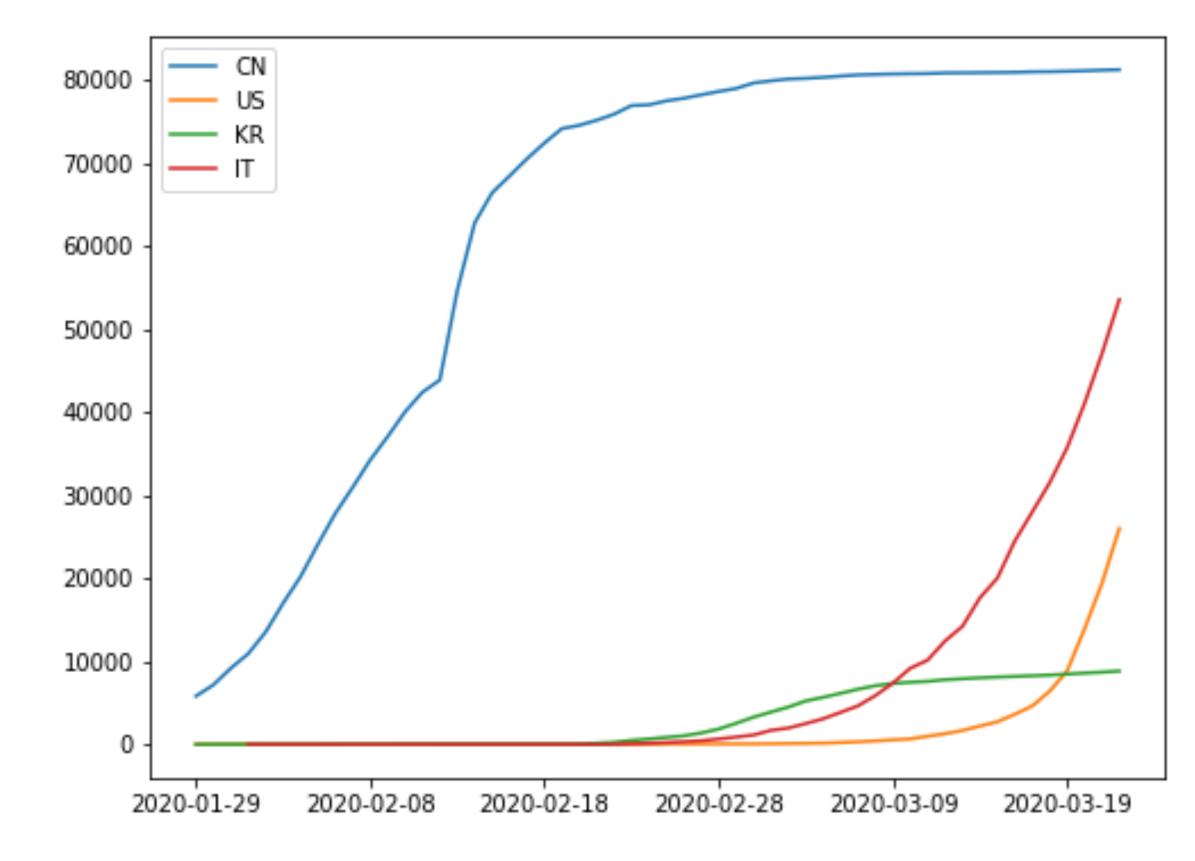
Advanced Data Management (CSCI 490/680)

Time Series Data

Dr. David Koop

<u>Assignment 4</u>



D. Koop, CSCI 490/680, Spring 2020

- COVID-19 data
- Data Integration
 - Population
 - Temperature
- Data Fusion:
 - Our World in Data
 - Johns Hopkins
 - Wikipedia
- Questions?

2

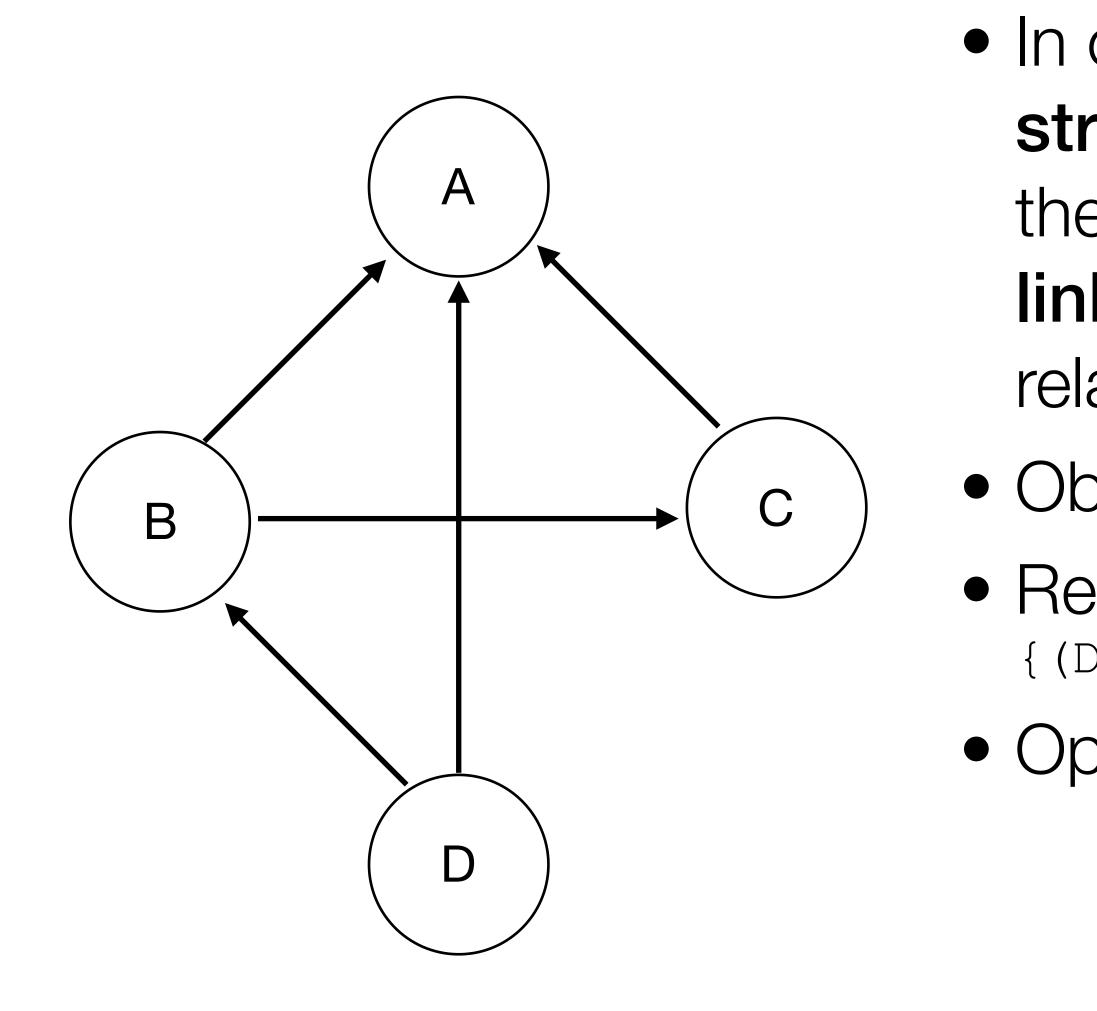
Test 2

- Information
- Online on Blackboard (webcourses.niu.edu)
- Thursday, April 9 from 3:30-4:45pm
- If you have conflicts, let me know as soon as possible
- Format:
 - Some multiple choice
 - More short answer/free response
- Focus on topics since the first test

D. Koop, CSCI 490/680, Spring 2020

3

Graphs



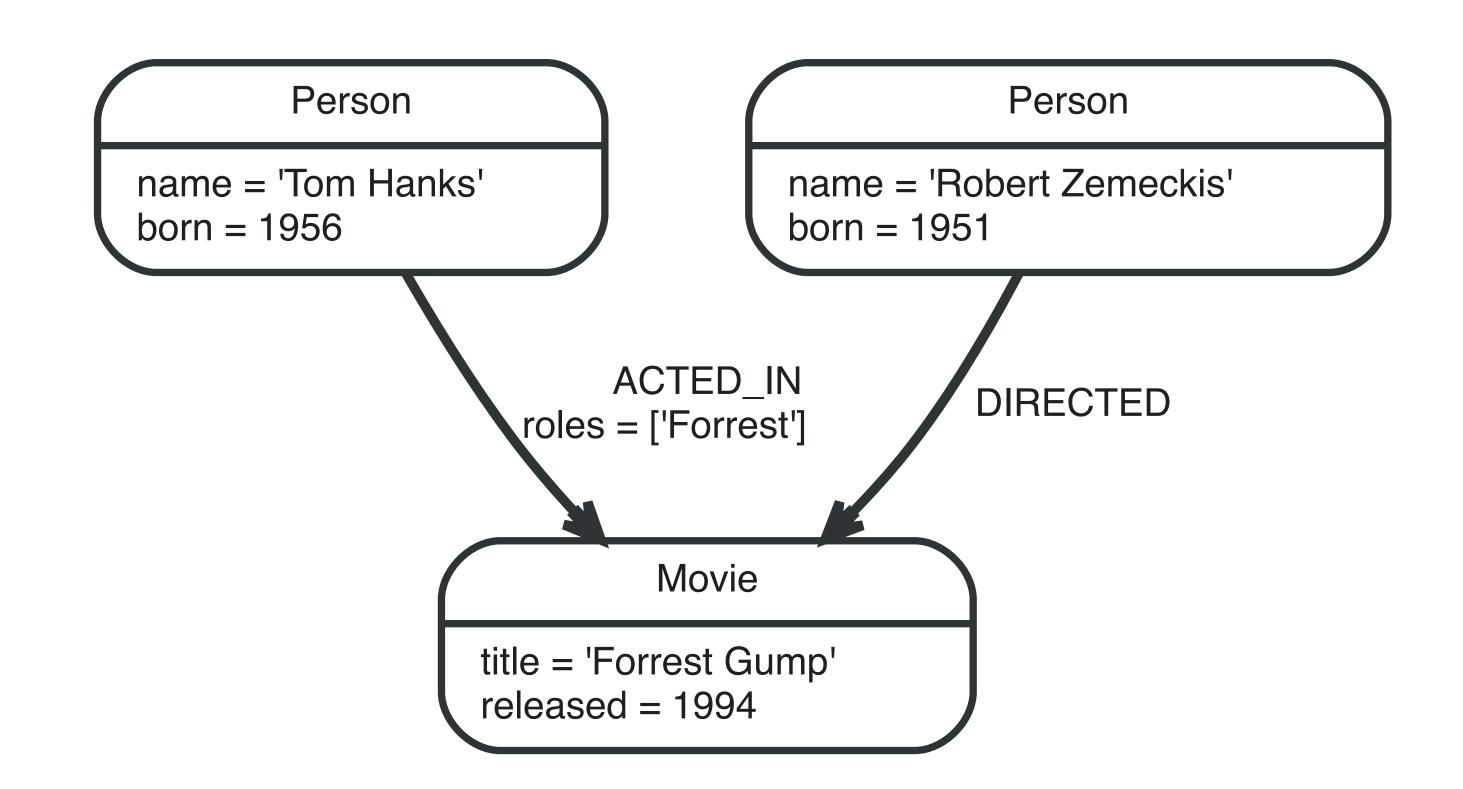
D. Koop, CSCI 490/680, Spring 2020

• In computing, a graph is an abstract data structure that represents set objects and their relationships as vertices and edges/ links, and supports a number of graphrelated operations

- Objects (nodes): {A, B, C, D}
- Relationships (edges): $\{(D,B), (D,A), (B,C), (B,A), (C,A)\}$
- Operation: shortest path from D to A

Graphs with Properties

- Each vertex or edge may have properties associated with it
- May include identifiers or classes



What is a Graph Database?

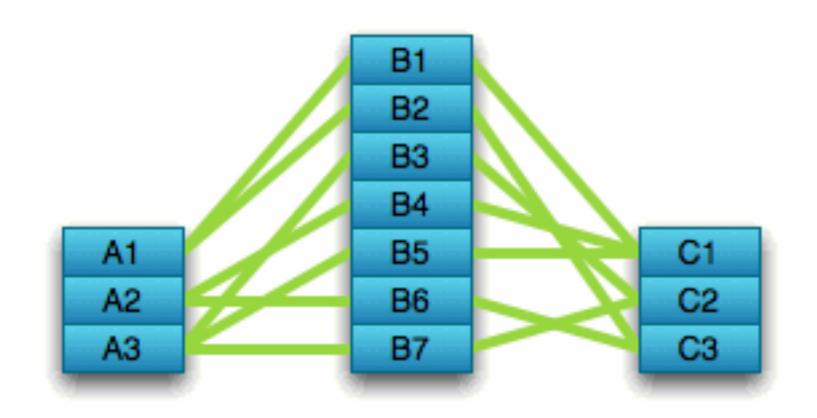
- A database with an explicit graph structure
- Each node knows its adjacent nodes
- the same
- Plus an Index for lookups

D. Koop, CSCI 490/680, Spring 2020

• As the number of nodes increases, the cost of a local step (or hop) remains

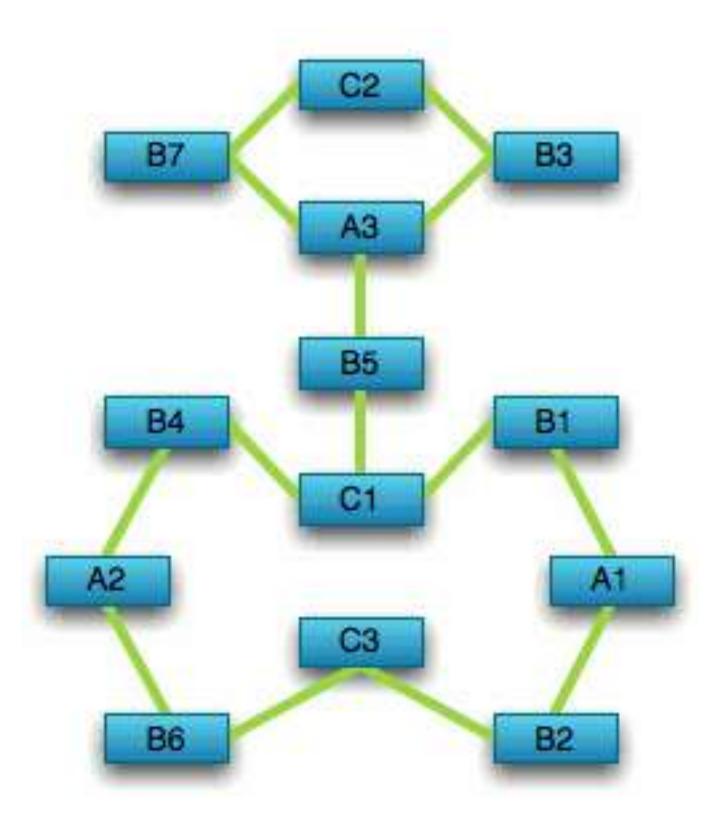
Graph Databases Compared to Relational Databases

Optimized for aggregation



D. Koop, CSCI 490/680, Spring 2020

Optimized for connections

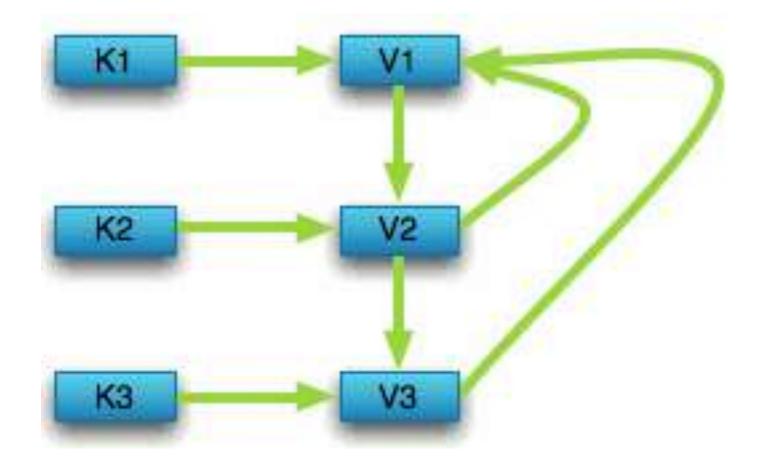


Graph Databases Compared to Key-Value Stores

Optimized for simple look-ups

D. Koop, CSCI 490/680, Spring 2020

Optimized for traversing connected data





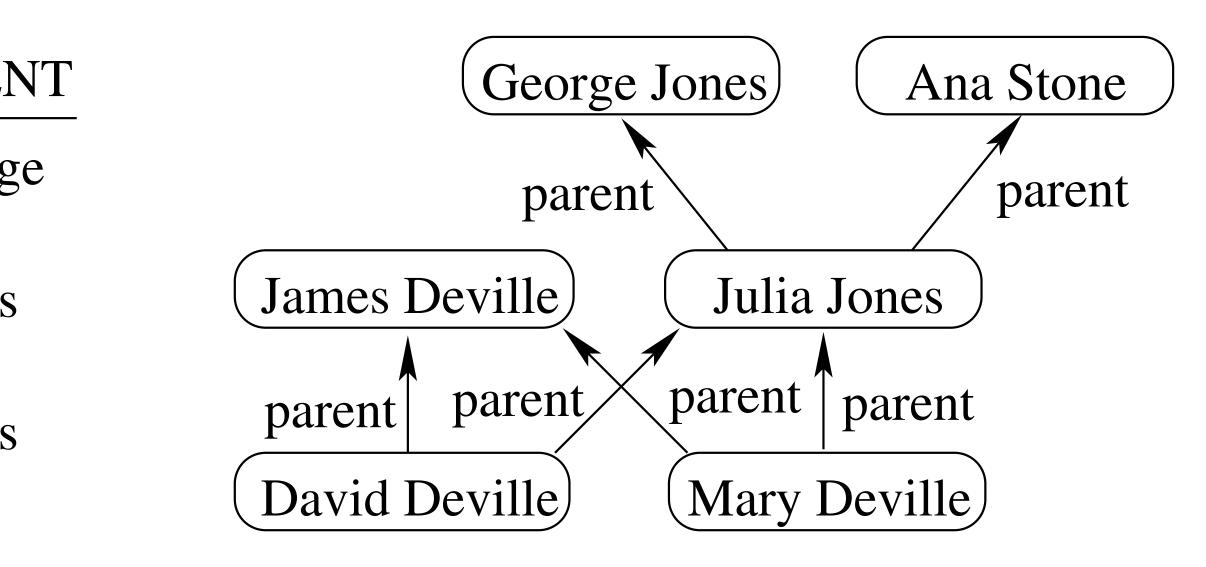
Storing and Traversing Graphs

- Storage:
 - Adjacency List: nodes store their neighbors
 - Incidence List: nodes store edges and edges store incident nodes
 - Adjacency Matrix: adjacency list in matrix form (rows & cols are nodes)
 - Incidence Matrix: rows are vertices, columns are edges
- Traversal:
 - Breadth-first Search
 - Depth-first Search

Graph Models: Relational Model

			I
NAME	LASTNAME	PERSON	PAREN
George	Jones	Julia	Georg
Ana	Stone	Julia	Ana
Julia	Jones	David	James
James	Deville	David	Julia
David	Deville	Mary	James
Mary	Deville	Mary	Julia
			-

D. Koop, CSCI 490/680, Spring 2020

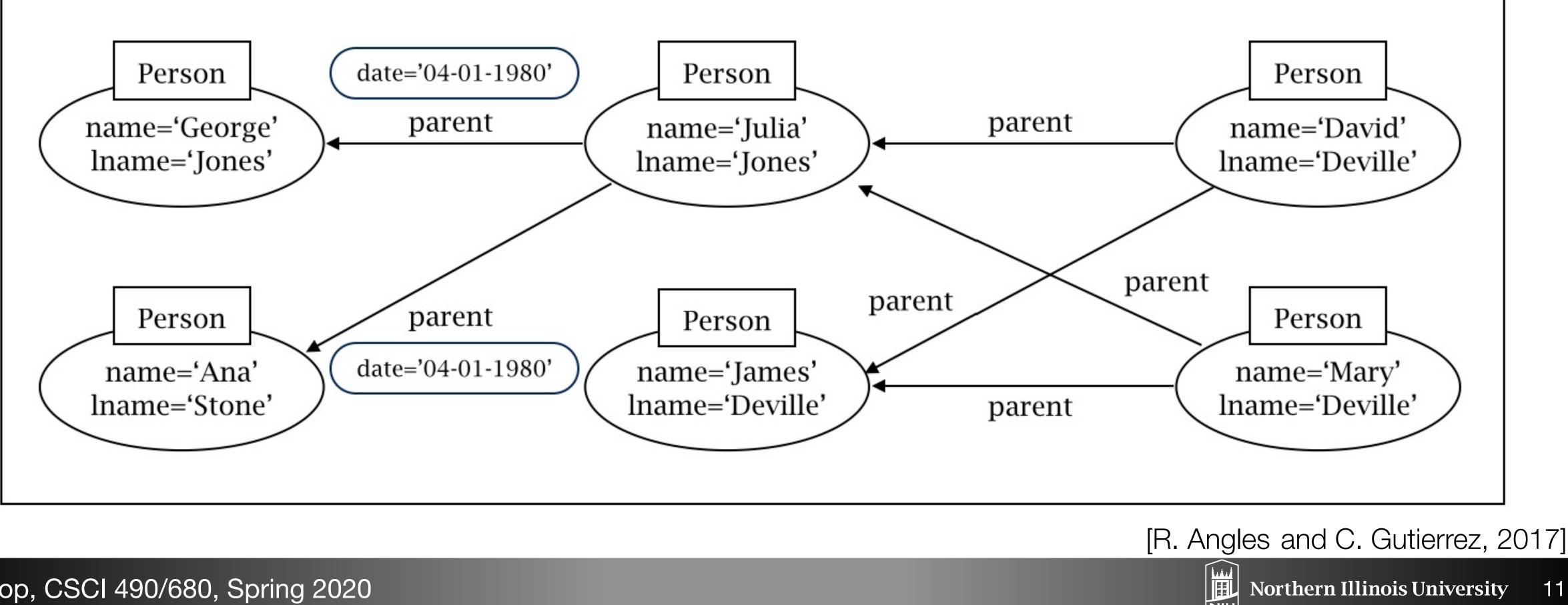


[R. Angles and C. Gutierrez, 2017]

Northern Illinois University

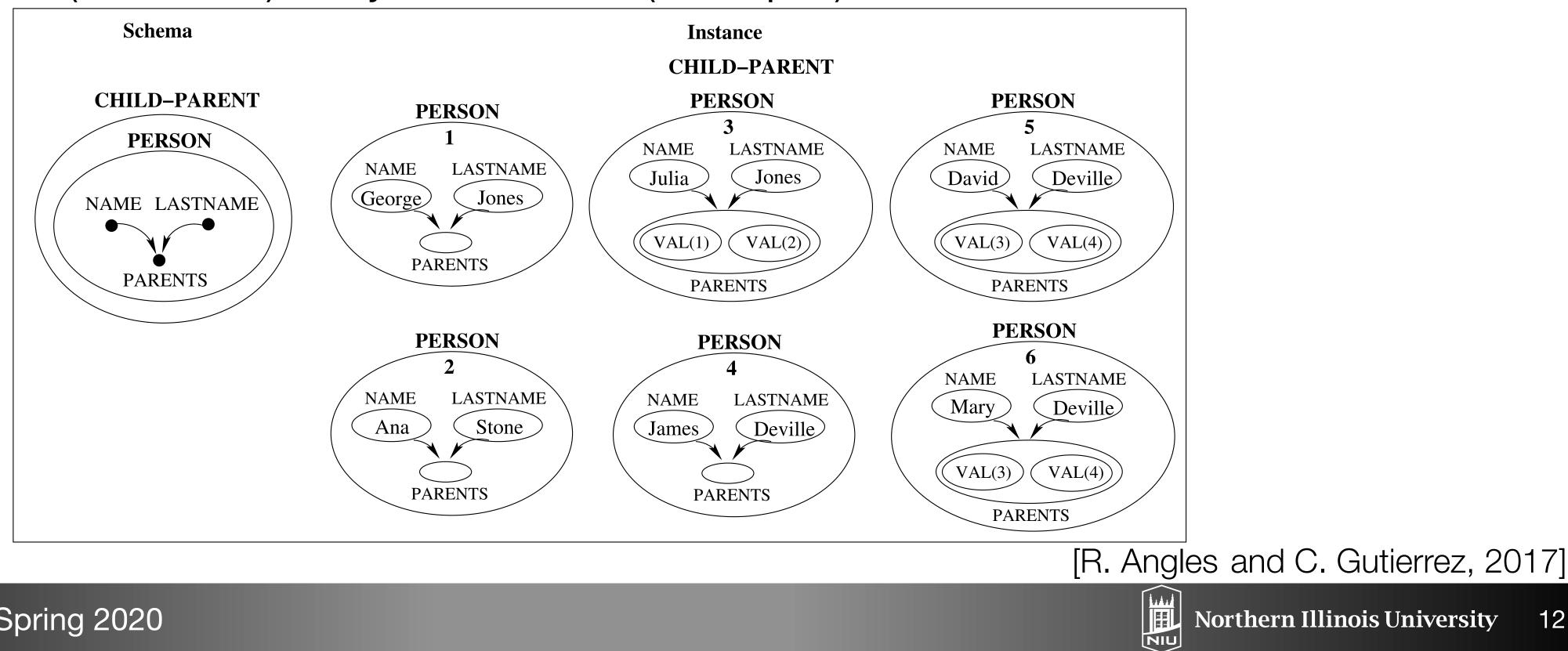
Property Graph Model (Cypher in neo4j)

- Directed, labelled, attributed multigraph
- Properties are key/value pairs that represent metadata for nodes and edges



Hypergraph Model (Groovy)

- nodes
- dependencies (directed), object-ID and (multiple) structural inheritance



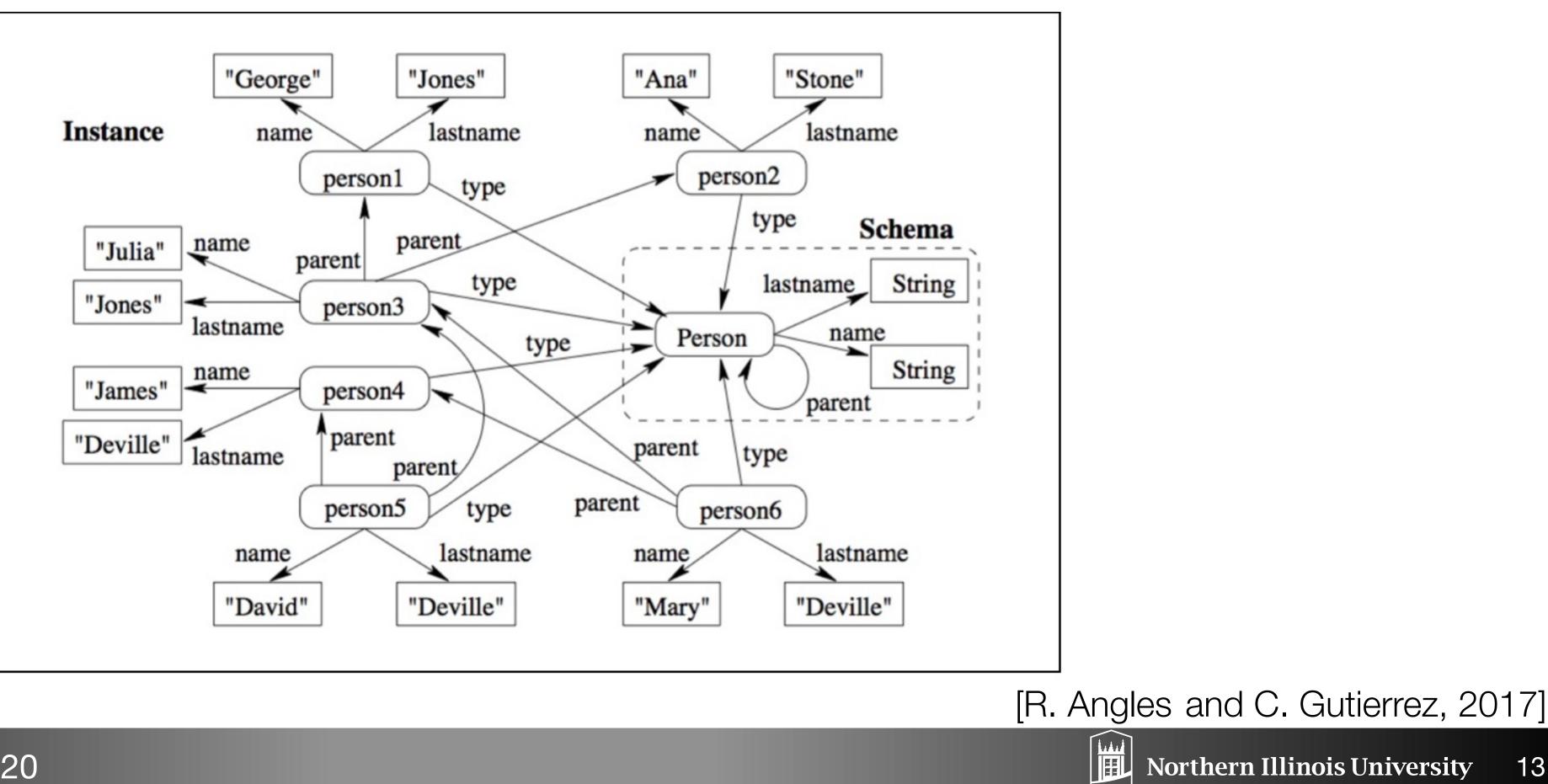
D. Koop, CSCI 490/680, Spring 2020

• Notion of edge is extended to hyperedge, which relates an arbitrary set of

• Hypergraphs allow the definition of complex objects (undirected), functional

RDF (Triple) Model

- Schema and instance are mixed together
- SPAQL to query
- Semantic web



D. Koop, CSCI 490/680, Spring 2020

Interconnect resources in an extensible way using graph-like structure for data

Graph Query Languages: Cypher

- Implemented by neo4j system
- Expresses reachability queries via path expressions
- p = (a) [:knows*] -> (b): nodes from a to b following knows edges • START x=node:person(name="John")
- MATCH $(x) [:friend] \rightarrow (y)$ RETURN y.name

D. Koop, CSCI 490/680, Spring 2020

Northern Illinois University

Graph Query Languages: SPARQL (RDF)

- Uses SELECT-FROM-WHERE pattern like SQL
- SELECT ?N
 FROM <http://example.org/data.rdf>
 WHERE { ?X rdf:type voc:Person . ?X voc:name ?N }

D. Koop, CSCI 490/680, Spring 2020

Northern Illinois University

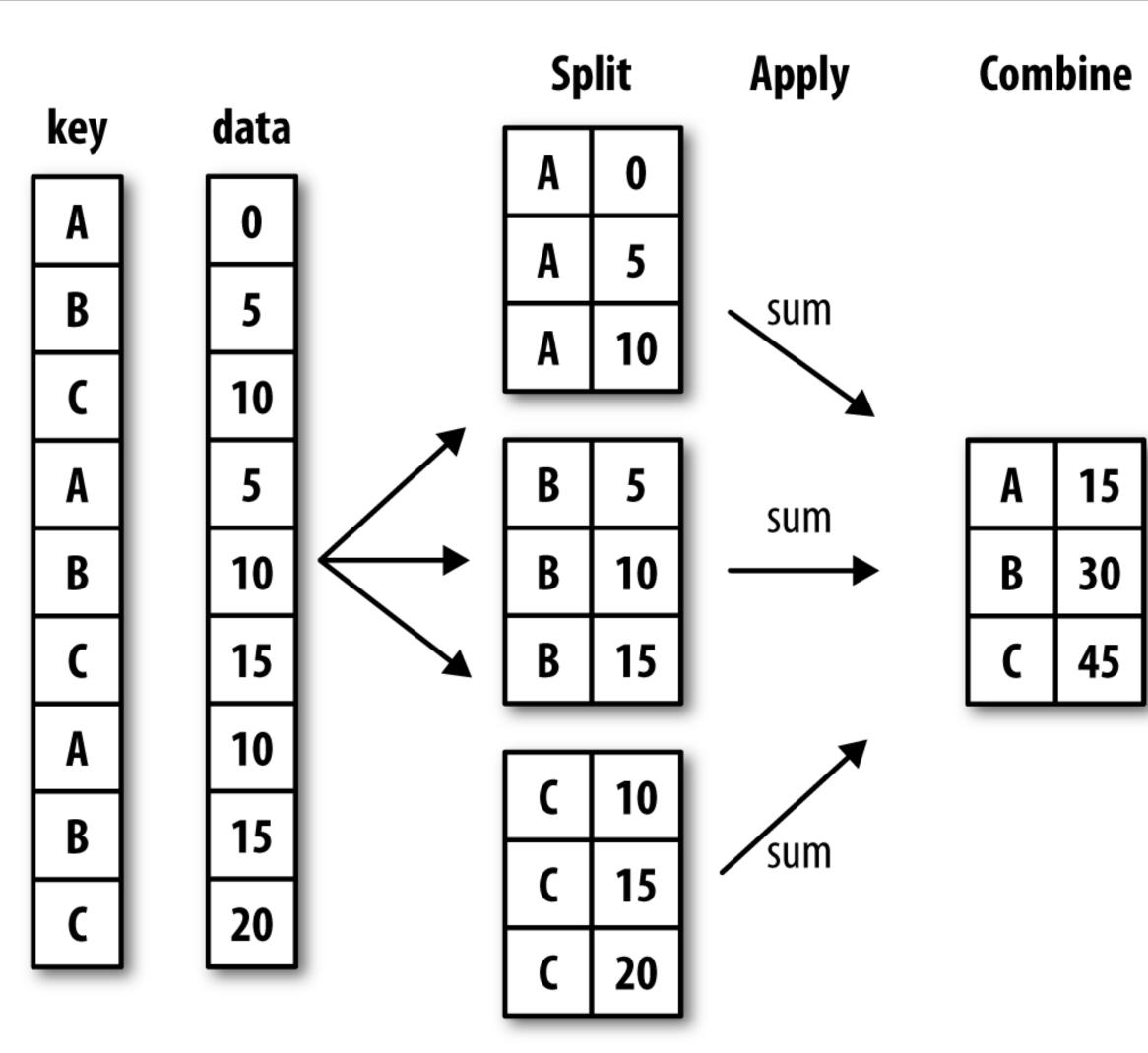
D. Koop, CSCI 490/680, Spring 2020

Aggregation

Split-Apply-Combine

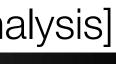
- Coined by H. Wickham, 2011
- Similar to Map (split+apply) Reduce (combine) paradigm
- The Pattern:
 - 1. Split the data by some grouping variable
 - 2. Apply some function to each group independently
 - 3. Combine the data into some output dataset
- The apply step is usually one of :
 - Aggregate
 - Transform
 - Filter

Split-Apply-Combine



D. Koop, CSCI 490/680, Spring 2020

[W. McKinney, Python for Data Analysis]



Splitting by Variables

name	age	sex
John	13	Male
Mary	15	Female
Alice	14	Female
Peter	13	Male
Roger	14	Male
Phyllis	13	Female

name	age	sex
John	13	Male
Peter	13	Male
Roger	14	Male

name	age	sex
Mary	15	Female
Alice	14	Female
Phyllis	13	Female

D. Koop, CSCI 490/680, Spring 2020

.(sex)

name	age	sex
John	13	Male
Peter	13	Male
Phyllis	13	Female

.(age)

name	age	sex
Alice	14	Female
Roger	14	Male

name	age	sex
Mary	15	Female

Apply+Combine: Counting

.(sex)

.(age)

sex	value
Male	3
Female	3

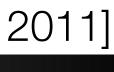
age	
13	
14	
15	

D. Koop, CSCI 490/680, Spring 2020

.(sex, age)

value	sex	age	value
3	Male	13	2
2	Male	14	1
1	Female	13	1
	Female	14	1
	Female	15	1

[H. Wickham, 2011]



In Pandas

- groupby method creates a GroupBy object
- groupby doesn't actually compute anything until there is an apply/aggregate step or we wish to examine the groups
- Choose keys (columns) to group by
- size() is the count of each group

Aggregation

- Operations:
 - count()
 - mean()
 - sum()
- May also wish to aggregate only certain subsets
 - Use square brackets with column names
- Can also write your own functions for aggregation and pass then to aggregation function
 - def peak to peak(arr): return arr.max() - arr.min() grouped.agg(peak to peak)

Optimized groupby methods

Function name	Description	
count	Number of non-NA	
SUM	Sum of non-NA val	
mean	Mean of non-NA va	
median	Arithmetic median	
std, var	Unbiased (n — 1 de	
min, max	Minimum and max	
prod	Product of non-NA	
first, last	First and last non-N	

- A values in the group
- ues
- alues
- of non-NA values
- enominator) standard deviation and variance
- ximum of non-NA values
- values
- NA values

[W. McKinney, Python for Data Analysis]

Iterating over groups

- for name, group in df.groupby('key1'): print (name) print(group)
- Can also .describe() groups

Apply: Generalized methods

-	4]: def top	•	-		<mark>ip_pct'</mark> (by=colu	•]	
	<pre>[5]: top(tip</pre>	s, n= <mark>6</mark>))					
Out[7	-	tio (smokos	dav	+; ~~	ci 70	tip pc	+
100	total_bill			-				
109	14.31				Dinner		0.27952	
183		6.50			Dinner			
232		3.39						
67		1.00			Dinner			
178		4.00			Dinner		0.41666	
172	1.25	5.15	Yes	Sun	Dinner	Z	0.71034	5
Out[7	tota	l_bill		smoker		time	size	tip_pct
smoke				NL	.	Luc ab	2	0 226746
No	88	24.71	5.85	No		Lunch	2	0.236746
	185	20.69	5.00	No		Dinner	5	0.241663
	51	10.29	2.60	No	_	Dinner	2	0.252672
	149	7.51	2.00	No		Lunch	2	0.266312
	232	11.61	3.39	No		Dinner	2	0.291990
Yes	109	14.31	4.00	Yes		Dinner	2	0.279525
	183	23.17	6.50	Yes		Dinner	4	0.280535
	67	3.07	1.00	Yes		Dinner	1	0.325733
	178	9.60	4.00	Yes		Dinner	2	0.416667
	172	7.25	5.15	Yes	s Sun	Dinner	2	0.710345

size	tip_pct
2	0.279525
4	0.280535
2	0.291990
1	0.325733
2	0.416667
2	0.710345

- tips.groupby('smoker').apply(top)
- Function is an **argument**
- Function applied on each row group
- All row groups glued together using concat

Types of GroupBy

- Aggregation: agg
 - n:1 n group values become one value
 - Examples: mean, min, median
- Apply: apply
 - n:m n group values become m values
 - Most general (could do aggregation or transform with apply)
 - Example: top 5 in each group, filter
- Transform: transform
 - n:n n group values become n values
 - Cannot mutate the input

D. Koop, CSCI 490/680, Spring 2020

27

Transform Example

	[76]						
Out[76]:							
	key	value					
0	а	0.0					
1	b	1.0					
2	С	2.0					
3	а	3.0					
4	b	4.0					
5	С	5.0					
6	а	6.0					
7	b	7.0					
8	С	8.0					
9	а	9.0					
10	b	10.0					
11	С	11.0					

D. Koop, CSCI 490/680, Spring 2020

```
In [77]: g = df.groupby('key').value
In [78]: g.mean()
Out[78]:
key
     4.5
а
     5.5
b
     6.5
С
Name: value, dtype: float64
In [79]: g.transform(lambda x: x.mean())
Out[79]:
      4.5
0
      5.5
1
     6.5
2
     4.5
3
      5.5
4
     6.5
5
      4.5
6
      5.5
7
     6.5
8
      4.5
9
      5.5
10
11 6.5
Name: value, dtype: float64
```

[W. McKinney, Python for Data Analysis]

Transform Example

	[76]						
Out[76]:							
	key	value					
0	а	0.0					
1	b	1.0					
2	С	2.0					
3	а	3.0					
4	b	4.0					
5	С	5.0					
6	а	6.0					
7	b	7.0					
8	С	8.0					
9	а	9.0					
10	b	10.0					
11	С	11.0					

D. Koop, CSCI 490/680, Spring 2020

```
In [77]: g = df.groupby('key').value
In [78]: g.mean()
Out[78]:
key
    4.5
а
    5.5
b
    6.5
С
Name: value, dtype: float64
In [79]: g.transform(lambda x: x.mean())
Out[79]:
     4.5
0
              Of g.transform('mean')
     5.5
1
     6.5
2
     4.5
3
     5.5
4
     6.5
5
     4.5
6
     5.5
7
     6.5
8
     4.5
9
10
     5.5
11 6.5
Name: value, dtype: float64
```

[W. McKinney, Python for Data Analysis]

Normalization

```
def normalize(x):
    return (x - x.mean()) / x.std()
In [84]: g.transform(normalize)
Out[84]:
     -1.161895
0
     -1.161895
1
2
     -1.161895
3
     -0.387298
     -0.387298
4
     -0.387298
5
      0.387298
6
7
      0.387298
      0.387298
8
      1.161895
9
     1.161895
10
11
      1.161895
Name: value, dtype: float64
```

```
In [85]: g.apply(normalize)
Out[85]:
     -1.161895
0
     -1.161895
1
     -1.161895
2
     -0.387298
3
     -0.387298
4
5
     -0.387298
      0.387298
6
      0.387298
7
      0.387298
8
      1.161895
9
      1.161895
10
11
      1.161895
Name: value, dtype: float64
```


Normalization

```
def normalize(x):
    return (x - x.mean()) / x.std()
In [84]: g.transform(normalize)
Out[84]:
     -1.161895
0
     -1.161895
1
     -1.161895
2
3
     -0.387298
     -0.387298
4
     -0.387298
5
      0.387298
6
      0.387298
      0.387298
8
      1.161895
9
10
      1.161895
11
      1.161895
Name: value, dtype: float64
```

In [87]: normalized = (df['value'] - g.transform('mean')) / g.transform('std')

Fastest: "Unwrapped" group operation

D. Koop, CSCI 490/680, Spring 2020

```
In [85]: g.apply(normalize)
Out[85]:
     -1.161895
0
     -1.161895
     -1.161895
2
     -0.387298
3
     -0.387298
4
5
     -0.387298
      0.387298
6
      0.387298
      0.387298
8
      1.161895
9
      1.161895
10
11
      1.161895
Name: value, dtype: float64
```


Northern Illinois University

Other Operations

- Quantiles: return values at particular splits
 - Median is a 0.5-quantile
 - df.quantile(0.1)
 - also works on groups
- Can return data from group-by without having the keys in the index (as index=False) Or USE reset index after computing
- Grouped weighted average via apply

Pivot Tables

- Data summarization tool in many spreadsheet programs
- Aggregates a table of data by one or more keys with some keys arranged on rows (index), others as columns (columns)
- Pandas supports via pivot table method
- margins=True gives partial totals
- Can use different aggregation functions via aggfunc kwarg

Function name	Description
values	Column name or names to aggregate. By default aggregates a
rows	Column names or other group keys to group on the rows of the
cols	Column names or other group keys to group on the columns o
aggfunc	Aggregation function or list of functions; 'mean' by default. C
fill_value	Replace missing values in result table
margins	Add row/column subtotals and grand total, False by default

D. Koop, CSCI 490/680, Spring 2020

- all numeric columns
- he resulting pivot table
- of the resulting pivot table
- Can be any function valid in a groupby context

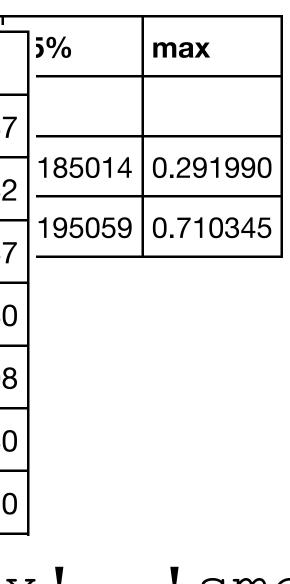
[W. McKinney, Python for Data Analysis]

can also unstack this series into a dataframe • tipesult.unstack()

	total_bill	tip	sex	smoker	day	time	size	tip_pct
0	16.99	1.01	Female	No	Sun	Dinner	2	0.059447
1	10.34	1.66	Male	No	Sun	Dinner	3	0.160542
2	21.01	3.50	Male	No	Sun	Dinner	3	0.166587
3	23.68	3.31	Male	No	Sun	Dinner	2	0.139780
4	24.59	3.61	Female	No	Sun	Dinner	4	0.146808
5	25.29	4.71	Male	No	Sun	Dinner	4	0.186240
6	8.77	2.00		No	Sun	Dinner	2	0.228050
			- <u>-</u>					

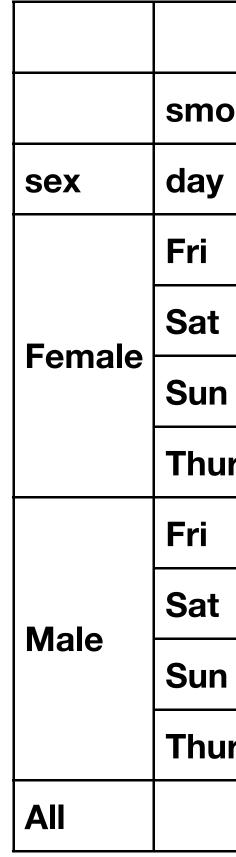
ips_pivot_table(index=['sex', 'smoker'])

		size	tip	tip_pct	total_bill
sex	smoker				
Fomolo	No	2.592593	2.773519	0.156921	18.105185
Female	Yes	2.242424	2.931515	0.182150	17.977879
Male	No	2.711340	3.113402	0.160669	19.791237
wate	Yes	2.500000	3.051167	0.152771	22.284500



Pivot Tables with Margins and Aggfunc

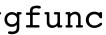
• tips.pivot table(['size'], index=['sex', 'day'], columns='smoker', aggfup.Givot Sume([/simargieR-S-Fruge)], columns='smoker', aggfunc



D. Koop, CSCI 490/680, Spring 2020

	size		
oker	Νο	Yes	All
	2.0	7.0	9.0
	13.0	15.0	28.0
	14.0	4.0	18.0
r	25.0	7.0	32.0
	2.0	8.0	10.0
	32.0	27.0	59.0
	43.0	15.0	58.0
r	20.0	10.0	30.0
	151.0	93.0	244.0

tips.pivot table('size', index=['time', 'sex',



smoker]

NIU

Crosstabs

• crosstab is a special case for group frequencies (aggfunc='count')

In [293]: pd.o	crosstab(da	ta.Ge
Out[293]:		
Handedness Le	eft-handed	Righ
Gender		
Female	1	
Male	2	
A11	3	

- Tipping example
- Also see the Federal Election Database example in the book

- ender, data.Handedness, margins=True)
- it-handed All
 - 4535 10

Crosstabs

margins=True)

fill value=0) sm

D.	Koop,	CSCI	490/680,	Spring	2020
----	-------	------	----------	--------	------

day time

• pd.crosstab([tips.timed.crosspap([dips.time.trips.days]moilee.rmoker, margins=True)

oker	No	Yes	AII
/			
	3	9	12
	45	42	87
า	57	19	76
Jr	1	0	1
	1	6	7
Jr	44	17	61
	151	93	244

• Or... tips.pivot_table('#ton mindords the ising xpivot_table ', 'day'], # doesn't-matter what the data (first argument) is Columns=['smoker'], aggs lange table ('Hotal_bima, index a Stime Deday'], columns=['smoker

oker	No	Yes	All	
/				

Time Series Data

What is time series data?

- Technically, it's normal tabular data with a timestamp attached
- This allows more analysis
- Example: Web site database that tracks the last time a user logged in

 - 2: Add a new row with login information every time the user logs in
 - Option 2 takes more storage, but we can also do a lot more analysis!

But... we have observations of the same values over time, usually in order

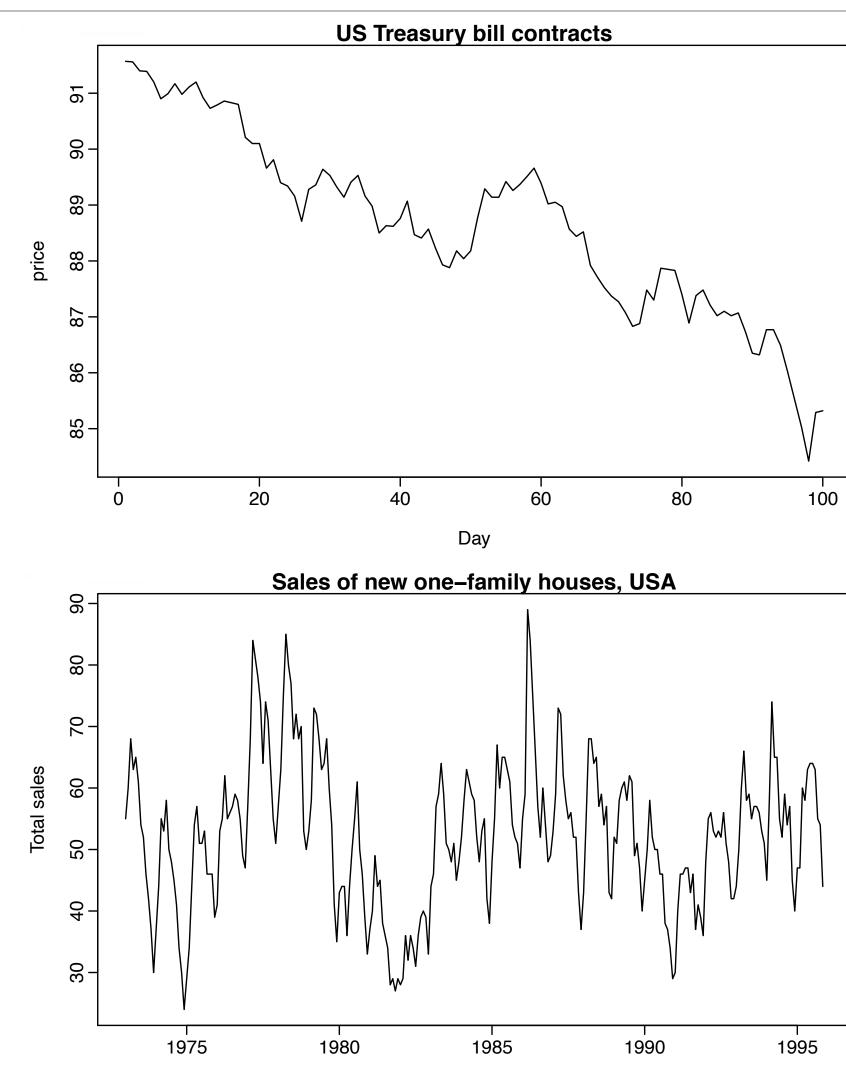
- 1: Keep an attribute lastLogin that is overwritten every time user logs in

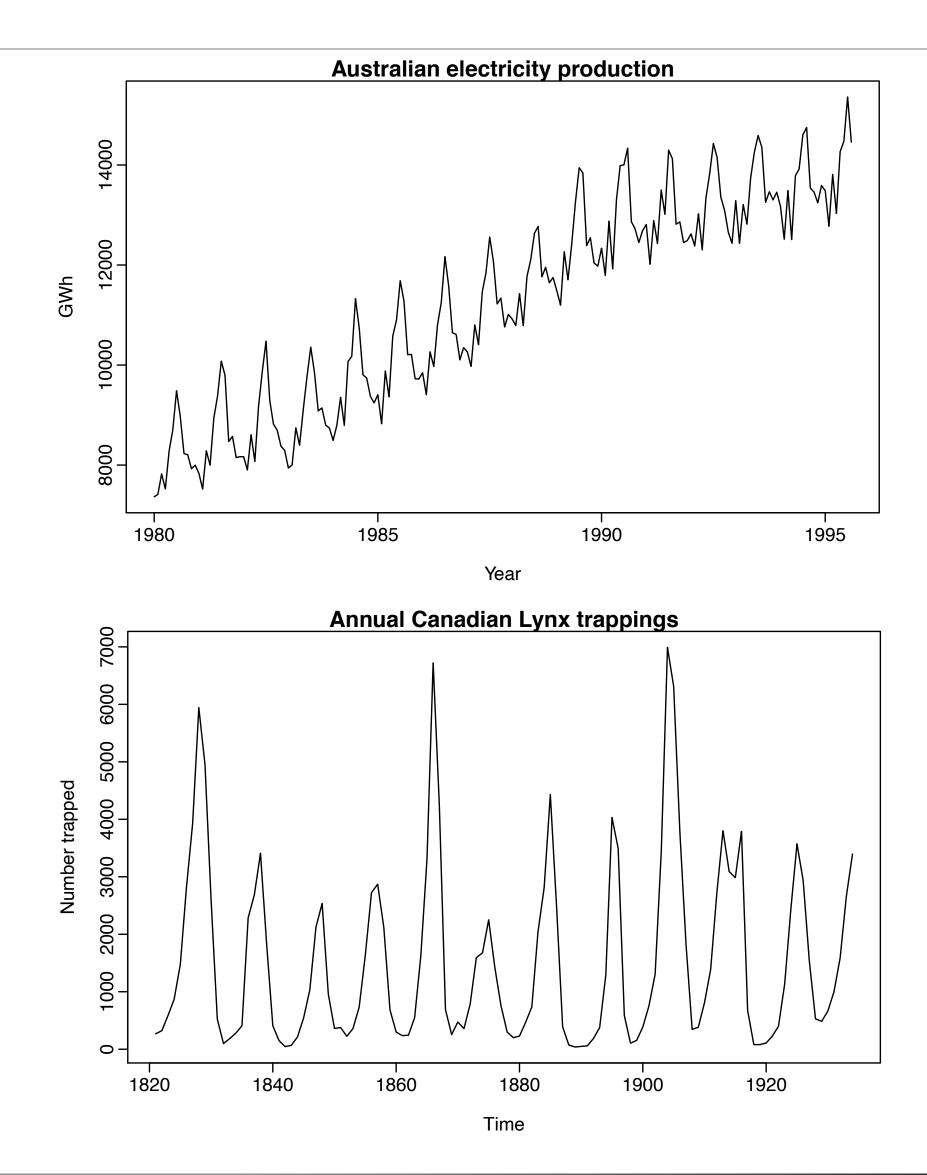
Time Series Databases

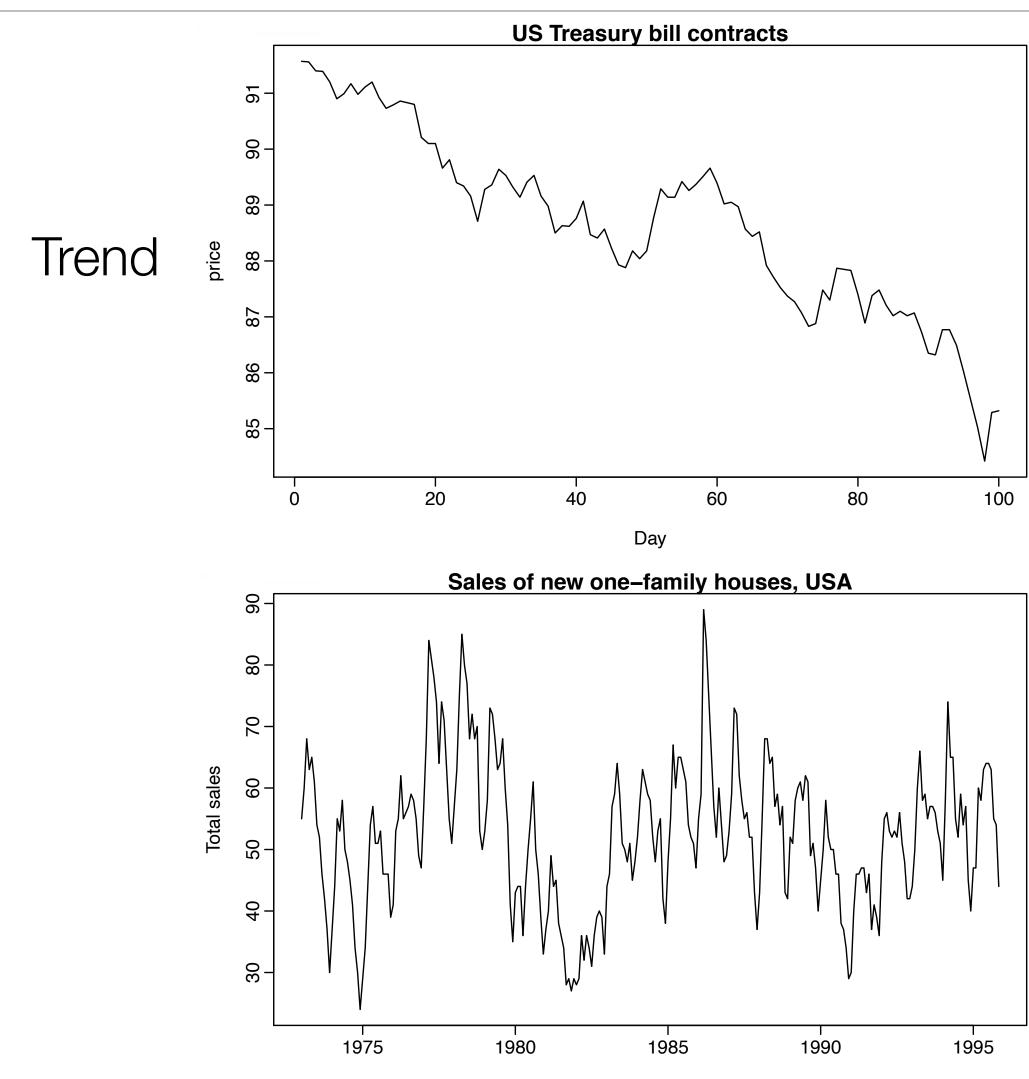
- Most time series data is heavy inserts, few updates
- Also analysis tends to be on ordered data with trends, prediction, etc.
- Can also consider stream processing
- Focus on time series allows databases to specialize
- Examples:
 - InfluxDB (noSQL)
 - TimescaleDB (SQL-based)

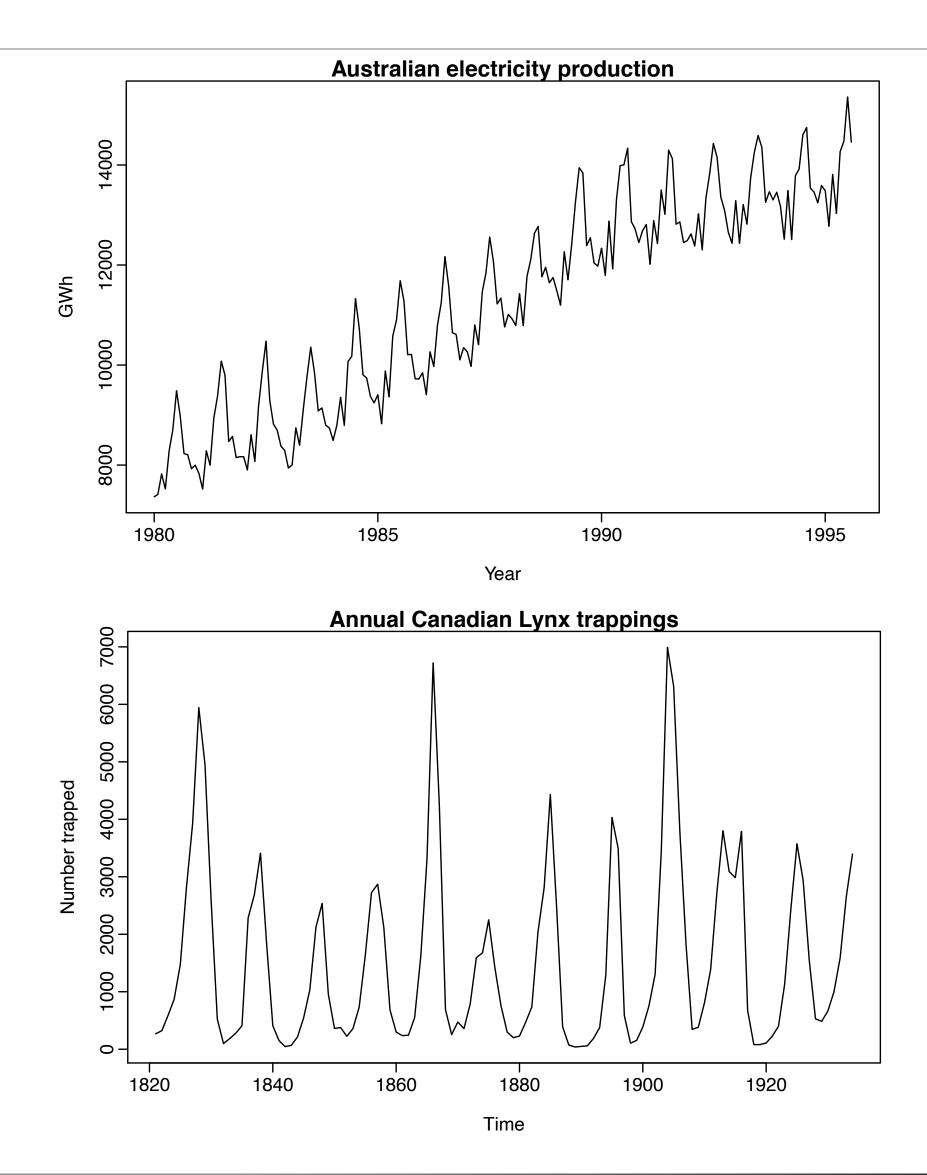
Features of Time Series Data

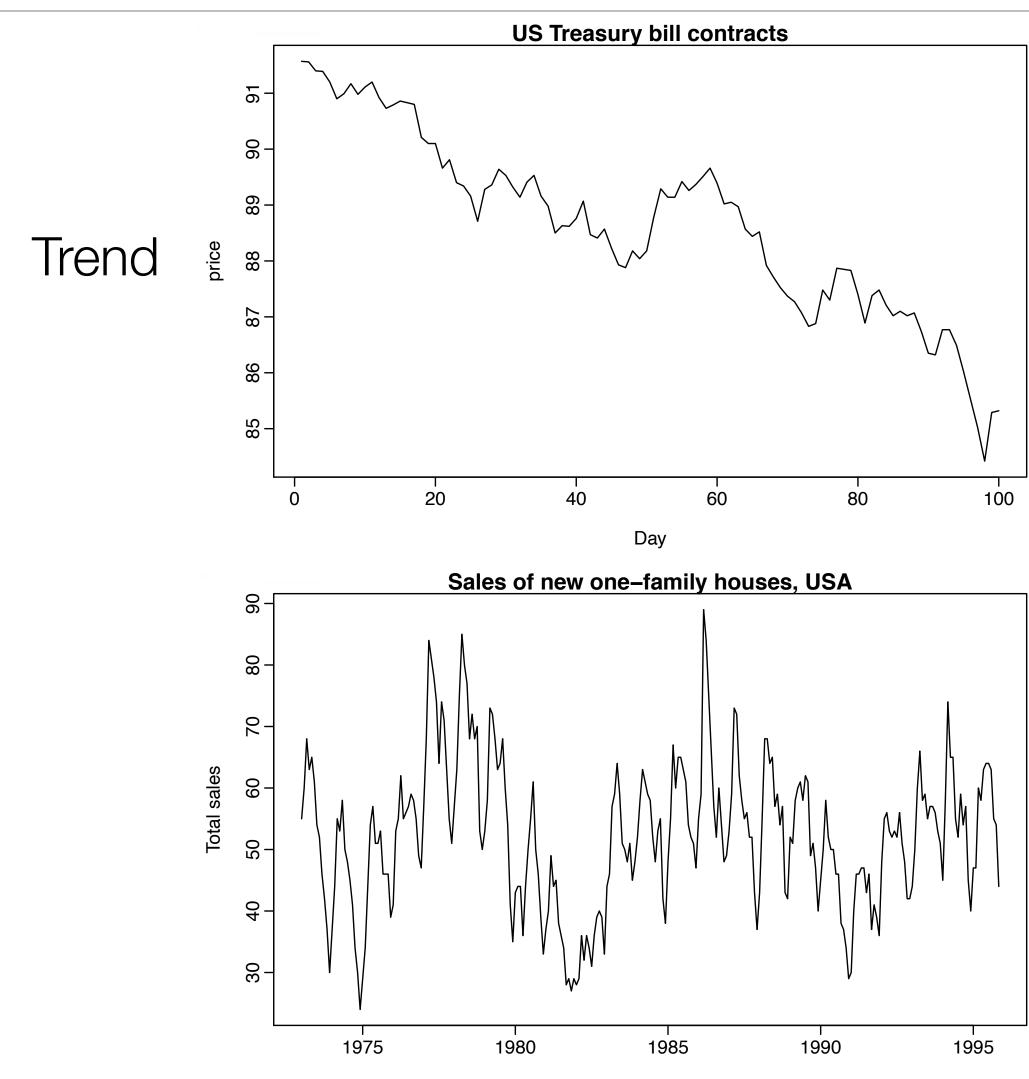
- Trend: long-term increase or decrease in the data
- Seasonal Pattern: time series is affected by seasonal factors such as the time of the year or the day of the week (fixed and of known frequency)
- Cyclic Pattern: rises and falls that are not of a fixed frequency
- Stationary: no predictable patterns (roughly horizontal with constant variance)
 - White noise series is stationary
 - Will look the basically the same whenever you observe it

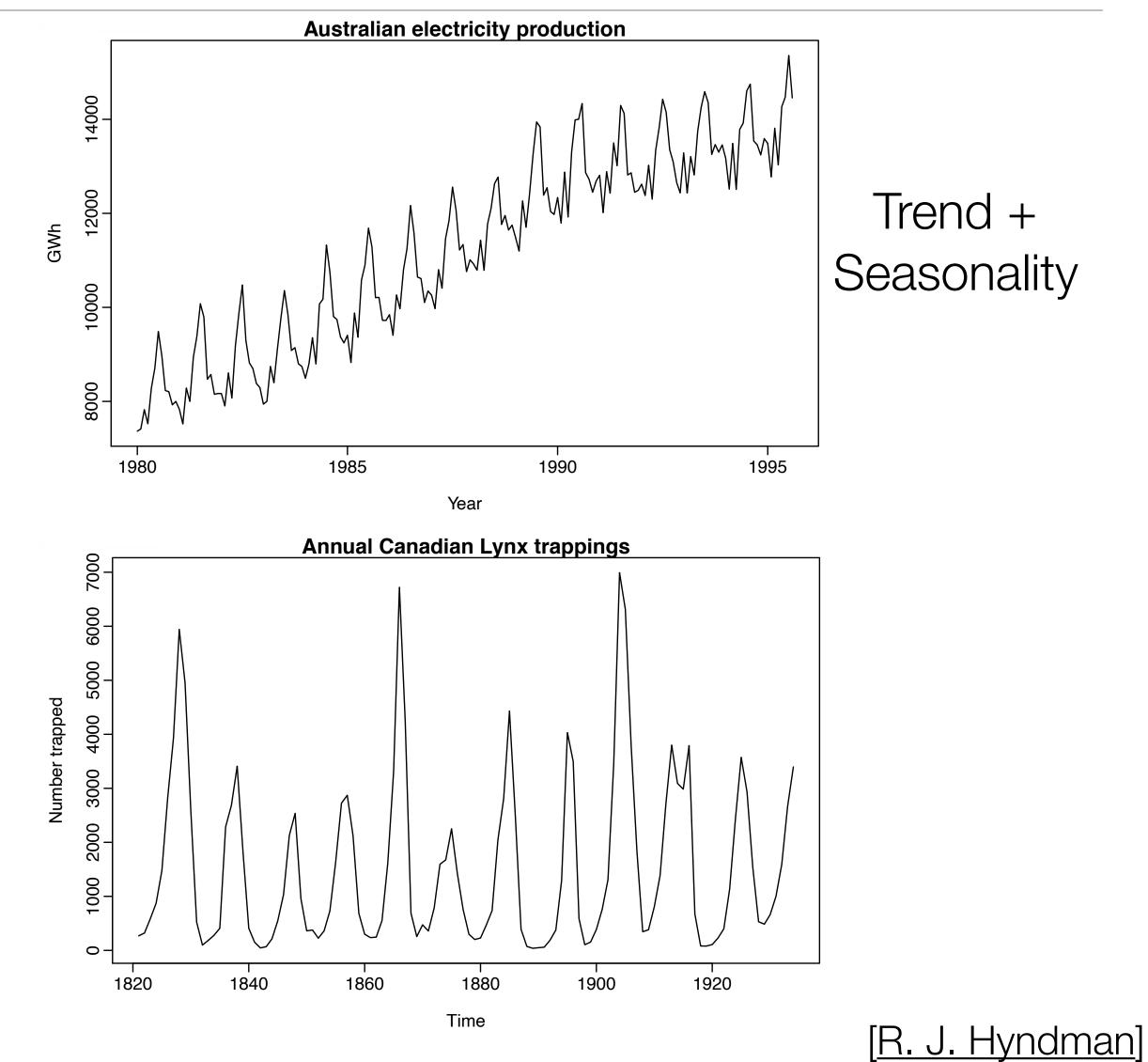


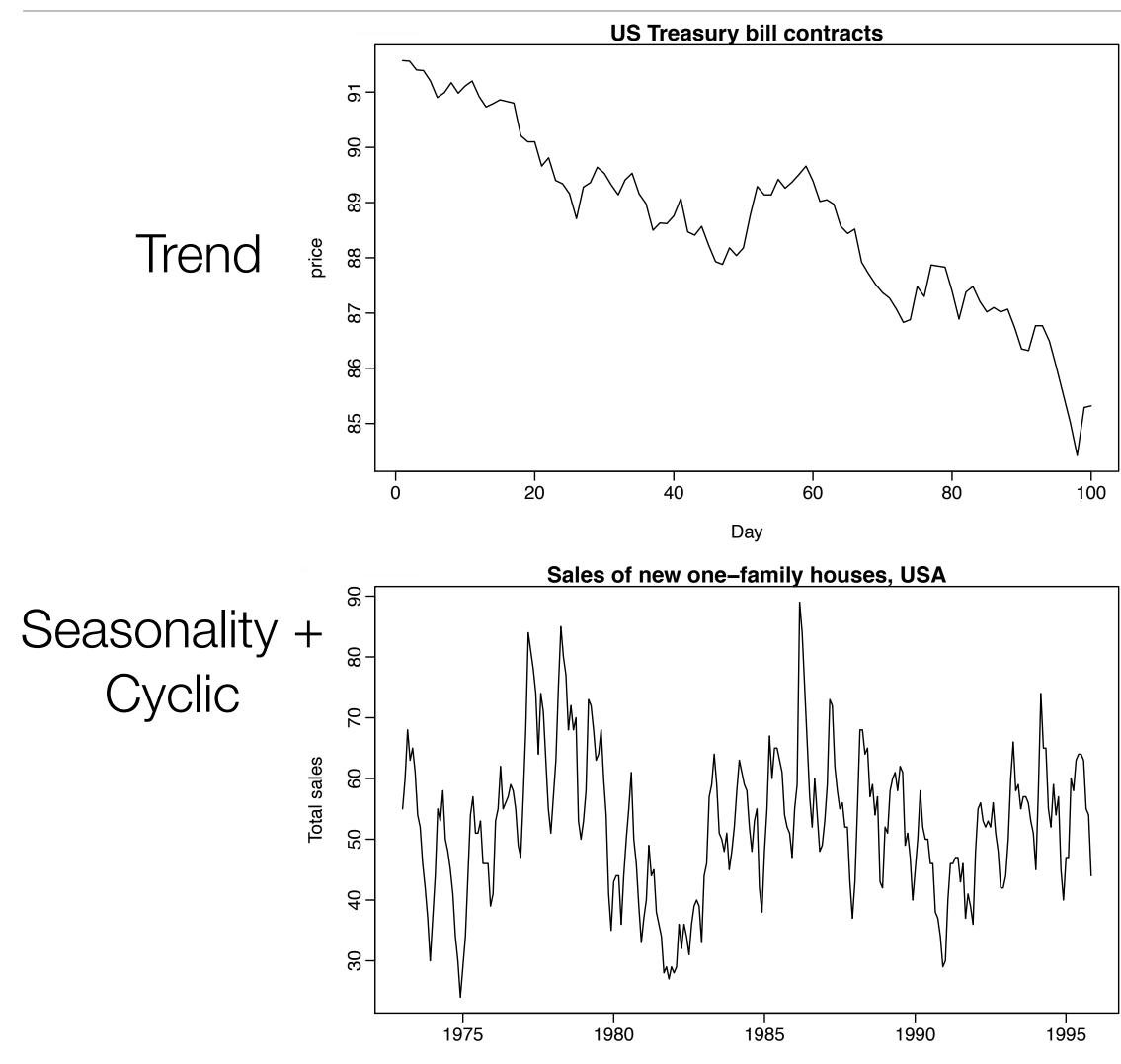


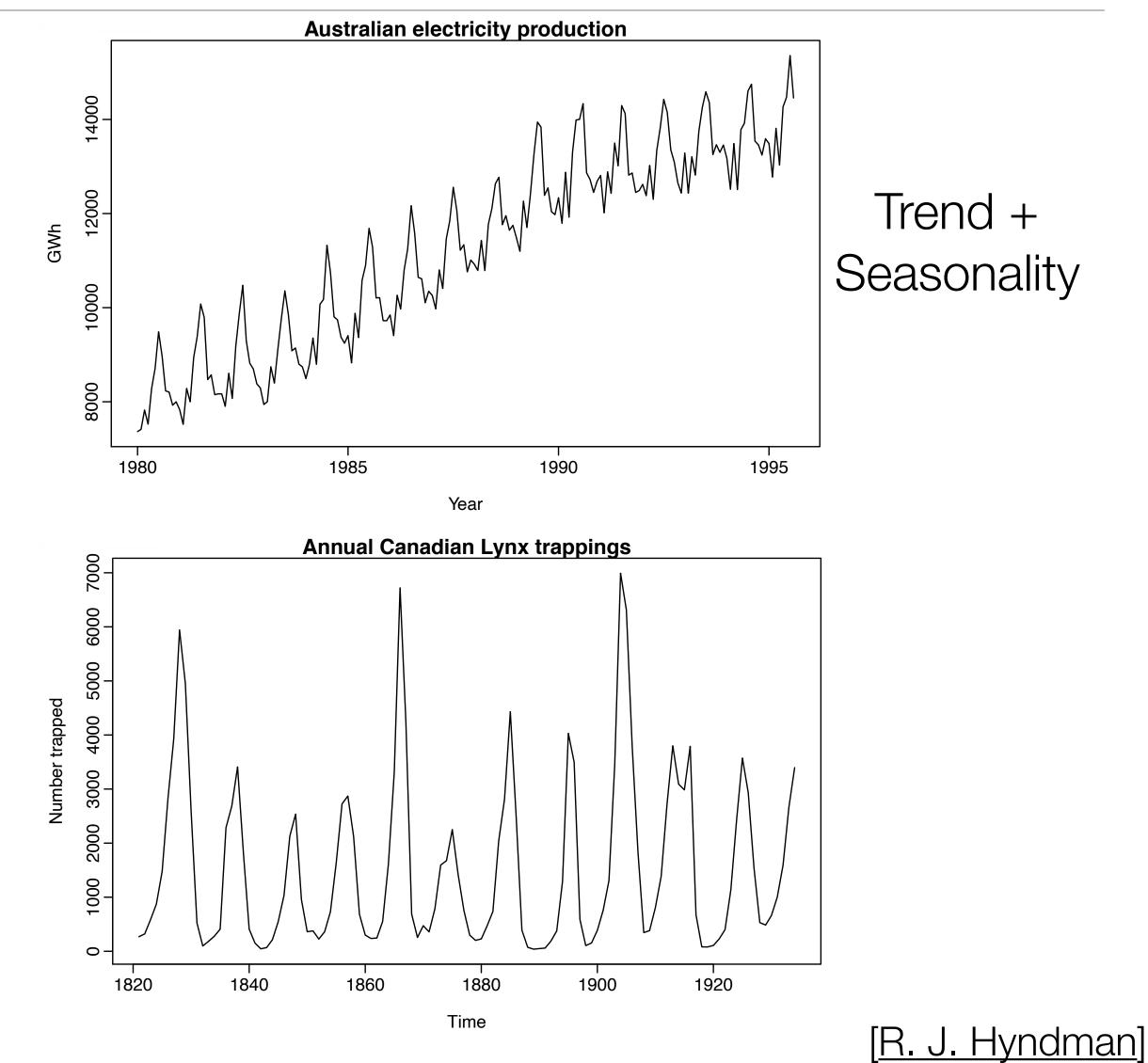


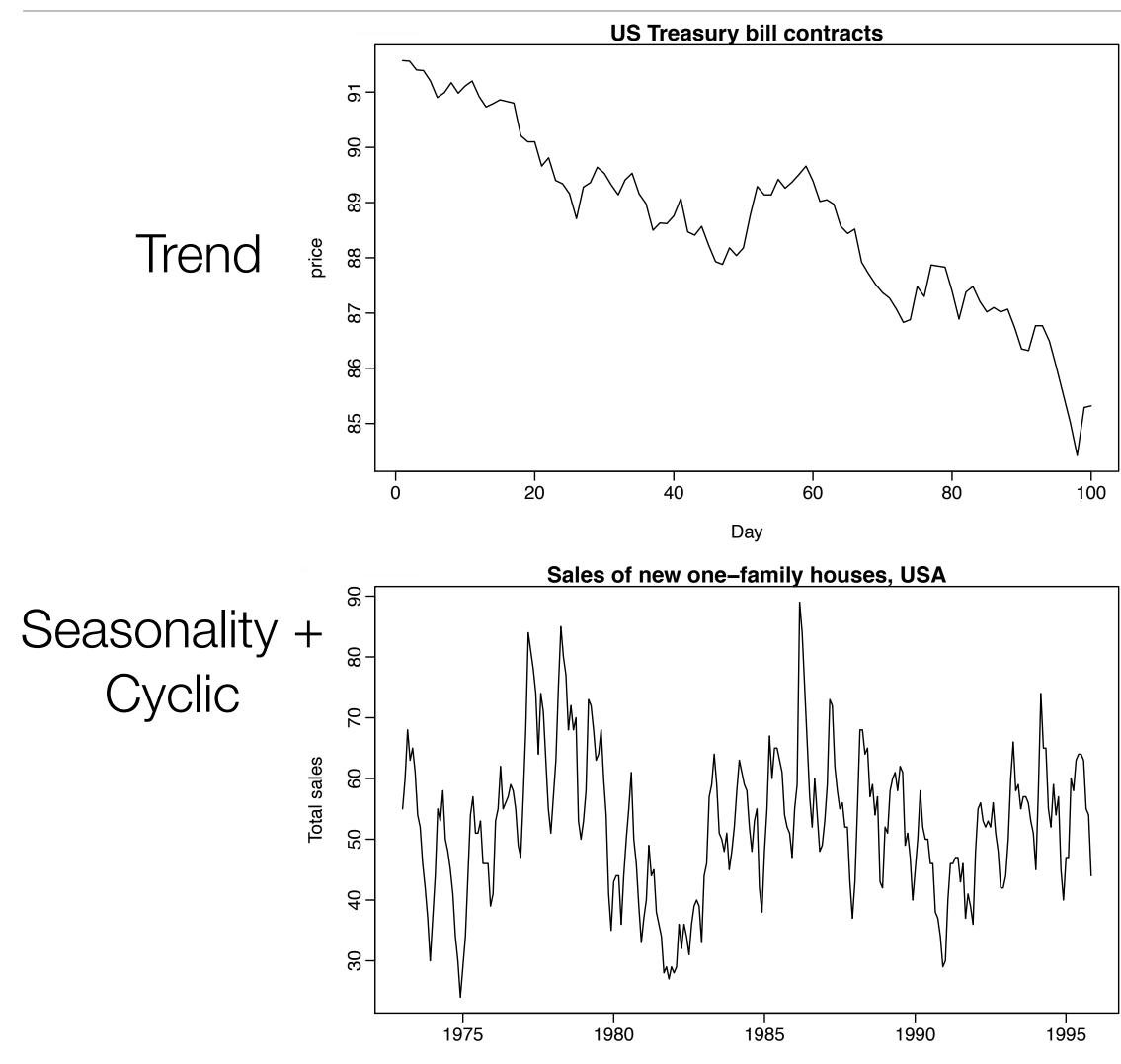


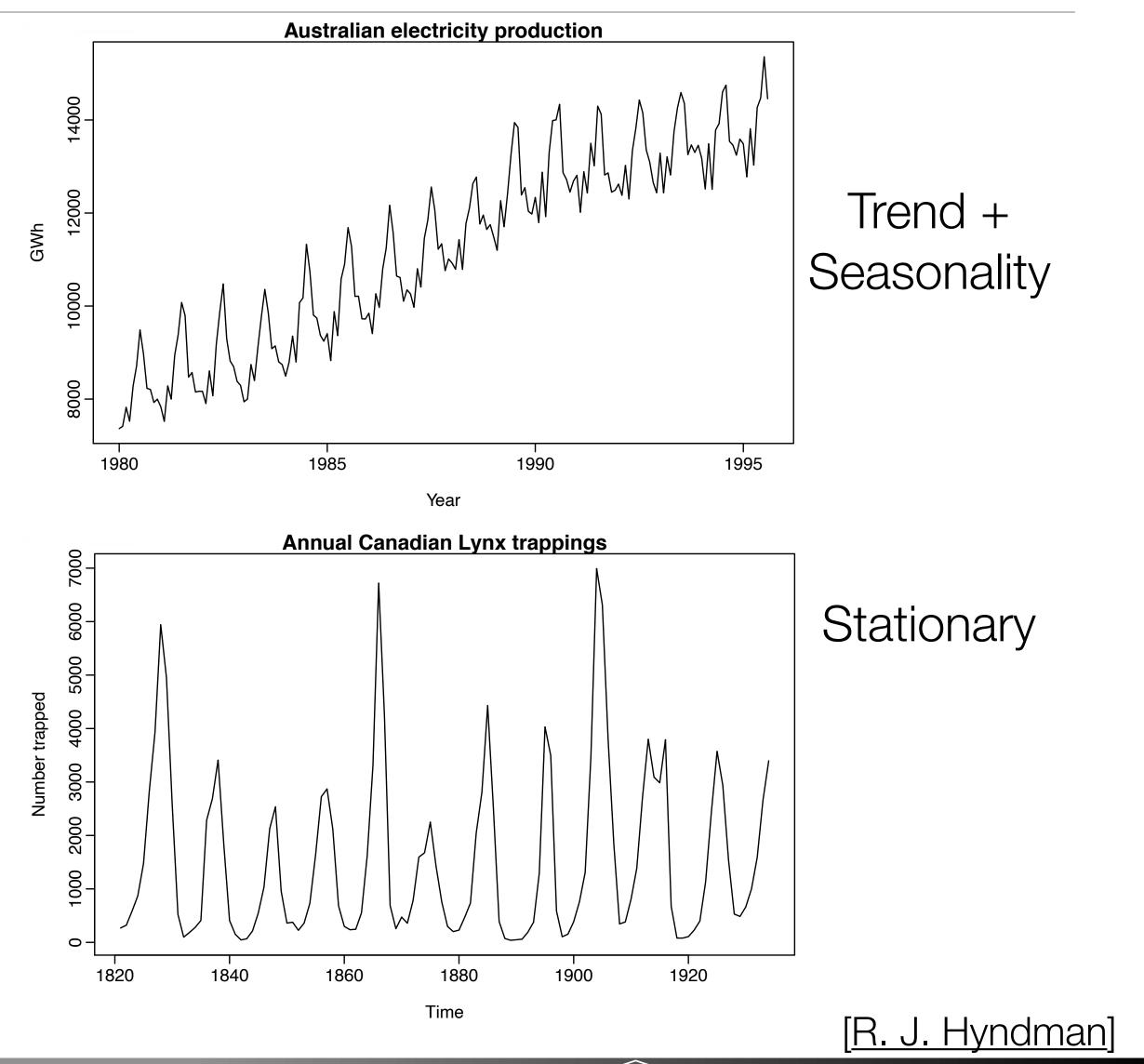












Types of Time Data

- Timestamps: specific instants in time (e.g. 2018 11 27 14:15:00)
- Periods: have a standard start and length (e.g. the month November 2018)
- Intervals: have a start and end timestamp
 - Periods are special case
 - Example: 2018-11-21 14:15:00 2018-12-01 05:15:00
- Elapsed time: measure of time relative to a start time (15 minutes)

Dates and Times

- What is time to a computer?
 - Can be stored as seconds since Unix Epoch (January 1st, 1970)
- Often useful to break down into minutes, hours, days, months, years...
- Lots of different ways to write time:
 - How could you write "November 29, 2016"?
 - European vs. American ordering...
- What about time zones?

D. Koop, CSCI 490/680, Spring 2020

42

Python Support for Time

- The datetime package
 - Has date, time, and datetime classes
 - .now() method: the current datetime
- Can access properties of the time (year, month, seconds, etc.) Converting from strings to datetimes:
 - datetime.strptime: good for known formats
 - dateutil.parser.parse: good for unknown formats
- Converting to strings
 - str(dt) Or dt.strftime(<format>)

Datetime format specification

- Look it up:
 - <u>http://strftime.org</u>
- Generally, can create whatever format you need using these format strings

Code	Meaning	Example
%a	Weekday as locale's abbreviated name.	Mon
%A	Weekday as locale's full name.	Monday
8w	Weekday as a decimal number, where 0 is Sunday and 6 is Saturday.	1
۶d	Day of the month as a zero-padded decimal number.	30
%−d	Day of the month as a decimal number. (Platform specific)	30
%b	Month as locale's abbreviated name.	Sep
۶B	Month as locale's full name.	September
%m	Month as a zero-padded decimal number.	09
%-m	Month as a decimal number. (Platform specific)	9
%Y	Year without century as a zero-padded decimal number.	13
8Y	Year with century as a decimal number.	2013
%H	Hour (24-hour clock) as a zero-padded decimal number.	07
% - H	Hour (24-hour clock) as a decimal number. (Platform specific)	7
%I	Hour (12-hour clock) as a zero-padded decimal number.	07
%-I	Hour (12-hour clock) as a decimal number. (Platform specific)	7
%p	Locale's equivalent of either AM or PM.	AM
۶M	Minute as a zero-padded decimal number.	06
8-M	Minute as a decimal number. (Platform specific)	6
%S	Second as a zero-padded decimal number.	05
%−S	Second as a decimal number. (Platform specific)	5

Pandas Support for Datetime

- pd.to datetime:
 - convenience method
 - can convert an entire column to datetime
- Has a Nat to indicate a missing time value
- Stores in a numpy.datetime64 format
- pd.Timestamp: a wrapper for the datetime 64 objects

More Pandas Support

- Accessing a particular time or chec can be interpreted as a date:
 - ts['1/10/2011'] Or ts['20110110']
- Date ranges: pd.date_range('4/1/2012','6/1/2012',freq='4h')
- Slicing works as expected
- Can do operations (add, subtract) on data indexed by datetime and the indexes will match up
- As with strings, to treat a column as datetime, you can use the .dt accessor

D. Koop, CSCI 490/680, Spring 2020

Accessing a particular time or checking equivalence allows any string that



Generating Date Ranges

- index = pd.date range('4/1/2012', '6/1/2012')
- Can generate based on a number of periods as well - index = pd.date range('4/1/2012', periods=20)
- Frequency (freq) controls how the range is divided
 - Codes for specifying this (e.g. 4h, D, M)
 - In [90]: pd.date range('1/1/2000', '1/3/2000 23:59', freq='4h') Out[90]: <class 'pandas.tseries.index.DatetimeIndex'> $[2000-01-01 \ 00:00:00, \ldots, 2000-01-03 \ 20:00:00]$ Length: 18, Freq: 4H, Timezone: None
 - Can also mix them: '2h30m'

Time Series Frequencies

Alias	Offset Type
D	Day
В	BusinessDay
Н	Hour
T or min	Minute
S	Second
L or ms	Milli
U	Micro
Μ	MonthEnd
BM	BusinessMonthEnd
MS	MonthBegin
BMS	BusinessMonthBeg
W-MON, W-TUE,	Week
WOM-1MON, WOM-2MON,	WeekOfMonth

	Description
	Calendar daily
	Business daily
	Hourly
	Minutely
	Secondly
	Millisecond (1/1000th of 1 second)
	Microsecond (1/1000000th of 1 second)
	Last calendar day of month
	Last business day (weekday) of month
	First calendar day of month
n	First weekday of month
	Weekly on given day of week: MON, TUE, WED, THU, FRI, SAT, or SUN.
	Generate weekly dates in the first, second, third, or fourth week of the month. For example, WOM-3FRI for the 3rd Friday of
	each month. [W. McKinney, Py

DatetimeIndex

- Can use time as an **index**
- data = [('2017 11 30', 48)]('2017 - 12 - 02', 45),(2017 - 12 - 03', 44),(2017 - 12 - 04', 48)dates, temps = zip(*data)
 - s = pd.Series(temps, pd.to datetime(dates))
- Accessing a particular time or checking equivalence allows any string that can be interpreted as a date:
 - s['12/04/2017'] Or s['20171204']
- Using a less specific string will get all matching data:
 - s['2017-12'] returns the three December entries

DatetimeIndex

• Time slices do not need to exist: - s['2017-12-01':'2017-12-31']

Shifting Data

• Leading or Lagging Data

```
In [95]: ts = Series(np.random.randn(4),
                    index=pd.date_range('1/1/2000', periods=4, freq='M'))
   • • • • •
In [96]: ts
                            In [97]: ts.shift(2)
                                                         In [98]: ts.shift(-2)
Out[96]:
                            Out[97]:
                                                         Out[98]:
2000-01-31
            -0.066748
                                                         2000-01-31
                            2000-01-31
                                               NaN
                                                                      -0.117388
            0.838639
2000-02-29
                            2000-02-29
                                               NaN
                                                         2000-02-29
                                                                      -0.517795
2000-03-31 -0.117388
                            2000-03-31 -0.066748
                                                         2000-03-31
                                                                            NaN
                                                                            NaN
2000-04-30 -0.517795
                            2000-04-30
                                          0.838639
                                                         2000-04-30
Freq: M, dtype: float64
                            Freq: M, dtype: float64
                                                         Freq: M, dtype: float64
```

• Shifting by time:

```
In [99]: ts.shift(2, freq='M')
Out[99]:
            -0.066748
2000-03-31
2000-04-30
           0.838639
            -0.117388
2000-05-31
2000-06-30 -0.517795
Freq: M, dtype: float64
```


Shifting Time Series

• Data:

[(2017-11-30', 48), (2017-12-02', 45),(2017 - 12 - 03', 44), (2017 - 12 - 04', 48)]

• Compute day-to-day difference in high temperature:

- s s.shift(1) (same as s.di
- 2017-11-30 NaN 2017 - 12 - 02 - 3.02017 - 12 - 03 - 1.02017-12-04 4.0

Timedelta

- Compute differences between dates
- Lives in datetime module
- diff = parse date("1 Jan 2017") datetime.now().date() diff.days
- Also a pd. Timedelta object that take strings:
 - datetime.now().date() + pd.Timedelta("4 days")
- Also, Roll dates using anchored offsets from pandas.tseries.offsets import Day, MonthEnd

now = datetime(2011, 11, 17)In [107]: now + MonthEnd(2) Out[107]: Timestamp('2011-12-31 00:00:00')



Time Zones

- Why?
- Coordinated Universal Time (UTC) is the standard time (basically equivalent to Greenwich Mean Time (GMT)
- Other time zones are UTC +/-a number in [1,12]
- Dartmouth is UTC-5 (aka US/Eastern)

Python, Pandas, and Time Zones

- Time series in pandas are time zone native
- The pytz module keeps track of all of the time zone parameters
 - even Daylight Savings Time
- Localize a timestamp using tz localize
 - -ts = pd.Timestamp("1 Dec 2016 12:30 PM")ts = ts.tz localize("US/Eastern")
- Convert a timestamp using tz_convert
 - ts.tz convert ("Europe/Budapest")
- Operations involving timestamps from different time zones become UTC



Frequency

- Generic time series in pandas are irregular
 - there is no fixed frequency
 - we don't necessarily have data for every day/hour/etc.
- Date ranges have frequency

```
In [76]: pd.date range(start='2012-04-01', periods=20)
Out[76]:
DatetimeIndex(['2012-04-01', '2012-04-02', '2012-04-03', '2012-04-04',
               '2012-04-05', '2012-04-06', '2012-04-07', '2012-04-08',
               '2012-04-09', '2012-04-10', '2012-04-11', '2012-04-12',
               '2012-04-13', '2012-04-14', '2012-04-15', '2012-04-16',
               '2012-04-17', '2012-04-18', '2012-04-19', '2012-04-20'],
              dtype='datetime64[ns]', freq='D')
```


Lots of Frequencies (not comprehensive)

Alias	Offset type	Description
D	Day	Calendar daily
В	BusinessDay	Business daily
Н	Ноиг	Hourly
T or min	Minute	Minutely
S	Second	Secondly
Lorms	Milli	Millisecond (1/1,000 of 1 second)
U	Місго	Microsecond (1/1,000,000 of 1 second)
Μ	MonthEnd	Last calendar day of month
BM	BusinessMonthEnd	Last business day (weekday) of month
MS	MonthBegin	First calendar day of month
BMS	BusinessMonthBegin	First weekday of month
W-MON, W-TUE,	Week	Weekly on given day of week (MON, TUE, WED, THU, FRI, SAT, or SUN)
WOM-1MON, WOM-2MON,	WeekOfMonth	Generate weekly dates in the first, second, third, or fourth week of the month (e.g., WOM-3FRI for the third Friday of each month)
Q-JAN, Q-FEB,	QuarterEnd	Quarterly dates anchored on last calendar day of each month, for year ending in indicated month (JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, or DEC
BQ-JAN, BQ-FEB,	BusinessQuarterEnd	Quarterly dates anchored on last weekday day of each month, for year ending in indicated month
QS-JAN, QS-FEB,	QuarterBegin	Quarterly dates anchored on first calendar day of each month, for year ending in indicated month
BQS-JAN, BQS-FEB,	BusinessQuarterBegin	Quarterly dates anchored on first weekday day of each month, for year ending in indicated month
A-JAN, A-FEB,	YearEnd	Annual dates anchored on last calendar day of given month (JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, or DEC)
BA-JAN, BA-FEB,	BusinessYearEnd	Annual dates anchored on last weekday of given month
AS-JAN, AS-FEB,	YearBegin	Annual dates anchored on first day of given month
BAS-JAN, BAS-FEB,	BusinessYearBegin	Annual dates anchored on first weekday of given month

D. Koop, CSCI 490/680, Spring 2020

[W. McKinney, Python for Data Analysis]

Northern Illinois University

Resampling

- Could be
 - downsample: higher frequency to lower frequency
 - upsample: lower frequency to higher frequency
 - neither: e.g. Wednesdays to Fridays
- resample method: e.g. ts.resample('M').mean()

Argument	Description
freq	String or DateOffset indicating desired resampled
axis	Axis to resample on; default axis=0
fill_method	How to interpolate when upsampling, as in 'ffi
closed	In downsampling, which end of each interval is cl
label	In downsampling, how to label the aggregated re 9:30 to 9:35 five-minute interval could be labeled
loffset	Time adjustment to the bin labels, such as '-1s' second earlier
limit	When forward or backward filling, the maximum
kind	Aggregate to periods ('period') or timestamp time series has
convention	When resampling periods, the convention ('sta to high frequency; defaults to 'end'

D. Koop, CSCI 490/680, Spring 2020

frequency (e.g., 'M', '5min', or Second(15))

Fill' or 'bfill'; by default does no interpolation closed (inclusive), 'right' or 'left' result, with the 'right' or 'left' bin edge (e.g., the

d 9:30 or 9:35)

' / Second(-1) to shift the aggregate labels one

number of periods to fill

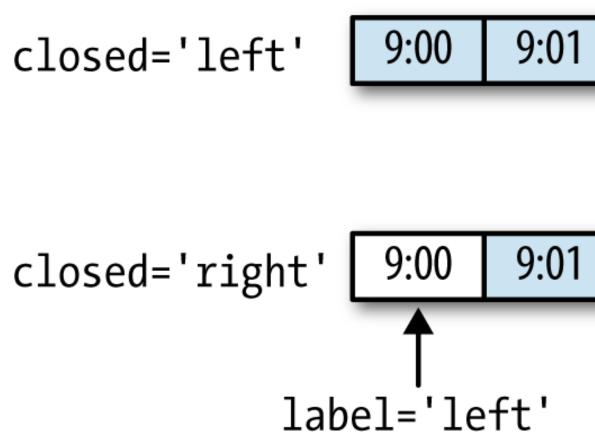
ps ('timestamp'); defaults to the type of index the

art' or 'end') for converting the low-frequency period

[W. McKinney, Python for Data Analysis]

Downsampling

- Need to define **bin edges** which are used to group the time series into intervals that can be aggregated
- Remember:
 - Which side of the interval is closed
 - How to label the aggregated bin (start or end of interval)



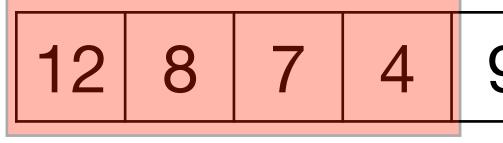
	0.00	0.00	0.04	0.05	
	9:02	9:03	9:04	9:05	
	9:02	9:03	9:04	9:05	
_	7.02	7.05	2.01	7.05	
				1	
			Tape	el='ri&	ght

Upsampling

No aggregation necessary

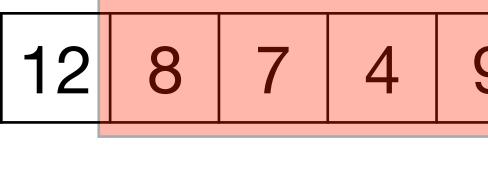
In [222]: frame Out[222]:					
Colorado Texas	New York Ohio				
2000-01-05 -0.896431 0.677263	0.036503 0.087102				
2000-01-12 -0.046662 0.927238	0.482284 -0.867130				
		In [225]: frame.resam	<pre>ple('D').f</pre>	fill()	
<pre>In [223]: df_daily = frame.res</pre>	ample('D') asfreq()	Out[225]:		••	
$III [223] \cdot OI OUUUU = IIOIC \cdot IC3$		Colorado	Texas	New York	Ohio
In [224]: df_daily		2000-01-05 -0.896431	0.677263	0.036503	0.087102
Out[224]:		2000-01-06 -0.896431	0.677263	0.036503	0.087102
Colorado Texas	New York Ohio	2000-01-07 -0.896431	0.677263	0.036503	0.087102
2000-01-05 -0.896431 0.677263		2000-01-08 -0.896431	0.677263	0.036503	0.087102
2000-01-06 NaN NaN	NaN NaN	2000-01-09 -0.896431	0.677263	0.036503	0.087102
2000-01-07 NaN NaN		2000-01-10 -0.896431	0.677263	0.036503	0.087102
2000-01-08 NaN NaN	NaN NaN	2000-01-11 -0.896431	0.677263	0.036503	0.087102
2000-01-09 NaN NaN	NaN NaN	2000-01-12 -0.046662	0.927238	0.482284	-0.867130
2000-01-10 NaN NaN	NaN NaN				
2000-01-11 NaN NaN	NaN NaN				
2000-01-12 -0.046662 0.927238	0.482284 -0.867130				

9	13	4	11	3	8
---	----	---	----	---	---



7.8

9	13	4	11	3	8
---	----	---	----	---	---

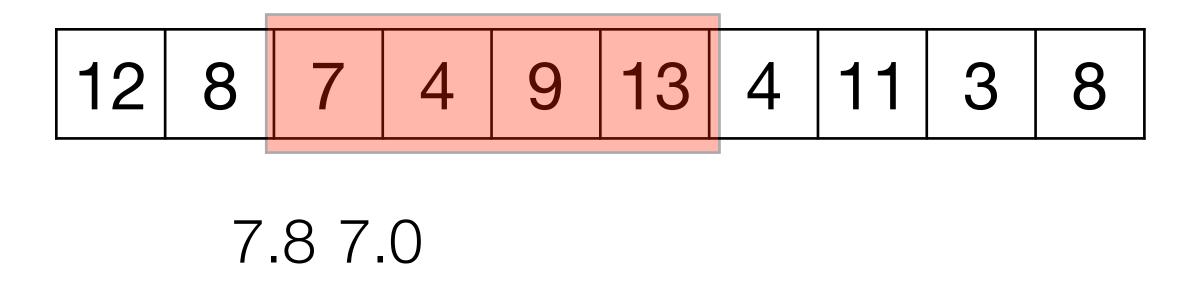


7.8

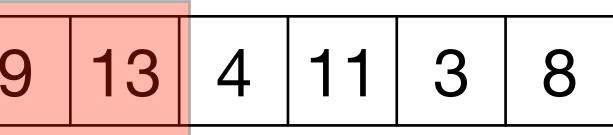
9	13	4	11	3	8
9	13	4		3	0

7.8 7.0

9	13	4	11	3	8
9	13	4		3	0



7.8 7.0 8.3



Window Functions

- then slide that window ahead. Repeat.
- rolling: smooth out data
- Specify the window size in rolling, then an aggregation method
- Result is set to the right edge of window (change with center=True)
- Example:
 - df.rolling('180D').mean()
 - df.rolling('90D').sum()

D. Koop, CSCI 490/680, Spring 2020

• Idea: want to aggregate over a window of time, calculate the answer, and

Shampoo Sales Example

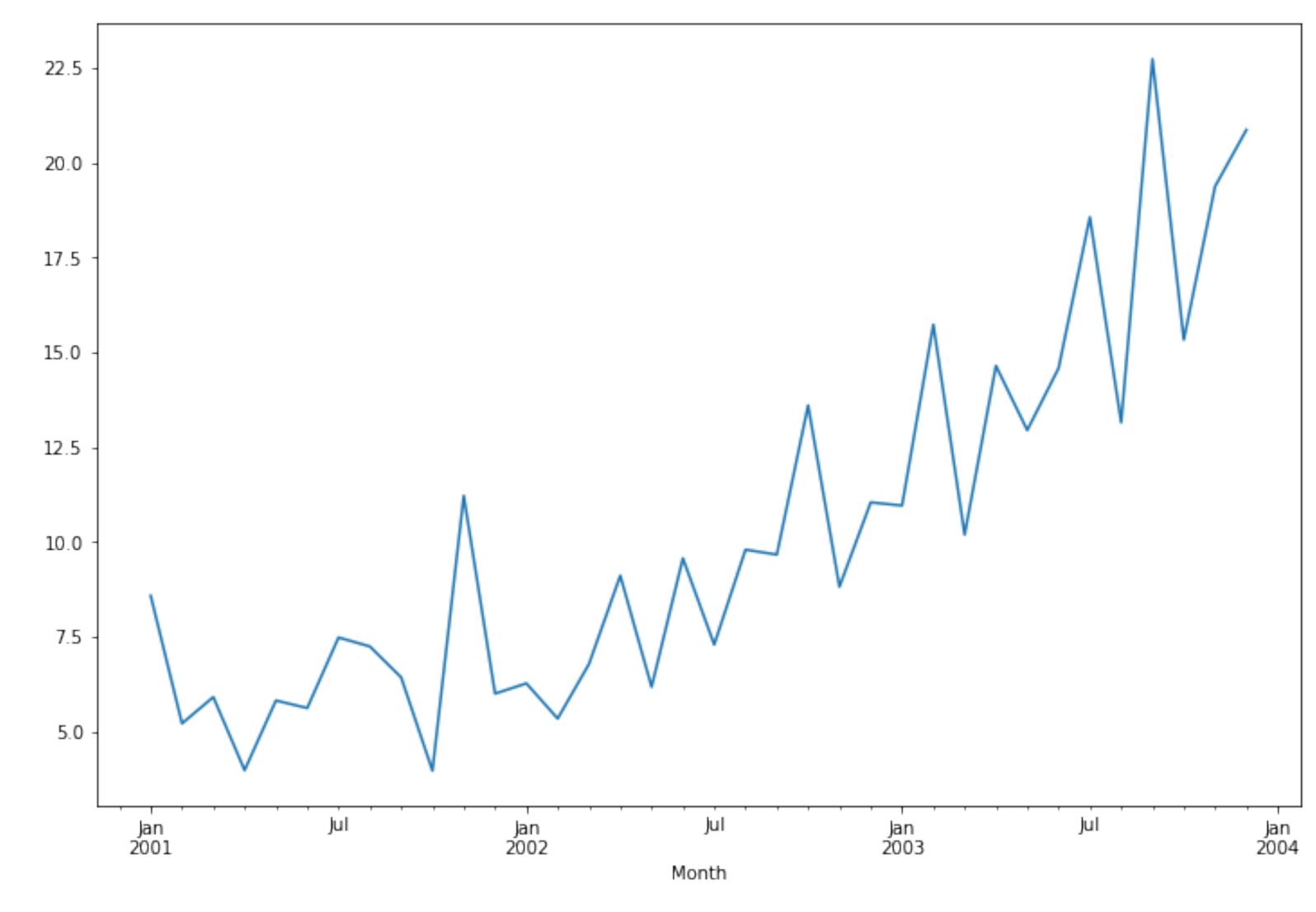
Interpolation

- algorithms
- Apply after resample

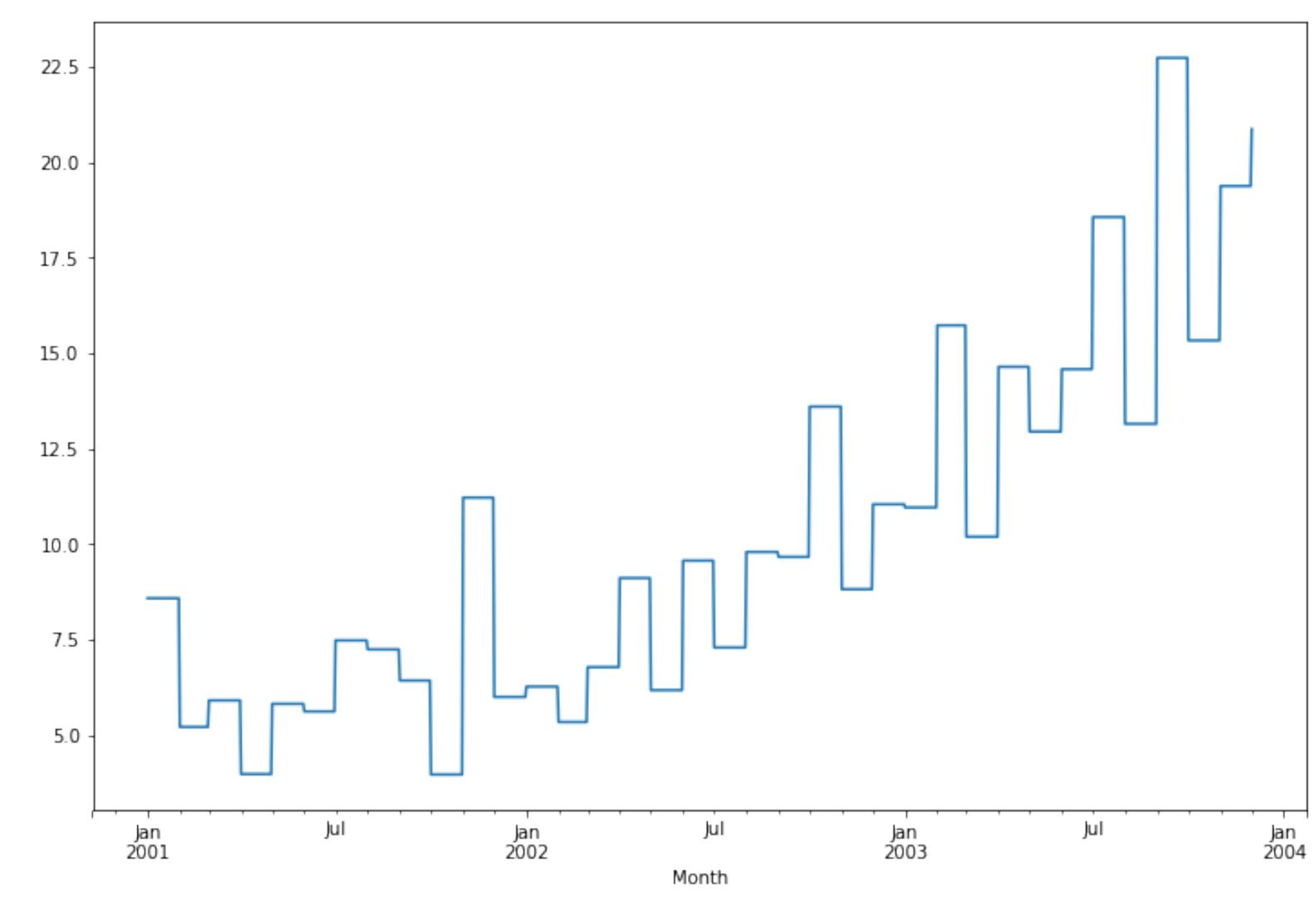
D. Koop, CSCI 490/680, Spring 2020

• Fill in the missing values with computed best estimates using various types of

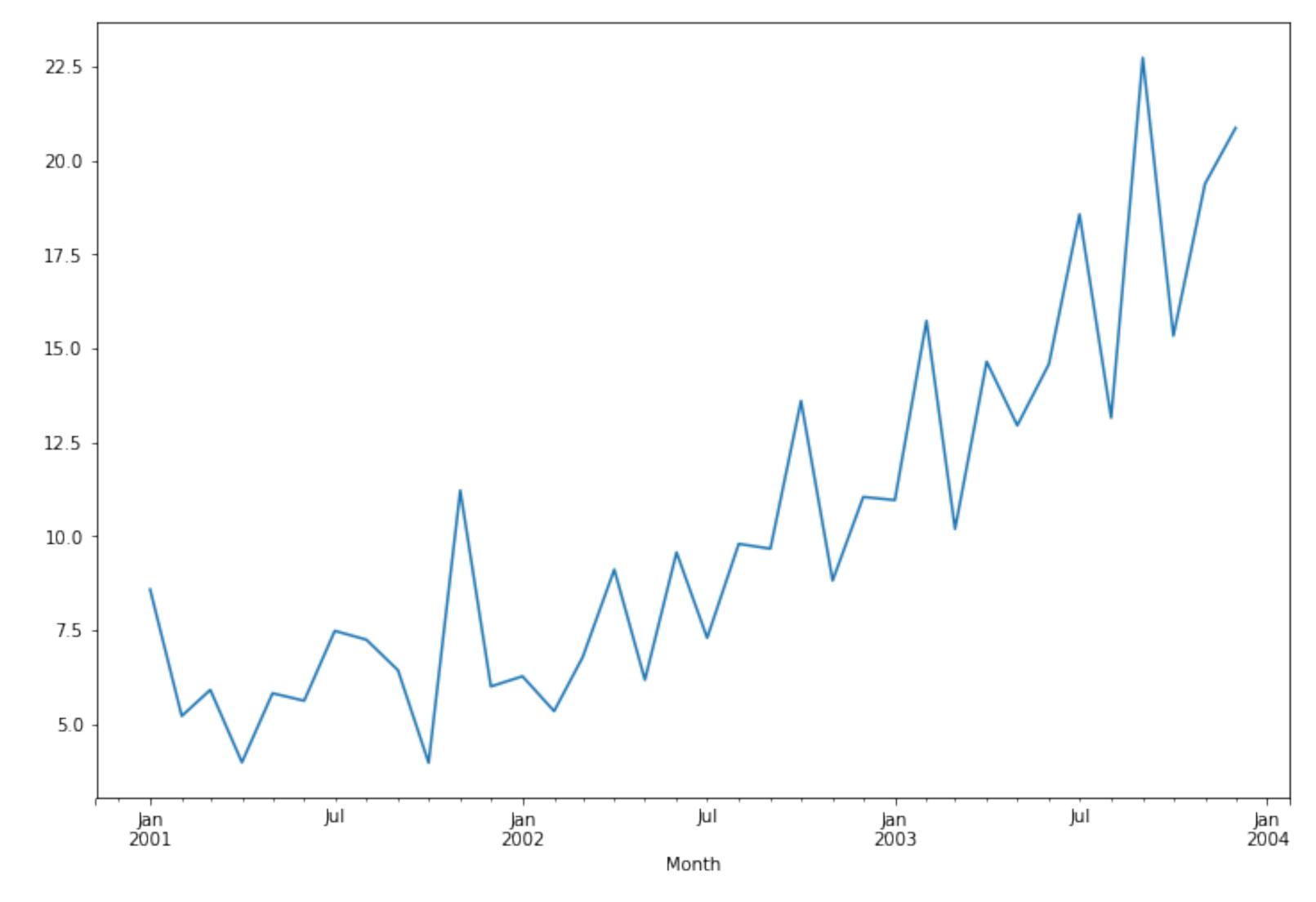
Sales Data by Month



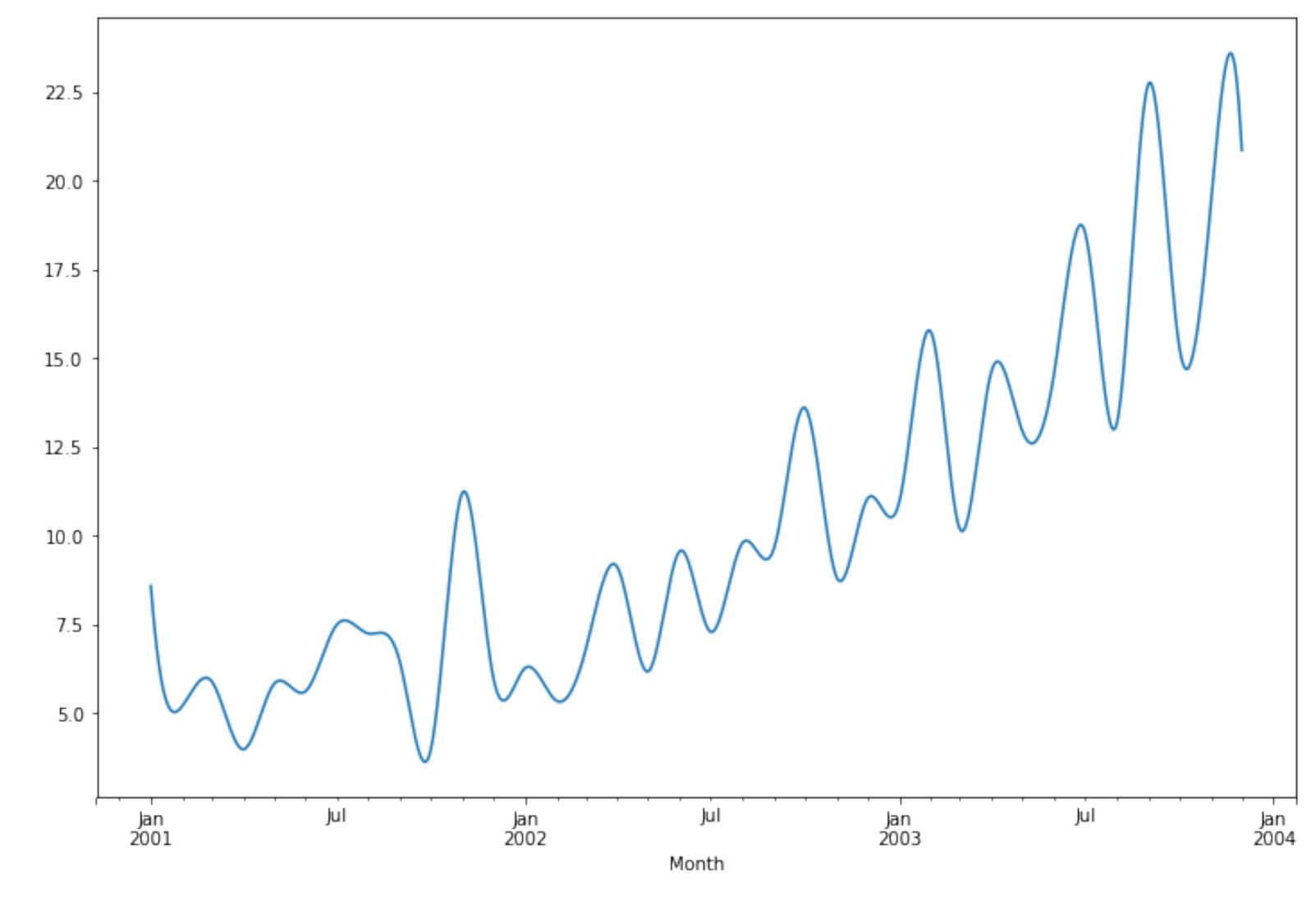
Resampled Sales Data (ffill)



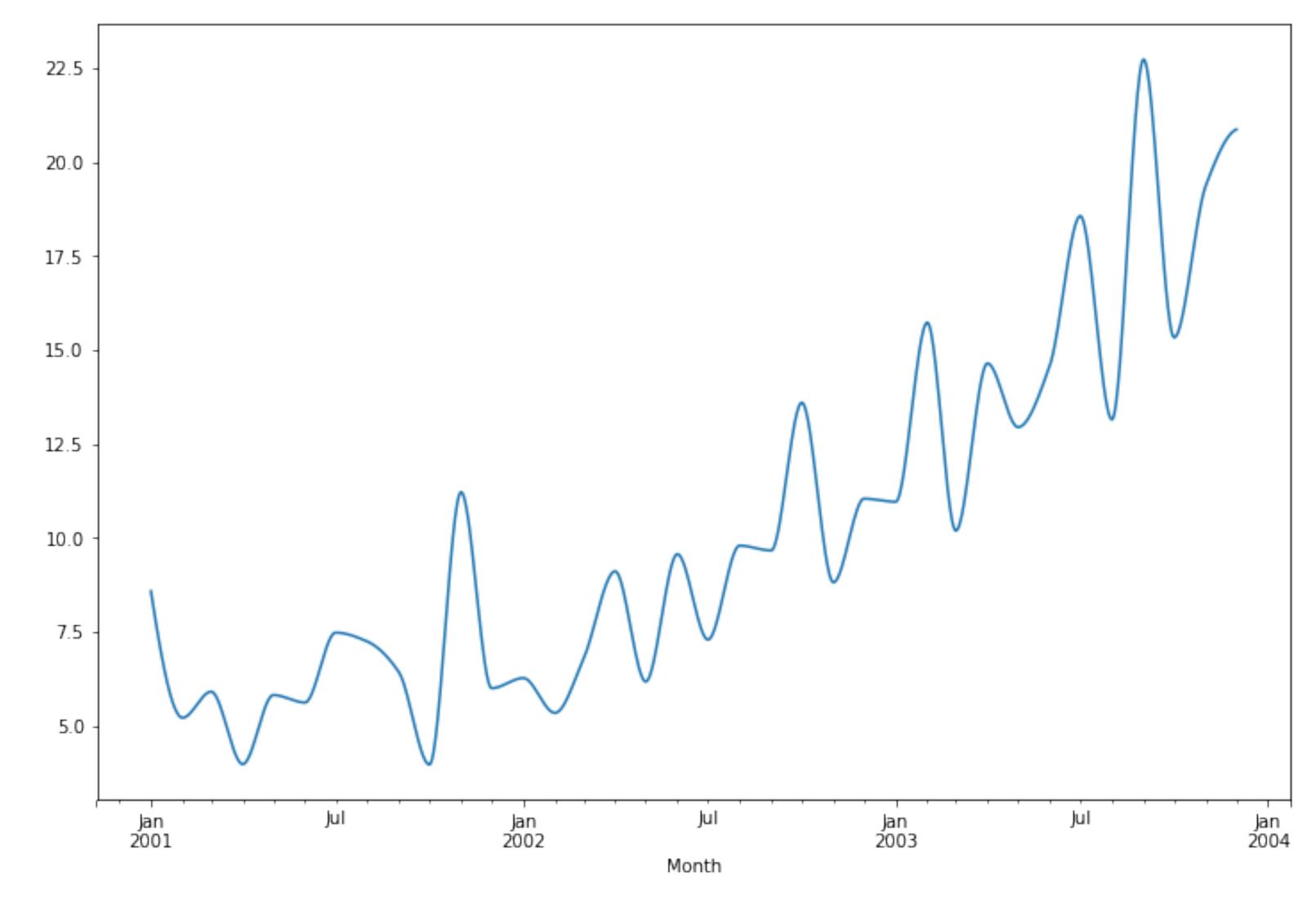
Resampled with Linear Interpolation (Default)



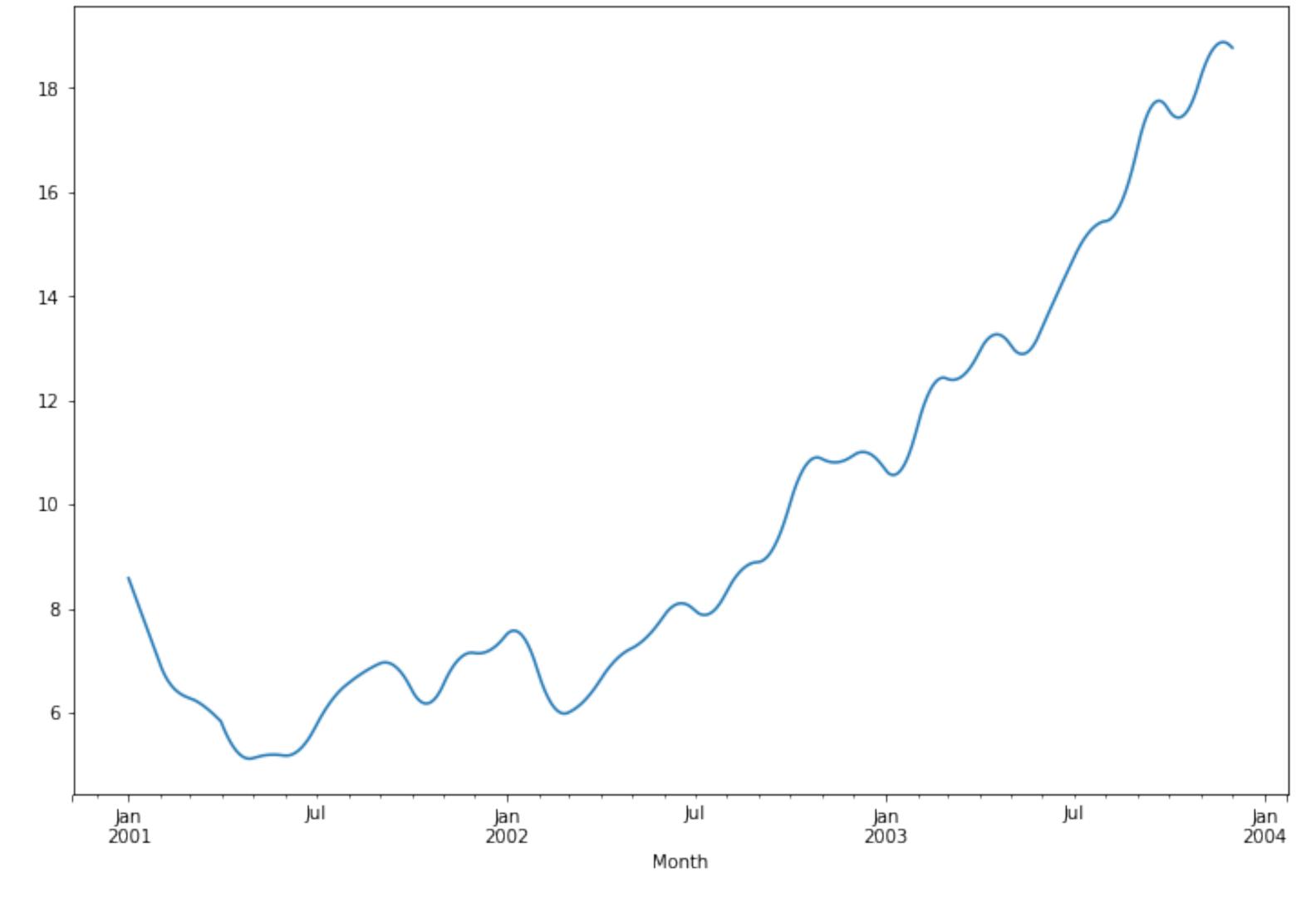
Resampled with Cubic Interpolation



Piecewise Cubic Hermite Interpolating Polynomial



90-Day Rolling Window (Mean)



180-Day Rolling Window (Mean)

