claerbout. Guest editors’ introduction: Reproducible
research. Computing in Science Engineering, 11(1):5 –7, jan.-feb. 2009.

Fig. 8: Visualizing a binary star system simulation. This
is an image that was generated by embedding a workflow di-
rectly in the text. The original workflow is available at
http://www.crowdlabs.org/vistrails/workflows/details/119/.

[8] J. Freire, D. Koop, E. Santos, and C. T. Silva. Provenance for computa-
tional tasks: A survey. Computing in Science & Engineering, 10(3):11–
21, May-June 2008.

[9] J. Freire, C. Silva, S. Callahan, E. Santos, C. Scheidegger, and H. Vo.
Managing rapidly-evolving scientific workflows. In International Prove-
nance and Annotation Workshop (IPAW), LNCS 4145, pages 10–18.
Springer Verlag, 2006.

[10] R. Hoffmann. A wiki for the life sciences where authorship matters. Na-
ture Genetics, 40(9):1047–1051, 2008.

[11] IBM. OpenDX. http://www.research.ibm.com/dx.
[12] Kitware. Paraview. http://www.paraview.org.
[13] Kitware. The visualization toolkit. http://www.vtk.org.
[14] Many Eyes Wikified. http://wikified.researchlabs.ibm.com.
[15] M. McKeon. Harnessing the Web Information Ecosystem with Wiki-

based Visualization Dashboards. IEEE Transactions on Visualization and
Computer Graphics, 15(6):1081–1088, 2009.

[16] A. R. Pico, T. Kelder, M. P. van Iersel, K. Hanspers, B. R. Conklin, and
C. Evelo. WikiPathways: Pathway editing for the people. PLoS Biology,
6(7), 2008.

[17] D. D. Roure, C. Goble, and R. Stevens. The design and realisation of
the virtual research environment for social sharing of workflows. Future
Generation Computer Systems, 25(5):561 – 567, 2009.

[18] E. Santos, L. Lins, J. Ahrens, J. Freire, and C. Silva. Vismashup: Stream-
lining the creation of custom visualization applications. IEEE Transac-
tions on Visualization and Computer Graphics, 15(6):1539–1546, 2009.

[19] Swivel. http://www.swivel.com.
[20] J. Tohline and E. Santos. Visualizing a Journal that Serves the Computa-

tional Sciences Community. Computing in Science & Engineering, 12(3),
2010. To appear.

[21] J. E. Tohline. Scientific Visualization: A Necessary Chore. Computing
in Science & Engineering, 9(6):76–81, 2007.

[22] C. Upson, J. Thomas Faulhaber, D. Kamins, D. H. Laidlaw, D. Schlegel,
J. Vroom, R. Gurwitz, and A. van Dam. The Application Visualiza-
tion System: A Computational Environment for Scientific Visualization.
IEEE Computer Graphics and Applications, 9(4):30–42, 1989.

[23] F. B. Viegas, M. Wattenberg, F. van Ham, J. Kriss, and M. McKeon.
ManyEyes: A site for visualization at internet scale. IEEE Transactions
on Visualization and Computer Graphics, 13(6):1121–1128, 2007.

[24] VisIt Visualization Tool. https://wci.llnl.gov/codes/visit.
[25] The VisTrails Project. http://www.vistrails.org.

DATA DATA

Data Management

Computation

Visualization

Publishing

Provenance

D. Koop, CSCI 490/680, Spring 2020

Evolution of Publication
• Publish paper
• Publish code
• Publish computational experiments/tests
• Publish provenance (what actually happens during your runs)

26

D. Koop, CSCI 490/680, Spring 2020

Provenance-Rich Publication

27

[Freedman et al., 2012]

5

0 0.1 0.2 0.3 0.4 0.5
inverse system size 1/L

0 0

0.08 0.08

0.16 0.16

0.24 0.24

0.32 0.32

0.4 0.4

0.48 0.48

0.56 0.56

fi
n

it
e-

si
ze

 g
ap

 ∆

(L
)

/
J p

width W = 2
width W = 3

a) honeycomb

0 0.05 0.1 0.15 0.2 0.25
inverse system size 1/L

0 0

0.08 0.08

0.16 0.16

0.24 0.24

0.32 0.32

fi
n

it
e-

si
ze

 g
ap

 ∆

(L
)

/
J p

b) ladder

FIG. 4. (color online) Scaling of the finite-size gap �(L) (in units
of Jp) with linear system size for the Hermitian projector model
H

herm on two different lattice geometries: the honeycomb lattice
with L⇥W plaquettes (top panel) and 2-leg ladder systems of length
L (bottom panel).

↵

�

�

�

a b

cd

FIG. 5. Edge labeling for a plaquette of the ladder lattice.

The quasi-one dimensional geometry allows to numerically
diagonalize systems up to linear system size L = 13. The
finite-size gap of the Hermitian model Hherm is again found
to vanish in the thermodynamic limit, showing a linear de-
pendence on the inverse system size as shown in Fig. 4b). To
further demonstrate the fragility of these gapless ground states
against local perturbations we add a string tension18

Hpert = Jr

X

rungs r

�l(r),⌧ (13)

favoring the trivial label l(r) = 1 on each rung of the ladder.
We parameterize the couplings of the competing plaquette and

rung terms as

Jr = sin ✓ and Jp = cos ✓ ,

where ✓ = 0 corresponds to the unperturbed Hamiltonian.
The phase diagrams as a function of ✓ have been mapped out
for both the DFib model18 and the DYL model,4 respectively.

Directly probing the topological order in the DYL model
and its Hermitian counterpart we show the lifting of their re-
spective ground-state degeneracies in Figs. 6 and 7 when in-
cluding a string tension. We find a striking qualitative dif-
ference between these two models: For the DYL model the
lifting of the ground-state degeneracy is exponentially sup-
pressed with increasing system size – characteristic of a topo-
logical phase. For the Hermitian model, on the other hand, we
find a splitting of the ground-state degeneracy proportional to
JrL. The linear increase with both system size and coupling
can be easily understood by the different matrix elements of
the string tension term on a single rung for the two degener-
ate ground-states of the unperturbed model. Plotting the low-
energy spectrum in Fig. 7 clearly shows that the two-fold de-
generacy of the unperturbed Hermitian model arises from a
(fine-tuned) level crossing. Similar behavior is found in the
honeycomb lattice model (not shown).

Considering the model in a wider range of couplings, as
shown in Fig. 8, further striking differences between the non-
Hermitian DYL model and its Hermitian counterpart are re-
vealed: The DYL model exhibits two extended topological
phases around ✓ = 0 and ✓ = ⇡/2 (with two and four de-
generate ground states, respectively), which are separated by
a conformal critical point at precisely ✓c = ⇡/4 as discussed
extensively in Refs. 4 and 18. In contrast, the Hermitian model
Hherm exhibits no topological phase anywhere, and the inter-
mediate coupling ✓ = ⇡/4 does not stand out.

-0.1 -0.05 0 0.05 0.1
coupling parameter θ / π

0 0

1 1

2 2

3 3

g
ro

u
n
d
-s

ta
te

 d
eg

en
er

ac
ry

 s
p
li

tt
in

g

 (

E
1
-E

0
)

x
 1

0
0
0

L = 4
L = 6
L = 8
L = 10

non-Hermitian DYL model

FIG. 6. (color online) Ground-state degeneracy splitting of the non-
Hermitian doubled Yang-Lee model when perturbed by a string ten-
sion (✓ 6= 0).

Galois Conjugates of Topological Phases

M. H. Freedman,1 J. Gukelberger,2 M. B. Hastings,1 S. Trebst,1 M. Troyer,2 and Z. Wang1

1Microsoft Research, Station Q, University of California, Santa Barbara, CA 93106, USA
2Theoretische Physik, ETH Zurich, 8093 Zurich, Switzerland

(Dated: July 6, 2011)

Galois conjugation relates unitary conformal field theories (CFTs) and topological quantum field theories
(TQFTs) to their non-unitary counterparts. Here we investigate Galois conjugates of quantum double models,
such as the Levin-Wen model. While these Galois conjugated Hamiltonians are typically non-Hermitian, we find
that their ground state wave functions still obey a generalized version of the usual code property (local operators
do not act on the ground state manifold) and hence enjoy a generalized topological protection. The key question
addressed in this paper is whether such non-unitary topological phases can also appear as the ground states of
Hermitian Hamiltonians. Specific attempts at constructing Hermitian Hamiltonians with these ground states
lead to a loss of the code property and topological protection of the degenerate ground states. Beyond this we
rigorously prove that no local change of basis (IV.5) can transform the ground states of the Galois conjugated
doubled Fibonacci theory into the ground states of a topological model whose Hermitian Hamiltonian satisfies
Lieb-Robinson bounds. These include all gapped local or quasi-local Hamiltonians. A similar statement holds
for many other non-unitary TQFTs. One consequence is that the “Gaffnian” wave function cannot be the ground
state of a gapped fractional quantum Hall state.

PACS numbers: 05.30.Pr, 73.43.-f

I. INTRODUCTION

Galois conjugation, by definition, replaces a root of a poly-
nomial by another one with identical algebraic properties. For
example, i and �i are Galois conjugate (consider z2 + 1 = 0)
as are � = 1+

p
5

2 and � 1
� = 1�

p
5

2 (consider z2 � z� 1 = 0),
as well as 3

p
2, 3

p
2e2⇡i/3, and 3

p
2e�2⇡i/3 (consider z3 � 2 =

0). In physics Galois conjugation can be used to convert non-
unitary conformal field theories (CFTs) to unitary ones, and
vice versa. One famous example is the non-unitary Yang-Lee
CFT, which is Galois conjugate to the Fibonacci CFT (G2)1,
the even (or integer-spin) subset of su(2)3.

In statistical mechanics non-unitary conformal field theo-
ries have a venerable history.1,2 However, it has remained less
clear if there exist physical situations in which non-unitary
models can provide a useful description of the low energy
physics of a quantum mechanical system – after all, Galois
conjugation typically destroys the Hermitian property of the
Hamiltonian. Some non-Hermitian Hamiltonians, which sur-
prisingly have totally real spectrum, have been found to arise
in the study of PT -invariant one-particle systems3 and in
some Galois conjugate many-body systems4 and might be
seen to open the door a crack to the physical use of such
models. Another situation, which has recently attracted some
interest, is the question whether non-unitary models can de-
scribe 1D edge states of certain 2D bulk states (the edge holo-
graphic for the bulk). In particular, there is currently a discus-
sion on whether or not the “Gaffnian” wave function could be
the ground state for a gapped fractional quantum Hall (FQH)
state albeit with a non-unitary “Yang-Lee” CFT describing its
edge.5–7 We conclude that this is not possible, further restrict-
ing the possible scope of non-unitary models in quantum me-
chanics.

We reach this conclusion quite indirectly. Our main thrust
is the investigation of Galois conjugation in the simplest non-

Abelian Levin-Wen model.8 This model, which is also called
“DFib”, is a topological quantum field theory (TQFT) whose
states are string-nets on a surface labeled by either a triv-
ial or “Fibonacci” anyon. From this starting point, we give
a rigorous argument that the “Gaffnian” ground state cannot
be locally conjugated to the ground state of any topological
phase, within a Hermitian model satisfying Lieb-Robinson
(LR) bounds9 (which includes but is not limited to gapped
local and quasi-local Hamiltonians).

Lieb-Robinson bounds are a technical tool for local lattice
models. In relativistically invariant field theories, the speed of
light is a strict upper bound to the velocity of propagation. In
lattice theories, the LR bounds provide a similar upper bound
by a velocity called the LR velocity, but in contrast to the rel-
ativistic case there can be some exponentially small “leakage”
outside the light-cone in the lattice case. The Lieb-Robinson
bounds are a way of bounding the leakage outside the light-
cone. The LR velocity is set by microscopic details of the
Hamiltonian, such as the interaction strength and range. Com-
bining the LR bounds with the spectral gap enables us to prove
locality of various correlation and response functions. We will
call a Hamiltonian a Lieb-Robinson Hamiltonian if it satisfies
LR bounds.

We work primarily with a single example, but it should be
clear that the concept of Galois conjugation can be widely ap-
plied to TQFTs. The essential idea is to retain the particle
types and fusion rules of a unitary theory but when one comes
to writing down the algebraic form of the F -matrices (also
called 6j symbols), the entries are now Galois conjugated. A
slight complication, which is actually an asset, is that writing
an F -matrix requires a gauge choice and the most convenient
choice may differ before and after Galois conjugation.

Our method is not restricted to Galois conjugated DFibG

and its factors FibG and FibG , but can be generalized to in-
finitely many non-unitary TQFTs, showing that they will not
arise as low energy models for a gapped 2D quantum mechan-

ar
X

iv
:1

10
6.

32
67

v3
 [

co
nd

-m
at

.st
r-

el
]

5
Ju

l 2
01

1

D. Koop, CSCI 490/680, Spring 2020

Benefits of Provenance-Rich Publications
• Produce more knowledge–not just text
• Allow scientists to stand on the shoulders of giants (and their own)
• Science can move faster!
• Higher-quality publications
• Authors will be more careful
• Many eyes to check results
• Describe more of the discovery process: people only describe successes,

can we learn from mistakes?
• Expose users to different techniques and tools: expedite their training; and

potentially reduce their time to insight

28

D. Koop, CSCI 490/680, Spring 2020

Provenance Definitions
• Dictionary: "the source or origin of an object; its history and pedigree; a

record of the ultimate derivation and passage of an item through its various
owners."

• Focus on causality—the sequence of steps that detail how a result was
generated and/or derivation—what data a result depended on

• Provenance itself is data, this list of steps along with metadata for each step:
when it occurred, who initiated it, notes about it

• Can be used to preserve information about an experiment and to answer
many questions

29

D. Koop, CSCI 490/680, Spring 2020

Workflows
• Abstract computation
• Computational modules connected through

input and output ports
• Data flows along the connections

30

vtkActor

VTKCell

vtkRenderer

vtkContourFilter

vtkStructuredPointsReader

vtkDataSetMapper

vtkCamera

DATA

IMAGE

D. Koop, CSCI 490/680, Spring 2020

��������	�
�

�������
��

��������������������������

�����������	
�

����
�
������

�������������	�
���

�����������	
�

�������������

�������������������

�����������	
�

����������������

������������

�����������	
�

����������

�����������

�����������	
�

�������
�

��������������

�����������	
�

��������

��������

�����������	
�

���	

������������� �������������������

���	

������������� �������������������

���	

������������� �������������������

���	

������������� �������������������

���	 ���	

������������� �������������������

������������� �������������������

���	

������������� �������������������

Provenance Graph

31

��������	�
�

�������
��

��������������������������

�����������	
�

����
�
������

�������������	�
���

�����������	
�

�������������

�������������������

�����������	
�

����������������

������������

�����������	
�

����������

�����������

�����������	
�

�������
�

��������������

�����������	
�

��������

��������

�����������	
�

���	

������������� �������������������

���	

������������� �������������������

���	

������������� �������������������

���	

������������� �������������������

���	 ���	

������������� �������������������

������������� �������������������

���	

������������� �������������������

D. Koop, CSCI 490/680, Spring 2020

Provenance Questions
• What process led to the output image?
• What input datasets contributed to the

output image?
• What workflows create an isosurface with

isovalue 57?
• Who create this data product?
• When was this data file created?
• Why was vtkCamera used?
• Why do two output images differ?

32

vtkActor

VTKCell

vtkRenderer

vtkContourFilter

vtkStructuredPointsReader

vtkDataSetMapper

vtkCamera

DATA

IMAGE

D. Koop, CSCI 490/680, Spring 2020

Questions about Provenance	
• How does one capture provenance?
• How does one manage provenance for later use?
• How do we answer questions about our provenance?
• How do we use provenance for good?

33

D. Koop, CSCI 490/680, Spring 2020

Provenance Management
• Provenance can be generated from tasks/programs/scripts/etc.
• Properties of provenance are related to the computational model
- a specific application with a graphical interface
- a script that automates the use of several command-line tools
- a scientific workflow that combines several tools

34

D. Koop, CSCI 490/680, Spring 2020

Provenance & Causality
• Knowing what data/steps influenced other data/steps is important!
• Data dependencies: this output file depended on this input file
• Data-process dependencies: this output figure depended on these

processes
• Causality can often be represented as a graph where connections represent

dependencies

35

D. Koop, CSCI 490/680, Spring 2020

User-defined provenance
• Goal: capture lots of provenance automatically based on what steps are

executed
• Problem: not everything can be captured automatically
• Annotations offer ability to keep notes about processes
• Users might also specify known causal links that cannot be automatically

determined (e.g. a step depends on three system files that were not specified
as inputs in the workflow)

36

D. Koop, CSCI 490/680, Spring 2020

Provenance Management
• What is needed to capture, store, and use provenance?
1. Capture mechanism
2. Model for representing provenance
3. Tools to store, query, and analyze provenance

37

D. Koop, CSCI 490/680, Spring 2020

Provenance Capture Mechanisms
• Workflow-based: Since workflow execution is controlled, keep track of all

the workflow modules, parameters, etc. as they are executed
• Process-based: Each process is required to write out its own provenance

information (not centralized like workflow-based)
• OS-based: The OS or filesystem is modified so that any activity it does it

monitored and the provenance subsystem organizes it
• Tradeoffs:
- Workflow- and process-based have better abstraction
- OS-based requires minimal user effort once installed and can capture

"hidden dependencies"

38

D. Koop, CSCI 490/680, Spring 2020

Provenance Granularity
• How detailed should our provenance be?
- Coarse: "This program ran with inputs x, y, z and produced outputs a, b, c"
- Fine: "Input x was read into register 4, input y was read in register 5, add

operation was performed using registers 4 and 5, …"
• More queries are possible with fine-grained provenance, but…
- Storage concerns
- Performance concerns

• Abstraction can help here

39

D. Koop, CSCI 490/680, Spring 2020

vtkActor

VTKCell

vtkRenderer

vtkContourFilter

vtkStructuredPointsReader

vtkDataSetMapper

vtkCamera

Abstraction: Script, Workflow, Abstract Workflow
data = vtk.vtkStructuredPointsReader()
data.SetFileName(../examples/data/head.120.vtk)

contour = vtk.vtkContourFilter()
contour.SetInput(data.GetOutput())
contour.SetValue(0, 67)

mapper = vtk.vtkPolyDataMapper()
mapper.SetInput(contour.GetOutput())
mapper.ScalarVisibilityOff()

actor = vtk.vtkActor()
actor.SetMapper(mapper)

cam = vtk.vtkCamera()
cam.SetViewUp(0,0,-1)
cam.SetPosition(745,-453,369)
cam.SetFocalPoint(135,135,150)
cam.ComputeViewPlaneNormal()

ren = vtk.vtkRenderer()
ren.AddActor(actor)
ren.SetActiveCamera(cam)
ren.ResetCamera()
renwin = vtk.vtkRenderWindow()
renwin.AddRenderer(ren)

style = vtk.vtkInteractorStyleTrackballCamera()
iren = vtk.vtkRenderWindowInteractor()
iren.SetRenderWindow(renwin)
iren.SetInteractorStyle(style)
iren.Initialize()
iren.Start()

40

ViewUp (0,0,-1)
Position (745,-453,369)

FocalPoint (-135,135,150)

FileName .../head.120.vtk

Value (0,67)

D. Koop, CSCI 490/680, Spring 2020

vtkActor

VTKCell

vtkRenderer

vtkContourFilter

vtkStructuredPointsReader

vtkDataSetMapper

vtkCamera

Abstraction: Script, Workflow, Abstract Workflow
data = vtk.vtkStructuredPointsReader()
data.SetFileName(../examples/data/head.120.vtk)

contour = vtk.vtkContourFilter()
contour.SetInput(data.GetOutput())
contour.SetValue(0, 67)

mapper = vtk.vtkPolyDataMapper()
mapper.SetInput(contour.GetOutput())
mapper.ScalarVisibilityOff()

actor = vtk.vtkActor()
actor.SetMapper(mapper)

cam = vtk.vtkCamera()
cam.SetViewUp(0,0,-1)
cam.SetPosition(745,-453,369)
cam.SetFocalPoint(135,135,150)
cam.ComputeViewPlaneNormal()

ren = vtk.vtkRenderer()
ren.AddActor(actor)
ren.SetActiveCamera(cam)
ren.ResetCamera()
renwin = vtk.vtkRenderWindow()
renwin.AddRenderer(ren)

style = vtk.vtkInteractorStyleTrackballCamera()
iren = vtk.vtkRenderWindowInteractor()
iren.SetRenderWindow(renwin)
iren.SetInteractorStyle(style)
iren.Initialize()
iren.Start()

40

ViewUp (0,0,-1)
Position (745,-453,369)

FocalPoint (-135,135,150)

FileName .../head.120.vtk

Value (0,67)

Read File

Extract
Isosurface

Render

Visualization

D. Koop, CSCI 490/680, Spring 2020

��������	�
�

�������
��

��������������������������

�����������	
�

����
�
������

�������������	�
���

�����������	
�

�������������

�������������������

�����������	
�

����������������

������������

�����������	
�

����������

�����������

�����������	
�

�������
�

��������������

�����������	
�

��������

��������

�����������	
�

���	

������������� �������������������

���	

������������� �������������������

���	

������������� �������������������

���	

������������� �������������������

���	 ���	

������������� �������������������

������������� �������������������

���	

������������� �������������������

Abstraction: Provenance Views

41

��������	�
�

�������
��

�������	�
�

�����������	
�

����
�
������

�����������
�
������

�����������	
�

��������

�����������
��
�������

�����������	
�

���	

������������� �������������������

���	

������������� �������������������

���	

������������� �������������������

Abstract

D. Koop, CSCI 490/680, Spring 2020

Provenance Storage
• Keeping provenance for each data item means lots of repetition
• Nested data storage also induces repetition
• Coarse provenance is naturally more compact, but how to decide what (not)

to store?
• Repeated provenance is not uncommon:
- Repeating the same computation with a different parameter
- Creating a new computation that has a very similar structure to one that

was run two weeks ago
• Provenance compression/factorization techniques (e.g. [Chapman et al.,

2008], [Anand et al., 2009]) take advantage of that to reduce storage costs

42

D. Koop, CSCI 490/680, Spring 2020

Provenance Storage Formats
• Files, relational databases, XML databases, RDF (linked data)
• Log files are good for preserving data but can be bad to query or analyze
• Relational databases are great for column-specific queries but can be bad for

dependency queries
• XML databases are more portable than relational databases but are usually

less efficient for queries
• RDF triples are better for dependencies and integrating domain-specific

knowledge but can be slower

43

D. Koop, CSCI 490/680, Spring 2020

Layered Provenance
• As with relational databases, want to normalize provenance to minimize

redundant information
• Example: Don’t store workflow specification each time that workflow is

executed–store it once and reference it
• Also allow different layers for different aspects of provenance

44

[Freire et. al, 2008]

24 COMPUTING IN SCIENCE & ENGINEERING

proaches require processes to be wrapped—in the
former, so that the work!ow engine can invoke
them, and in the latter, so that instrumentation
can capture and publish provenance information.

Because work!ow systems have access to work-
!ow de"nitions and control their execution, they
can capture both prospective and retrospective
provenance. OS- and process-based mechanisms
only capture retrospective provenance: they must
reconstruct causal relationships through prov-
enance queries. The ES3 system (http://eil.bren.
ucsb.edu), for example, monitors the interactions
between arbitrary applications and their environ-
ments (via arguments, "le I/O, system, and calls),
and then uses this information to assemble a prov-
enance graph to describe what actually happened
during execution.6

In fact, by capturing provenance at the OS level,
we can record detailed information about all system
calls and "les touched during a task’s execution.
This forms a superset of the information captured
in work!ow- and process-based systems, whose
granularity is determined by the wrapping provid-
ed for individual processes. Consider, for example,
a command-line tool integrated in a work!ow sys-
tem that creates and depends on temporary "les not
explicitly de"ned in its wrapper. The causal depen-
dencies the work!ow system captures won’t include
the temporary "les, but we can capture these de-
pendencies at the OS level. However, because even
simple tasks can lead to a large number of low-level
calls, the amount of provenance that OS-based ap-
proaches record can be prohibitive, making it hard
to query and reason about the information.7

Provenance Models
Researchers have proposed several provenance
models in the literature.9,10,12 All these models
support some form of retrospective provenance,
and most of those that work!ow systems use pro-
vide the means to capture prospective provenance.
Many of the models also support annotations.

Although these models differ in several ways,
including their use of structures and storage strat-
egies, they all share an essential type of informa-
tion: process and data dependencies. In fact, a
recent exercise to explore interoperability issues
among provenance models showed that it’s possible
to integrate information that conform to different
provenance models (http://twiki.ipaw.info/bin/
view/Challenge/SecondProvenanceChallenge).

Despite a base commonality, provenance mod-
els tend to vary according to domain and user
needs. Even though most models strive to store
general concepts, speci"c use cases often in!u-
ence model design—for example, Taverna was de-
veloped to support the creation and management
of work!ows in the bioinformatics domain, and
therefore provides an infrastructure that includes
support for ontologies available in this domain.
VisTrails was designed to support exploratory
tasks in which work!ows are iteratively re"ned,
and thus uses a model that treats work!ow speci-
"cations as "rst-class data products and captures
the provenance of work!ow evolution.

Because the provenance information a model
must represent varies both by type and speci"city,
it’s advantageous to structure a model as a set of
layers to enable a normalized, con"gurable repre-
sentation. The ability to represent provenance at
different levels of abstraction also leads to simpler
queries and more intuitive results. Consider the
REDUX system,16 which uses the layered model
depicted in Figure 3. The "rst layer corresponds to
an abstract description of a work!ow, in which each
module corresponds to a class of activities. This ab-
stract description is bound to speci"c services and
data sets de"ned in the second layer—for example,
in the work!ow shown in Figure 1, the abstract
activity extract isosurface is bound to a call
to the vtkContourFilter—a speci"c implemen-
tation of isosurface extraction provided by VTK.
The third layer captures information about input
data and parameters supplied at runtime, and the
fourth layer captures operational details, such as
the work!ow execution’s start and end time.

Structuring provenance information into mul-
tiple layers leads to a normalized representation
that avoids the storage of redundant information.
Some models, for example, store a work!ow’s

��
�
������	����

�������������

��
�
�����������

�������������
�
��

�������

����
������
�
��

�������������

��
������������������

������������������

�����

��
�
������������

�������������

��
�
�����������

����
����

Figure 3. Layered provenance models. For REDUX, the !rst layer
corresponds to an abstract description, the second layer describes the
binding of speci!c services and data to the abstract description, the
third layer captures runtime inputs and parameters, and the !nal layer
captures operational data. Other models use layers in different ways.
The top-layer in VisTrails captures provenance of work"ow evolution,
and Pegasus uses an additional layer to represent the work"ow
execution plan over grid resources.

D. Koop, CSCI 490/680, Spring 2020

Provenance Models
• How provenance is represented (more abstract than the details of how it is

actually stored)
• PROV (W3C Standard) has different storage backends for provenance but all

of it conforms to the same model
• Model the objects involved and their relationships (e.g. activities,

dependencies)
• Interoperability is a concern
- Why? May use multiple tools/techniques to achieve a result, want to analyze

the entire provenance chain

45

D. Koop, CSCI 490/680, Spring 2020

Prospective and Retrospective Provenance	
• Prospective provenance is what was specified/intended
- a workflow, script, list of steps

• Retrospective provenance is what actually happened
- actual data, actual parameters, errors that occurred, timestamps, machine

information
• Do not need prospective provenance to have retrospective provenance!
• Retrospective provenance is often the same type of information as

prospective plus more
• Could have multiple retrospective provenance traces for one prospective

provenance listing

46

D. Koop, CSCI 490/680, Spring 2020

Prospective and Retrospective Provenance	
• Example: Baking a Cake
• Prospective Provenance (Recipe):
1. Gather ingredients (3/4 cup butter, 3/4 cocoa, 3/4 cup flour, ...)
2. Preheat oven to 350 degrees
3. Grease cake pan
4. Mix wet ingredients in large bowl
5. Mix dry ingredients in a separate bowl
6. Add dry mixture to wet mixture
7. Pour batter into cake pan
8. Put pan in the oven and bake for 30 minutes
9. Take cake out of oven and let it cool

47

D. Koop, CSCI 490/680, Spring 2020

Prospective and Retrospective Provenance	
• Retrospective Provenance (What actually happened)
1. Went to store to buy butter
2. Gathered ingredients (3/4 cup butter, 3/4 cocoa, 1 cup flour, ...)
3. Greased cake pan
4. Preheated oven to 350 degrees
5. Mixed wet ingredients in large bowl
6. Mixed dry ingredients in a separate bowl
7. Added wet mixture to dry mixture
8. Poured batter into cake pan
9. Put pan in the oven and baked for 35 minutes
10.Took cake out of oven and let it cool for 10 minutes

48

D. Koop, CSCI 490/680, Spring 2020

Provenance Model History
• Community organized provenance challenges (2006-2009)
• First Provenance Challenge assessed capabilities of systems
• Second Provenance Challenge examined interoperability
• Led to development of Open Provenance Model (OPM), (2007)
- Sought to establish interchange format for provenance

• Further work led to PROV W3C Recommendations (2013)
- Some confusion from name changes from OPM to PROV even though

concepts are similar
- Focus is on model not formats

49

D. Koop, CSCI 490/680, Spring 2020

PROV: Three Key Classes

50

[Moreau et al., 2014]

An entity is a physical, digital, conceptual, or other kind
of thing with some fixed aspects; entities may be real or
imaginary.

An activity is something that occurs over a period of
time and acts upon or with entities; it may include
consuming, processing, transforming, modifying,
relocating, using, or generating entities.

An agent is something that bears some form of
responsibility for an activity taking place, for the
existence of an entity, or for another agent’s activity.

D. Koop, CSCI 490/680, Spring 2020

PROV: Three Views of Provenance

51

[Moreau et al., 2014]

D. Koop, CSCI 490/680, Spring 2020

PROV Edges: Derivation
• Derivation Edges:
- wasGeneratedBy: entity ⟶ activity

- used: activity ⟶ entity

- wasDerivedFrom: entity ⟶ entity

52

[PROV Model Primer, 2013]

D. Koop, CSCI 490/680, Spring 2020

PROV Example

53

[PROV Model Primer, 2013]

D. Koop, CSCI 490/680, Spring 2020

Querying Provenance
• Query methods are often tied to storage backend
• SQL, XQuery, Prolog, SPARQL, ...

54

26 COMPUTING IN SCIENCE & ENGINEERING

ate views of provenance data would bene!t OS- and
process-based provenance models as well.

The ability to query a computational task’s prov-
enance also enables knowledge reuse. By querying
a set of tasks and their provenance, users can not
only identify suitable tasks and reuse them, but
also compare and understand differences between
different tasks. Provenance information is often
associated with data products (such as images or
graphs), so this data helps users pose structured
queries over unstructured data as well.

A common feature across many approaches to
querying provenance is that their solutions are
closely tied to the storage models used. Hence, they
require users to write queries in languages such as
SQL,16 Prolog,20 and SPARQL.10,11 Although such
general languages are useful to those already famil-
iar with their syntax, they weren’t designed speci!-
cally for provenance, which means simple queries
can be awkward and complex to write. Figure 5
compares three representations of a single query in
the First Provenance Challenge that asked for tasks

using a speci!c module (Align Warp) with given
parameters executed on a Monday. The VisTrails
approach uses a language speci!cally designed to
query work"ows and their provenance, whereas
REDUX and myGrid use native languages for
their storage choices. Because the VisTrails lan-
guage abstracts details about physical storage, it
leads to much more concise queries.

However, even queries that use a language
designed for provenance are likely to be too
complicated for many users because provenance
contains structural information represented as a
graph. Thus, text-based query interfaces effec-
tively require a subgraph query to be encoded as
text. The VisTrails query-by-example (QBE) in-
terface (see Figure 6) addresses this problem by
letting users quickly construct expressive que-
ries using the same familiar interface they use
to build work"ow.21 The query’s results are also
displayed visually.

Some provenance models use Semantic Web
technology both to represent and query provenance

VisTrails

REDUX

MyGrid

SELECT Execution.ExecutableWork!owId, Execution.ExecutionId, Event.EventId, ExecutableActivity.ExecutableActivityId
from Execution, Execution_Event, Event, ExecutableWork!ow_ExecutableActivity, ExecutableActivity,
 ExecutableActivity_Property_Value, Value, EventType as ET
where Execution.ExecutionId=Execution_Event.ExecutionId
and Execution_Event.EventId=Event.EventId
and ExecutableActivity.ExecutableActivityId=ExecutableActivity_Property_Value.ExecutableActivityId
and ExecutableActivity_Property_Value.ValueId=Value.ValueId and Value.Value=Cast('-m 12' as binary)
and ((CONVERT(DECIMAL, Event.Timestamp)+0)%7)=0 and Execution_Event.ExecutableWork!ow_ExecutableActivityId=
 ExecutableWork!ow_ExecutableActivity.ExecutableWork!ow_ExecutableActivityId
and ExecutableWork!ow_ExecutableActivity.ExecutableWork!owId=Execution.ExecutableWork!owId
and ExecutableWork!ow_ExecutableActivity.ExecutableActivityId=ExecutableActivity.ExecutableActivityId
and Event.EventTypeId=ET.EventTypeId and ET.EventTypeName='Activity Start';

wf{*}: x where x.module='AlignWarp' and x.parameter('model')='12'
 and (log{x}: y where y.dayOfWeek='Monday')

SELECT ?p
where (?p <http://www.mygrid.org.uk/provenance#startTime> ?time) and (?time > date)
using ns for <http://www.mygrid.org.uk/provenance#> xsd for <http://www.w3.org/2001/XMLSchema#>

SELECT ?p
where <urn:lsid:www.mygrid.org.uk:experimentinstance:HXQOVQA2ZI0>
(?p <http://www.mygrid.org.uk/provenance#runsProcess> ?processname .
?p <http://www.mygrid.org.uk/provenance#processInput> ?inputParameter .
?inputParameter <ont:model> <ontology:twelfthOrder>)
using ns for <http://www.mygrid.org.uk/provenance#> ont for <http://www.mygrid.org.uk/ontology#>

Figure 5. Provenance query implemented by three different systems. REDUX uses SQL, VisTrails uses a language specialized
for querying work!ows and their provenance, and myGrid uses SPARQL.

D. Koop, CSCI 490/680, Spring 2020

Querying Provenance
• What process led to the output image?
• What input datasets contributed to the

output image?
• What workflows include resampling and

isosurfacing with isovalue 57?

• Graph traversal or graph patterns
- How do we write such queries?

55

vtkActor

VTKCell

vtkRenderer

vtkContourFilter

vtkStructuredPointsReader

vtkDataSetMapper

vtkCamera

DATA

IMAGE

D. Koop, CSCI 490/680, Spring 2020

Querying Provenance by Example
• Provenance is represented as graphs: hard to specify queries using text!
• Querying workflows by example [Scheidegger et al., TVCG 2007; Beeri et al.,

VLDB 2006; Beeri et al. VLDB 2007]
- WYSIWYQ -- What You See Is What You Query
- Interface to create workflow is same as to query

56

D. Koop, CSCI 490/680, Spring 2020

Stronger Links Between Provenance and Data
• Filenames are often the mode of

identification in data exploration
• We might also use URIs or access curated

data stores
- Always expected for exploratory tasks?
- What happens if offline?

• Solution:
- Managed store for data associated with

computations
- Improved data identification
- Automatic versioning

57

[Koop et. al, 2010]

<workflow_exec id="1">
 <m_exec id="5"
 name="vtkStructuredDataReader"
 package="edu.utah.sci.vistrails.vtk"
 version="5.6.0">
 <param id="2" name="SetFile"
 value="/MyData/05-12-sc2.dat"/>
 </m_exec>
 <m_exec id="6"
 name="vtkContourFilter"
 package="edu.utah.sci.vistrails.vtk"
 version="5.6.0">
 <param id="3" name="SetValue"
 value="[1, 57]"/>
 <param id="4" name="ComputeScalarsOn"
 value="True"/>
 </m_exec>

 ...

 <m_exec id="11"
 name="FileSink"
 package="edu.utah.sci.vistrails.basic"
 version="1.5">
 <param id="15" name="path"
 value="/home/a/results/23.out"/>
 </m_exec>

!
FILE NOT FOUND

!
FILE NOT FOUND

D. Koop, CSCI 490/680, Spring 2020

Provenance from Data

58

[Koop et. al, 2010]

newfilename.dat

HASH
CONTENTS

QUERY
FILE STORE

OBTAIN
FILE REFERENCE

12ab3-45ef2...

QUERY
PROVENANCE

OBTAIN
INPUT REFS

0ab678cd...

12ab3-45ef2...

QUERY
FILE STORE

12ab3-45ef2...

12ab3-45ef2...

OBTAIN
INPUT FILES input files

P

D. Koop, CSCI 490/680, Spring 2020

28 COMPUTING IN SCIENCE & ENGINEERING

infrastructures such as the TeraGrid.11 Although
Pegasus models prospective provenance using
OWL, it captures retrospective provenance by
using the Virtual Data System (VDS; a precursor
of Swift) and then stores it in a relational database.
Queries that span prospective and retrospective
provenance must combine two different query
languages: SPARQL and SQL.

REDUX extends the Windows Work!ow
Foundation engine to transparently capture the
work!ow execution trace. As discussed earlier,
it uses a layered provenance model to normalize
data and avoid redundancy. REDUX stores prov-
enance data (both prospective and retrospective)
in a relational database’s set of tables that can be
queried with SQL. The system can also return an
executable work!ow as the result of a provenance
query (for example, a query that requests all the
steps used to derive a particular data product).

Swift (www.ci.uchicago.edu/swift) builds on
and includes technology previously distributed
as the GriPhyN VDS.23 The system combines
a scripting language (SwiftScript) with a power-
ful runtime system for the concise speci"cation
and reliable execution of large, loosely coupled
computations. Swift speci"es these computations
as scripts, which the runtime system translates
into an executable work!ow. A launcher program
invokes the work!ow’s tasks, monitors the exe-
cution process, and records provenance informa-
tion, including the executable name, arguments,
start time, duration, machine information, and
exit status. Similar to VDS, Swift captures the
relationships among data, programs, and com-

putations and uses this information for data and
program discovery as well as for work!ow sched-
uling and optimization.

VisTrails is a work!ow and provenance man-
agement system designed to support exploratory
computational tasks. An important goal of the
VisTrails project is to build intuitive interfaces
for users to query and reuse provenance infor-
mation. Besides its QBE interface (which is built
on top of its specialized provenance query lan-
guage), VisTrails provides a visual interface to
compare work!ows side by side12 and a mecha-
nism for re"ning work!ows by analogy—users
can modify work!ows by example without hav-
ing to directly edit their de"nitions.21 VisTrails
internally represents prospective provenance as
Python objects that can be serialized into XML
and relations; it stores retrospective provenance
in a relational database.

OS-Based Systems
PASS (www.eecs.harvard.edu/syrah/pass) op-
erates at the level of a shared storage system: it
automatically records information about which
programs are executed, their inputs, and any new
"les created as output. The capture mechanism
consists of a set of Linux kernel modules that
transparently record provenance—it doesn’t re-
quire any changes to computational tasks. PASS
also constructs a provenance graph stored as a set
of tables in Berkeley DB. Users can pose prov-
enance queries using nq, a proprietary tool that
supports recursive searches over the provenance
graph. As discussed earlier, the "ne granularity

Table 1. Provenance-enabled systems.

System Capture mechanism Prospective provenance
Retrospective
provenance Work!ow evolution Storage Query support

Available as open
source?

REDUX Work!ow-based Relational Relational No Relational database management
system (RDBMS)

SQL No

Swift Work!ow-based SwiftScript Relational No RDBMS SQL Yes

VisTrails Work!ow-based XML and relational Relational Yes RDBMS and "les Visual query by example, specialized
language

Yes

Karma Work!ow- and
process-based

Business Process Execution
Language

XML No RDBMS Proprietary API Yes

Kepler Work!ow-based MoML MoML variation Under development Files; RDBMS planned Under development Yes

Taverna Work!ow-based Scu! RDF Under development RDBMS SPARQL Yes

Pegasus Work!ow-based OWL Relational No RDBMS SPARQL for metadata and work!ow;
SQL for execution log

Yes

PASS OS-based N/A Relational No Berkeley DB nq (proprietary query tool) No

ES3 OS-based N/A XML No XML database XQuery No

PASOA/PreServ Process-based N/A XML No Filesystem, Berkeley DB XQuery, Java query API Yes

Provenance-Enabled Systems

59

[Freire et. al, 2008]

D. Koop, CSCI 490/680, Spring 2020

Provenance-Enabled Systems

60

[Freire et. al, 2008]

More…

28 COMPUTING IN SCIENCE & ENGINEERING

infrastructures such as the TeraGrid.11 Although
Pegasus models prospective provenance using
OWL, it captures retrospective provenance by
using the Virtual Data System (VDS; a precursor
of Swift) and then stores it in a relational database.
Queries that span prospective and retrospective
provenance must combine two different query
languages: SPARQL and SQL.

REDUX extends the Windows Work!ow
Foundation engine to transparently capture the
work!ow execution trace. As discussed earlier,
it uses a layered provenance model to normalize
data and avoid redundancy. REDUX stores prov-
enance data (both prospective and retrospective)
in a relational database’s set of tables that can be
queried with SQL. The system can also return an
executable work!ow as the result of a provenance
query (for example, a query that requests all the
steps used to derive a particular data product).

Swift (www.ci.uchicago.edu/swift) builds on
and includes technology previously distributed
as the GriPhyN VDS.23 The system combines
a scripting language (SwiftScript) with a power-
ful runtime system for the concise speci"cation
and reliable execution of large, loosely coupled
computations. Swift speci"es these computations
as scripts, which the runtime system translates
into an executable work!ow. A launcher program
invokes the work!ow’s tasks, monitors the exe-
cution process, and records provenance informa-
tion, including the executable name, arguments,
start time, duration, machine information, and
exit status. Similar to VDS, Swift captures the
relationships among data, programs, and com-

putations and uses this information for data and
program discovery as well as for work!ow sched-
uling and optimization.

VisTrails is a work!ow and provenance man-
agement system designed to support exploratory
computational tasks. An important goal of the
VisTrails project is to build intuitive interfaces
for users to query and reuse provenance infor-
mation. Besides its QBE interface (which is built
on top of its specialized provenance query lan-
guage), VisTrails provides a visual interface to
compare work!ows side by side12 and a mecha-
nism for re"ning work!ows by analogy—users
can modify work!ows by example without hav-
ing to directly edit their de"nitions.21 VisTrails
internally represents prospective provenance as
Python objects that can be serialized into XML
and relations; it stores retrospective provenance
in a relational database.

OS-Based Systems
PASS (www.eecs.harvard.edu/syrah/pass) op-
erates at the level of a shared storage system: it
automatically records information about which
programs are executed, their inputs, and any new
"les created as output. The capture mechanism
consists of a set of Linux kernel modules that
transparently record provenance—it doesn’t re-
quire any changes to computational tasks. PASS
also constructs a provenance graph stored as a set
of tables in Berkeley DB. Users can pose prov-
enance queries using nq, a proprietary tool that
supports recursive searches over the provenance
graph. As discussed earlier, the "ne granularity

Table 1. Provenance-enabled systems.

System Capture mechanism Prospective provenance
Retrospective
provenance Work!ow evolution Storage Query support

Available as open
source?

REDUX Work!ow-based Relational Relational No Relational database management
system (RDBMS)

SQL No

Swift Work!ow-based SwiftScript Relational No RDBMS SQL Yes

VisTrails Work!ow-based XML and relational Relational Yes RDBMS and "les Visual query by example, specialized
language

Yes

Karma Work!ow- and
process-based

Business Process Execution
Language

XML No RDBMS Proprietary API Yes

Kepler Work!ow-based MoML MoML variation Under development Files; RDBMS planned Under development Yes

Taverna Work!ow-based Scu! RDF Under development RDBMS SPARQL Yes

Pegasus Work!ow-based OWL Relational No RDBMS SPARQL for metadata and work!ow;
SQL for execution log

Yes

PASS OS-based N/A Relational No Berkeley DB nq (proprietary query tool) No

ES3 OS-based N/A XML No XML database XQuery No

PASOA/PreServ Process-based N/A XML No Filesystem, Berkeley DB XQuery, Java query API Yes

MAY/JUNE 2008 29

of PASS’s capture mechanism often leads to very
large volumes of provenance information; another
limitation of this approach is that it’s restricted to
local !lesystems. It can’t, for example, track !les
in a grid environment.

ES3’s goal is to extract provenance information
from arbitrary applications by monitoring their in-
teractions with the execution environment.6 These
interactions are logged to the ES3 database, which
stores the information as provenance graphs, rep-
resented in XML. ES3 currently supports a Linux
plugin, which uses system call tracing to capture
provenance. As in PASS, ES3 requires no changes
to the underlying processes, but provenance cap-
ture is restricted to applications that run on ES3-
supported environments.

Process-Based Systems
The Provenance-Aware Service Oriented Ar-
chitecture (PASOA) project (www.pasoa.org)
developed a provenance architecture that relies
on individual services to record their own prov-
enance.5 The system doesn’t model the notion of a
work"ow—rather, it captures assertions produced
by services that re"ect the relationships between
the represented services and data. The system
must infer the complete provenance of a task or
data product by combining these assertions and
recursively following the relationships they repre-
sent. The PASOA architecture distinguishes the
notion of process documentation—that is, the prove-
nance recorded speci!cally about a process—from
the notion of a data item’s provenance, which is de-
rived from the process documentation. The PA-

SOA project developed an open source software
package called PreServ that lets developers inte-
grate process documentation recording into their
applications. PreServ also supports multiple back
end storage systems, including !les and relational
databases; users can pose provenance queries by
using its Java-based query API or XQuery.

P rovenance management is a new area,
but it is advancing rapidly. Researchers
are actively pursuing several directions
in this area, including the ability to in-

tegrate provenance derived from different systems
and enhanced analytical and visualization mech-
anisms for exploring provenance information.
Provenance research is also enabling several new
applications, such as science collaboratories, which
have the potential to change the way people do sci-
ence—sharing provenance information at a large
scale exposes researchers to techniques and tools
to which they wouldn’t otherwise have access. By
exploring provenance information in a collabora-
tory, scientists can learn by example, expedite their
scienti!c work, and potentially reduce their time
to insight. The “wisdom of the crowds,” in the
context of scienti!c exploration, can avoid duplica-
tion and encourage continuous, documented, and
reproducible scienti!c progress.24

Acknowledgments
This work was partially supported by the US Nation-
al Science Foundation, the US Department of Energy,
and IBM faculty awards.

Table 1. Provenance-enabled systems.

System Capture mechanism Prospective provenance
Retrospective
provenance Work!ow evolution Storage Query support

Available as open
source?

REDUX Work!ow-based Relational Relational No Relational database management
system (RDBMS)

SQL No

Swift Work!ow-based SwiftScript Relational No RDBMS SQL Yes

VisTrails Work!ow-based XML and relational Relational Yes RDBMS and "les Visual query by example, specialized
language

Yes

Karma Work!ow- and
process-based

Business Process Execution
Language

XML No RDBMS Proprietary API Yes

Kepler Work!ow-based MoML MoML variation Under development Files; RDBMS planned Under development Yes

Taverna Work!ow-based Scu! RDF Under development RDBMS SPARQL Yes

Pegasus Work!ow-based OWL Relational No RDBMS SPARQL for metadata and work!ow;
SQL for execution log

Yes

PASS OS-based N/A Relational No Berkeley DB nq (proprietary query tool) No

ES3 OS-based N/A XML No XML database XQuery No

PASOA/PreServ Process-based N/A XML No Filesystem, Berkeley DB XQuery, Java query API Yes

D. Koop, CSCI 490/680, Spring 2020

Provenance-Enabled Systems

60

[Freire et. al, 2008]

IPython Notebook More…

28 COMPUTING IN SCIENCE & ENGINEERING

infrastructures such as the TeraGrid.11 Although
Pegasus models prospective provenance using
OWL, it captures retrospective provenance by
using the Virtual Data System (VDS; a precursor
of Swift) and then stores it in a relational database.
Queries that span prospective and retrospective
provenance must combine two different query
languages: SPARQL and SQL.

REDUX extends the Windows Work!ow
Foundation engine to transparently capture the
work!ow execution trace. As discussed earlier,
it uses a layered provenance model to normalize
data and avoid redundancy. REDUX stores prov-
enance data (both prospective and retrospective)
in a relational database’s set of tables that can be
queried with SQL. The system can also return an
executable work!ow as the result of a provenance
query (for example, a query that requests all the
steps used to derive a particular data product).

Swift (www.ci.uchicago.edu/swift) builds on
and includes technology previously distributed
as the GriPhyN VDS.23 The system combines
a scripting language (SwiftScript) with a power-
ful runtime system for the concise speci"cation
and reliable execution of large, loosely coupled
computations. Swift speci"es these computations
as scripts, which the runtime system translates
into an executable work!ow. A launcher program
invokes the work!ow’s tasks, monitors the exe-
cution process, and records provenance informa-
tion, including the executable name, arguments,
start time, duration, machine information, and
exit status. Similar to VDS, Swift captures the
relationships among data, programs, and com-

putations and uses this information for data and
program discovery as well as for work!ow sched-
uling and optimization.

VisTrails is a work!ow and provenance man-
agement system designed to support exploratory
computational tasks. An important goal of the
VisTrails project is to build intuitive interfaces
for users to query and reuse provenance infor-
mation. Besides its QBE interface (which is built
on top of its specialized provenance query lan-
guage), VisTrails provides a visual interface to
compare work!ows side by side12 and a mecha-
nism for re"ning work!ows by analogy—users
can modify work!ows by example without hav-
ing to directly edit their de"nitions.21 VisTrails
internally represents prospective provenance as
Python objects that can be serialized into XML
and relations; it stores retrospective provenance
in a relational database.

OS-Based Systems
PASS (www.eecs.harvard.edu/syrah/pass) op-
erates at the level of a shared storage system: it
automatically records information about which
programs are executed, their inputs, and any new
"les created as output. The capture mechanism
consists of a set of Linux kernel modules that
transparently record provenance—it doesn’t re-
quire any changes to computational tasks. PASS
also constructs a provenance graph stored as a set
of tables in Berkeley DB. Users can pose prov-
enance queries using nq, a proprietary tool that
supports recursive searches over the provenance
graph. As discussed earlier, the "ne granularity

Table 1. Provenance-enabled systems.

System Capture mechanism Prospective provenance
Retrospective
provenance Work!ow evolution Storage Query support

Available as open
source?

REDUX Work!ow-based Relational Relational No Relational database management
system (RDBMS)

SQL No

Swift Work!ow-based SwiftScript Relational No RDBMS SQL Yes

VisTrails Work!ow-based XML and relational Relational Yes RDBMS and "les Visual query by example, specialized
language

Yes

Karma Work!ow- and
process-based

Business Process Execution
Language

XML No RDBMS Proprietary API Yes

Kepler Work!ow-based MoML MoML variation Under development Files; RDBMS planned Under development Yes

Taverna Work!ow-based Scu! RDF Under development RDBMS SPARQL Yes

Pegasus Work!ow-based OWL Relational No RDBMS SPARQL for metadata and work!ow;
SQL for execution log

Yes

PASS OS-based N/A Relational No Berkeley DB nq (proprietary query tool) No

ES3 OS-based N/A XML No XML database XQuery No

PASOA/PreServ Process-based N/A XML No Filesystem, Berkeley DB XQuery, Java query API Yes

MAY/JUNE 2008 29

of PASS’s capture mechanism often leads to very
large volumes of provenance information; another
limitation of this approach is that it’s restricted to
local !lesystems. It can’t, for example, track !les
in a grid environment.

ES3’s goal is to extract provenance information
from arbitrary applications by monitoring their in-
teractions with the execution environment.6 These
interactions are logged to the ES3 database, which
stores the information as provenance graphs, rep-
resented in XML. ES3 currently supports a Linux
plugin, which uses system call tracing to capture
provenance. As in PASS, ES3 requires no changes
to the underlying processes, but provenance cap-
ture is restricted to applications that run on ES3-
supported environments.

Process-Based Systems
The Provenance-Aware Service Oriented Ar-
chitecture (PASOA) project (www.pasoa.org)
developed a provenance architecture that relies
on individual services to record their own prov-
enance.5 The system doesn’t model the notion of a
work"ow—rather, it captures assertions produced
by services that re"ect the relationships between
the represented services and data. The system
must infer the complete provenance of a task or
data product by combining these assertions and
recursively following the relationships they repre-
sent. The PASOA architecture distinguishes the
notion of process documentation—that is, the prove-
nance recorded speci!cally about a process—from
the notion of a data item’s provenance, which is de-
rived from the process documentation. The PA-

SOA project developed an open source software
package called PreServ that lets developers inte-
grate process documentation recording into their
applications. PreServ also supports multiple back
end storage systems, including !les and relational
databases; users can pose provenance queries by
using its Java-based query API or XQuery.

P rovenance management is a new area,
but it is advancing rapidly. Researchers
are actively pursuing several directions
in this area, including the ability to in-

tegrate provenance derived from different systems
and enhanced analytical and visualization mech-
anisms for exploring provenance information.
Provenance research is also enabling several new
applications, such as science collaboratories, which
have the potential to change the way people do sci-
ence—sharing provenance information at a large
scale exposes researchers to techniques and tools
to which they wouldn’t otherwise have access. By
exploring provenance information in a collabora-
tory, scientists can learn by example, expedite their
scienti!c work, and potentially reduce their time
to insight. The “wisdom of the crowds,” in the
context of scienti!c exploration, can avoid duplica-
tion and encourage continuous, documented, and
reproducible scienti!c progress.24

Acknowledgments
This work was partially supported by the US Nation-
al Science Foundation, the US Department of Energy,
and IBM faculty awards.

Table 1. Provenance-enabled systems.

System Capture mechanism Prospective provenance
Retrospective
provenance Work!ow evolution Storage Query support

Available as open
source?

REDUX Work!ow-based Relational Relational No Relational database management
system (RDBMS)

SQL No

Swift Work!ow-based SwiftScript Relational No RDBMS SQL Yes

VisTrails Work!ow-based XML and relational Relational Yes RDBMS and "les Visual query by example, specialized
language

Yes

Karma Work!ow- and
process-based

Business Process Execution
Language

XML No RDBMS Proprietary API Yes

Kepler Work!ow-based MoML MoML variation Under development Files; RDBMS planned Under development Yes

Taverna Work!ow-based Scu! RDF Under development RDBMS SPARQL Yes

Pegasus Work!ow-based OWL Relational No RDBMS SPARQL for metadata and work!ow;
SQL for execution log

Yes

PASS OS-based N/A Relational No Berkeley DB nq (proprietary query tool) No

ES3 OS-based N/A XML No XML database XQuery No

PASOA/PreServ Process-based N/A XML No Filesystem, Berkeley DB XQuery, Java query API Yes

