
Advanced Data Management (CSCI 490/680)

Time Series Data

Dr. David Koop

D. Koop, CSCI 490/680, Spring 2020

D. Koop, CSCI 490/680, Spring 2020

Assignment 4
• COVID-19 data
• Data Integration
- Population
- Temperature

• Data Fusion:
- Our World in Data
- Johns Hopkins
- Wikipedia

• Questions?

2

http://faculty.cs.niu.edu/~dakoop/cs680-2020sp/assignment4.html

D. Koop, CSCI 490/680, Spring 2020

Test 2
• Information
• Online on Blackboard (webcourses.niu.edu)
• Thursday, April 9 from 3:30-4:45pm
• If you have conflicts, let me know as soon as possible
• Format:
- Some multiple choice
- More short answer/free response

• Focus on topics since the first test

3

http://faculty.cs.niu.edu/~dakoop/cs680-2020sp/test2.html
http://webcourses.niu.edu

D. Koop, CSCI 490/680, Spring 2020

Graphs
• In computing, a graph is an abstract data

structure that represents set objects and
their relationships as vertices and edges/
links, and supports a number of graph-
related operations

• Objects (nodes): {A,B,C,D}
• Relationships (edges):
{(D,B),(D,A),(B,C),(B,A),(C,A)}

• Operation: shortest path from D to A

4

[K. Salama, 2016]

A

B C

D

https://www.slideshare.net/KhalidSalama2/graph-analytics-67723066

D. Koop, CSCI 490/680, Spring 2020

Graphs with Properties
• Each vertex or edge may have properties associated with it
• May include identifiers or classes

5

[neo4j]

Person

name = 'Tom Hanks'
born = 1956

Movie

title = 'Forrest Gump'
released = 1994

ACTED_IN
roles = ['Forrest']

Person

name = 'Robert Zemeckis'
born = 1951

DIRECTED

https://neo4j.com/docs/developer-manual/current/introduction/graphdb-concepts/

D. Koop, CSCI 490/680, Spring 2020

What is a Graph Database?
• A database with an explicit graph structure
• Each node knows its adjacent nodes
• As the number of nodes increases, the cost of a local step (or hop) remains

the same
• Plus an Index for lookups

6

[M. De Marzi, 2012]

https://www.slideshare.net/maxdemarzi/introduction-to-graph-databases-12735789

D. Koop, CSCI 490/680, Spring 2020

Compared to Relational Databases

Optimized for aggregation Optimized for connections

Graph Databases Compared to Relational Databases

7

[M. De Marzi, 2012]

https://www.slideshare.net/maxdemarzi/introduction-to-graph-databases-12735789

D. Koop, CSCI 490/680, Spring 2020

Compared to Key Value Stores

Optimized for simple look-ups Optimized for traversing connected data

Graph Databases Compared to Key-Value Stores

8

[M. De Marzi, 2012]

https://www.slideshare.net/maxdemarzi/introduction-to-graph-databases-12735789

D. Koop, CSCI 490/680, Spring 2020

Storing and Traversing Graphs
• Storage:
- Adjacency List: nodes store their neighbors
- Incidence List: nodes store edges and edges store incident nodes
- Adjacency Matrix: adjacency list in matrix form (rows & cols are nodes)
- Incidence Matrix: rows are vertices, columns are edges

• Traversal:
- Breadth-first Search
- Depth-first Search

9

D. Koop, CSCI 490/680, Spring 2020

NAME LASTNAME

Ana

Julia

James

David

Mary

George

Deville

Deville

Deville

Jones

Stone

Jones

PERSON PARENT

George

Ana

Julia

James

James

Mary

Mary

Julia

Julia

David

David

Julia

Julia Jones

Ana StoneGeorge Jones

parentparent

parent parentparentparent

Mary DevilleDavid Deville

James Deville

Figure 1: Example of a genealogy expressed in the relational model (i.e. as
tables on the left) and a diagram of its scheme on the right.

of node, by allowing nesting graphs inside nodes. As drawbacks, both mod-
els use complex data structures which make it less intuitive their use and
implementation.

Regarding simplicity, one of the most popularized models is the semistruc-
tured model, which use the most simple version of a graph, namely a tree,
the most common and intuitive way or organizing our data (e.g. directories)
Finally, the most common models are slightly enhanced version of the plain
graphs. One of them, the RDF model, gives a light typing to nodes, and
considers edges as nodes, giving uniformity to the information objects in the
model. The other, the property graph model, allows to adds properties to
edges and nodes.

Next, we will present these models and show a paradigmatic example of
each. We will use the genealogy toy example modeled as tables and a simple
schema in Figure 1.

3.1 The basics: Labeled graphs

The most basic data structure for graph database models is a directed graph
with nodes and edges labeled by some vocabulary. A good example is Gram
[37], a graph data model motivated by hypertext querying.

A schema in Gram is a directed labeled multigraph, where each node
is labeled with a symbol called a type, which has associated a domain of
values. In the same way, each edge has assigned a label representing a
relation between types (see example in Figure 2). A feature of Gram is the
use of regular expressions for explicit definition of paths called walks. An
alternating sequence of nodes and edges represent a walk, which combined
with other walks conforms other special objects called hyperwalks.

For querying the model (particularly path-like queries), an algebraic lan-
guage based on regular expressions is proposed. For this purpose a hyper-

8

Graph Models: Relational Model

10

[R. Angles and C. Gutierrez, 2017]

D. Koop, CSCI 490/680, Spring 2020

Property Graph Model (Cypher in neo4j)
• Directed, labelled, attributed multigraph
• Properties are key/value pairs that represent metadata for nodes and edges

11

[R. Angles and C. Gutierrez, 2017]

Figure 7: Property graph data model. The main characteristic of this model
is the occurrence of properties in nodes and edges. Each property is repre-
sented as a pair property-name = “property-value”.

(i.e. AND, UNION, OPTIONAL, and FILTER). The latest version of the
language, SPARQL 1.1 [71], includes explicit operators to express negation of
graph patterns, arbitrary length path matching (i.e. reachability), aggregate
operators (e.g. COUNT), subqueries, and query federation.

3.6 Nodes, edges and properties: The Property graph model

A property graph is a directed, labelled, attributed multigraph. That is,
a graph where the edges are directed, both nodes and edges are labeled
and can have any number of properties (or attributes), and there can be
multiple edges between any two vertices [128]. Properties are key/value
pairs that represent metadata for nodes and edges. In practice, each vertex
of a property graph has an identifier (unique within the graph) and zero
or more labels. Node labels could be associated to node typing in order to
provide schema-based restrictions. Additionally, each (directed) edge has a
unique identifier and one or more labels. An example of property graph is
shown in Figure 7.

Property graphs are used extensively in computing as they are more
expressive2 than the simplified mathematical objects studied in theory. In
fact, the property graph model can express other types of graph models by
simply abandoning or adding particular bits and pieces [128].

There is no standard query language for property graphs although some
proposals are available. Blueprints [11] was one of the first libraries created

2Note that the expressiveness of a model is defined by ease of use, not by the limits of
what can be modeled.

14

D. Koop, CSCI 490/680, Spring 2020

Hypergraph Model (Groovy)
• Notion of edge is extended to hyperedge, which relates an arbitrary set of

nodes
• Hypergraphs allow the definition of complex objects (undirected), functional

dependencies (directed), object-ID and (multiple) structural inheritance

12

[R. Angles and C. Gutierrez, 2017]

Ana

PERSON

NAME LASTNAME

PARENTS

CHILD−PARENT

PERSON

2

PARENTS

LASTNAMENAME

James Deville

PERSON

4

PARENTS

LASTNAMENAME DevilleMary

PERSON

6

PARENTS

VAL(3)

Stone

Schema

CHILD−PARENT

Instance

NAME LASTNAME

George

PARENTS

1

PERSON

Jones

NAME LASTNAME

VAL(2)VAL(1)

PARENTS

3

PERSON

JonesJulia

NAME LASTNAME

VAL(4)VAL(3)

PARENTS

5

PERSON

David Deville

NAME LASTNAME

VAL(4)

Figure 3: GROOVY. At the schema level (left), we model an object
PERSON as an hypergraph that relates the attributes NAME, LAST-
NAME and PARENTS. Note the value functional dependency (VDF)
NAME,LASTNAME ! PARENTS logically represented by the directed
hyperedge ({NAME,LASTNAME} {PARENTS}). This VFD asserts that
NAME and LASTNAME uniquely determine the set of PARENTS.

3.3 Nested graphs: The Hypernode model

A hypernode is a directed graph whose nodes can themselves be graphs
(or hypernodes), allowing nesting of graphs. Hypernodes can be used to
represent simple (flat) and complex objects (hierarchical, composite, and
cyclic) as well as mappings and records. A key feature is its inherent ability
to encapsulate information.

The hypernode model which we will use as example was introduced by
Levene and Poulovassilis [104]. They defined the model and a declarative
logic-based language structured as a sequence of instructions (hypernode
programs), used for querying and updating hypernodes. A more elaborated
version [123] includes the notion of schema and type checking, introduced
via the idea of types (primitive and complex), that are also represented
by nested graphs (See an example in Figure 4). It also includes a rule-
based query language called Hyperlog, which can support both querying and
browsing with derivations as well as database updates, and is intractable
in the general case. A third version of the model [102] discusses a set of
constraints (entity, referential and semantic) over hypernode databases. In
addition it presents another query and update language called HNQL, which
use compounded statements to produce HNQL programs.

10

D. Koop, CSCI 490/680, Spring 2020

RDF (Triple) Model
• Interconnect resources in an extensible way using graph-like structure for data
• Schema and instance are mixed together
• SPAQL to query
• Semantic web

13

[R. Angles and C. Gutierrez, 2017]

Figure 6: RDF data model. Note that schema and instance are mixed
together. The edges labeled type disconnect the instance from the schema.
The instance is built by the subgraphs obtained by instantiating the nodes of
the schema, and establishing the corresponding parent edges between these
subgraphs.

perspective, an atomic RDF expression is triple consisting of a subject (the
resource being described), a predicate (the property) and an object (the
property value). Each triple represents a logical statement of a relationship
between the subject and the object, and one could enhance this basic logic by
adding rules and ontologies over it (e.g. RDFS and OWL) A general RDF
expression is a set of such triples called an RDF Graph (see example in
Figure 6), which can be intuitively considered as a semantic network. From
the second perspective, the RDF model is the most general representation
of a graph, where edges are also considered nodes. In this sense, formally
is not a traditional graph [84]. This allows to self-references, reification
(i.e. making statements over statements), and essentially be self-contained.
The drawback of all this niceties are the complexity that come with this
generalization, particularly for e�cient implementation.

SPARQL [124] is the standard query language for RDF. It is able to
express complex graph patterns by means of a collection of triple patterns
whose solutions can be combined and restricted by using several operators

13

D. Koop, CSCI 490/680, Spring 2020

• Implemented by neo4j system
• Expresses reachability queries via path expressions

- p = (a)-[:knows*]->(b): nodes from a to b following knows edges
• START x=node:person(name="John")
MATCH (x)-[:friend]->(y)
RETURN y.name

Graph Query Languages: Cypher

14

[R. Angles and C. Gutierrez, 2017]

D. Koop, CSCI 490/680, Spring 2020

Graph Query Languages: SPARQL (RDF)
• Uses SELECT-FROM-WHERE pattern like SQL
• SELECT ?N
FROM <http://example.org/data.rdf>
WHERE { ?X rdf:type voc:Person . ?X voc:name ?N }

15

[R. Angles and C. Gutierrez, 2017]

D. Koop, CSCI 490/680, Spring 2020 16

Aggregation

D. Koop, CSCI 490/680, Spring 2020

Split-Apply-Combine
• Coined by H. Wickham, 2011
• Similar to Map (split+apply) Reduce (combine) paradigm
• The Pattern:
1. Split the data by some grouping variable
2. Apply some function to each group independently
3. Combine the data into some output dataset

• The apply step is usually one of :
- Aggregate
- Transform
- Filter

17

[T. Brandt]

D. Koop, CSCI 490/680, Spring 2020

$JJUHJDWLRQ�RI�WLPH�VHULHV�GDWD��D�VSHFLDO�XVH�FDVH�RI�groupby��LV�UHIHUUHG
WR� DV� UHVDPSOLQJ� LQ� WKLV� ERRN� DQG�ZLOO� UHFHLYH� VHSDUDWH� WUHDWPHQW� LQ
&KDSWHU����

GroupBy Mechanics
+DGOH\�:LFNKDP��DQ�DXWKRU�RI�PDQ\�SRSXODU�SDFNDJHV�IRU�WKH�5�SURJUDPPLQJ�ODQ�
JXDJH��FRLQHG�WKH�WHUP�VSOLW�DSSO\�FRPELQH�IRU�WDONLQJ�DERXW�JURXS�RSHUDWLRQV��DQG�,
WKLQN�WKDW¦V�D�JRRG�GHVFULSWLRQ�RI�WKH�SURFHVV��,Q�WKH�ILUVW�VWDJH�RI�WKH�SURFHVV��GDWD
FRQWDLQHG�LQ�D�SDQGDV�REMHFW��ZKHWKHU�D�6HULHV��'DWD)UDPH��RU�RWKHUZLVH��LV�VSOLW�LQWR
JURXSV�EDVHG�RQ�RQH�RU�PRUH�NH\V�WKDW�\RX�SURYLGH��7KH�VSOLWWLQJ�LV�SHUIRUPHG�RQ�D
SDUWLFXODU�D[LV�RI�DQ�REMHFW��)RU�H[DPSOH��D�'DWD)UDPH�FDQ�EH�JURXSHG�RQ�LWV�URZV
�axis=0��RU�LWV�FROXPQV��axis=1���2QFH�WKLV�LV�GRQH��D�IXQFWLRQ�LV�DSSOLHG�WR�HDFK�JURXS�
SURGXFLQJ�D�QHZ�YDOXH��)LQDOO\��WKH�UHVXOWV�RI�DOO�WKRVH�IXQFWLRQ�DSSOLFDWLRQV�DUH�FRP�
ELQHG�LQWR�D�UHVXOW�REMHFW��7KH�IRUP�RI�WKH�UHVXOWLQJ�REMHFW�ZLOO�XVXDOO\�GHSHQG�RQ�ZKDW¦V
EHLQJ�GRQH�WR�WKH�GDWD��6HH�)LJXUH�����IRU�D�PRFNXS�RI�D�VLPSOH�JURXS�DJJUHJDWLRQ�

)LJXUH������,OOXVWUDWLRQ�RI�D�JURXS�DJJUHJDWLRQ

(DFK�JURXSLQJ�NH\�FDQ�WDNH�PDQ\�IRUPV��DQG�WKH�NH\V�GR�QRW�KDYH�WR�EH�DOO�RI�WKH�VDPH
W\SH�

� $�OLVW�RU�DUUD\�RI�YDOXHV�WKDW�LV�WKH�VDPH�OHQJWK�DV�WKH�D[LV�EHLQJ�JURXSHG

� $�YDOXH�LQGLFDWLQJ�D�FROXPQ�QDPH�LQ�D�'DWD)UDPH

250 | Chapter 9:ಗData Aggregation and Group Operations

Split-Apply-Combine

18

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 490/680, Spring 2020

Journal of Statistical Software 9

name age sex

John 13 Male

Peter 13 Male

Roger 14 Male

John 13 Male

Mary 15 Female

Alice 14 Female

Peter 13 Male

Roger 14 Male

Phyllis 13 Female

name age sex

Mary 15 Female

Alice 14 Female

Phyllis 13 Female

name age sex

John 13 Male

Peter 13 Male

Phyllis 13 Female

name age sex

Mary 15 Female

name age sex

Alice 14 Female

Roger 14 Male

name age sex

.(sex) .(age)

Figure 4: Two examples of splitting up a data frame by variables. If the data frame was split
up by both sex and age, there would only be one subset with more than one row: 13-year-old
males.

Output Processing function restrictions Null output

*aply atomic array, or list vector()

*dply frame data frame, or atomic vector data.frame()

*lply none list()

*_ply none —

Table 3: Summary of processing function restrictions and null output values for all output
types. Explained in more detail in each output section.

3.2. Output

The output type defines how the pieces will be joined back together and how they will be
labelled. The labels are particularly important as they allow matching up of input and output.

The input and output types are the same, except there is an additional output data type, _,
which discards the output. This is useful for functions like plot() and write.table() that
are called only for their side e↵ects, not their return value.

The output type also places some restrictions on what type of results the processing function
should return. Generally, the processing function should return the same type of data as the
eventual output, (i.e., vectors, matrices and arrays for *aply and data frames for *dply) but
some other formats are accepted for convenience and are described in Table 3. These are
explained in more detail in the individual output type sections.

Output: Array (*aply)

With array output the shape of the output array is determined by the input splits and the
dimensionality of each individual result. Figures 5 and 6 illustrate this pictorially for simple

Splitting by Variables

19

[H. Wickham, 2011]

D. Koop, CSCI 490/680, Spring 2020

12 The Split-Apply-Combine Strategy for Data Analysis

sex

Male

Female

value

3

3

age

13

14

value

3

2

15 1

age

13

14

value

2

1

sex

Male

Male

14 1

15 1

Female

Female

Female 13 1

.(sex) .(age) .(sex, age)

Figure 7: Illustrating the output from using ddply() on the example from Figure 4 with
nrow(). Splitting variables shown above each example. Note how the extra labeling columns
are added so that you can identify to which subset the results apply.

to further process the list the labels will appear as if you had used aaply, adply, daply or
ddply directly. llply is convenient for calculating complex objects once (e.g., models), from
which you later extract pieces of interest into arrays and data frames.

There are no restrictions on the output of the processing function. If there are no results,
*lply will return a list of length 0.

Output: Discarded (*_ply)

Sometimes it is convenient to operate on a list purely for the side e↵ects, e.g., plots, caching,
and output to screen/file. In this case *_ply is a little more e�cient than abandoning the
output of *lply because it does not store the intermediate results.

The *_ply functions have one additional argument, .print, which controls whether or not
each result should be printed. This is useful when working with lattice (Sarkar 2008) or
ggplot2 (Wickham 2010) graphics.

4. Helpers

The plyr package also provides a number of helper function which take a function (or func-
tions) as input and return a new function as output.

splat() converts a function that takes multiple arguments to one that takes a list as its
single argument. This is useful when you want a function to operate on a data frame,
without manually pulling it apart. In this case, the column names of the data frame
will match the argument names of the function. For example, compare the following
two ddply calls, one with, and one without spat:

R> hp_per_cyl <- function(hp, cyl, ...) hp / cyl

R> splat(hp_per_cyl)(mtcars[1,])

R> splat(hp_per_cyl)(mtcars)

R> ddply(mtcars, .(round(wt)),

+ function(df) mean_hp_per_cyl(dfhp, dfcyl))

R> ddply(mtcars, .(round(wt)), splat(mean_hp_per_cyl))

Apply+Combine: Counting

20

[H. Wickham, 2011]

D. Koop, CSCI 490/680, Spring 2020

In Pandas
• groupby method creates a GroupBy object
• groupby doesn't actually compute anything until there is an apply/aggregate

step or we wish to examine the groups
• Choose keys (columns) to group by
• size() is the count of each group

21

D. Koop, CSCI 490/680, Spring 2020

Aggregation
• Operations:

- count()

- mean()

- sum()

• May also wish to aggregate only certain subsets
- Use square brackets with column names

• Can also write your own functions for aggregation and pass then to agg
function

- def peak_to_peak(arr):
 return arr.max() - arr.min()
grouped.agg(peak_to_peak)

22

D. Koop, CSCI 490/680, Spring 2020

In [49]: hier_df
Out[49]:
cty US JP
tenor 1 3 5 1 3
0 0.560145 -1.265934 0.119827 -1.063512 0.332883
1 -2.359419 -0.199543 -1.541996 -0.970736 -1.307030
2 0.286350 0.377984 -0.753887 0.331286 1.349742
3 0.069877 0.246674 -0.011862 1.004812 1.327195

To group by level, pass the level number or name using the level keyword:
In [50]: hier_df.groupby(level='cty', axis=1).count()
Out[50]:
cty JP US
0 2 3
1 2 3
2 2 3
3 2 3

10.2 Data Aggregation
Aggregations refer to any data transformation that produces scalar values from
arrays. The preceding examples have used several of them, including mean, count,
min, and sum. You may wonder what is going on when you invoke mean() on a
GroupBy object. Many common aggregations, such as those found in Table 10-1,
have optimized implementations. However, you are not limited to only this set of
methods.

Table 10-1. Optimized groupby methods
Function name Description
count Number of non-NA values in the group
sum Sum of non-NA values
mean Mean of non-NA values
median Arithmetic median of non-NA values
std, var Unbiased (n – 1 denominator) standard deviation and variance
min, max Minimum and maximum of non-NA values
prod Product of non-NA values
first, last First and last non-NA values

You can use aggregations of your own devising and additionally call any method that
is also defined on the grouped object. For example, you might recall that quantile
computes sample quantiles of a Series or a DataFrame’s columns.

While quantile is not explicitly implemented for GroupBy, it is a Series method and
thus available for use. Internally, GroupBy efficiently slices up the Series, calls

296 | Chapter 10: Data Aggregation and Group Operations

Optimized groupby methods

23

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 490/680, Spring 2020

Iterating over groups
• for name, group in df.groupby('key1'):
 print(name)
 print(group)

• Can also .describe() groups

24

D. Koop, CSCI 490/680, Spring 2020

Apply: Generalized methods

25

[W. McKinney]

6 Thur No 17.113111 2.673778 2.488889 0.160298
7 Thur Yes 19.190588 3.030000 2.352941 0.163863

Of course, it’s always possible to obtain the result in this format by calling
reset_index on the result. Using the as_index=False method avoids some unneces‐
sary computations.

10.3 Apply: General split-apply-combine
The most general-purpose GroupBy method is apply, which is the subject of the rest
of this section. As illustrated in Figure 10-2, apply splits the object being manipulated
into pieces, invokes the passed function on each piece, and then attempts to concate‐
nate the pieces together.

Figure 10-2. Illustration of a group aggregation

Returning to the tipping dataset from before, suppose you wanted to select the top
five tip_pct values by group. First, write a function that selects the rows with the
largest values in a particular column:

In [74]: def top(df, n=5, column='tip_pct'):
 : return df.sort_values(by=column)[-n:]

In [75]: top(tips, n=6)
Out[75]:
 total_bill tip smoker day time size tip_pct
109 14.31 4.00 Yes Sat Dinner 2 0.279525
183 23.17 6.50 Yes Sun Dinner 4 0.280535
232 11.61 3.39 No Sat Dinner 2 0.291990

302 | Chapter 10: Data Aggregation and Group Operations

67 3.07 1.00 Yes Sat Dinner 1 0.325733
178 9.60 4.00 Yes Sun Dinner 2 0.416667
172 7.25 5.15 Yes Sun Dinner 2 0.710345

Now, if we group by smoker, say, and call apply with this function, we get the
following:

In [76]: tips.groupby('smoker').apply(top)
Out[76]:
 total_bill tip smoker day time size tip_pct
smoker
No 88 24.71 5.85 No Thur Lunch 2 0.236746
 185 20.69 5.00 No Sun Dinner 5 0.241663
 51 10.29 2.60 No Sun Dinner 2 0.252672
 149 7.51 2.00 No Thur Lunch 2 0.266312
 232 11.61 3.39 No Sat Dinner 2 0.291990
Yes 109 14.31 4.00 Yes Sat Dinner 2 0.279525
 183 23.17 6.50 Yes Sun Dinner 4 0.280535
 67 3.07 1.00 Yes Sat Dinner 1 0.325733
 178 9.60 4.00 Yes Sun Dinner 2 0.416667
 172 7.25 5.15 Yes Sun Dinner 2 0.710345

What has happened here? The top function is called on each row group from the
DataFrame, and then the results are glued together using pandas.concat, labeling the
pieces with the group names. The result therefore has a hierarchical index whose
inner level contains index values from the original DataFrame.

If you pass a function to apply that takes other arguments or keywords, you can pass
these after the function:

In [77]: tips.groupby(['smoker', 'day']).apply(top, n=1, column='total_bill')
Out[77]:
 total_bill tip smoker day time size tip_pct
smoker day
No Fri 94 22.75 3.25 No Fri Dinner 2 0.142857
 Sat 212 48.33 9.00 No Sat Dinner 4 0.186220
 Sun 156 48.17 5.00 No Sun Dinner 6 0.103799
 Thur 142 41.19 5.00 No Thur Lunch 5 0.121389
Yes Fri 95 40.17 4.73 Yes Fri Dinner 4 0.117750
 Sat 170 50.81 10.00 Yes Sat Dinner 3 0.196812
 Sun 182 45.35 3.50 Yes Sun Dinner 3 0.077178
 Thur 197 43.11 5.00 Yes Thur Lunch 4 0.115982

Beyond these basic usage mechanics, getting the most out of apply
may require some creativity. What occurs inside the function
passed is up to you; it only needs to return a pandas object or a
scalar value. The rest of this chapter will mainly consist of examples
showing you how to solve various problems using groupby.

10.3 Apply: General split-apply-combine | 303

67 3.07 1.00 Yes Sat Dinner 1 0.325733
178 9.60 4.00 Yes Sun Dinner 2 0.416667
172 7.25 5.15 Yes Sun Dinner 2 0.710345

Now, if we group by smoker, say, and call apply with this function, we get the
following:

In [76]: tips.groupby('smoker').apply(top)
Out[76]:
 total_bill tip smoker day time size tip_pct
smoker
No 88 24.71 5.85 No Thur Lunch 2 0.236746
 185 20.69 5.00 No Sun Dinner 5 0.241663
 51 10.29 2.60 No Sun Dinner 2 0.252672
 149 7.51 2.00 No Thur Lunch 2 0.266312
 232 11.61 3.39 No Sat Dinner 2 0.291990
Yes 109 14.31 4.00 Yes Sat Dinner 2 0.279525
 183 23.17 6.50 Yes Sun Dinner 4 0.280535
 67 3.07 1.00 Yes Sat Dinner 1 0.325733
 178 9.60 4.00 Yes Sun Dinner 2 0.416667
 172 7.25 5.15 Yes Sun Dinner 2 0.710345

What has happened here? The top function is called on each row group from the
DataFrame, and then the results are glued together using pandas.concat, labeling the
pieces with the group names. The result therefore has a hierarchical index whose
inner level contains index values from the original DataFrame.

If you pass a function to apply that takes other arguments or keywords, you can pass
these after the function:

In [77]: tips.groupby(['smoker', 'day']).apply(top, n=1, column='total_bill')
Out[77]:
 total_bill tip smoker day time size tip_pct
smoker day
No Fri 94 22.75 3.25 No Fri Dinner 2 0.142857
 Sat 212 48.33 9.00 No Sat Dinner 4 0.186220
 Sun 156 48.17 5.00 No Sun Dinner 6 0.103799
 Thur 142 41.19 5.00 No Thur Lunch 5 0.121389
Yes Fri 95 40.17 4.73 Yes Fri Dinner 4 0.117750
 Sat 170 50.81 10.00 Yes Sat Dinner 3 0.196812
 Sun 182 45.35 3.50 Yes Sun Dinner 3 0.077178
 Thur 197 43.11 5.00 Yes Thur Lunch 4 0.115982

Beyond these basic usage mechanics, getting the most out of apply
may require some creativity. What occurs inside the function
passed is up to you; it only needs to return a pandas object or a
scalar value. The rest of this chapter will mainly consist of examples
showing you how to solve various problems using groupby.

10.3 Apply: General split-apply-combine | 303

D. Koop, CSCI 490/680, Spring 2020

Apply
• tips.groupby('smoker').apply(top)

• Function is an argument
• Function applied on each row group
• All row groups glued together using concat

26

D. Koop, CSCI 490/680, Spring 2020

Types of GroupBy
• Aggregation: agg

- n:1 n group values become one value
- Examples: mean, min, median

• Apply: apply
- n:m n group values become m values
- Most general (could do aggregation or transform with apply)
- Example: top 5 in each group, filter

• Transform: transform
- n:n n group values become n values
- Cannot mutate the input

27

D. Koop, CSCI 490/680, Spring 2020

Transform Example

28

[W. McKinney, Python for Data Analysis]

12.2 Advanced GroupBy Use
While we’ve already discussed using the groupby method for Series and DataFrame in
depth in Chapter 10, there are some additional techniques that you may find of use.

Group Transforms and “Unwrapped” GroupBys
In Chapter 10 we looked at the apply method in grouped operations for performing
transformations. There is another built-in method called transform, which is similar
to apply but imposes more constraints on the kind of function you can use:

• It can produce a scalar value to be broadcast to the shape of the group
• It can produce an object of the same shape as the input group
• It must not mutate its input

Let’s consider a simple example for illustration:
In [75]: df = pd.DataFrame({'key': ['a', 'b', 'c'] * 4,
 : 'value': np.arange(12.)})

In [76]: df
Out[76]:
 key value
0 a 0.0
1 b 1.0
2 c 2.0
3 a 3.0
4 b 4.0
5 c 5.0
6 a 6.0
7 b 7.0
8 c 8.0
9 a 9.0
10 b 10.0
11 c 11.0

Here are the group means by key:
In [77]: g = df.groupby('key').value

In [78]: g.mean()
Out[78]:
key
a 4.5
b 5.5
c 6.5
Name: value, dtype: float64

12.2 Advanced GroupBy Use | 373

12.2 Advanced GroupBy Use
While we’ve already discussed using the groupby method for Series and DataFrame in
depth in Chapter 10, there are some additional techniques that you may find of use.

Group Transforms and “Unwrapped” GroupBys
In Chapter 10 we looked at the apply method in grouped operations for performing
transformations. There is another built-in method called transform, which is similar
to apply but imposes more constraints on the kind of function you can use:

• It can produce a scalar value to be broadcast to the shape of the group
• It can produce an object of the same shape as the input group
• It must not mutate its input

Let’s consider a simple example for illustration:
In [75]: df = pd.DataFrame({'key': ['a', 'b', 'c'] * 4,
 : 'value': np.arange(12.)})

In [76]: df
Out[76]:
 key value
0 a 0.0
1 b 1.0
2 c 2.0
3 a 3.0
4 b 4.0
5 c 5.0
6 a 6.0
7 b 7.0
8 c 8.0
9 a 9.0
10 b 10.0
11 c 11.0

Here are the group means by key:
In [77]: g = df.groupby('key').value

In [78]: g.mean()
Out[78]:
key
a 4.5
b 5.5
c 6.5
Name: value, dtype: float64

12.2 Advanced GroupBy Use | 373

Suppose instead we wanted to produce a Series of the same shape as df['value'] but
with values replaced by the average grouped by 'key'. We can pass the function
lambda x: x.mean() to transform:

In [79]: g.transform(lambda x: x.mean())
Out[79]:
0 4.5
1 5.5
2 6.5
3 4.5
4 5.5
5 6.5
6 4.5
7 5.5
8 6.5
9 4.5
10 5.5
11 6.5
Name: value, dtype: float64

For built-in aggregation functions, we can pass a string alias as with the GroupBy agg
method:

In [80]: g.transform('mean')
Out[80]:
0 4.5
1 5.5
2 6.5
3 4.5
4 5.5
5 6.5
6 4.5
7 5.5
8 6.5
9 4.5
10 5.5
11 6.5
Name: value, dtype: float64

Like apply, transform works with functions that return Series, but the result must be
the same size as the input. For example, we can multiply each group by 2 using a
lambda function:

In [81]: g.transform(lambda x: x * 2)
Out[81]:
0 0.0
1 2.0
2 4.0
3 6.0
4 8.0
5 10.0
6 12.0

374 | Chapter 12: Advanced pandas

D. Koop, CSCI 490/680, Spring 2020

Transform Example

28

[W. McKinney, Python for Data Analysis]

12.2 Advanced GroupBy Use
While we’ve already discussed using the groupby method for Series and DataFrame in
depth in Chapter 10, there are some additional techniques that you may find of use.

Group Transforms and “Unwrapped” GroupBys
In Chapter 10 we looked at the apply method in grouped operations for performing
transformations. There is another built-in method called transform, which is similar
to apply but imposes more constraints on the kind of function you can use:

• It can produce a scalar value to be broadcast to the shape of the group
• It can produce an object of the same shape as the input group
• It must not mutate its input

Let’s consider a simple example for illustration:
In [75]: df = pd.DataFrame({'key': ['a', 'b', 'c'] * 4,
 : 'value': np.arange(12.)})

In [76]: df
Out[76]:
 key value
0 a 0.0
1 b 1.0
2 c 2.0
3 a 3.0
4 b 4.0
5 c 5.0
6 a 6.0
7 b 7.0
8 c 8.0
9 a 9.0
10 b 10.0
11 c 11.0

Here are the group means by key:
In [77]: g = df.groupby('key').value

In [78]: g.mean()
Out[78]:
key
a 4.5
b 5.5
c 6.5
Name: value, dtype: float64

12.2 Advanced GroupBy Use | 373

12.2 Advanced GroupBy Use
While we’ve already discussed using the groupby method for Series and DataFrame in
depth in Chapter 10, there are some additional techniques that you may find of use.

Group Transforms and “Unwrapped” GroupBys
In Chapter 10 we looked at the apply method in grouped operations for performing
transformations. There is another built-in method called transform, which is similar
to apply but imposes more constraints on the kind of function you can use:

• It can produce a scalar value to be broadcast to the shape of the group
• It can produce an object of the same shape as the input group
• It must not mutate its input

Let’s consider a simple example for illustration:
In [75]: df = pd.DataFrame({'key': ['a', 'b', 'c'] * 4,
 : 'value': np.arange(12.)})

In [76]: df
Out[76]:
 key value
0 a 0.0
1 b 1.0
2 c 2.0
3 a 3.0
4 b 4.0
5 c 5.0
6 a 6.0
7 b 7.0
8 c 8.0
9 a 9.0
10 b 10.0
11 c 11.0

Here are the group means by key:
In [77]: g = df.groupby('key').value

In [78]: g.mean()
Out[78]:
key
a 4.5
b 5.5
c 6.5
Name: value, dtype: float64

12.2 Advanced GroupBy Use | 373

Suppose instead we wanted to produce a Series of the same shape as df['value'] but
with values replaced by the average grouped by 'key'. We can pass the function
lambda x: x.mean() to transform:

In [79]: g.transform(lambda x: x.mean())
Out[79]:
0 4.5
1 5.5
2 6.5
3 4.5
4 5.5
5 6.5
6 4.5
7 5.5
8 6.5
9 4.5
10 5.5
11 6.5
Name: value, dtype: float64

For built-in aggregation functions, we can pass a string alias as with the GroupBy agg
method:

In [80]: g.transform('mean')
Out[80]:
0 4.5
1 5.5
2 6.5
3 4.5
4 5.5
5 6.5
6 4.5
7 5.5
8 6.5
9 4.5
10 5.5
11 6.5
Name: value, dtype: float64

Like apply, transform works with functions that return Series, but the result must be
the same size as the input. For example, we can multiply each group by 2 using a
lambda function:

In [81]: g.transform(lambda x: x * 2)
Out[81]:
0 0.0
1 2.0
2 4.0
3 6.0
4 8.0
5 10.0
6 12.0

374 | Chapter 12: Advanced pandas

or g.transform('mean')

D. Koop, CSCI 490/680, Spring 2020

Normalization

29

[W. McKinney]

7 14.0
8 16.0
9 18.0
10 20.0
11 22.0
Name: value, dtype: float64

As a more complicated example, we can compute the ranks in descending order for
each group:

In [82]: g.transform(lambda x: x.rank(ascending=False))
Out[82]:
0 4.0
1 4.0
2 4.0
3 3.0
4 3.0
5 3.0
6 2.0
7 2.0
8 2.0
9 1.0
10 1.0
11 1.0
Name: value, dtype: float64

Consider a group transformation function composed from simple aggregations:
def normalize(x):
 return (x - x.mean()) / x.std()

We can obtain equivalent results in this case either using transform or apply:
In [84]: g.transform(normalize)
Out[84]:
0 -1.161895
1 -1.161895
2 -1.161895
3 -0.387298
4 -0.387298
5 -0.387298
6 0.387298
7 0.387298
8 0.387298
9 1.161895
10 1.161895
11 1.161895
Name: value, dtype: float64

In [85]: g.apply(normalize)
Out[85]:
0 -1.161895
1 -1.161895
2 -1.161895

12.2 Advanced GroupBy Use | 375

7 14.0
8 16.0
9 18.0
10 20.0
11 22.0
Name: value, dtype: float64

As a more complicated example, we can compute the ranks in descending order for
each group:

In [82]: g.transform(lambda x: x.rank(ascending=False))
Out[82]:
0 4.0
1 4.0
2 4.0
3 3.0
4 3.0
5 3.0
6 2.0
7 2.0
8 2.0
9 1.0
10 1.0
11 1.0
Name: value, dtype: float64

Consider a group transformation function composed from simple aggregations:
def normalize(x):
 return (x - x.mean()) / x.std()

We can obtain equivalent results in this case either using transform or apply:
In [84]: g.transform(normalize)
Out[84]:
0 -1.161895
1 -1.161895
2 -1.161895
3 -0.387298
4 -0.387298
5 -0.387298
6 0.387298
7 0.387298
8 0.387298
9 1.161895
10 1.161895
11 1.161895
Name: value, dtype: float64

In [85]: g.apply(normalize)
Out[85]:
0 -1.161895
1 -1.161895
2 -1.161895

12.2 Advanced GroupBy Use | 375

7 14.0
8 16.0
9 18.0
10 20.0
11 22.0
Name: value, dtype: float64

As a more complicated example, we can compute the ranks in descending order for
each group:

In [82]: g.transform(lambda x: x.rank(ascending=False))
Out[82]:
0 4.0
1 4.0
2 4.0
3 3.0
4 3.0
5 3.0
6 2.0
7 2.0
8 2.0
9 1.0
10 1.0
11 1.0
Name: value, dtype: float64

Consider a group transformation function composed from simple aggregations:
def normalize(x):
 return (x - x.mean()) / x.std()

We can obtain equivalent results in this case either using transform or apply:
In [84]: g.transform(normalize)
Out[84]:
0 -1.161895
1 -1.161895
2 -1.161895
3 -0.387298
4 -0.387298
5 -0.387298
6 0.387298
7 0.387298
8 0.387298
9 1.161895
10 1.161895
11 1.161895
Name: value, dtype: float64

In [85]: g.apply(normalize)
Out[85]:
0 -1.161895
1 -1.161895
2 -1.161895

12.2 Advanced GroupBy Use | 375

3 -0.387298
4 -0.387298
5 -0.387298
6 0.387298
7 0.387298
8 0.387298
9 1.161895
10 1.161895
11 1.161895
Name: value, dtype: float64

Built-in aggregate functions like 'mean' or 'sum' are often much faster than a general
apply function. These also have a “fast past” when used with transform. This allows
us to perform a so-called unwrapped group operation:

In [86]: g.transform('mean')
Out[86]:
0 4.5
1 5.5
2 6.5
3 4.5
4 5.5
5 6.5
6 4.5
7 5.5
8 6.5
9 4.5
10 5.5
11 6.5
Name: value, dtype: float64

In [87]: normalized = (df['value'] - g.transform('mean')) / g.transform('std')

In [88]: normalized
Out[88]:
0 -1.161895
1 -1.161895
2 -1.161895
3 -0.387298
4 -0.387298
5 -0.387298
6 0.387298
7 0.387298
8 0.387298
9 1.161895
10 1.161895
11 1.161895
Name: value, dtype: float64

While an unwrapped group operation may involve multiple group aggregations, the
overall benefit of vectorized operations often outweighs this.

376 | Chapter 12: Advanced pandas

==

D. Koop, CSCI 490/680, Spring 2020

Normalization

29

[W. McKinney]

7 14.0
8 16.0
9 18.0
10 20.0
11 22.0
Name: value, dtype: float64

As a more complicated example, we can compute the ranks in descending order for
each group:

In [82]: g.transform(lambda x: x.rank(ascending=False))
Out[82]:
0 4.0
1 4.0
2 4.0
3 3.0
4 3.0
5 3.0
6 2.0
7 2.0
8 2.0
9 1.0
10 1.0
11 1.0
Name: value, dtype: float64

Consider a group transformation function composed from simple aggregations:
def normalize(x):
 return (x - x.mean()) / x.std()

We can obtain equivalent results in this case either using transform or apply:
In [84]: g.transform(normalize)
Out[84]:
0 -1.161895
1 -1.161895
2 -1.161895
3 -0.387298
4 -0.387298
5 -0.387298
6 0.387298
7 0.387298
8 0.387298
9 1.161895
10 1.161895
11 1.161895
Name: value, dtype: float64

In [85]: g.apply(normalize)
Out[85]:
0 -1.161895
1 -1.161895
2 -1.161895

12.2 Advanced GroupBy Use | 375

7 14.0
8 16.0
9 18.0
10 20.0
11 22.0
Name: value, dtype: float64

As a more complicated example, we can compute the ranks in descending order for
each group:

In [82]: g.transform(lambda x: x.rank(ascending=False))
Out[82]:
0 4.0
1 4.0
2 4.0
3 3.0
4 3.0
5 3.0
6 2.0
7 2.0
8 2.0
9 1.0
10 1.0
11 1.0
Name: value, dtype: float64

Consider a group transformation function composed from simple aggregations:
def normalize(x):
 return (x - x.mean()) / x.std()

We can obtain equivalent results in this case either using transform or apply:
In [84]: g.transform(normalize)
Out[84]:
0 -1.161895
1 -1.161895
2 -1.161895
3 -0.387298
4 -0.387298
5 -0.387298
6 0.387298
7 0.387298
8 0.387298
9 1.161895
10 1.161895
11 1.161895
Name: value, dtype: float64

In [85]: g.apply(normalize)
Out[85]:
0 -1.161895
1 -1.161895
2 -1.161895

12.2 Advanced GroupBy Use | 375

7 14.0
8 16.0
9 18.0
10 20.0
11 22.0
Name: value, dtype: float64

As a more complicated example, we can compute the ranks in descending order for
each group:

In [82]: g.transform(lambda x: x.rank(ascending=False))
Out[82]:
0 4.0
1 4.0
2 4.0
3 3.0
4 3.0
5 3.0
6 2.0
7 2.0
8 2.0
9 1.0
10 1.0
11 1.0
Name: value, dtype: float64

Consider a group transformation function composed from simple aggregations:
def normalize(x):
 return (x - x.mean()) / x.std()

We can obtain equivalent results in this case either using transform or apply:
In [84]: g.transform(normalize)
Out[84]:
0 -1.161895
1 -1.161895
2 -1.161895
3 -0.387298
4 -0.387298
5 -0.387298
6 0.387298
7 0.387298
8 0.387298
9 1.161895
10 1.161895
11 1.161895
Name: value, dtype: float64

In [85]: g.apply(normalize)
Out[85]:
0 -1.161895
1 -1.161895
2 -1.161895

12.2 Advanced GroupBy Use | 375

3 -0.387298
4 -0.387298
5 -0.387298
6 0.387298
7 0.387298
8 0.387298
9 1.161895
10 1.161895
11 1.161895
Name: value, dtype: float64

Built-in aggregate functions like 'mean' or 'sum' are often much faster than a general
apply function. These also have a “fast past” when used with transform. This allows
us to perform a so-called unwrapped group operation:

In [86]: g.transform('mean')
Out[86]:
0 4.5
1 5.5
2 6.5
3 4.5
4 5.5
5 6.5
6 4.5
7 5.5
8 6.5
9 4.5
10 5.5
11 6.5
Name: value, dtype: float64

In [87]: normalized = (df['value'] - g.transform('mean')) / g.transform('std')

In [88]: normalized
Out[88]:
0 -1.161895
1 -1.161895
2 -1.161895
3 -0.387298
4 -0.387298
5 -0.387298
6 0.387298
7 0.387298
8 0.387298
9 1.161895
10 1.161895
11 1.161895
Name: value, dtype: float64

While an unwrapped group operation may involve multiple group aggregations, the
overall benefit of vectorized operations often outweighs this.

376 | Chapter 12: Advanced pandas

3 -0.387298
4 -0.387298
5 -0.387298
6 0.387298
7 0.387298
8 0.387298
9 1.161895
10 1.161895
11 1.161895
Name: value, dtype: float64

Built-in aggregate functions like 'mean' or 'sum' are often much faster than a general
apply function. These also have a “fast past” when used with transform. This allows
us to perform a so-called unwrapped group operation:

In [86]: g.transform('mean')
Out[86]:
0 4.5
1 5.5
2 6.5
3 4.5
4 5.5
5 6.5
6 4.5
7 5.5
8 6.5
9 4.5
10 5.5
11 6.5
Name: value, dtype: float64

In [87]: normalized = (df['value'] - g.transform('mean')) / g.transform('std')

In [88]: normalized
Out[88]:
0 -1.161895
1 -1.161895
2 -1.161895
3 -0.387298
4 -0.387298
5 -0.387298
6 0.387298
7 0.387298
8 0.387298
9 1.161895
10 1.161895
11 1.161895
Name: value, dtype: float64

While an unwrapped group operation may involve multiple group aggregations, the
overall benefit of vectorized operations often outweighs this.

376 | Chapter 12: Advanced pandas

==

Fastest: "Unwrapped" group operation

D. Koop, CSCI 490/680, Spring 2020

Other Operations
• Quantiles: return values at particular splits
- Median is a 0.5-quantile
- df.quantile(0.1)

- also works on groups
• Can return data from group-by without having the keys in the index

(as_index=False) or use reset_index after computing
• Grouped weighted average via apply

30

D. Koop, CSCI 490/680, Spring 2020

Pivot Tables
• Data summarization tool in many spreadsheet programs
• Aggregates a table of data by one or more keys with some keys arranged on

rows (index), others as columns (columns)
• Pandas supports via pivot_table method
• margins=True gives partial totals
• Can use different aggregation functions via aggfunc kwarg

31

[W. McKinney, Python for Data Analysis]

6HH�7DEOH�����IRU�D�VXPPDU\�RI�pivot_table�PHWKRGV�

7DEOH������SLYRWBWDEOH�RSWLRQV

Function name Description

values Column name or names to aggregate. By default aggregates all numeric columns

rows Column names or other group keys to group on the rows of the resulting pivot table

cols Column names or other group keys to group on the columns of the resulting pivot table

aggfunc Aggregation function or list of functions; 'mean' by default. Can be any function valid in a groupby context

fill_value Replace missing values in result table

margins Add row/column subtotals and grand total, False by default

Cross-Tabulations: Crosstab
$�FURVV�WDEXODWLRQ��RU�FURVVWDE�IRU�VKRUW��LV�D�VSHFLDO�FDVH�RI�D�SLYRW�WDEOH�WKDW�FRPSXWHV
JURXS�IUHTXHQFLHV��+HUH�LV�D�FDQRQLFDO�H[DPSOH�WDNHQ�IURP�WKH�:LNLSHGLD�SDJH�RQ�FURVV�
WDEXODWLRQ�

In [292]: data
Out[292]:
 Sample Gender Handedness
0 1 Female Right-handed
1 2 Male Left-handed
2 3 Female Right-handed
3 4 Male Right-handed
4 5 Male Left-handed
5 6 Male Right-handed
6 7 Female Right-handed
7 8 Female Left-handed
8 9 Male Right-handed
9 10 Female Right-handed

$V�SDUW�RI�VRPH�VXUYH\�DQDO\VLV��ZH�PLJKW�ZDQW�WR�VXPPDUL]H�WKLV�GDWD�E\�JHQGHU�DQG
KDQGHGQHVV��<RX�FRXOG�XVH�pivot_table�WR�GR�WKLV��EXW�WKH�pandas.crosstab�IXQFWLRQ
LV�YHU\�FRQYHQLHQW�

In [293]: pd.crosstab(data.Gender, data.Handedness, margins=True)
Out[293]:
Handedness Left-handed Right-handed All
Gender
Female 1 4 5
Male 2 3 5
All 3 7 10

7KH�ILUVW�WZR�DUJXPHQWV�WR�crosstab�FDQ�HDFK�HLWKHU�EH�DQ�DUUD\�RU�6HULHV�RU�D�OLVW�RI
DUUD\V��$V�LQ�WKH�WLSV�GDWD�

In [294]: pd.crosstab([tips.time, tips.day], tips.smoker, margins=True)
Out[294]:
smoker No Yes All
time day

Pivot Tables and Cross-Tabulation | 275

D. Koop, CSCI 490/680, Spring 2020

Pivot Tables in Pandas
• tips

• tips.pivot_table(index=['sex', 'smoker'])

32

In [26]:

In [29]:

In [28]:

In [30]:

Out[26]: smoker
No count 151.000000
 mean 0.159328
 std 0.039910
 min 0.056797
 25% 0.136906
 50% 0.155625
 75% 0.185014
 max 0.291990
Yes count 93.000000
 mean 0.163196
 std 0.085119
 min 0.035638
 25% 0.106771
 50% 0.153846
 75% 0.195059
 max 0.710345
Name: tip_pct, dtype: float64

Out[29]: count mean std min 25% 50% 75% max

smoker

No 151.0 0.159328 0.039910 0.056797 0.136906 0.155625 0.185014 0.291990

Yes 93.0 0.163196 0.085119 0.035638 0.106771 0.153846 0.195059 0.710345

Out[28]: smoker
No 0.206140
Yes 0.236398
Name: tip_pct, dtype: float64

Out[30]: size tip tip_pct total_bill

sex smoker

Female
No 2.592593 2.773519 0.156921 18.105185

Yes 2.242424 2.931515 0.182150 17.977879

Male
No 2.711340 3.113402 0.160669 19.791237

Yes 2.500000 3.051167 0.152771 22.284500

result

can also unstack this series into a dataframe
result.unstack()

can get arbitrary quantiles
tips.groupby('smoker')['tip_pct'].quantile(0.9)

tips.pivot_table(index=['sex', 'smoker'])

In [7]:

In [8]:

In [9]:

In [10]:

Out[7]: total_bill tip size

sex

Female 18.056897 2.833448 2.459770

Male 20.744076 3.089618 2.630573

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 244 entries, 0 to 243
Data columns (total 7 columns):
total_bill 244 non-null float64
tip 244 non-null float64
sex 244 non-null object
smoker 244 non-null object
day 244 non-null object
time 244 non-null object
size 244 non-null int64
dtypes: float64(2), int64(1), object(4)
memory usage: 13.4+ KB

Out[10]: total_bill tip sex smoker day time size tip_pct

0 16.99 1.01 Female No Sun Dinner 2 0.059447

1 10.34 1.66 Male No Sun Dinner 3 0.160542

2 21.01 3.50 Male No Sun Dinner 3 0.166587

3 23.68 3.31 Male No Sun Dinner 2 0.139780

4 24.59 3.61 Female No Sun Dinner 4 0.146808

5 25.29 4.71 Male No Sun Dinner 4 0.186240

6 8.77 2.00 Male No Sun Dinner 2 0.228050

7 26.88 3.12 Male No Sun Dinner 4 0.116071

8 15.04 1.96 Male No Sun Dinner 2 0.130319

9 14.78 3.23 Male No Sun Dinner 2 0.218539

10 10.27 1.71 Male No Sun Dinner 2 0.166504

11 35.26 5.00 Female No Sun Dinner 4 0.141804

12 15.42 1.57 Male No Sun Dinner 2 0.101816

grouped.mean()

tips.info()

tips['tip_pct'] = tips['tip']/tips['total_bill']

tips

D. Koop, CSCI 490/680, Spring 2020

Pivot Tables with Margins and Aggfunc
• tips.pivot_table(['size'], index=['sex', 'day'],
columns='smoker', aggfunc='sum', margins=True)

33

In [37]:

In [44]:

Out[37]: size

smoker No Yes All

sex day

Female

Fri 2.0 7.0 9.0

Sat 13.0 15.0 28.0

Sun 14.0 4.0 18.0

Thur 25.0 7.0 32.0

Male

Fri 2.0 8.0 10.0

Sat 32.0 27.0 59.0

Sun 43.0 15.0 58.0

Thur 20.0 10.0 30.0

All 151.0 93.0 244.0

Out[44]: day Fri Sat Sun Thur

time sex smoker

Dinner

Female
No 2 30 43 2

Yes 8 33 10 0

Male
No 4 85 124 0

Yes 12 71 39 0

Lunch

Female
No 3 0 0 60

Yes 6 0 0 17

Male
No 0 0 0 50

Yes 5 0 0 23

tips.pivot_table(['size'], index=['sex', 'day'], columns='smoker', aggfunc

tips.pivot_table('size', index=['time', 'sex', 'smoker'], columns=['day'],

D. Koop, CSCI 490/680, Spring 2020

Crosstabs
• crosstab is a special case for group frequencies (aggfunc='count')

• Tipping example
• Also see the Federal Election Database example in the book

34

6HH�7DEOH�����IRU�D�VXPPDU\�RI�pivot_table�PHWKRGV�

7DEOH������SLYRWBWDEOH�RSWLRQV

Function name Description

values Column name or names to aggregate. By default aggregates all numeric columns

rows Column names or other group keys to group on the rows of the resulting pivot table

cols Column names or other group keys to group on the columns of the resulting pivot table

aggfunc Aggregation function or list of functions; 'mean' by default. Can be any function valid in a groupby context

fill_value Replace missing values in result table

margins Add row/column subtotals and grand total, False by default

Cross-Tabulations: Crosstab
$�FURVV�WDEXODWLRQ��RU�FURVVWDE�IRU�VKRUW��LV�D�VSHFLDO�FDVH�RI�D�SLYRW�WDEOH�WKDW�FRPSXWHV
JURXS�IUHTXHQFLHV��+HUH�LV�D�FDQRQLFDO�H[DPSOH�WDNHQ�IURP�WKH�:LNLSHGLD�SDJH�RQ�FURVV�
WDEXODWLRQ�

In [292]: data
Out[292]:
 Sample Gender Handedness
0 1 Female Right-handed
1 2 Male Left-handed
2 3 Female Right-handed
3 4 Male Right-handed
4 5 Male Left-handed
5 6 Male Right-handed
6 7 Female Right-handed
7 8 Female Left-handed
8 9 Male Right-handed
9 10 Female Right-handed

$V�SDUW�RI�VRPH�VXUYH\�DQDO\VLV��ZH�PLJKW�ZDQW�WR�VXPPDUL]H�WKLV�GDWD�E\�JHQGHU�DQG
KDQGHGQHVV��<RX�FRXOG�XVH�pivot_table�WR�GR�WKLV��EXW�WKH�pandas.crosstab�IXQFWLRQ
LV�YHU\�FRQYHQLHQW�

In [293]: pd.crosstab(data.Gender, data.Handedness, margins=True)
Out[293]:
Handedness Left-handed Right-handed All
Gender
Female 1 4 5
Male 2 3 5
All 3 7 10

7KH�ILUVW�WZR�DUJXPHQWV�WR�crosstab�FDQ�HDFK�HLWKHU�EH�DQ�DUUD\�RU�6HULHV�RU�D�OLVW�RI
DUUD\V��$V�LQ�WKH�WLSV�GDWD�

In [294]: pd.crosstab([tips.time, tips.day], tips.smoker, margins=True)
Out[294]:
smoker No Yes All
time day

Pivot Tables and Cross-Tabulation | 275

D. Koop, CSCI 490/680, Spring 2020

Crosstabs
• pd.crosstab([tips.time, tips.day], tips.smoker,
margins=True)

• or… tips.pivot_table('total_bill',index=['time', 'day'],
columns=['smoker'], aggfunc='count', margins=True,
fill_value=0)

35

In [45]:

In [53]:

In []:

Out[45]: smoker No Yes All

time day

Dinner

Fri 3 9 12

Sat 45 42 87

Sun 57 19 76

Thur 1 0 1

Lunch
Fri 1 6 7

Thur 44 17 61

All 151 93 244

Out[53]: smoker No Yes All

time day

Dinner

Fri 3.0 9.0 12.0

Sat 45.0 42.0 87.0

Sun 57.0 19.0 76.0

Thur 1.0 0.0 1.0

Lunch
Fri 1.0 6.0 7.0

Thur 44.0 17.0 61.0

All 151.0 93.0 244.0

pd.crosstab([tips.time, tips.day], tips.smoker, margins=True)

can mimic crosstab using a pivot_table
doesn't matter what the data (first argument) is
tips.pivot_table('total_bill',index=['time', 'day'], columns=['smoker'],

D. Koop, CSCI 490/680, Spring 2020 36

Time Series Data

D. Koop, CSCI 490/680, Spring 2020

What is time series data?
• Technically, it's normal tabular data with a timestamp attached
• But… we have observations of the same values over time, usually in order
• This allows more analysis
• Example: Web site database that tracks the last time a user logged in
- 1: Keep an attribute lastLogin that is overwritten every time user logs in
- 2: Add a new row with login information every time the user logs in
- Option 2 takes more storage, but we can also do a lot more analysis!

37

D. Koop, CSCI 490/680, Spring 2020

Time Series Databases
• Most time series data is heavy inserts, few updates
• Also analysis tends to be on ordered data with trends, prediction, etc.
• Can also consider stream processing
• Focus on time series allows databases to specialize
• Examples:
- InfluxDB (noSQL)
- TimescaleDB (SQL-based)

38

D. Koop, CSCI 490/680, Spring 2020

Features of Time Series Data
• Trend: long-term increase or decrease in the data
• Seasonal Pattern: time series is affected by seasonal factors such as the time

of the year or the day of the week (fixed and of known frequency)
• Cyclic Pattern: rises and falls that are not of a fixed frequency
• Stationary: no predictable patterns (roughly horizontal with constant variance)
- White noise series is stationary
- Will look the basically the same whenever you observe it

39

[Hyndman and Athanosopoulos]

https://otexts.com/fpp2/

D. Koop, CSCI 490/680, Spring 2020

Examples

40

[R. J. Hyndman]

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 19

US Treasury bill contracts

Day

pr
ic
e

0 20 40 60 80 100

85
86

87
88

89
90

91

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 16

Australian electricity production

Year

G
W
h

1980 1985 1990 1995

80
00

10
00
0

12
00
0

14
00
0

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 18

Sales of new one−family houses, USA

To
ta

l s
al

es

1975 1980 1985 1990 1995

30
40

50
60

70
80

90

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 20

Annual Canadian Lynx trappings

Time

N
um

be
r t

ra
pp

ed

1820 1840 1860 1880 1900 1920

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

https://robjhyndman.com/seminars/uwa/

D. Koop, CSCI 490/680, Spring 2020

Examples

40

[R. J. Hyndman]

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 19

US Treasury bill contracts

Day

pr
ic
e

0 20 40 60 80 100

85
86

87
88

89
90

91

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 16

Australian electricity production

Year

G
W
h

1980 1985 1990 1995

80
00

10
00
0

12
00
0

14
00
0

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 18

Sales of new one−family houses, USA

To
ta

l s
al

es

1975 1980 1985 1990 1995

30
40

50
60

70
80

90

Trend

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 20

Annual Canadian Lynx trappings

Time

N
um

be
r t

ra
pp

ed

1820 1840 1860 1880 1900 1920

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

https://robjhyndman.com/seminars/uwa/

D. Koop, CSCI 490/680, Spring 2020

Examples

40

[R. J. Hyndman]

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 19

US Treasury bill contracts

Day

pr
ic
e

0 20 40 60 80 100

85
86

87
88

89
90

91

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 16

Australian electricity production

Year

G
W
h

1980 1985 1990 1995

80
00

10
00
0

12
00
0

14
00
0

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 18

Sales of new one−family houses, USA

To
ta

l s
al

es

1975 1980 1985 1990 1995

30
40

50
60

70
80

90

Trend Trend +
Seasonality

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 20

Annual Canadian Lynx trappings

Time

N
um

be
r t

ra
pp

ed

1820 1840 1860 1880 1900 1920

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

https://robjhyndman.com/seminars/uwa/

D. Koop, CSCI 490/680, Spring 2020

Examples

40

[R. J. Hyndman]

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 19

US Treasury bill contracts

Day

pr
ic
e

0 20 40 60 80 100

85
86

87
88

89
90

91

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 16

Australian electricity production

Year

G
W
h

1980 1985 1990 1995

80
00

10
00
0

12
00
0

14
00
0

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 18

Sales of new one−family houses, USA

To
ta

l s
al

es

1975 1980 1985 1990 1995

30
40

50
60

70
80

90

Trend Trend +
Seasonality

Seasonality +
Cyclic

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 20

Annual Canadian Lynx trappings

Time

N
um

be
r t

ra
pp

ed

1820 1840 1860 1880 1900 1920

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

https://robjhyndman.com/seminars/uwa/

D. Koop, CSCI 490/680, Spring 2020

Examples

40

[R. J. Hyndman]

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 19

US Treasury bill contracts

Day

pr
ic
e

0 20 40 60 80 100

85
86

87
88

89
90

91

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 16

Australian electricity production

Year

G
W
h

1980 1985 1990 1995

80
00

10
00
0

12
00
0

14
00
0

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 18

Sales of new one−family houses, USA

To
ta

l s
al

es

1975 1980 1985 1990 1995

30
40

50
60

70
80

90

Trend Trend +
Seasonality

Seasonality +
Cyclic

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 20

Annual Canadian Lynx trappings

Time

N
um

be
r t

ra
pp

ed

1820 1840 1860 1880 1900 1920

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

Stationary

https://robjhyndman.com/seminars/uwa/

D. Koop, CSCI 490/680, Spring 2020

Types of Time Data
• Timestamps: specific instants in time (e.g. 2018-11-27 14:15:00)
• Periods: have a standard start and length

(e.g. the month November 2018)
• Intervals: have a start and end timestamp
- Periods are special case
- Example: 2018-11-21 14:15:00 — 2018-12-01 05:15:00

• Elapsed time: measure of time relative to a start time (15 minutes)

41

D. Koop, CSCI 490/680, Spring 2020

Dates and Times
• What is time to a computer?
- Can be stored as seconds since Unix Epoch (January 1st, 1970)

• Often useful to break down into minutes, hours, days, months, years…
• Lots of different ways to write time:
- How could you write "November 29, 2016"?
- European vs. American ordering…

• What about time zones?

42

D. Koop, CSCI 490/680, Spring 2020

Python Support for Time
• The datetime package
- Has date, time, and datetime classes
- .now() method: the current datetime
- Can access properties of the time (year, month, seconds, etc.)

• Converting from strings to datetimes:
- datetime.strptime: good for known formats
- dateutil.parser.parse: good for unknown formats

• Converting to strings
- str(dt) or dt.strftime(<format>)

43

D. Koop, CSCI 490/680, Spring 2020

Python's strftime directives

Note: Examples are based on datetime.datetime(2013, 9, 30, 7, 6, 5)

Code Meaning Example

%a Weekday as locale’s abbreviated name. Mon

%A Weekday as locale’s full name. Monday

%w Weekday as a decimal number, where 0 is Sunday and 6
is Saturday.

1

%d Day of the month as a zero-padded decimal number. 30

%-d Day of the month as a decimal number. (Platform
specific)

30

%b Month as locale’s abbreviated name. Sep

%B Month as locale’s full name. September

%m Month as a zero-padded decimal number. 09

%-m Month as a decimal number. (Platform specific) 9

%y Year without century as a zero-padded decimal
number.

13

%Y Year with century as a decimal number. 2013

%H Hour (24-hour clock) as a zero-padded decimal
number.

07

%-H Hour (24-hour clock) as a decimal number. (Platform
specific)

7

%I Hour (12-hour clock) as a zero-padded decimal
number.

07

%-I Hour (12-hour clock) as a decimal number. (Platform
specific)

7

%p Locale’s equivalent of either AM or PM. AM

%M Minute as a zero-padded decimal number. 06

%-M Minute as a decimal number. (Platform specific) 6

%S Second as a zero-padded decimal number. 05

%-S Second as a decimal number. (Platform specific) 5

%f Microsecond as a decimal number, zero-padded on the
left.

000000

Datetime format specification
• Look it up:
- http://strftime.org

• Generally, can create whatever format you
need using these format strings

44

http://strftime.org

D. Koop, CSCI 490/680, Spring 2020

Pandas Support for Datetime
• pd.to_datetime:
- convenience method
- can convert an entire column to datetime

• Has a NaT to indicate a missing time value
• Stores in a numpy.datetime64 format
• pd.Timestamp: a wrapper for the datetime64 objects

45

D. Koop, CSCI 490/680, Spring 2020

More Pandas Support
• Accessing a particular time or checking equivalence allows any string that

can be interpreted as a date:
- ts['1/10/2011'] or ts['20110110']

• Date ranges: pd.date_range('4/1/2012','6/1/2012',freq='4h')
• Slicing works as expected
• Can do operations (add, subtract) on data indexed by datetime and the

indexes will match up
• As with strings, to treat a column as datetime, you can use the .dt accessor

46

D. Koop, CSCI 490/680, Spring 2020

Generating Date Ranges
• index = pd.date_range('4/1/2012', '6/1/2012')

• Can generate based on a number of periods as well
- index = pd.date_range('4/1/2012', periods=20)

• Frequency (freq) controls how the range is divided
- Codes for specifying this (e.g. 4h, D, M)
-

- Can also mix them: '2h30m'

47

6RPHWLPHV�\RX�ZLOO�KDYH�VWDUW�RU�HQG�GDWHV�ZLWK�WLPH�LQIRUPDWLRQ�EXW�ZDQW�WR�JHQHUDWH
D� VHW�RI� WLPHVWDPSV�QRUPDOL]HG� WR�PLGQLJKW�DV�D� FRQYHQWLRQ��7R�GR� WKLV�� WKHUH� LV� D
normalize�RSWLRQ�

In [84]: pd.date_range('5/2/2012 12:56:31', periods=5, normalize=True)
Out[84]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2012-05-02, ..., 2012-05-06]
Length: 5, Freq: D, Timezone: None

Frequencies and Date Offsets
)UHTXHQFLHV� LQ�SDQGDV�DUH�FRPSRVHG�RI�D�EDVH�IUHTXHQF\�DQG�D�PXOWLSOLHU��%DVH�IUH�
TXHQFLHV�DUH�W\SLFDOO\�UHIHUUHG�WR�E\�D�VWULQJ�DOLDV��OLNH�'M'�IRU�PRQWKO\�RU�'H'�IRU�KRXUO\�
)RU�HDFK�EDVH�IUHTXHQF\��WKHUH�LV�DQ�REMHFW�GHILQHG�JHQHUDOO\�UHIHUUHG�WR�DV�D�GDWH�RII�
VHW��)RU�H[DPSOH��KRXUO\�IUHTXHQF\�FDQ�EH�UHSUHVHQWHG�ZLWK�WKH�Hour�FODVV�

In [85]: from pandas.tseries.offsets import Hour, Minute

In [86]: hour = Hour()

In [87]: hour
Out[87]: <Hour>

<RX�FDQ�GHILQH�D�PXOWLSOH�RI�DQ�RIIVHW�E\�SDVVLQJ�DQ�LQWHJHU�

In [88]: four_hours = Hour(4)

In [89]: four_hours
Out[89]: <4 * Hours>

,Q�PRVW�DSSOLFDWLRQV��\RX�ZRXOG�QHYHU�QHHG�WR�H[SOLFLWO\�FUHDWH�RQH�RI�WKHVH�REMHFWV�
LQVWHDG�XVLQJ�D�VWULQJ�DOLDV�OLNH�'H'�RU�'4H'��3XWWLQJ�DQ�LQWHJHU�EHIRUH�WKH�EDVH�IUHTXHQF\
FUHDWHV�D�PXOWLSOH�

In [90]: pd.date_range('1/1/2000', '1/3/2000 23:59', freq='4h')
Out[90]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2000-01-01 00:00:00, ..., 2000-01-03 20:00:00]
Length: 18, Freq: 4H, Timezone: None

0DQ\�RIIVHWV�FDQ�EH�FRPELQHG�WRJHWKHU�E\�DGGLWLRQ�

In [91]: Hour(2) + Minute(30)
Out[91]: <150 * Minutes>

6LPLODUO\��\RX�FDQ�SDVV�IUHTXHQF\�VWULQJV�OLNH�'2h30min'�ZKLFK�ZLOO�HIIHFWLYHO\�EH�SDUVHG
WR�WKH�VDPH�H[SUHVVLRQ�

In [92]: pd.date_range('1/1/2000', periods=10, freq='1h30min')
Out[92]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2000-01-01 00:00:00, ..., 2000-01-01 13:30:00]
Length: 10, Freq: 90T, Timezone: None

Date Ranges, Frequencies, and Shifting | 295

D. Koop, CSCI 490/680, Spring 2020

6RPH� IUHTXHQFLHV�GHVFULEH�SRLQWV� LQ� WLPH� WKDW� DUH�QRW� HYHQO\� VSDFHG��)RU� H[DPSOH�
'M'��FDOHQGDU�PRQWK�HQG��DQG�'BM'��ODVW�EXVLQHVV�ZHHNGD\�RI�PRQWK��GHSHQG�RQ�WKH
QXPEHU�RI�GD\V�LQ�D�PRQWK�DQG��LQ�WKH�ODWWHU�FDVH��ZKHWKHU�WKH�PRQWK�HQGV�RQ�D�ZHHNHQG
RU�QRW��)RU�ODFN�RI�D�EHWWHU�WHUP��,�FDOO�WKHVH�DQFKRUHG�RIIVHWV�

6HH�7DEOH������IRU�D�OLVWLQJ�RI�IUHTXHQF\�FRGHV�DQG�GDWH�RIIVHW�FODVVHV�DYDLODEOH�LQ�SDQGDV�

8VHUV�FDQ�GHILQH�WKHLU�RZQ�FXVWRP�IUHTXHQF\�FODVVHV�WR�SURYLGH�GDWH
ORJLF�QRW�DYDLODEOH�LQ�SDQGDV��WKRXJK�WKH�IXOO�GHWDLOV�RI�WKDW�DUH�RXWVLGH
WKH�VFRSH�RI�WKLV�ERRN�

7DEOH�������%DVH�7LPH�6HULHV�)UHTXHQFLHV

Alias Offset Type Description

D Day Calendar daily

B BusinessDay Business daily

H Hour Hourly

T or min Minute Minutely

S Second Secondly

L or ms Milli Millisecond (1/1000th of 1 second)

U Micro Microsecond (1/1000000th of 1 second)

M MonthEnd Last calendar day of month

BM BusinessMonthEnd Last business day (weekday) of month

MS MonthBegin First calendar day of month

BMS BusinessMonthBegin First weekday of month

W-MON, W-TUE, ... Week Weekly on given day of week: MON, TUE, WED, THU, FRI, SAT,
or SUN.

WOM-1MON, WOM-2MON, ... WeekOfMonth Generate weekly dates in the first, second, third, or fourth week
of the month. For example, WOM-3FRI for the 3rd Friday of
each month.

Q-JAN, Q-FEB, ... QuarterEnd Quarterly dates anchored on last calendar day of each month,
for year ending in indicated month: JAN, FEB, MAR, APR, MAY,
JUN, JUL, AUG, SEP, OCT, NOV, or DEC.

BQ-JAN, BQ-FEB, ... BusinessQuarterEnd Quarterly dates anchored on last weekday day of each month,
for year ending in indicated month

QS-JAN, QS-FEB, ... QuarterBegin Quarterly dates anchored on first calendar day of each month,
for year ending in indicated month

BQS-JAN, BQS-FEB, ... BusinessQuarterBegin Quarterly dates anchored on first weekday day of each month,
for year ending in indicated month

A-JAN, A-FEB, ... YearEnd Annual dates anchored on last calendar day of given month:
JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, or DEC.

296 | Chapter 10:ಗTime Series

Time Series Frequencies

48

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 490/680, Spring 2020

DatetimeIndex
• Can use time as an index
• data = [('2017-11-30', 48),
 ('2017-12-02', 45),
 ('2017-12-03', 44),
 ('2017-12-04', 48)]
dates, temps = zip(*data)
s = pd.Series(temps, pd.to_datetime(dates))

• Accessing a particular time or checking equivalence allows any string that
can be interpreted as a date:

- s['12/04/2017'] or s['20171204']
• Using a less specific string will get all matching data:

- s['2017-12'] returns the three December entries

49

D. Koop, CSCI 490/680, Spring 2020

DatetimeIndex
• Time slices do not need to exist:

- s['2017-12-01':'2017-12-31']

50

D. Koop, CSCI 490/680, Spring 2020

Shifting Data
• Leading or Lagging Data

• Shifting by time:

51

Alias Offset Type Description

BA-JAN, BA-FEB, ... BusinessYearEnd Annual dates anchored on last weekday of given month

AS-JAN, AS-FEB, ... YearBegin Annual dates anchored on first day of given month

BAS-JAN, BAS-FEB, ... BusinessYearBegin Annual dates anchored on first weekday of given month

Week of month dates
2QH�XVHIXO�IUHTXHQF\�FODVV�LV�£ZHHN�RI�PRQWK¤��VWDUWLQJ�ZLWK�WOM��7KLV�HQDEOHV�\RX�WR
JHW�GDWHV�OLNH�WKH�WKLUG�)ULGD\�RI�HDFK�PRQWK�

In [93]: rng = pd.date_range('1/1/2012', '9/1/2012', freq='WOM-3FRI')

In [94]: list(rng)
Out[94]:
[Timestamp('2012-01-20 00:00:00', offset='WOM-3FRI'),
 Timestamp('2012-02-17 00:00:00', offset='WOM-3FRI'),
 Timestamp('2012-03-16 00:00:00', offset='WOM-3FRI'),
 Timestamp('2012-04-20 00:00:00', offset='WOM-3FRI'),
 Timestamp('2012-05-18 00:00:00', offset='WOM-3FRI'),
 Timestamp('2012-06-15 00:00:00', offset='WOM-3FRI'),
 Timestamp('2012-07-20 00:00:00', offset='WOM-3FRI'),
 Timestamp('2012-08-17 00:00:00', offset='WOM-3FRI')]

7UDGHUV�RI�86�HTXLW\�RSWLRQV�ZLOO�UHFRJQL]H�WKHVH�GDWHV�DV�WKH�VWDQGDUG�GDWHV�RI�PRQWKO\
H[SLU\�

Shifting (Leading and Lagging) Data
£6KLIWLQJ¤�UHIHUV�WR�PRYLQJ�GDWD�EDFNZDUG�DQG�IRUZDUG�WKURXJK�WLPH��%RWK�6HULHV�DQG
'DWD)UDPH�KDYH�D�shift�PHWKRG�IRU�GRLQJ�QDLYH�VKLIWV�IRUZDUG�RU�EDFNZDUG��OHDYLQJ
WKH�LQGH[�XQPRGLILHG�

In [95]: ts = Series(np.random.randn(4),
 : index=pd.date_range('1/1/2000', periods=4, freq='M'))

In [96]: ts In [97]: ts.shift(2) In [98]: ts.shift(-2)
Out[96]: Out[97]: Out[98]:
2000-01-31 -0.066748 2000-01-31 NaN 2000-01-31 -0.117388
2000-02-29 0.838639 2000-02-29 NaN 2000-02-29 -0.517795
2000-03-31 -0.117388 2000-03-31 -0.066748 2000-03-31 NaN
2000-04-30 -0.517795 2000-04-30 0.838639 2000-04-30 NaN
Freq: M, dtype: float64 Freq: M, dtype: float64 Freq: M, dtype: float64

$�FRPPRQ�XVH�RI�shift�LV�FRPSXWLQJ�SHUFHQW�FKDQJHV�LQ�D�WLPH�VHULHV�RU�PXOWLSOH�WLPH
VHULHV�DV�'DWD)UDPH�FROXPQV��7KLV�LV�H[SUHVVHG�DV

ts / ts.shift(1) - 1

%HFDXVH�QDLYH�VKLIWV�OHDYH�WKH�LQGH[�XQPRGLILHG��VRPH�GDWD�LV�GLVFDUGHG��7KXV�LI�WKH
IUHTXHQF\�LV�NQRZQ��LW�FDQ�EH�SDVVHG�WR�shift�WR�DGYDQFH�WKH�WLPHVWDPSV�LQVWHDG�RI
VLPSO\�WKH�GDWD�

Date Ranges, Frequencies, and Shifting | 297

In [99]: ts.shift(2, freq='M')
Out[99]:
2000-03-31 -0.066748
2000-04-30 0.838639
2000-05-31 -0.117388
2000-06-30 -0.517795
Freq: M, dtype: float64

2WKHU�IUHTXHQFLHV�FDQ�EH�SDVVHG��WRR��JLYLQJ�\RX�D�ORW�RI�IOH[LELOLW\�LQ�KRZ�WR�OHDG�DQG
ODJ�WKH�GDWD�

In [100]: ts.shift(3, freq='D') In [101]: ts.shift(1, freq='3D')
Out[100]: Out[101]:
2000-02-03 -0.066748 2000-02-03 -0.066748
2000-03-03 0.838639 2000-03-03 0.838639
2000-04-03 -0.117388 2000-04-03 -0.117388
2000-05-03 -0.517795 2000-05-03 -0.517795
dtype: float64 dtype: float64

In [102]: ts.shift(1, freq='90T')
Out[102]:
2000-01-31 01:30:00 -0.066748
2000-02-29 01:30:00 0.838639
2000-03-31 01:30:00 -0.117388
2000-04-30 01:30:00 -0.517795
dtype: float64

Shifting dates with offsets
7KH�SDQGDV�GDWH�RIIVHWV�FDQ�DOVR�EH�XVHG�ZLWK�datetime�RU�Timestamp�REMHFWV�

In [103]: from pandas.tseries.offsets import Day, MonthEnd

In [104]: now = datetime(2011, 11, 17)

In [105]: now + 3 * Day()
Out[105]: Timestamp('2011-11-20 00:00:00')

,I�\RX�DGG�DQ�DQFKRUHG�RIIVHW�OLNH�MonthEnd��WKH�ILUVW�LQFUHPHQW�ZLOO�roll forward�D�GDWH
WR�WKH�QH[W�GDWH�DFFRUGLQJ�WR�WKH�IUHTXHQF\�UXOH�

In [106]: now + MonthEnd()
Out[106]: Timestamp('2011-11-30 00:00:00')

In [107]: now + MonthEnd(2)
Out[107]: Timestamp('2011-12-31 00:00:00')

$QFKRUHG�RIIVHWV�FDQ�H[SOLFLWO\�£UROO¤�GDWHV�IRUZDUG�RU�EDFNZDUG�XVLQJ�WKHLU�rollfor
ward�DQG�rollback�PHWKRGV��UHVSHFWLYHO\�

In [108]: offset = MonthEnd()

In [109]: offset.rollforward(now)
Out[109]: Timestamp('2011-11-30 00:00:00')

298 | Chapter 10:ಗTime Series

D. Koop, CSCI 490/680, Spring 2020

Shifting Time Series
• Data:

 [('2017-11-30', 48), ('2017-12-02', 45),
 ('2017-12-03', 44), ('2017-12-04', 48)]

• Compute day-to-day difference in high temperature:
- s - s.shift(1) (same as s.diff())
- 2017-11-30 NaN
2017-12-02 -3.0
2017-12-03 -1.0
2017-12-04 4.0

52

- s - s.shift(1, 'd')

- 2017-11-30 NaN
2017-12-01 NaN
2017-12-02 NaN
2017-12-03 -1.0
2017-12-04 4.0
2017-12-05 NaN

D. Koop, CSCI 490/680, Spring 2020

Timedelta
• Compute differences between dates
• Lives in datetime module
• diff = parse_date("1 Jan 2017") - datetime.now().date()
diff.days

• Also a pd.Timedelta object that take strings:
- datetime.now().date() + pd.Timedelta("4 days")

• Also, Roll dates using anchored offsets

53

In [99]: ts.shift(2, freq='M')
Out[99]:
2000-03-31 -0.066748
2000-04-30 0.838639
2000-05-31 -0.117388
2000-06-30 -0.517795
Freq: M, dtype: float64

2WKHU�IUHTXHQFLHV�FDQ�EH�SDVVHG��WRR��JLYLQJ�\RX�D�ORW�RI�IOH[LELOLW\�LQ�KRZ�WR�OHDG�DQG
ODJ�WKH�GDWD�

In [100]: ts.shift(3, freq='D') In [101]: ts.shift(1, freq='3D')
Out[100]: Out[101]:
2000-02-03 -0.066748 2000-02-03 -0.066748
2000-03-03 0.838639 2000-03-03 0.838639
2000-04-03 -0.117388 2000-04-03 -0.117388
2000-05-03 -0.517795 2000-05-03 -0.517795
dtype: float64 dtype: float64

In [102]: ts.shift(1, freq='90T')
Out[102]:
2000-01-31 01:30:00 -0.066748
2000-02-29 01:30:00 0.838639
2000-03-31 01:30:00 -0.117388
2000-04-30 01:30:00 -0.517795
dtype: float64

Shifting dates with offsets
7KH�SDQGDV�GDWH�RIIVHWV�FDQ�DOVR�EH�XVHG�ZLWK�datetime�RU�Timestamp�REMHFWV�

In [103]: from pandas.tseries.offsets import Day, MonthEnd

In [104]: now = datetime(2011, 11, 17)

In [105]: now + 3 * Day()
Out[105]: Timestamp('2011-11-20 00:00:00')

,I�\RX�DGG�DQ�DQFKRUHG�RIIVHW�OLNH�MonthEnd��WKH�ILUVW�LQFUHPHQW�ZLOO�roll forward�D�GDWH
WR�WKH�QH[W�GDWH�DFFRUGLQJ�WR�WKH�IUHTXHQF\�UXOH�

In [106]: now + MonthEnd()
Out[106]: Timestamp('2011-11-30 00:00:00')

In [107]: now + MonthEnd(2)
Out[107]: Timestamp('2011-12-31 00:00:00')

$QFKRUHG�RIIVHWV�FDQ�H[SOLFLWO\�£UROO¤�GDWHV�IRUZDUG�RU�EDFNZDUG�XVLQJ�WKHLU�rollfor
ward�DQG�rollback�PHWKRGV��UHVSHFWLYHO\�

In [108]: offset = MonthEnd()

In [109]: offset.rollforward(now)
Out[109]: Timestamp('2011-11-30 00:00:00')

298 | Chapter 10:ಗTime Series

In [99]: ts.shift(2, freq='M')
Out[99]:
2000-03-31 -0.066748
2000-04-30 0.838639
2000-05-31 -0.117388
2000-06-30 -0.517795
Freq: M, dtype: float64

2WKHU�IUHTXHQFLHV�FDQ�EH�SDVVHG��WRR��JLYLQJ�\RX�D�ORW�RI�IOH[LELOLW\�LQ�KRZ�WR�OHDG�DQG
ODJ�WKH�GDWD�

In [100]: ts.shift(3, freq='D') In [101]: ts.shift(1, freq='3D')
Out[100]: Out[101]:
2000-02-03 -0.066748 2000-02-03 -0.066748
2000-03-03 0.838639 2000-03-03 0.838639
2000-04-03 -0.117388 2000-04-03 -0.117388
2000-05-03 -0.517795 2000-05-03 -0.517795
dtype: float64 dtype: float64

In [102]: ts.shift(1, freq='90T')
Out[102]:
2000-01-31 01:30:00 -0.066748
2000-02-29 01:30:00 0.838639
2000-03-31 01:30:00 -0.117388
2000-04-30 01:30:00 -0.517795
dtype: float64

Shifting dates with offsets
7KH�SDQGDV�GDWH�RIIVHWV�FDQ�DOVR�EH�XVHG�ZLWK�datetime�RU�Timestamp�REMHFWV�

In [103]: from pandas.tseries.offsets import Day, MonthEnd

In [104]: now = datetime(2011, 11, 17)

In [105]: now + 3 * Day()
Out[105]: Timestamp('2011-11-20 00:00:00')

,I�\RX�DGG�DQ�DQFKRUHG�RIIVHW�OLNH�MonthEnd��WKH�ILUVW�LQFUHPHQW�ZLOO�roll forward�D�GDWH
WR�WKH�QH[W�GDWH�DFFRUGLQJ�WR�WKH�IUHTXHQF\�UXOH�

In [106]: now + MonthEnd()
Out[106]: Timestamp('2011-11-30 00:00:00')

In [107]: now + MonthEnd(2)
Out[107]: Timestamp('2011-12-31 00:00:00')

$QFKRUHG�RIIVHWV�FDQ�H[SOLFLWO\�£UROO¤�GDWHV�IRUZDUG�RU�EDFNZDUG�XVLQJ�WKHLU�rollfor
ward�DQG�rollback�PHWKRGV��UHVSHFWLYHO\�

In [108]: offset = MonthEnd()

In [109]: offset.rollforward(now)
Out[109]: Timestamp('2011-11-30 00:00:00')

298 | Chapter 10:ಗTime Series

D. Koop, CSCI 490/680, Spring 2020

Time Zones
• Why?
• Coordinated Universal Time (UTC) is the standard time (basically equivalent to

Greenwich Mean Time (GMT)
• Other time zones are UTC +/- a number in [1,12]
• Dartmouth is UTC-5 (aka US/Eastern)

54

D. Koop, CSCI 490/680, Spring 2020

Python, Pandas, and Time Zones
• Time series in pandas are time zone native
• The pytz module keeps track of all of the time zone parameters
- even Daylight Savings Time

• Localize a timestamp using tz_localize
- ts = pd.Timestamp("1 Dec 2016 12:30 PM")
ts = ts.tz_localize("US/Eastern")

• Convert a timestamp using tz_convert
- ts.tz_convert("Europe/Budapest")

• Operations involving timestamps from different time zones become UTC

55

D. Koop, CSCI 490/680, Spring 2020

Frequency
• Generic time series in pandas are irregular
- there is no fixed frequency
- we don't necessarily have data for every day/hour/etc.

• Date ranges have frequency

56

Generating Date Ranges
While I used it previously without explanation, pandas.date_range is responsible for
generating a DatetimeIndex with an indicated length according to a particular
frequency:

In [74]: index = pd.date_range('2012-04-01', '2012-06-01')

In [75]: index
Out[75]:
DatetimeIndex(['2012-04-01', '2012-04-02', '2012-04-03', '2012-04-04',
 '2012-04-05', '2012-04-06', '2012-04-07', '2012-04-08',
 '2012-04-09', '2012-04-10', '2012-04-11', '2012-04-12',
 '2012-04-13', '2012-04-14', '2012-04-15', '2012-04-16',
 '2012-04-17', '2012-04-18', '2012-04-19', '2012-04-20',
 '2012-04-21', '2012-04-22', '2012-04-23', '2012-04-24',
 '2012-04-25', '2012-04-26', '2012-04-27', '2012-04-28',
 '2012-04-29', '2012-04-30', '2012-05-01', '2012-05-02',
 '2012-05-03', '2012-05-04', '2012-05-05', '2012-05-06',
 '2012-05-07', '2012-05-08', '2012-05-09', '2012-05-10',
 '2012-05-11', '2012-05-12', '2012-05-13', '2012-05-14',
 '2012-05-15', '2012-05-16', '2012-05-17', '2012-05-18',
 '2012-05-19', '2012-05-20', '2012-05-21', '2012-05-22',
 '2012-05-23', '2012-05-24', '2012-05-25', '2012-05-26',
 '2012-05-27', '2012-05-28', '2012-05-29', '2012-05-30',
 '2012-05-31', '2012-06-01'],
 dtype='datetime64[ns]', freq='D')

By default, date_range generates daily timestamps. If you pass only a start or end
date, you must pass a number of periods to generate:

In [76]: pd.date_range(start='2012-04-01', periods=20)
Out[76]:
DatetimeIndex(['2012-04-01', '2012-04-02', '2012-04-03', '2012-04-04',
 '2012-04-05', '2012-04-06', '2012-04-07', '2012-04-08',
 '2012-04-09', '2012-04-10', '2012-04-11', '2012-04-12',
 '2012-04-13', '2012-04-14', '2012-04-15', '2012-04-16',
 '2012-04-17', '2012-04-18', '2012-04-19', '2012-04-20'],
 dtype='datetime64[ns]', freq='D')

In [77]: pd.date_range(end='2012-06-01', periods=20)
Out[77]:
DatetimeIndex(['2012-05-13', '2012-05-14', '2012-05-15', '2012-05-16',
 '2012-05-17', '2012-05-18', '2012-05-19', '2012-05-20',
 '2012-05-21', '2012-05-22', '2012-05-23', '2012-05-24',
 '2012-05-25', '2012-05-26', '2012-05-27', '2012-05-28',
 '2012-05-29', '2012-05-30', '2012-05-31', '2012-06-01'],
 dtype='datetime64[ns]', freq='D')

The start and end dates define strict boundaries for the generated date index. For
example, if you wanted a date index containing the last business day of each month,
you would pass the 'BM' frequency (business end of month; see more complete listing

328 | Chapter 11: Time Series

D. Koop, CSCI 490/680, Spring 2020

of frequencies in Table 11-4) and only dates falling on or inside the date interval will
be included:

In [78]: pd.date_range('2000-01-01', '2000-12-01', freq='BM')
Out[78]:
DatetimeIndex(['2000-01-31', '2000-02-29', '2000-03-31', '2000-04-28',
 '2000-05-31', '2000-06-30', '2000-07-31', '2000-08-31',
 '2000-09-29', '2000-10-31', '2000-11-30'],
 dtype='datetime64[ns]', freq='BM')

Table 11-4. Base time series frequencies (not comprehensive)
Alias O!set type Description
D Day Calendar daily
B BusinessDay Business daily
H Hour Hourly
T or min Minute Minutely
S Second Secondly
L or ms Milli Millisecond (1/1,000 of 1 second)
U Micro Microsecond (1/1,000,000 of 1 second)
M MonthEnd Last calendar day of month
BM BusinessMonthEnd Last business day (weekday) of month
MS MonthBegin First calendar day of month
BMS BusinessMonthBegin First weekday of month
W-MON, W-TUE, ... Week Weekly on given day of week (MON, TUE, WED, THU,

FRI, SAT, or SUN)
WOM-1MON, WOM-2MON, ... WeekOfMonth Generate weekly dates in the !rst, second, third, or

fourth week of the month (e.g., WOM-3FRI for the
third Friday of each month)

Q-JAN, Q-FEB, ... QuarterEnd Quarterly dates anchored on last calendar day of each
month, for year ending in indicated month (JAN, FEB,
MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, or DEC)

BQ-JAN, BQ-FEB, ... BusinessQuarterEnd Quarterly dates anchored on last weekday day of each
month, for year ending in indicated month

QS-JAN, QS-FEB, ... QuarterBegin Quarterly dates anchored on !rst calendar day of each
month, for year ending in indicated month

BQS-JAN, BQS-FEB, ... BusinessQuarterBegin Quarterly dates anchored on !rst weekday day of each
month, for year ending in indicated month

A-JAN, A-FEB, ... YearEnd Annual dates anchored on last calendar day of given
month (JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP,
OCT, NOV, or DEC)

BA-JAN, BA-FEB, ... BusinessYearEnd Annual dates anchored on last weekday of given
month

AS-JAN, AS-FEB, ... YearBegin Annual dates anchored on !rst day of given month
BAS-JAN, BAS-FEB, ... BusinessYearBegin Annual dates anchored on !rst weekday of given

month

11.3 Date Ranges, Frequencies, and Shifting | 329

Lots of Frequencies (not comprehensive)

57

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 490/680, Spring 2020

Resampling
• Could be
- downsample: higher frequency to lower frequency
- upsample: lower frequency to higher frequency
- neither: e.g. Wednesdays to Fridays

• resample method: e.g. ts.resample('M').mean()

58

[W. McKinney, Python for Data Analysis]

2000-01 -0.165893
2000-02 0.078606
2000-03 0.223811
2000-04 -0.063643
Freq: M, dtype: float64

resample is a flexible and high-performance method that can be used to process very
large time series. The examples in the following sections illustrate its semantics and
use. Table 11-5 summarizes some of its options.

Table 11-5. Resample method arguments
Argument Description
freq String or DateO!set indicating desired resampled frequency (e.g., ‘M', ’5min', or Second(15))
axis Axis to resample on; default axis=0
fill_method How to interpolate when upsampling, as in 'ffill' or 'bfill'; by default does no interpolation
closed In downsampling, which end of each interval is closed (inclusive), 'right' or 'left'
label In downsampling, how to label the aggregated result, with the 'right' or 'left' bin edge (e.g., the

9:30 to 9:35 "ve-minute interval could be labeled 9:30 or 9:35)
loffset Time adjustment to the bin labels, such as '-1s' / Second(-1) to shift the aggregate labels one

second earlier
limit When forward or backward "lling, the maximum number of periods to "ll
kind Aggregate to periods ('period') or timestamps ('timestamp'); defaults to the type of index the

time series has
convention When resampling periods, the convention ('start' or 'end') for converting the low-frequency period

to high frequency; defaults to 'end'

Downsampling
Aggregating data to a regular, lower frequency is a pretty normal time series task. The
data you’re aggregating doesn’t need to be fixed frequently; the desired frequency
defines bin edges that are used to slice the time series into pieces to aggregate. For
example, to convert to monthly, 'M' or 'BM', you need to chop up the data into one-
month intervals. Each interval is said to be half-open; a data point can only belong to
one interval, and the union of the intervals must make up the whole time frame.
There are a couple things to think about when using resample to downsample data:

• Which side of each interval is closed
• How to label each aggregated bin, either with the start of the interval or the end

To illustrate, let’s look at some one-minute data:
In [213]: rng = pd.date_range('2000-01-01', periods=12, freq='T')

In [214]: ts = pd.Series(np.arange(12), index=rng)

11.6 Resampling and Frequency Conversion | 349

D. Koop, CSCI 490/680, Spring 2020

Downsampling
• Need to define bin edges which are used to group the time series into

intervals that can be aggregated
• Remember:
- Which side of the interval is closed
- How to label the aggregated bin (start or end of interval)

59

2000-01-01 00:10:00 40
2000-01-01 00:15:00 11
Freq: 5T, dtype: int64

See Figure 11-3 for an illustration of minute frequency data being resampled to five-
minute frequency.

Figure 11-3. Five-minute resampling illustration of closed, label conventions

Lastly, you might want to shift the result index by some amount, say subtracting one
second from the right edge to make it more clear which interval the timestamp refers
to. To do this, pass a string or date offset to loffset:

In [219]: ts.resample('5min', closed='right',
 : label='right', loffset='-1s').sum()
Out[219]:
1999-12-31 23:59:59 0
2000-01-01 00:04:59 15
2000-01-01 00:09:59 40
2000-01-01 00:14:59 11
Freq: 5T, dtype: int64

You also could have accomplished the effect of loffset by calling the shift method
on the result without the loffset.

Open-High-Low-Close (OHLC) resampling
In finance, a popular way to aggregate a time series is to compute four values for each
bucket: the first (open), last (close), maximum (high), and minimal (low) values. By
using the ohlc aggregate function you will obtain a DataFrame having columns con‐
taining these four aggregates, which are efficiently computed in a single sweep of the
data:

In [220]: ts.resample('5min').ohlc()
Out[220]:
 open high low close
2000-01-01 00:00:00 0 4 0 4
2000-01-01 00:05:00 5 9 5 9
2000-01-01 00:10:00 10 11 10 11

11.6 Resampling and Frequency Conversion | 351

D. Koop, CSCI 490/680, Spring 2020

Upsampling
• No aggregation necessary

60

Upsampling and Interpolation
When converting from a low frequency to a higher frequency, no aggregation is
needed. Let’s consider a DataFrame with some weekly data:

In [221]: frame = pd.DataFrame(np.random.randn(2, 4),
 : index=pd.date_range('1/1/2000', periods=2,
 : freq='W-WED'),
 : columns=['Colorado', 'Texas', 'New York', 'Ohio'])

In [222]: frame
Out[222]:
 Colorado Texas New York Ohio
2000-01-05 -0.896431 0.677263 0.036503 0.087102
2000-01-12 -0.046662 0.927238 0.482284 -0.867130

When you are using an aggregation function with this data, there is only one value
per group, and missing values result in the gaps. We use the asfreq method to con‐
vert to the higher frequency without any aggregation:

In [223]: df_daily = frame.resample('D').asfreq()

In [224]: df_daily
Out[224]:
 Colorado Texas New York Ohio
2000-01-05 -0.896431 0.677263 0.036503 0.087102
2000-01-06 NaN NaN NaN NaN
2000-01-07 NaN NaN NaN NaN
2000-01-08 NaN NaN NaN NaN
2000-01-09 NaN NaN NaN NaN
2000-01-10 NaN NaN NaN NaN
2000-01-11 NaN NaN NaN NaN
2000-01-12 -0.046662 0.927238 0.482284 -0.867130

Suppose you wanted to fill forward each weekly value on the non-Wednesdays. The
same filling or interpolation methods available in the fillna and reindex methods
are available for resampling:

In [225]: frame.resample('D').ffill()
Out[225]:
 Colorado Texas New York Ohio
2000-01-05 -0.896431 0.677263 0.036503 0.087102
2000-01-06 -0.896431 0.677263 0.036503 0.087102
2000-01-07 -0.896431 0.677263 0.036503 0.087102
2000-01-08 -0.896431 0.677263 0.036503 0.087102
2000-01-09 -0.896431 0.677263 0.036503 0.087102
2000-01-10 -0.896431 0.677263 0.036503 0.087102
2000-01-11 -0.896431 0.677263 0.036503 0.087102
2000-01-12 -0.046662 0.927238 0.482284 -0.867130

You can similarly choose to only fill a certain number of periods forward to limit how
far to continue using an observed value:

352 | Chapter 11: Time Series

Upsampling and Interpolation
When converting from a low frequency to a higher frequency, no aggregation is
needed. Let’s consider a DataFrame with some weekly data:

In [221]: frame = pd.DataFrame(np.random.randn(2, 4),
 : index=pd.date_range('1/1/2000', periods=2,
 : freq='W-WED'),
 : columns=['Colorado', 'Texas', 'New York', 'Ohio'])

In [222]: frame
Out[222]:
 Colorado Texas New York Ohio
2000-01-05 -0.896431 0.677263 0.036503 0.087102
2000-01-12 -0.046662 0.927238 0.482284 -0.867130

When you are using an aggregation function with this data, there is only one value
per group, and missing values result in the gaps. We use the asfreq method to con‐
vert to the higher frequency without any aggregation:

In [223]: df_daily = frame.resample('D').asfreq()

In [224]: df_daily
Out[224]:
 Colorado Texas New York Ohio
2000-01-05 -0.896431 0.677263 0.036503 0.087102
2000-01-06 NaN NaN NaN NaN
2000-01-07 NaN NaN NaN NaN
2000-01-08 NaN NaN NaN NaN
2000-01-09 NaN NaN NaN NaN
2000-01-10 NaN NaN NaN NaN
2000-01-11 NaN NaN NaN NaN
2000-01-12 -0.046662 0.927238 0.482284 -0.867130

Suppose you wanted to fill forward each weekly value on the non-Wednesdays. The
same filling or interpolation methods available in the fillna and reindex methods
are available for resampling:

In [225]: frame.resample('D').ffill()
Out[225]:
 Colorado Texas New York Ohio
2000-01-05 -0.896431 0.677263 0.036503 0.087102
2000-01-06 -0.896431 0.677263 0.036503 0.087102
2000-01-07 -0.896431 0.677263 0.036503 0.087102
2000-01-08 -0.896431 0.677263 0.036503 0.087102
2000-01-09 -0.896431 0.677263 0.036503 0.087102
2000-01-10 -0.896431 0.677263 0.036503 0.087102
2000-01-11 -0.896431 0.677263 0.036503 0.087102
2000-01-12 -0.046662 0.927238 0.482284 -0.867130

You can similarly choose to only fill a certain number of periods forward to limit how
far to continue using an observed value:

352 | Chapter 11: Time Series

Upsampling and Interpolation
When converting from a low frequency to a higher frequency, no aggregation is
needed. Let’s consider a DataFrame with some weekly data:

In [221]: frame = pd.DataFrame(np.random.randn(2, 4),
 : index=pd.date_range('1/1/2000', periods=2,
 : freq='W-WED'),
 : columns=['Colorado', 'Texas', 'New York', 'Ohio'])

In [222]: frame
Out[222]:
 Colorado Texas New York Ohio
2000-01-05 -0.896431 0.677263 0.036503 0.087102
2000-01-12 -0.046662 0.927238 0.482284 -0.867130

When you are using an aggregation function with this data, there is only one value
per group, and missing values result in the gaps. We use the asfreq method to con‐
vert to the higher frequency without any aggregation:

In [223]: df_daily = frame.resample('D').asfreq()

In [224]: df_daily
Out[224]:
 Colorado Texas New York Ohio
2000-01-05 -0.896431 0.677263 0.036503 0.087102
2000-01-06 NaN NaN NaN NaN
2000-01-07 NaN NaN NaN NaN
2000-01-08 NaN NaN NaN NaN
2000-01-09 NaN NaN NaN NaN
2000-01-10 NaN NaN NaN NaN
2000-01-11 NaN NaN NaN NaN
2000-01-12 -0.046662 0.927238 0.482284 -0.867130

Suppose you wanted to fill forward each weekly value on the non-Wednesdays. The
same filling or interpolation methods available in the fillna and reindex methods
are available for resampling:

In [225]: frame.resample('D').ffill()
Out[225]:
 Colorado Texas New York Ohio
2000-01-05 -0.896431 0.677263 0.036503 0.087102
2000-01-06 -0.896431 0.677263 0.036503 0.087102
2000-01-07 -0.896431 0.677263 0.036503 0.087102
2000-01-08 -0.896431 0.677263 0.036503 0.087102
2000-01-09 -0.896431 0.677263 0.036503 0.087102
2000-01-10 -0.896431 0.677263 0.036503 0.087102
2000-01-11 -0.896431 0.677263 0.036503 0.087102
2000-01-12 -0.046662 0.927238 0.482284 -0.867130

You can similarly choose to only fill a certain number of periods forward to limit how
far to continue using an observed value:

352 | Chapter 11: Time Series

D. Koop, CSCI 490/680, Spring 2020

Rolling Window Calculations

61

12 8 7 4 9 13 4 11 3 8

D. Koop, CSCI 490/680, Spring 2020

Rolling Window Calculations

61

12 8 7 4 9 13 4 11 3 8

7.8

D. Koop, CSCI 490/680, Spring 2020

Rolling Window Calculations

61

12 8 7 4 9 13 4 11 3 8

7.8

D. Koop, CSCI 490/680, Spring 2020

Rolling Window Calculations

61

12 8 7 4 9 13 4 11 3 8

7.8 7.0

D. Koop, CSCI 490/680, Spring 2020

Rolling Window Calculations

61

12 8 7 4 9 13 4 11 3 8

7.8 7.0

D. Koop, CSCI 490/680, Spring 2020

Rolling Window Calculations

61

12 8 7 4 9 13 4 11 3 8

7.8 7.0 8.3

D. Koop, CSCI 490/680, Spring 2020

Window Functions
• Idea: want to aggregate over a window of time, calculate the answer, and

then slide that window ahead. Repeat.
• rolling: smooth out data
• Specify the window size in rolling, then an aggregation method
• Result is set to the right edge of window (change with center=True)
• Example:

- df.rolling('180D').mean()

- df.rolling('90D').sum()

62

D. Koop, CSCI 490/680, Spring 2020 63

Shampoo Sales Example

http://faculty.cs.niu.edu/~dakoop/cs680-2020sp/notebooks/shampoo.ipynb

D. Koop, CSCI 490/680, Spring 2020

Interpolation
• Fill in the missing values with computed best estimates using various types of

algorithms
• Apply after resample

64

D. Koop, CSCI 490/680, Spring 2020

Sales Data by Month

65

D. Koop, CSCI 490/680, Spring 2020

Resampled Sales Data (ffill)

66

D. Koop, CSCI 490/680, Spring 2020

Resampled with Linear Interpolation (Default)

67

D. Koop, CSCI 490/680, Spring 2020

Resampled with Cubic Interpolation

68

D. Koop, CSCI 490/680, Spring 2020

Piecewise Cubic Hermite Interpolating Polynomial

69

D. Koop, CSCI 490/680, Spring 2020

90-Day Rolling Window (Mean)

70

D. Koop, CSCI 490/680, Spring 2020

180-Day Rolling Window (Mean)

71

